مطالب
برنامه نویسی موازی بخش دوم (محافظت از مقادیر مشترک)
 در بخش قبلی، مروری کلی بر مفاهیم اصلی برنامه نویسی موازی، از جمله شرایط و نکات استفاده از آن را بررسی کردیم. در انتهای بخش اول عنوان کردیم که در روند برنامه نویسی موازی، اگر دو یا چند Thread به طور مشترک به داده‌ای دسترسی داشته باشند، امکان بروز Race condition وجود خواهد داشت. پس باید کد خود را Thread Safe کنیم. می‌توان برای کنترل رفتارهای عجیب اشیاء در محیط‌های Multi Thread، عنوان Thread Safety را بکار برد.

به طور کلی ۴ روش در #C برای ایجاد Thread Safety وجود دارند:


1- Lock/Monitor
این دو روش یکسان هستند و مانند هم عمل می‌کنند. در واقع در ابتدا روش Monitor وجود داشته و بعد روش lock برای کوتاهی syntax، به صورت بلاکی به #C افزوده شده‌است. این روش تنهای بر روی Thread‌های داخلی App Domain کنترل دارد (اجازه ورود یک Thread) و نمی‌تواند بر روی Thread‌های خارج از این حوزه در محیط‌های Multi Thread محدودیتی اعمال نماید. منظور از Thread‌های داخلی، Thread هایی هستند که داخل Application ما ایجاد شده‌اند.

به تکه کد زیر توجه کنید:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Threading;

 class Program
    {
        static int a = 0;
        static int b = 0;
        static Random random = new Random();
        
        static void Main(string[] args)
        {

            Thread obj = new Thread(Division);
            obj.Start();

            Division();
        }

        static void Division()
        {

            for (int i = 0; i <= 500; i++)
            {

                try
                {
                   
                        //Choosing random numbers between 1 to 5
                        a = random.Next(1, 10);
                        b = random.Next(1, 10);


                        //Dividing
                        double ans = a / b;


                        //Reset Variables
                        a = 0;
                        b = 0;

                        Console.WriteLine("Answer : {0} --> {1}", i, ans);
                    
                }
                catch (Exception ex)
                {
                    Console.WriteLine(ex.ToString());
                }
            }
        }
    }

همانطور که در کد بالا ملاحظه می‌کنید، متد Division به صورت Thread Safe پیاده سازی نشده‌است! اما مشکل کجاست!؟

با برسی این متد و عملکرد آن متوجه می‌شویم که این متد در یک چرخه‌ی تکرار ۵۰۰ مرتبه‌ای، دو عدد تصادفی را در بازه‌ی ۱ تا ۱۰، انتخاب کرده و آن‌ها را بر هم تقسیم و متغیر‌های تصادفی را با مقدار ۰ پر می‌کند. همین عمل Reset Variable در این متد، باعث بروز خطا در محیط Multi Thread خواهد شد. بدین صورت که اگر این متد مانند مثال بالا توسط دو Thread مجزا فراخوانی شود، یکبار توسط New Thread و بلافاصله در Thread اصلی Application، احتمال این وجود خواهد داشت که در Thread دوم، بعد از انتخاب دو مقدار تصادفی و درست قبل از عملیات تقسیم، به طور همزمان Thread اول عملیات Reset Variable را انجام دهد که باعث بروز خطای تقسیم بر ۰ در Thread دوم می‌شود. این همان مشکلی است که گاها یافتن آن از طریق Debug بسیار دشوار خواهد بود.
اما با تغییر کد به شکل زیر
class Program
    {
        static int a = 0;
        static int b = 0;
        static Random random = new Random();
        static readonly object _object = new object();
        static void Main(string[] args)
        {

            Thread obj = new Thread(Division);
            obj.Start();

            Division();
        }

        static void Division()
        {

            for (int i = 0; i <= 500; i++)
            {

                try
                {
                    Monitor.Enter(_object);
                   
                        //Choosing random numbers between 1 to 5
                        a = random.Next(1, 10);
                        b = random.Next(1, 10);


                        //Dividing
                        double ans = a / b;


                        //Reset Variables
                        a = 0;
                        b = 0;

                        Console.WriteLine("Answer : {0} --> {1}", i, ans);
                    Monitor.Exit(_object);

                }
                catch (Exception ex)
                {
                    Console.WriteLine(ex.ToString());
                }
            }
        }
    }

مادامی که یک Thread در حالت انتخاب اعداد تصادفی تا تقسیم و اعلام نتیجه می‌باشد، به Thread‌های داخلی دیگر، اجازه‌ی ورود به این بخش که تحت کنترل Monitor می‌باشد داده نخواهد شد. همانطور که گفته شده، بازه‌ی تحت کنترل مانیتور میتواند با بلاک Lock(object) جایگزین شود. شیء object یک شیء مشترک (static) میان تمام اشیاء است برای کنترل ورود Thread‌ها و قفل گزاری مشترک بین این اشیاء.

2- Mutex:
این نوع قفل گزاری به منظور محافظت منابع مشترک برای جلوگیری از ورود Thread‌های بیرونی استفاده می‌شود. منظور از Thread‌های بیرونی Thread‌های یک کامپیوتر است. همچنین می‌توان از Mutex بجای lock نیز استفاده کرد؛ اما به دلیل هدف کاری Mutex، باید هزینه‌ی بیشتری (تقریبا 50 برابر کندتر از Lock) پرداخت کرد.
 static void Main()
  { 
    using (var mutex = new Mutex (false, "dotnettips.info Demo"))
    {
     
      if (!mutex.WaitOne (TimeSpan.FromSeconds (3), false))
      {
        Console.WriteLine ("Another app instance is running. Bye!");
        return;
      }
      RunProgram();
    }
  }
 
  static void RunProgram()
  {
    Console.WriteLine ("Running. Press Enter to exit");
    Console.ReadLine();
  }
در مثال بالا از یک Mutex نام دار استفاده شده است که به ما این امکان را می‌دهد تا به صورت Computer-Wide روی Thread‌ها ایجاد محدودیت نماییم. اگر متد بالا را در دو ترمینال اجرا کنید، نسخه‌ی دوم اجرا نخواهد شد. البته این نکته را در نظر داشته باشید که این امکان در سیتم عامل‌های مبتنی بر Linux غیرفعال است .
Mutex دارای دو متد مهم است :

۱- WaiteOne : شروع Blocking با این متد خواهد بود و اگر بتواند عملیات blocking را انجام دهد مقدار True را باز می‌گرداند. این متد دارای دو ورودی دیگر نیز هست که در مقالات بعدی به طور مفصل به آن‌ها اشاره خواهد شد. اما بطور خلاصه می‌توان اینگونه عنوان نمود که یک پارامتر زمان وجود دارد که مدت زمان انتظار برای Blocking را مشخص می‌کند و پارامتر Boolean دیگری که در حالت synchronization مورد استفاده قرار می‌گیرد و خروج و یا عدم خروج از دامنه synchronization را مشخص می‌کند.

۲- ReleaseMutex : شروع آزاد سازی انحصار، با این متد انجام می‌شود.

هیچگاه نباید یک Mutex را در کد رها کرد؛ زیرا باعث به‌وجود آمدن خطاهایی در کد خواهد شد. روش‌هایی برای رها سازی وجود دارد مانند Dispose کردن Mutex و یا استفاده از متد ReleaseMutex. قبل از خروج از کد باید دقت داشت در بخش هایی از کد که از این نوع قفل گزاری استفاده شده‌است، حتما باید مکانیسم‌های Exception Handling و یا Disposing را برای مدیریت Mutex ایجاد شده اعمال کرد.

3 -Semaphore 
یک نسخه پیشرفته‌تر از Mutex است که می‌تواند برای Thread‌های داخلی و یا خارجی استفاده شود و روی آنها اعمال محدودیت کند. همچنین می‌تواند اجازه‌ی ورود یک تا چند Thread را به بخشی از کد، برای محافظت از منابع بدهد. Semaphore نیز مانند Mutex دارای متد‌های Wait و Release است. یک Semaphore با ظرفیت ورود یک Thread در لحظه همان Mutex است. همچنین از Semaphore‌‌ها می‌توان در متدهای Async نیز استفاده کرد.

4- SemaphoreSlim
در واقع یک نسخه‌ی پیشرفته از Monitor و یک نسخه‌ی سبک وزن از Semaphore است و به همان شکل به شما اجازه‌ی محدودیت گزاری فقط بر روی Thread‌های داخلی را می‌دهد. اما بجای اجازه‌ی ورود فقط یک Thread، به شما این امکان را می‌دهد که اجازه‌ی ورود همزمان یک یا چند Thread را به انتخاب خود بدهید.

هزینه‌ی اعمال محدودیت (قفل گزاری) روی Thread ها
به طور کل هزینه‌ی قفل گزاری بر روی Thread‌ها بالاست. اما در صورت نیاز باید انتخاب درستی از بین موارد عنوان شده را انتخاب نمود. lock/Monitor و SemaphoreSlim دارای کمترین هزینه و Mutex و Semaphore دارای بیشترین هزینه و سربار هستند. اگر در Application‌های بزرگ از Mutex و Semaphore به درستی استفاده نشود، به جد باعث کندی خواهد شد.

در بخش بعدی مقاله، Double-checked locking را مورد بررسی قرار خواهیم داد.
اشتراک‌ها
WPF و IOC در NET Core 3.0.

At work, we are planning to migrate our WPF application from .NET Framework 4.7 to .NET Core 3.0. The main reason for doing so is that it was always a big pain to organize the updates of the .NET Framework on our customer machines. So being able to bundle .NET Core with our application is a big plus for us. Then, for sure, we are looking for the performance improvements brought by .NET Core and finally the new capabilities brought by the fast pace of innovation of .NET Core. 

WPF و IOC در NET Core 3.0.
مطالب
Symbols در ES 6
در مطلب Iterators به بررسی حلقه‌های for of پرداختیم. اما سؤال مهم اینجا است که for of چگونه یک iterator را پیدا می‌کند و چه چیزی سبب می‌شود تا بتواند این پیمایش را انجام دهد؟ پاسخ به این سؤال نیاز به آشنایی با مفهوم جدیدی در ES 6 به نام Symbols دارد.
Symbol یک primitive data type جدید در ES 6 است؛ دقیقا مانند اعداد، Boolean، رشته‌ها و امثال آن‌ها. دو نکته‌ی مهم در مورد Symbols وجود دارد:
الف) منحصربفرد و immutable (غیرقابل تغییر) هستند.
ب) می‌توان از آن‌ها به عنوان کلیدهایی جهت افزودن خواص جدید به اشیاء استفاده کرد.

ایجاد یک Symbol باید بدون استفاده از کلمه‌ی new انجام شود (چون یک primitive data type است):
 let s = Symbol();
همچنین در اینجا یک توضیح را نیز می‌توان ذکر کرد:
 let s1 = Symbol("some description");
سمبل ایجاد شده، منحصربفرد بوده و غیرقابل تغییر است. همین منحصربفرد بودن آن سبب شده‌است که در لایه‌های زیرین ES 6 از آن برای ساخت کلیدهای خواص اشیاء استفاده شود:
let firstName = Symbol();
 
let person = {
    lastName: "Vahid",
    [firstName]: "N",
};
 
// person.lastName = "Vahid"
// person[firstName] = "N"
در این مثال ابتدا یک سمبل جدید ایجاد شده و سپس از این سمبل به عنوان کلیدی منحصربفرد، جهت تعریف یک خاصیت جدید کمک گرفته شده‌است.  
در ES 5 (نگارش فعلی جاوا اسکریپت)، کتابخانه‌های مختلف از time stamp و یا اعداد اتفاقی برای شبیه سازی چنین قابلیتی استفاده می‌کنند اما در ES 6 یک راه حل استاندارد به نام Symbols برای این مساله ارائه شده‌است.

چند نکته
- زمانیکه خاصیتی با کلیدی از نوع Symbol تعریف می‌شود، دیگر در حلقه‌های for in قدیمی ظاهر نخواهد شد.
 let names = [];
for(var p in person) {
   names.push(p);
}
- همچنین این خواص سمبلی، توسط Object.getOwnPropertyNames نیز قابل دسترسی و یافت شدن نیستند. به عبارتی با امکانات ES 5 نمی‌توان آن‌‌ها را مشاهده کرد.


سؤال: ES 6 چگونه از Symbols جهت تعریف Iterators استفاده می‌کند؟

مطابق استاندارد ES 6 اگر متد خاصی با نام iterator@@ در شیءایی ظاهر شود، این شیء قابل پیمایش بوده و به عنوان منبع حلقه‌ی for of قابل استفاده‌است.
خوب، اکنون چگونه می‌توان بررسی کرد که آیا شیءایی دارای متد ویژه‌ی iterator@@ است؟ برای این منظور باید بررسی کرد که آیا این شیء دارای عضو Symbol.iterator هست یا خیر؟ خاصیت iterator متصل به متد Symbol، یکی از سمبل‌های پیش فرض ES 6 است.
برای مثال آرایه‌ی ذیل را درنظر بگیرید:
 var numbers = [1, 2, 3];
برای اینکه بررسی کنیم آیا قابل پیمایش هست یا خیر، می‌توان نوشت:
 numbers[Symbol.iterator];


همانطور که در تصویر مشاهده می‌کنید، آرایه و یا رشته‌ی تعریف شده، دارای Iterator هستند؛ اما عدد تعریف شده، خیر.

و یا اگر بخواهیم همان مثال while دار مطلب بررسی Iterators را با Symbol.iterator بازسازی کنیم، به مثال زیر خواهیم رسید:
 var numbersIterator = numbers[Symbol.iterator]();
numbersIterator.next();
// Result: Object {value: 1, done: false}
numbersIterator.next();
// Result: Object {value: 2, done: false}
numbersIterator.next();
// Result: Object {value: 3, done: false}
numbersIterator.next();
// Result: Object {value: undefined, done: true}
کاری که در اینجا انجام شده، دقیقا عملیاتی است که توسط حلقه‌ی for of در پشت صحنه انجام می‌شود. ابتدا بررسی می‌کند که آیا خاصیت Symbol.iterator در دسترس است یا خیر؟ اگر بله، متد next آن‌را تا زمان true شدن خاصیت done بازگشتی، فراخوانی می‌کند.


ایجاد یک Iterator سفارشی با استفاده از Symbol.iterator

در این مثال قصد داریم یک پیمایشگر سفارشی را بر روی یک رشته‌ی دریافتی، ایجاد کنیم. ابتدا ایجاد سازنده‌ی شیء:
 function Words(str) {
   this._str = str;
}
و سپس بدنه‌ی Iterator:
Words.prototype[Symbol.iterator] = function() {
  var re = /\S+/g;
  var str = this._str;
return {
    next: function() {
      var match = re.exec(str);
      if (match) {
        return {value: match[0], done: false};
      }
      return {value: undefined, done: true};
    }
  }
};
در اینجا شیءایی بازگشت داده می‌شود که دارای متد next است و هر بار {value: nextWordInTheString, done: false} را بازگشت می‌دهد تا دیگر کلمه‌‌ای در رشته باقی نماند. نمونه‌ای از نحوه‌ی استفاده‌ی از آن نیز به صورت زیر است:
 var helloWorld = new Words("Hello world");
for (var word of helloWorld) {
   console.log(word);
}
// Result: "Hello"
// Result: "world"
پیشنهادها
نوع‌های Generics در دات نت و اعمال ریاضی بر روی آن‌ها
نوع‌های Generics در دات نت از اعمال ریاضی مانند جمع و ضرب و منها پشتیبانی نمی‌کنند. در مقالات ذیل راه حل‌هایی برای رفع این مشکل ارائه شده‌اند که می‌توانند تبدیل به یک مقاله جدید گردند:
اشتراک‌ها
معرفی NET Framework 4.6.2 Preview.

We’ve added new features and APIs in the following areas of the product:

  • TLS 1.1/1.2 support for ClickOnce
  • Enabling .NET desktop apps with Project Centennial
  • Support for additional cryptography standards
  • Soft keyboard and per-monitor DPI support for WPF 
معرفی NET Framework 4.6.2 Preview.
نظرات مطالب
EF Code First #11
سلام آقای نصیری. آیا این روش که در خود سایت asp.net انجام شده هم اشتباه هستش؟

http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
اشتراک‌ها
Migrations در Entity Framework 7

This is the last installment in a series of videos made with the Entity Framework team. In this episode Brice Lambson describes migrations and how they are used in Entity Framework 7.

Migrations در Entity Framework 7