مطالب
Garbage Collector در #C - قسمت سوم
در قسمت قبلی درباره تفاوت‌های Stack و Heap، صحبت کرده و به این نتیجه رسیدیم که برای آزادسازی حافظه Heap، در صورتی‌که نخواهیم اینکار را بصورت دستی انجام دهیم، نیاز به Garbage Collector پیدا خواهیم کرد.


تاریخچه‌ای مختصر از GC در NET.

ایده اولیه ایجاد Garbage Collector در NET.، در سال 1990 بود که در آن زمان، مایکروسافت مشغول پیاده سازی خود از JavaScript بنام JScript بود. در ابتدا JScript توسط تیمی چهار نفره توسعه داده میشد و در آن زمان یکی از اعضای این تیم به نام Patrick Dussud که بعنوان پدر Garbage Collector در NET. شناخته میشود، یک Conservative GC را داخل تیم توسعه داد. در آن زمان CLR ای وجود نداشت و Patrick Dussud برروی JVM کار میکرد.

مایکروسافت سعی بر پیاده سازی نسخه‌ای اختصاصی از JVM را برای خود بجای ایجاد چیزی شبیه به NET Runtime. فعلی داشت؛ اما بعد از شکل گیری تیم CLR، به این نتیجه رسیدند که JVM برای آنها محدودیت‌هایی را ایجاد میکند و به همین دلیل شروع به ایجاد Environment خود کردند.

با این تصمیم، Patrick Dussud مجددا یک GC جدید را با ایده "بهترین GC ممکن" با زبان LISP که در آن بیشترین مهارت را داشت، بصورت Prototype نوشت و سپس یک Transpiler از LISP را به ++C نوشت که کدهای آن قابل استفاده در Runtime مایکروسافت باشد.

کدهای فعلی مربوط به Garbage Collector مورد استفاده در NET. در این فایل از ریپازیتوری runtime مایکروسافت قابل دسترسی هستند. در حال حاضر خانم Maoni Stephens مدیر فنی تیم GC مایکروسافت هستند که کنفرانس‌ها و مقالات زیادی نیز درباره نکات مختلف پیاده سازی GC در بلاگ خود نوشته و ارائه کرده‌اند.


در حال حاضر، سه حالت (flavor) از GC در NET. تعبیه شده‌است و هرکدام از این حالات برای انواع مختلفی از برنامه‌ها بهینه شده‌است که در ادامه به بررسی آنها میپردازیم.


Server GC

این نوع GC برای برنامه‌های سمت سرور نظیر ASP.NET Core و WCF بهینه سازی شده‌است که تعداد ریکوئست‌های زیادی به آنها وارد میشود و هر ریکوئست باعث allocate شدن اشیا مختلفی شده و بطور کلی، نرخ allocation و deallocation در آنها بالاست.

Server GC به ازای هر پردازنده، از یک Heap و یک GC Thread مجزا استفاده میکند. این بدین معناست که اگر شما یک پردازنده را با هشت Core داشته باشید، در زمان Garbage Collection، روی هرکدام از Coreها یک Heap و GC Thread مستقل وجود دارد که عمل Garbage Collection را انجام میدهند.

این شکل عملکرد باعث میشود که Collection، در سریعترین زمان ممکن، بدون وقفه اضافه انجام شود و برنامه شما اصطلاحا ((Freeze)) نشود.

Server GC فقط روی پردازنده‌های چند هسته‌ای قابل اجراست و اگر سعی کنید برنامه خود را روی یک سیستم با پردازنده تک هسته‌ای در حالت Server GC اجرا کنید، بصورت خودکار برنامه شما از Non-Concurrent Workstation GC استفاده کرده و اصطلاحا Fallback خواهد شد.

اگر نیاز دارید که در برنامه‌هایی به‌غیر از Server-Side Applicationها، نظیر WPF و Windows Service‌ها و ... از این نوع GC استفاده کنید (به شرط چند هسته بودن پردازنده)، میتوانید این تنظیمات را به فایل app.config یا web.config خود اضافه کنید:
<configuration>
  <runtime>
    <gcServer enabled="true"/>
  </runtime>
</configuration>

همچنین در برنامه‌های NET Core.ای نیز میتوانید این تنظیمات را داخل فایل csproj. برنامه خود اضافه کنید:
<PropertyGroup>
  <ServerGarbageCollection>true</ServerGarbageCollection>
</PropertyGroup>


Concurrent Workstation GC


این حالت، حالت پیشفرض مورد استفاده در برنامه‌های Windows Forms و Windows Service است. این حالت از GC برای برنامه‌هایی بهینه شده‌است که در آنها، هنگام وقوع Garbage Collection، برنامه توقف و مکث حتی چند لحظه‌ای نداشته و Collection باعث نشود که کاربر نتواند روی یک دکمه کلیک کند و اصطلاحا برنامه ((Unresponsive)) شود.

برای فعالسازی Concurrent Workstation GC این تنظیمات را داخل config برنامه خود باید اعمال کنید:
<configuration>
  <runtime>
    <gcConcurrent enabled="true" />
  </runtime>
</configuration>


Non-Concurrent Workstation GC


این حالت شبیه به حالت Server GC است؛ با این تفاوت که عمل Collection روی Thread ای که درخواست allocate کردن یک object را کرده است، صورت میگیرد.

برای مثال:

  • Thread شماره یک درخواست allocate کردن یک string با طول 10000 کاراکتر را میدهد.
  • حافظه، فضای کافی برای تخصیص این حجم از حافظه را نداشته و سعی میکند با اجرای Garbage Collector، این حجم فضای مورد نیاز از حافظه را خالی کند.
  • CLR تمام Thread‌های برنامه را متوقف میکند و Garbage Collector شروع به کار کرده و اشیا بلااستفاده «روی Thread ای که آن را فراخوانی کرده است» را Collect میکند.
  • بعد از پایان Collection، تمامی Threadهای برنامه که در مرحله قبل متوقف شده بودند، مجددا شروع به کار خواهند کرد.


این حالت از GC برای برنامه‌های Server-Side ای که برروی پردازنده تک هسته‌ای اجرا میشوند، پیشنهاد میشود. برای فعالسازی این حالت، تنظیمات داخل config برنامه به این صورت باید تغییر پیدا کند:
<configuration>
  <runtime>
    <gcConcurrent enabled="false" />
  </runtime>
</configuration>



این جدول، کمک خواهد کرد که بر اساس نوع برنامه خود، تنظیمات درستی را برای GC اعمال نمایید (در اکثر موارد، تنظیمات پیشفرض بهترین انتخاب بوده و نیازی به تغییر روند کار GC نیست):

 Server GC  Non-Concurrent Workstation  Concurrent Workstation  
 Maximize throughput on multi-processor machines for server apps that create multiple threads to handle the same types of requests.  Maximize throughput on single-processor machines.  Balance throughput and responsiveness for client apps with UI. Design Goal 
1 per processor ( hyper thread aware )  1  Number of Heaps
 1 dedicated GC thread per processor The thread which performs the allocation that triggers the GC. The thread which performs the allocation that triggers the GC.  GC Threads
 EE is suspended during a GC. EE is suspended during a GC. EE is suspended much shorter but several times during a GC.  Execution Engine
Suspension
<gcServer enabled="true">
<gcConcurrent enabled="false">
 <gcConcurrent enabled="true"> 
 Config Setting
Non-Concurrent Workstation GC      On a single
processor
(fallback)
اشتراک‌ها
آموزش ساخت اپلیکیشن های تجاری با WPF, MVVM, and Entity Framework Code First

آموزش عالی  برای کسانی که می‌خواهند WPF و الگوی MVVM و CODE FIRST رو باهم یاد بگیرند :

At the core of developing a data-driven WPF application is a thorough knowledge of how to use the MVVM Pattern and Entity Framework. In this course, Building an Enterprise App with WPF, MVVM, and Entity Framework Code First, you will learn the skills you need to create high-quality enterprise applications with WPF. First, you'll learn about typical scenarios like communicating between different ViewModels, detecting model changes, and handling many-to-many relations. Next, you'll learn all about creating a tabbed user interface. Finally, you'll explore implementing optimistic concurrency and styling your application. When you're finished with this course, you will have a deep understanding of WPF, MVVM, and Entity Framework that will help you immensely as you move forward and create your own data-driven enterprise application

 
آموزش ساخت اپلیکیشن های تجاری با  WPF, MVVM, and Entity Framework Code First
نظرات مطالب
اعمال تزریق وابستگی‌ها به مثال رسمی ASP.NET Identity
سلام،

اگر بخوایم مقاله فعلی رو با درنظر گرفتن موارد زیر به یک برنامه ASP.NET Core اعمال کنیم به چه نحوی هستش؟

ممنون
نظرات مطالب
سفارشی سازی ASP.NET Core Identity - قسمت دوم - سرویس‌های پایه
در ASP.NET Core، برخلاف نگارش‌های قبلی ASP.NET که ASP.NET Web API مجزای از ASP.NET MVC و همچنین وب فرم‌ها ارائه شده بود، اکنون جزئی از ASP.NET MVC است و با آن یکپارچه می‌باشد. اطلاعات بیشتر
یعنی پروژه را ناقص نکنید. سرویس‌های آن‌را حذف نکنید. تمامش با هم هست و پایه کدهای آن یکی است. همچنین سعی در بازسازی مجدد این پروژه را هم نکنید؛ چندین ماه وقت صرف شده برای یافتن نکات و برقراری اتصالات آن.
اشتراک‌ها
پیاده سازی یک پروژه با ASP.NET Core Web API و Angular

Learn FULL STACK Web Development in 2 HOURS! ASP.NET & Angular

Timestamps:
00:00:00 Welcome to our 2 hour FULL STACK Course!
00:01:12 What you will learn during the next 2 hours
00:03:29 Day 1 Multi-Page and Single-Page Applications, TypeScript, and Angular Components
00:21:57 Day 2 One-Way Binding and Event Binding in Angular
00:34:23 Day 3 Our Flight Booking Portal and routing in Angular
00:44:52 Day 4 The 'Search Flight' page, Design a HTML page, install Font Awesome using Node, and TypeScript interfaces
01:27:00 Day 5 ASP.NET Core REST API, SWAGGER for documenting and testing our API
01:55:51 Thanks for watching!
 

پیاده سازی یک پروژه با ASP.NET Core Web API و Angular
اشتراک‌ها
نمونه معماری پیاده سازی شده با ASP.NET Core و Angular و DDD

Architecture with .NET Core 3.1, ASP.NET Core 3.1, Entity Framework Core 3.1, C#, Angular 9.1, Clean Code, SOLID, DDD, Code Analysis, Docker and more. 

Technologies 

  • .NET Core 3.1
  • ASP.NET Core 3.1
  • Entity Framework Core 3.1
  • C# 8.0
  • Angular 9.1
  • Typescript
  • JWT
  • FluentValidation
  • Scrutor
  • Serilog
  • Docker
  • Azure DevOps
  • ...

Practices 

  • Clean Code
  • SOLID Principles
  • DDD (Domain-Driven Design)
  • Unit of Work Pattern
  • Repository Pattern 
  • ...
نمونه معماری پیاده سازی شده با ASP.NET Core و Angular و DDD
مطالب
بررسی نکات دریافت فایل‌های حجیم توسط HttpClient
HttpClient به عنوان جایگزینی برای HttpWebRequest API قدیمی، به همراه NET 4.5. ارائه شد و هدف آن یکپارچه کردن پیاده سازی‌های متفاوت موجود به همراه ارائه را‌ه‌حلی چندسکویی است که از WPF/UWP ، ASP.NET تا NET Core. و iOS/Android را نیز پشتیبانی می‌کند. تمام قابلیت‌های جدید پروتکل HTTP مانند HTTP/2 نیز از این پس تنها به همراه این API ارائه می‌شوند.
در مطلب «روش استفاده‌ی صحیح از HttpClient در برنامه‌های دات نت» با روش استفاده‌ی تک وهله‌ای آن آشنا شدیم. در این مطلب نکات ویژه‌ی دریافت فایل‌های حجیم آن‌را بررسی خواهیم کرد. بدون توجه به این نکات، یا OutOfMemoryException را دریافت خواهید کرد و یا پیش از پایان کار، با خطای Timeout این پروسه به پایان خواهد رسید.


مشکل اول: نیاز به تغییر Timeout پیش فرض

فرض کنید می‌خواهیم فایل حجیمی را با تنظیمات پیش‌فرض HttpClient دریافت کنیم:
using System;
using System.Net.Http;
using System.Threading.Tasks;

namespace HttpClientTips.LargeFiles
{
    class Program
    {
        private static readonly HttpClient _client = new HttpClient();

        static async Task Main(string[] args)
        {
            var bytes = await DownloadLargeFileAsync();
        }

        public static async Task<byte[]> DownloadLargeFileAsync()
        {
            Console.WriteLine("Downloading a 4K content - too much bytes.");
            var response = await _client.GetAsync("http://downloads.4ksamples.com/downloads/sample-Elysium.2013.2160p.mkv");
            var bytes = await response.Content.ReadAsByteArrayAsync();
            return bytes;
        }
    }
}
در این حالت باتوجه به اینکه Timeout پیش‌فرض HttpClient به 100 ثانیه تنظیم شده‌است، اگر سرعت دریافت بالایی را نداشته باشید و نتوانید این فایل را پیش از 2 دقیقه دریافت کنید، برنامه با استثنای TaskCancelledException متوقف خواهد شد.
بنابراین اولین تغییر مورد نیاز، تنظیم صریح Timeout آن است:
private static readonly HttpClient _client = new HttpClient
{
    Timeout = Timeout.InfiniteTimeSpan
};


مشکل دوم: دریافت استثنای OutOfMemoryExceptions

روش دریافت پیش‌فرض اطلاعات توسط HttpClient، نگهداری و بافر تمام آن‌ها در حافظه‌ی سیستم است. این روش برای اطلاعات کم حجم، مشکلی را به همراه نخواهد داشت. بنابراین در حین دریافت فایل‌های چندگیگابایتی با آن، حتما با استثنای OutOfMemoryException مواجه خواهیم شد.
namespace HttpClientTips.LargeFiles
{
    class Program
    {
        private static readonly HttpClient _client = new HttpClient
        {
            Timeout = Timeout.InfiniteTimeSpan
        };

        static async Task Main(string[] args)
        {
            await DownloadLargeFileAsync();
        }

        public static async Task DownloadLargeFileAsync()
        {
            Console.WriteLine("Downloading a 4K content. too much bytes.");
            var response = await _client.GetAsync("http://downloads.4ksamples.com/downloads/sample-Elysium.2013.2160p.mkv");
            using (var streamToReadFrom = await response.Content.ReadAsStreamAsync())
            {
                string fileToWriteTo = Path.GetTempFileName();
                Console.WriteLine($"Save path: {fileToWriteTo}");
                using (var streamToWriteTo = File.Open(fileToWriteTo, FileMode.Create))
                {
                    await streamToReadFrom.CopyToAsync(streamToWriteTo);
                }
            }
        }
    }
}
در این حالت برای رفع مشکل، از متد ReadAsStreamAsync آن استفاده می‌کنیم. به این ترتیب بجای یک آرایه‌ی بزرگ از بایت‌ها، با استریمی از آن‌ها سر و کار داشته و به این صورت مشکل مواجه شدن با کمبود حافظه برطرف می‌شود.
مشکل: در این حالت اگر برنامه را اجرا کنید، تا پایان کار متد DownloadLargeFileAsync، حجم فایل دریافتی تغییری نخواهد کرد. یعنی هنوز هم کل فایل در حافظه بافر می‌شود و سپس استریم آن در اختیار FileStream نهایی برای نوشتن قرار خواهد گرفت.
علت این‌جا است که متد client.GetAsync تا زمانیکه کل Response ارسالی از طرف سرور خوانده نشود (headers + content)، عملیات را سد کرده و منتظر می‌ماند. بنابراین با این تغییرات عملا به نتیجه‌ی دلخواه نرسیده‌ایم.


دریافت اطلاعات Header و سپس استریم کردن Content

چون متد client.GetAsync تا دریافت کامل headers + content متوقف می‌ماند، می‌توان به آن اعلام کرد تنها هدر را به صورت کامل دریافت کن و سپس باقیمانده‌ی عملیات دریافت بدنه‌ی Response را به صورت Stream در اختیار ادامه‌ی برنامه قرار بده. برای اینکار نیاز است پارامتر HttpCompletionOption را تکمیل کرد:
var response = await _client.GetAsync(
                "http://downloads.4ksamples.com/downloads/sample-Elysium.2013.2160p.mkv",
                HttpCompletionOption.ResponseHeadersRead);
پارامتر HttpCompletionOption.ResponseHeadersRead به متد GetAsync اعلام می‌کند که پس از خواندن هدر Response، ادامه‌ی عملیات را در اختیار سطرهای بعدی کد قرار بده و عملیات را تا پایان خواندن کامل Response در حافظه، متوقف نکن.


مشکل سوم: برنامه در دریافت سومین فایل از یک سرور هنگ می‌کند.

تعداد اتصالات همزمانی را که می‌توان توسط HttpClient به یک سرور گشود، محدود هستند. برای مثال این عدد در Full .NET Framework مساوی 2 است. بنابراین اگر اتصال سوم موازی را شروع کنیم، چون Timeout را به بی‌نهایت تنظیم کرده‌ایم، این قسمت از برنامه هیچگاه تکمیل نخواهد شد.
روش تنظیم تعداد اتصالات مجاز به یک سرور:
- در Full .NET Framework با تنظیم خاصیت ServicePointManager.DefaultConnectionLimit است که به 2 تنظیم شده‌است.
- این مورد در NET Core. توسط پارامتر HttpClientHandler و خاصیت MaxConnectionsPerServer آن تنظیم می‌شود:
private static readonly HttpClientHandler _handler = new HttpClientHandler
{
    MaxConnectionsPerServer = int.MaxValue, // default for .NET Core
    UseDefaultCredentials = true
};
private static readonly HttpClient _client = new HttpClient(_handler)
{
    Timeout = Timeout.InfiniteTimeSpan
};
البته مقدار پیش‌فرض آن int.MaxValue است که نسبت به حالت Full .NET Framework عدد بسیار بزرگتری است.
نظرات مطالب
ASP.NET MVC #21
- مراجعه کنید به دوره «استفاده از افزونه‌ها و امکانات jQuery در ASP.NET MVC» برای تکمیل بحث. برای نمونه مطلب «افزونه‌ای برای کپسوله سازی نکات ارسال یک فرم ASP.NET MVC به سرور توسط jQuery Ajax» اطلاعات یک فرم رو به صورت خودکار توسط متد form.serialize به سرور ارسال می‌کند.
- نمی‌تونید از Ajax معمولی (یا به عبارتی XMLHttpRequest) برای ارسال فایل استفاده کنید. یا باید از سیلورلایت یا فلش استفاده کنید، یا از
مرورگرهایی که XMLHttpRequest Level 2 را پشتیبانی کنند (از IE 10 به بعد مثلا)، امکان Ajax upload توکار به همراه گزارش درصد آپلود را بدون نیاز به فلش یا سیلورلایت، دارند.یک نمونه پیاده سازی آن 
نظرات مطالب
مقدمه‌ای بر تزریق وابستگی‌ها درASP.NET Core
موردی که مدنظر شما است تزریق وابستگی‌ها نام ندارد و الگوی service locator است. اگر بخواهید از آن در ASP.NET Core استفاده کنید، نظرات و نکات تکمیلی مطلب «ارتقاء به ASP.NET Core 1.0 - قسمت 6 - سرویس‌ها و تزریق وابستگی‌ها» را مطالعه کنید و خصوصا عبارات « GetService » و یا « GetRequiredService » را در آن جستجو کنید؛ مانند Request.HttpContext.RequestServices.GetService. 
نظرات مطالب
بررسی روش دسترسی به HttpContext در ASP.NET Core
سلام؛ نحوه کار با ConcurrentDictionary  در Asp.Net Core دقیقا چطوری هستش؟ لطف کنید نحوه پیاده سازی همین ماژول Online Visitors رو با ConcurrentDictionary داخل Asp.Net Core بگید.