مطالب
امکان تعریف ساده‌تر کلاس‌های Immutable در C# 9.0 با معرفی نوع جدید record
در مطلب معرفی خواص init-only، با روش معرفی خواص immutable آشنا شدیم. نوع جدیدی که به C# 9.0 به نام record اضافه شده‌است، قسمتی از آن بر اساس همان خواص init-only کار می‌کند. به همین جهت مطالعه‌ی آن مطلب، پیش از ادامه‌ی بحث جاری، ضروری است.


چرا در C# 9.0 تا این اندازه بر روی سادگی ایجاد اشیاء Immutable تمرکز شده‌است؟

به شیءای Immutable گفته می‌شود که پس از وهله سازی ابتدایی آن، وضعیت آن دیگر قابل تغییر نباشد. همچنین به کلاسی Immutable گفته می‌شود که تمام وهله‌های ساخته شده‌ی از آن نیز Immutable باشند. نمونه‌ی یک چنین شیءای را از نگارش 1 دات نت در حال استفاده هستیم: رشته‌ها. رشته‌ها در دات نت غیرقابل تغییر هستند و هرگونه تغییری بر روی آن‌ها، سبب ایجاد یک رشته‌ی جدید (یک شیء جدید) می‌شود. نوع جدید record نیز به همین صورت عمل می‌کند.

مزایای وجود Immutability:

- اشیاء Immutable یا غیرقابل تغییر، thread-safe هستند که در نتیجه، برنامه نویسی همزمان و موازی را بسیار ساده می‌کنند؛ چون چندین thread می‌توانند با شیءای کار کنند که دسترسی به آن، تنها read-only است.
- اشیاء Immutable از اثرات جانبی، مانند تغییرات آن‌ها در متدهای مختلف در امان هستند. می‌توانید آن‌ها را به هر متدی ارسال کنید و مطمئن باشید که پس از پایان کار، این شیء تغییری نکرده‌است.
- کار با اشیاء Immutable، امکان بهینه سازی حافظه را میسر می‌کنند. برای مثال NET runtime.، هش رشته‌های تعریف شده‌ی در برنامه را در پشت صحنه نگهداری می‌کند تا مطمئن شود که تخصیص حافظه‌ی اضافی، برای رشته‌های تکراری صورت نمی‌گیرد. نمونه‌ی دیگر آن نمایش حرف "a" در یک ادیتور یا نمایشگر است. زمانیکه یک شیء Immutable حاوی اطلاعات حرف "a"، ایجاد شود، به سادگی می‌توان این تک وهله را جهت نمایش هزاران حرف "a" مورد استفاده‌ی مجدد قرار داد، بدون اینکه نگران مصرف حافظه‌ی بالای برنامه باشیم.
- کار با اشیاء Immutable به باگ‌های کمتری ختم می‌شود؛ چون همواره امکان تغییر حالت درونی یک شیء، توسط قسمت‌های مختلف برنامه، می‌تواند به باگ‌های ناخواسته‌ای منتهی شوند.
- Hash list‌ها که در جهت بهبود کارآیی برنامه‌ها بسیار مورد استفاده قرار می‌گیرند، بر اساس کلیدهایی Immutable قابل تشکیل هستند.


روش تعریف نوع‌های جدید record

کلاس ساده‌ی زیر را در نظر بگیرید:
public class User
{
   public string Name { set; get; }
}
برای تبدیل آن به یک نوع جدید record فقط کافی است واژه‌ی کلیدی class آن‌را با record جایگزین کنیم (به آن nominal record هم می‌گویند):
public record User
{
   public string Name { set; get; }
}
نحوه‌ی کار با آن و وهله سازی آن نیز دقیقا مانند کلاس‌ها است:
var user = new User();
user.Name = "User 1";
و ... در اینجا امکان انتساب مقداری به خاصیت Name وجود دارد؛ یعنی این خاصیت به صورت پیش‌فرض Immutable نیست.

روش تعریف دومی نیز در اینجا میسر است (به آن positional record هم می‌گویند):
public record User(string Name);
با این‌کار، به صورت خودکار یک record جدید تشکیل می‌شود که به همراه خاصیت Name است؛ چیزی شبیه به record قبلی که تعریف کردیم (به همین جهت نیاز است نام آن‌را شروع شده‌ی با حروف بزرگ درنظر بگیریم). با این تفاوت که این record، اینبار دارای سازنده است و همچنین خاصیت Name آن از نوع init-only است. در این حالت است که کل record به صورت immutable معرفی می‌شود؛ وگرنه روش تعریف یک خاصیت معمولی که از نوع init-only نیست (مانند مثال اول)، سبب بروز Immutability نخواهد شد.

برای کار با رکورد دومی که تعریف کردیم باید سازند‌ه‌ی این record را مقدار دهی کرد:
var user = new User("User 1");
// Error: Init-only property or indexer 'User.Name' can only be assigned
// in an object initializer, or on 'this' or 'base' in an instance constructor
// or an 'init' accessor. [CS9Features]csharp(CS8852)
user.Name = "User 1";
و همانطور که ملاحظه می‌کنید، چون خاصیت Name از نوع init-only است و در سازنده‌ی record تعریف شده مقدار دهی شده‌است، دیگر نمی‌توان آن‌را مقدار دهی مجدد کرد. همچنین در اینجا امکان استفاده‌ی از object initializers مانند new User { Name = "User 1" } نیز وجود ندارد؛ چون به همراه یک سازنده‌ی به صورت خودکار تولید شده‌است که خاصیتی init-only را مقدار دهی کرده‌است.


نوع جدید record چه اطلاعاتی را به صورت خودکار تولید می‌کند؟

روش دوم تعریف recordها اگر در نظر بگیریم:
public record User(string Name);
و در این حالت برنامه را کامپایل کنیم، به کدهای زیر که حاصل از دی‌کامپایل است، می‌رسیم:
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Text;
using CS9Features;

public class User : IEquatable<User>
{
 protected virtual Type EqualityContract
 {
  [System.Runtime.CompilerServices.NullableContext(1)]
  [CompilerGenerated]
  get
  {
   return typeof(User);
  }
 }

 public string Name
 {
  get;
  set/*init*/;
 }

 public User(string Name)
 {
  this.Name = Name;
  base..ctor();
 }

 public override string ToString()
 {
  StringBuilder stringBuilder = new StringBuilder();
  stringBuilder.Append("User");
  stringBuilder.Append(" { ");
  if (PrintMembers(stringBuilder))
  {
   stringBuilder.Append(" ");
  }
  stringBuilder.Append("}");
  return stringBuilder.ToString();
 }

 protected virtual bool PrintMembers(StringBuilder builder)
 {
  builder.Append("Name");
  builder.Append(" = ");
  builder.Append((object?)Name);
  return true;
 }

 [System.Runtime.CompilerServices.NullableContext(2)]
 public static bool operator !=(User? r1, User? r2)
 {
  return !(r1 == r2);
 }

 [System.Runtime.CompilerServices.NullableContext(2)]
 public static bool operator ==(User? r1, User? r2)
 {
  return (object)r1 == r2 || (r1?.Equals(r2) ?? false);
 }

 public override int GetHashCode()
 {
  return EqualityComparer<Type>.Default.GetHashCode(EqualityContract) * -1521134295 + EqualityComparer<string>.Default.GetHashCode(Name);
 }

 public override bool Equals(object? obj)
 {
  return Equals(obj as User);
 }

 public virtual bool Equals(User? other)
 {
  return (object)other != null && EqualityContract == other!.EqualityContract && EqualityComparer<string>.Default.Equals(Name, other!.Name);
 }

 public virtual User <Clone>$()
 {
  return new User(this);
 }

 protected User(User original)
 {
  Name = original.Name;
 }

 public void Deconstruct(out string Name)
 {
  Name = this.Name;
 }
}
این خروجی به صورت خودکار تولید شده‌ی توسط کامپایلر، چنین نکاتی را به همراه دارد:
- record‌ها هنوز هم در اصل همان class‌های استاندارد #C هستند (یعنی در اصل reference type هستند).
- این کلاس به همراه یک سازنده و یک خاصیت init-only است (بر اساس تعاریف ما).
- متد ToString آن بازنویسی شده‌است تا اگر آن‌را بر روی شیء حاصل، فراخوانی کردیم، به صورت خودکار نمایش زیبایی را از محتوای آن ارائه دهد.
- این کلاس از نوع  <IEquatable<User است که امکان مقایسه‌ی اشیاء record را به سادگی میسر می‌کند. برای این منظور متدهای GetHashCode و Equals آن به صورت خودکار بازنویسی و تکمیل شده‌اند (یعنی مقایسه‌ی آن شبیه به value-type است).
- این کلاس امکان clone کردن اطلاعات جاری را مهیا می‌کند.
- همچنین به همراه یک متد Deconstruct هم هست که جهت انتساب خواص تعریف شده‌ی در آن، به یک tuple مفید است.

بنابراین یک رکورد به همراه قابلیت‌هایی است که سال‌ها در زبان #C وجود داشته‌اند و شاید ما به سادگی حاضر به تشکیل و تکمیل آن‌ها نمی‌شدیم؛ اما اکنون کامپایلر زحمت کدنویسی خودکار آن‌ها را متقبل می‌شود!


ساخت یک وهله‌ی جدید از یک record با clone کردن آن

اگر به کدهای حاصل از دی‌کامپایل فوق دقت کنید، یک قسمت جدید clone هم با syntax خاصی در آن ظاهر شده‌است:
public virtual User <Clone>$()
{
  return new User(this);
}
زمانیکه یک شیء Immutable است، دیگر نمی‌توان مقادیر خواص آن‌را در ادامه تغییر داد. اما اگر نیاز به اینکار وجود داشت، باید چکار کنیم؟ در C# 9.0 برای ایجاد وهله‌ی جدید معادلی از یک record، واژه‌ی کلیدی جدیدی را به نام with، اضافه کرده‌اند. برای نمونه اگر record زیر را در نظر بگیریم که دارای دو خاصیت نام و سن است:
public record User(string Name, int Age);
وهله سازی متداول آن به صورت زیر خواهد بود:
var user1 = new User("User 1", 21);
اما اگر خواستیم خاصیت سن آن‌را تغییر دهیم، می‌توان با استفاده از واژه‌ی کلیدی with، به صورت زیر عمل کرد:
var user2 = user1 with { Age = 31 };
کاری که در اصل در اینجا انجام می‌شود، ابتدا clone کردن شیء user1 است (یعنی دقیقا یک وهله‌ی جدید از user1 را با تمام اطلاعات قبلی آن در اختیار ما قرار می‌دهد که این وهله، ارجاعی را به شیء قبلی ندارد و از آن منقطع است). بنابراین نام user2، دقیقا همان "User 1" است که پیشتر تنظیم کردیم؛ با این تفاوت که اینبار مقدار سن آن متفاوت است. با استفاده از cloning، هنوز شیء user1 که immutable است، دست نخورده باقی مانده‌است و توسط with می‌توان خواص آن‌را تغییر داد و حاصل کار، یک شیء کاملا جدید است که مکان آن در حافظه، با مکان شیء user1 در حافظه، یکی نیست.


مقایسه‌ی نوع‌های record

در کدهای حاصل از دی‌کامپایل فوق، قسمت عمده‌ای از آن به تکمیل اینترفیس <IEquatable<User پرداخته شده بود. به همین جهت اکنون دو رکورد با مقادیر خواص یکسانی را ایجاد می‌کنیم:
var user1 = new User("User 1", 21);
var user2 = new User("User 1", 21);
سپس یکبار آن‌ها را از طریق عملگر == و بار دیگر به کمک متد Equals، مقایسه می‌کنیم:
Console.WriteLine("user1.Equals(user2) -> {0}", user1.Equals(user2));
Console.WriteLine("user1 == user2 -> {0}", user1 == user2);
خروجی هر دو حالت، True است:
user1.Equals(user2) -> True
user1 == user2 -> True
این مورد، یکی از مهم‌ترین تفاوت‌های recordها با classها هستند.
- زمانیکه عملگر == را بر روی شیء user1 و user2 اعمال می‌کنیم، اگر User، از نوع کلاس معمولی باشد، حاصل آن false خواهد بود؛ چون این دو، به یک مکان از حافظه اشاره نمی‌کنند، حتی با اینکه مقادیر خواص هر دو شیء یکی است.
- اما اگر به قطعه کد دی‌کامپایل شده دقت کنید، در یک رکورد که هر چند در اصل یک کلاس است، حتی عملگر == نیز بازنویسی شده‌است تا در پشت صحنه همان متد Equals را فراخوانی کند و این متد با توجه به پیاده سازی اینترفیس <IEquatable<User، اینبار دقیقا مقادیر خواص رکورد را یک به یک مقایسه کرده و نتیجه‌ی حاصل را باز می‌گرداند:
public virtual bool Equals(User? other)
{
   return (object)other != null &&
 EqualityContract == other!.EqualityContract &&
 EqualityComparer<string>.Default.Equals(Name, other!.Name) && 
EqualityComparer<int>.Default.Equals(Age, other!.Age);
}
این متدی است که به صورت خودکار توسط کامپایلر جهت مقایسه‌ی مقادیر خواص رکورد جدید تعریف شده، تشکیل شده‌است. به عبارتی recordها از لحاظ مقایسه، شبیه به value objects عمل می‌کنند؛ هرچند در اصل یک کلاس هستند.

یک نکته: بازنویسی عملگر == در SDK نگارش rc2 فعلی رخ‌داده‌است و در نگارش‌های قبلی preview، اینگونه نبود.


امکان ارث‌بری در recordها

دو رکورد زیر را در نظر بگیرید که اولی به همراه Name است و نمونه‌ی مشتق شده‌ی از آن، خاصیت init-only سن را نیز به همراه دارد:
    public record User
    {
        public string Name { get; init; }

        public User(string name)
        {
            Name = name;
        }
    }

    public record UserWithAge : User
    {
        public int Age { get; init; }

        public UserWithAge(string name, int age) : base(name)
        {
            Age = age;
        }
    }
در اینجا روش دیگر تعریف recordها را ملاحظه می‌کنید که شبیه به کلاس‌ها است و خواص آن init-only هستند. در این حالت اگر مقایسه‌ی زیر را انجام دهیم:
var user1 = new User("User 1");
var user2 = new UserWithAge("User 1", 21);

Console.WriteLine("user1.Equals(user2) -> {0}", user1.Equals(user2));
Console.WriteLine("user1 == user2 -> {0}", user1 == user2);
به خروجی زیر خواهیم رسید:
user1.Equals(user2) -> False
user1 == user2 -> False
علت آن را هم پیشتر بررسی کردیم. تساوی رکوردها بر اساس مقایسه‌ی مقدار تک تک خواص آن‌ها صورت می‌گیرد و چون user1 به همراه سن نیست، مقایسه‌ی این دو، false را بر می‌گرداند.

امکان تعریف ارث‌بری رکوردها به صورت زیر نیز وجود دارد و الزاما نیازی به روش تعریف کلاس مانند آن‌ها، مانند مثال فوق نیست:
public abstract record Food(int Calories);
public record Milk(int C, double FatPercentage) : Food(C);


رکوردها متد ToString را بازنویسی می‌کنند

در مثال قبلی اگر یک ToString را بر روی اشیاء تشکیل شده فراخوانی کنیم:
Console.WriteLine(user1.ToString());
Console.WriteLine(user2.ToString());
به این خروجی‌ها می‌رسیم:
User { Name = User 1 }
UserWithAge { Name = User 1, Age = 21 }
که حاصل بازنویسی خودکار متد ToString در پشت صحنه است.


امکان استفاده‌ی از Deconstruct در رکوردها

دو روش برای تعریف رکوردها وجود دارند؛ یکی شبیه به تعریف کلاس‌ها است و دیگری تعریف یک سطری، که positional record نیز نامیده می‌شود:
public record Person(string Name, int Age);
 فقط در حالت تعریف یک سطری positional record فوق است که خروجی خودکار نهایی تولیدی، به همراه public void Deconstruct نیز خواهد بود:
public void Deconstruct(out string Name, out int Age)
{
  Name = this.Name;
  Age = this.Age;
}
در این حالت می‌توان از tuples نیز برای کار با آن استفاده کرد:
var (name, age) = new Person("User 1", 21);
واژه‌ی «positional» نیز دقیقا به همین قابلیت اشاره می‌کند که بر اساس موقعیت خواص تعریف شده‌ی در رکورد، امکان Deconstruct آن‌ها به متغیرهای یک tuple وجود دارد. حالت تعریف کلاس مانند رکوردها، nominal نام دارد.


امکان استفاده‌ی از نوع‌های record در ASP.NET Core 5x

سیستم model binding در ASP.NET Core 5x، از نوع‌های record نیز پشتیبانی می‌کند؛ یک مثال:
 public record Person([Required] string Name, [Range(0, 150)] int Age);

 public class PersonController
 {
   public IActionResult Index() => View();

   [HttpPost]
   public IActionResult Index(Person person)
   {
    // ...
   }
 }


پرسش و پاسخ

آیا نوع‌های record به صورت value type معرفی می‌شوند؟
پاسخ: خیر. رکوردها در اصل reference type هستند؛ اما از لحاظ مقایسه، شبیه به value types عمل می‌کنند.

آیا می‌توان در یک کلاس، خاصیتی از نوع رکورد را تعریف کرد؟
پاسخ: بله. از این لحاظ محدودیتی وجود ندارد.

آیا می‌توان در رکوردها، از struct و یا کلاس‌ها جهت تعریف خواص استفاده کرد؟
پاسخ: بله. از این لحاظ محدودیتی وجود ندارد.

آیا می‌توان از واژه‌ی کلیدی with با کلاس‌ها و یا structها استفاده کرد؟
پاسخ: خیر. این واژه‌ی کلیدی در C# 9.0 مختص به رکوردها است.

آیا رکوردها به صورت پیش‌فرض Immutable هستند؟
پاسخ: اگر آن‌ها را به صورت positional records تعریف کنید، بله. چون در این حالت خواص تشکیل شده‌ی توسط آن‌ها از نوع init-only هستند. در غیراینصورت، می‌توان خواص غیر init-only را نیز به تعریف رکوردها اضافه کرد.
مطالب
تولید MiniDump در حین کرش برنامه‌های دات نت
با مطالعه‌ی سورس‌های محصولات اخیرا سورس باز شده‌ی مایکروسافت، نکات جالبی را می‌توان استخراج کرد. برای نمونه اگر سورس پروژه‌ی Orleans را بررسی کنیم، در حین بررسی اطلاعات استثناءهای رخ داده‌ی در برنامه، متد TraceLogger.CreateMiniDump نیز بکار رفته‌است. در این مطلب قصد داریم، این متد و نحوه‌ی استفاده‌ی از حاصل آن‌را بررسی کنیم.


تولید MiniDump در برنامه‌های دات نت


خلاصه‌ی روش تولید MiniDump در پروژه‌ی Orleans به صورت زیر است:
الف) حالت‌های مختلف تولید فایل دامپ که مقادیر آن قابلیت Or شدن را دارا هستند:
    [Flags]
public enum MiniDumpType
{
    MiniDumpNormal = 0x00000000,
    MiniDumpWithDataSegs = 0x00000001,
    MiniDumpWithFullMemory = 0x00000002,
    MiniDumpWithHandleData = 0x00000004,
    MiniDumpFilterMemory = 0x00000008,
    MiniDumpScanMemory = 0x00000010,
    MiniDumpWithUnloadedModules = 0x00000020,
    MiniDumpWithIndirectlyReferencedMemory = 0x00000040,
    MiniDumpFilterModulePaths = 0x00000080,
    MiniDumpWithProcessThreadData = 0x00000100,
    MiniDumpWithPrivateReadWriteMemory = 0x00000200,
    MiniDumpWithoutOptionalData = 0x00000400,
    MiniDumpWithFullMemoryInfo = 0x00000800,
    MiniDumpWithThreadInfo = 0x00001000,
    MiniDumpWithCodeSegs = 0x00002000,
    MiniDumpWithoutManagedState = 0x00004000
}

ب) متد توکار ویندوز برای تولید فایل دامپ
public static class NativeMethods
{
    [DllImport("Dbghelp.dll")]
    public static extern bool MiniDumpWriteDump(
        IntPtr hProcess,
        int processId,
        IntPtr hFile,
        MiniDumpType dumpType,
        IntPtr exceptionParam,
        IntPtr userStreamParam,
        IntPtr callbackParam);
}

ج) فراخوانی متد تولید دامپ در برنامه
در اینجا نحوه‌ی استفاده از enum و متد MiniDumpWriteDump ویندوز را مشاهده می‌کنید:
public static class DebugInfo
{
    public static void CreateMiniDump(
        string dumpFileName, MiniDumpType dumpType = MiniDumpType.MiniDumpNormal)
    {
        using (var stream = File.Create(dumpFileName))
        {
            var process = Process.GetCurrentProcess();
            // It is safe to call DangerousGetHandle() here because the process is already crashing.
            NativeMethods.MiniDumpWriteDump(
                            process.Handle,
                            process.Id,
                            stream.SafeFileHandle.DangerousGetHandle(),
                            dumpType,
                            IntPtr.Zero,
                            IntPtr.Zero,
                            IntPtr.Zero);
        }
    }
 
    public static void CreateMiniDump(MiniDumpType dumpType = MiniDumpType.MiniDumpNormal)
    {
        const string dateFormat = "yyyy-MM-dd-HH-mm-ss-fffZ"; // Example: 2010-09-02-09-50-43-341Z
        var thisAssembly = Assembly.GetEntryAssembly() ?? Assembly.GetCallingAssembly();
        var dumpFileName = string.Format(@"{0}-MiniDump-{1}.dmp",
                    thisAssembly.GetName().Name,
                    DateTime.UtcNow.ToString(dateFormat, CultureInfo.InvariantCulture));
 
        var path = Path.Combine(getApplicationPath(), dumpFileName);
        CreateMiniDump(path, dumpType);
    }
 
    private static string getApplicationPath()
    {
        return HttpContext.Current != null ?
            HttpRuntime.AppDomainAppPath :
            Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location);
    }
}
متد MiniDumpWriteDump نیاز به اطلاعات پروسه‌ی جاری، به همراه هندل فایلی که قرار است اطلاعات را در آن بنویسد، دارد. همچنین dump type آن نیز می‌تواند ترکیبی از مقادیر enum مرتبط باشد.

یک مثال:
class Program
{
    static void Main(string[] args)
    {
        try
        {
            var zero = 0;
            Console.WriteLine(1 / zero);
        }
        catch (Exception ex)
        {
            Console.Write(ex);
            DebugInfo.CreateMiniDump(dumpType:
                                MiniDumpType.MiniDumpNormal |
                                MiniDumpType.MiniDumpWithPrivateReadWriteMemory |
                                MiniDumpType.MiniDumpWithDataSegs |
                                MiniDumpType.MiniDumpWithHandleData |
                                MiniDumpType.MiniDumpWithFullMemoryInfo |
                                MiniDumpType.MiniDumpWithThreadInfo |
                                MiniDumpType.MiniDumpWithUnloadedModules);
 
            throw;
        }
    }
}
در اینجا نحوه‌ی فراخوانی متد CreateMiniDump را در حین کرش برنامه مشاهده می‌کنید. پارامترهای اضافی دیگر سبب خواهند شد تا اطلاعات بیشتری از حافظه‌ی جاری سیستم، در دامپ نهایی قرار گیرند. اگر پس از اجرای برنامه، به پوشه‌ی bin\debug مراجعه کنید، فایل dmp تولیدی را مشاهده خواهید کرد.


نحوه‌ی بررسی فایل‌های dump


الف) با استفاده از Visual studio 2013

از به روز رسانی سوم VS 2013 به بعد، فایل‌های dump را می‌توان داخل خود VS.NET نیز آنالیز کرد (^ و ^ و ^). برای نمونه تصویر ذیل، حاصل کشودن فایل کرش مثال فوق است:


در اینجا اگر بر روی لینک debug managed memory کلیک کنید، پس از چند لحظه، آنالیز کامل اشیاء موجود در حافظه را در حین تهیه‌ی دامپ تولیدی، می‌توان مشاهده کرد. این مورد برای آنالیز نشتی‌های حافظه‌ی یک برنامه بسیار مفید است.


ب) استفاده از برنامه‌ی Debug Diagnostic Tool

برنامه‌ی Debug Diagnostic Tool را از اینجا می‌توانید دریافت کنید. این برنامه نیز قابلیت آنالیز فایل‌های دامپ را داشته و اطلاعات بیشتری را پس از آنالیز ارائه می‌دهد.


برای نمونه پس از آنالیز فایل دامپ تهیه شده توسط این برنامه، خروجی ذیل حاصل می‌شود:



کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید:
MiniDumpTest.zip
مطالب
چک لیست نصب SQL Server

عموما هنگام نصب SQL Server ، پیش و پس از آن، بهتر است موارد زیر جهت بالا بردن کیفیت و کارآیی سرور، رعایت شوند:

1- پیش فرض‌های نصب SQL Server در مورد محل قرارگیری فایل‌های دیتا و لاگ و غیره صحیح نیست. هر کدام باید در یک درایو مجزا مسیر دهی شوند برای مثال:
Data drive D:
Transaction Log drive E:
TempDB drive F:
Backup drive G:
این مورد TempDB را کسانی که با SharePoint کار کرده باشند به خوبی علتش را درک خواهند کرد. پیش فرض نصب افراد تازه کار، نصب SQL Server و تمام مخلفات آن در همان درایو ویندوز است (یعنی همان چندبار کلیک بر روی دکمه‌ی Next برای نصب). SharePoint هم به نحو مطلوبی تمام کارهایش مبتنی بر transactions است. یعنی استفاده‌ی کامل از TempDB . نتیجه؟ پس از مراجعه به درایو ویندوز مشاهده خواهید کرد که فقط چند مگ فضای خالی باقی مانده! حالا اینجا است که بدو این مقاله و اون مقاله رو بخون که چطور TempDB را باید از درایو C به جای دیگری منتقل کرد. چیزی که همان زمان نصب اولیه SQL Server باید در مورد آن فکر می‌شد و نه الان که سیستم از کار افتاده.
همچنین وجود این مسیرهای مشخص و پیش فرض و آگاهی از سطوح دسترسی مورد نیاز آن‌ها، از سر دردهای بعدی جلوگیری خواهد کرد. برای مثال : انتقال فایل‌های دیتابیس اس کیوال سرور 2008

2- پس از رعایت مورد 1 ، نوبت به تنظیمات آنتی ویروس نصب شده روی سرور است. این پوشه‌های ویژه را که جهت فایل‌های دیتا و لاگ و غیره بر روی درایوهای مختلف معرفی کرده‌اید یا خواهید نمود، باید از تنظیمات آنتی ویروس شما Exclude شوند. همچنین در حالت کلی فایل‌هایی با پسوندهای LDF/MDF/NDF باید جزو فایل‌های صرفنظر شونده از دید آنتی ویروس شما معرفی گردند.
این مورد علاوه بر بالا بردن کارآیی SQL Server ، در حین Boot سیستم نیز تاثیر گذار است. گاها دیده شده است که آنتی ویروس‌ها این فایل‌های حجیم را در حین راه اندازی اولیه سیستم، پیش از SQL Server ، جهت بررسی گشوده و به علت حجم بالای آن‌ها این قفل‌ها تا مدتی رها نخواهند شد. در نتیجه آغاز سرویس SQL Server را با مشکلات جدی مواجه خواهند کرد که عموما عیب یابی آن کار ساده‌ای نیست.

3- پیش فرض میزان حافظه‌ی مصرفی SQL Server صحیح نیست. این مورد باید دقیقا بلافاصله پس از پایان عملیات نصب اولیه اصلاح شود. برای مطالعه بیشتر: تنظیمات پیشنهادی حداکثر حافظه‌ی مصرفی اس کیوال سرور

4- آیا مطمئن هستید که از تمام امکانات نگارش جدید SQL Server ایی که نصب کرده‌اید در حال استفاده می‌باشید؟
برای مطالعه بیشتر: تنظیم درجه سازگاری یک دیتابیس اس کیوال سرور

5- بهتر است فشرده سازی خودکار بک آپ‌ها در SQL Server 2008 فعال شوند.
برای مطالعه بیشتر: +

6- از paging بیش از حد اطلاعات، از حافظه‌ی فیزیکی سرور به virtual memory و انتقال آن به سخت دیسک سیستم جلوگیری کنید. برای این منظور:
در قسمت Run ویندوز تاپیک کنید : GPEDIT.MSC و پس از اجرای آن با مراجعه به Group policy editor ظاهر شده به مسیر زیر مراجعه کنید:
windows settings -> security settings -> local policies -> user rights assignment -> lock pages in memory
در اینجا به یوزر اکانت سرویس SQL Server دسترسی lock pages in memory را بدهید.
علاوه بر آن در همین قسمت (user rights assignment) گزینه‌ی "Perform Volume Maintenance tasks" را نیز یافته و دسترسی لازم را به یوزر اکانت سرویس SQL Server بدهید.

7- به روز رسانی اطلاعات آماری SQL Server را به حالت غیرهمزمان تنظیم کنید.
اگر مطالب مرتبط با SQL Server این سایت را مرور کرده باشید حتما با یک سری DMV که دقیقا به شما خواهند گفت بر اساس اطلاعات آماری جمع شده برای مثال بهتر است روی چه فیلدهایی Index درست کنید، آشنا شده‌اید. حالت پیش فرض به روز رسانی این اطلاعات آماری، synchronous است یا همزمان. به این معنا که تا اطلاعات آماری یک کوئری ذخیره نشود، حاصل کوئری به کاربر بازگشت داده نخواهد شد که این امر می‌تواند بر روی کارآیی سیستم تاثیر گذار باشد. اما امکان تنظیم آن به حالت غیر همزمان نیز مطابق کوئری‌های زیر وجود دارد (این مورد از SQL Server 2005 به بعد اضافه شده است):

ALTER DATABASE dbName SET AUTO_UPDATE_STATISTICS ON
ALTER DATABASE dbName SET AUTO_UPDATE_STATISTICS_ASYNC ON

8- نصب آخرین سرویس پک موجود فراموش نشود. برای مثال این سایت آمار تمام به روز رسانی‌ها را نگهداری می‌کند.

9- حتما رویه‌ای را برای تهیه بک آپ‌های خودکار پیش بینی کنید. برای مثال : +

10- میزان فضای خالی باقیمانده درایوهای سرور را مونیتور کنید. اطلاعات بیشتر: +

11- با نصب سرور جدید و تنظیم collation آن به فارسی، به نکات "یافتن تداخلات Collations در SQL Server" دقت داشته باشید.

اشتراک‌ها
AutoMapper 4.0 منتشر شد

There’s a ton of small bug fixes in this release, quite a few enhancements and a few larger new features. Configuration performance went up quite a bit, and I’ve laid the groundwork to make in-memory mapping a lot faster in the future. LINQ projection has gotten to the point where you can do anything that the major query providers support.

AutoMapper 4.0 منتشر شد
مطالب
SQL Antipattern #2

بخش دوم : Naive Trees  

فرض کنید یک وب سایت حرفه‌ای خبری یا علمی-پژوهشی داریم که قابلیت دریافت نظرات کاربران را در مورد هر مطلب مندرج در سایت یا نظرات داده شده در مورد آن مطالب را دارا می‌باشد. یعنی هر کاربر علاوه بر توانایی اظهار نظر در مورد یک خبر یا مطلب باید بتواند پاسخ نظرات کاربران دیگر را نیز بدهد. اولین راه حلی که برای طراحی این مطلب در پایگاه داده به ذهن ما می‌رسد، ایجاد یک زنجیره با استفاده از کد sql زیر می‌باشد:

CREATE TABLE Comments (
comment_idSERIAL PRIMARY KEY,
parent_idBIGINT UNSIGNED,
comment TEXT NOT NULL,
FOREIGN KEY (parent_id) REFERENCES Comments(comment_id)
);

البته همان طور که پیداست بازیابی زنجیره‌ای از پاسخ‌ها در یک پرس‌وجوی sql کار سختی است. این نخ‌ها معمولا عمق نامحدودی دارند و برای به دست آوردن تمام نخ‌های یک زنجیره باید پرس‌وجوهای زیادی را اجرا نمود.

ایده‌ی دیگر می‌تواند بازیابی تمام نظرها و ذخیره‌ی آن‌ها در حافظه‌ی برنامه به صورت درخت باشد. ولی این روش برای ذخیره هزاران نظری که ممکن است در سایت ثبت شود و علاوه بر آن مقالات جدیدی که اضافه می‌شوند، تقریبا غیرعملی است.

1.2 هدف: ذخیره و ایجاد پرس‌وجو در سلسله‌مراتب

وجود سلسله مراتب بین داده‌ها امری عادی محسوب می‌گردد. در ساختار داده‌ای درختی هر ورودی یک گره محسوب می‌گردد. یک گره ممکن است تعدادی فرزند و یک پدر داشته باشد. گره اول پدر ندارد، ریشه و گره فرزند که فرزند ندارد، برگ و گره‌ای دیگر، گره‌های غیربرگ نامیده می‌شوند.

مثال‌هایی که از ساختار درختی داده‌ها وجود دارد شامل موارد زیر است:

Organizational chart: در این ساختار برای مثال در ارتباط بین کارمندان و مدیر، هر کارمند یک مدیر دارد که نشان‌دهنده‌ی پدر یک کارمند در ساختار درختی است. هر مدیر هم یک کارمند محسوب می‌گردد.

Threaded discussion: در این ساختار برای مثال در سیستم نظردهی و پاسخ‌ها، ممکن است زنجیره‌‌ای از نظرات در پاسخ به نظرات دیگر استفاده گردد. در درخت، فرزندان یک گره‌ی نظر، پاسخ‌های آن گره هستند.

در این فصل ما از مثال ساختار دوم برای نشان دادن Antipattern و راه حل آن بهره می‌گیریم.

2.2 Antipattern : همیشه مبتنی بر یکی از والدین

راه حل ابتدایی و ناکارآمد  

اضافه نمودن ستون parent_id . این ستون، به ستون نظر در همان جدول ارجاع داده می‌شود و شما می‌توانید برای اجرای این رابطه از قید کلید خارجی استفاده نمایید. پرس‌وجویی که برای ساخت مثالی که ما در این بحث از آن استفاده می‌کنیم در ادامه آمده است:

 CREATE TABLE Comments (  comment_idSERIAL PRIMARY KEY,
parent_idBIGINT UNSIGNED,
bug_idBIGINT UNSIGNED NOT NULL,
author BIGINT UNSIGNED NOT NULL,
comment_dateDATETIME NOT NULL,
comment TEXT NOT NULL,
FOREIGN KEY (parent_id)REFERENCES Comments(comment_id),
FOREIGN KEY (bug_id)         REFERENCES Bugs(bug_id),
FOREIGN KEY(author)          REFERENCES Accounts(account_id)
);

مثالی از پرس‌وجوی فوق را می‌توانید در زیر ببینید: 

لیست مجاورت :

لیست مجاورت خود می‌تواند به عنوان یک antipattern در نظر گرفته شود. البته این مطلب از آنجایی نشأت می‌گیرد که این روش توسط بسیاری از توسعه‌دهندگان مورد استفاده قرار می‌گیرد ولی نتوانسته است به عنوان راه حل برای معمول‌ترین وظیفه‌ی خود، یعنی ایجاد پرس‌وجو بر روی کلیه فرزندان، باشد.

• با استفاده از پرس‌وجوی زیر می‌توان فرزند بلافاصله‌ی یک "نظر" را برگرداند: 

SELECT c1.*, c2.*
FROM Comments c1 LEFT OUTER JOIN Comments c2
ON c2.parent_id = c1.comment_id;

ضعف پرس‌وجوی فوق این است که فقط می‌تواند دو سطح از درخت را برای شما برگرداند. در حالیکه خاصیت درخت این است که شما را قادر می‌سازد بدون هیچ گونه محدودیتی فرزندان و نوه‌های متعدد (سطوح بی‌شمار) برای درخت خود تعریف کنید. بنابراین به ازای هر سطح اضافه باید یک join به پرس‌جوی خود اضافه نمایید. برای مثال اگر پرس‌وجوی زیر می‌تواند درختی با چهار سطح برای شما برگرداند ولی نه بیش از آن: 

SELECT c1.*, c2.*, c3.*, c4.*
FROM Comments c1                         -- 1st level
LEFT OUTER JOIN Comments c2
ON c2.parent_id = c1.comment_id  -- 2nd level
LEFT OUTER JOIN Comments c3
ON c3.parent_id = c2.comment_id  -- 3rd level
LEFT OUTER JOIN Comments c4
ON c4.parent_id = c3.comment_id; -- 4th level

این پرس‌وجو به این دلیل که با اضافه شدن ستون‌های دیگر، نوه‌ها را سطوح عمیق‌تری برمی‌گرداند، پرس‌وجوی مناسبی نیست. در واقع استفاده از توابع تجمیعی ، مانند COUNT() مشکل می‌شود.

راه دیگر برای به دست آوردن ساختار یک زیردرخت از لیست مجاورت برای یک برنامه، این است که سطرهای مورد نظر خود را از مجموعه بازیابی نموده و سلسه‌مراتب مورد نظر را در حافظه بازیابی نماییم و از آن به عنوان درخت استفاده نماییم:

   SELECT * FROM Comments WHERE bug_id = 1234;


نگهداری کردن یک درخت با استفاده از لیست مجاورت
البته برخی از عملکردها با لیست مجاورت به خوبی انجام می‌گیرد. برای مثال اضافه نمودن یک گره  (نظر)، مکان‌یابی مجدد برای یک گره یا یک زیردرخت .
INSERT INTO Comments (bug_id, parent_id, author, comment)
VALUES (1234, 7, 'Kukla' , 'Thanks!' );

بازیابی دوباره مکان یک نود یا یک زیردرخت نیز آسان است: 
UPDATE Comments SET parent_id = 3 WHERE comment_id = 6;

با این حال حذف یک گره از یک درخت در این روش پیچیده است. اگر بخواهیم یک زیردرخت را حذف کنید باید چندین پرس‌وجو برای پیدا کردن تمام نوه‌ها بنویسیم و سپس حذف نوه‌ها را از پایین‌ترین سطح شروع کرده و تا جایی که قید کلید خارجی برقرار شود ادامه دهیم. البته می‌توان از کلید خارجی با تنظیم ON DELETE CASCADE  استفاده کرد تا این کارها به طور خودکار انجام گیرد.
حال اگر بخواهیم یک نود غیر برگ را حذف کرده یا فرزندان آن را در درخت جابجا کنیم، ابتدا باید parent_id فرزندان آن نود را تغییر داده و سپس نود مورد نظر را حذف می‌کنیم:
SELECT parent_id FROM Comments WHERE comment_id = 6; -- returns 4
UPDATE Comments SET parent_id = 4 WHERE parent_id = 6;
DELETE FROM Comments WHERE comment_id = 6;


3.2 موارد تشخیص این Antipattern:
سؤالات زیر نشان می‌دهند که Naive Trees antipattern مورد استفاده قرار گرفته است:
  • چه تعداد سطح برای پشتیبانی در درخت نیاز خواهیم داشت؟
  • من همیشه از کار با کدی که ساختار داده‌ی درختی را مدیریت می‌کند، می‌ترسم
  • من باید اسکریپتی را به طور دوره‌ای اجرا نمایم تا سطرهای یتیم موجود در درخت را حذف کند.

4.2 مواردی که استفاده از این Antipattern مجاز است:
قدرت لیست مجاورت در بازیابی پدر یا فرزند مستقیم یک نود می‌باشد. قرار دادن یک سطر هم در لیست مجاورت کار ساده‌ای است. اگر این عملیات، تمام آن چیزی است که برای انجام کارتان مورد نیاز شما است، بنابراین استفاده از لیست مجاورت می‌تواند مناسب باشد.
برخی از برندهای RDBMS از افزونه‌هایی پشتیبانی می‌کنند که قابلیت ذخیره‌ی سلسله مراتب را در لیست مجاورت ممکن می‌سازد. مثلا SQL-99، پرس‌وجوی بازگشتی را تعریف می‌کند که مثال آن در ادامه آمده است:
  WITH CommentTree (comment_id, bug_id, parent_id, author, comment, depth)
AS (
SELECT *, 0 AS depth FROM Comments
WHERE parent_id IS NULL
UNION ALL
SELECT c.*, ct.depth+1 AS depth FROM CommentTreect
JOIN Comments c ON (ct.comment_id = c.parent_id)
)
SELECT * FROM CommentTree WHERE bug_id = 1234;

Microsoft SQL Server 2005، Oracle 11g، IBM DB2 و PostgreSQL 8.4 نیز از پرس‌وجوی بازگشتی پشتیبانی می‌کنند.Oracle 9i و 10g از عبارت WITH استفاده می‌کنند، ولی نه برای پرس‌وجوهای بازگشتی. در عوض می‌توانید از پرس‌وجوی زیر برای ایجاد پرس‌وجوی بازگشتی استفاده نمایید: 
SELECT * FROM Comments
START WITH comment_id = 9876
CONNECT BY PRIOR parent_id = comment_id;


5.2 راه حل: استفاده از مدل‌های درختی دیگر
جایگزین‌های دیگری برای ذخیره‌سازی داده‌های سلسله مراتبی وجود دارد. البته برخی از این راه حل‌ها ممکن است در لحظه‌ی اول پیچید‌تر از لیست مجاورت به نظر آیند، ولی برخی از عملیات درخت که در لیست مجاورت بسیار سخت یا ناکارآمد است، را آسان‌تر می‌کنند.
شمارش مسیر :
مشکل پرهزینه بودن بازیابی نیاکان یک گره که در روش لیست مجاورت وجود داشت در روش شمارش مسیر به این ترتیب حل شده است: اضافه نمودن یک صفت به هر گره که رشته‌ای از نیکان آن صفت در آن ذخیره شده است.
در جدول Comments به جای استفاده از parent_id، یک ستون به نام path که توع آن varchar است تعریف شده است. رشته‌ای که در این ستون تعریف شده است، ترتیبی از فرزندان این سطر از بالا به پایین درخت است. مانند مسیری که در سیستم عامل UNIX، برای نشان دادن مسیر در سیستم فایل استفاده شده است. شما می‌توانید از / به عنوان کاراکتر جداکننده استفاده نمایید. دقت کنید برای درست کار کردن پرس‌وجوها حتما در آخر مسیر هم این کاراکتر را قرار دهید. پرس‌وجوی تشکیل چنین درختی به شکل زیر است:
  CREATE TABLE Comments ( comment_id SERIAL PRIMARY KEY,
path VARCHAR(1000),
bug_id BIGINT UNSIGNED NOT NULL,
author BIGINT UNSIGNED NOT NULL,
comment_date DATETIME NOT NULL,
comment TEXT NOT NULL,
FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
FOREIGN KEY (author) REFERENCES Accounts(account_id)

در این روش، هر گره مسیری دارد که شماره خود آن گره هم در آنتهای آن مسیر قرار دارد. این به دلیل درست جواب دادن پرس‌وجوهای ایجاد شده است.
می‌توان نیاکان را با مقایسه‌ی مسیر سطر کنونی با مسیر سطر دیگر به دست آورد. برای مثال برای یافتن نیاکان گره (نظر) شماره‌ی 7 که مسیر آن 1/4/6/7/ می‌باشد، می‌توان چنین نوشت:
  SELECT * FROM Comments AS c
WHERE '1/4/6/7/' LIKE c.path || '%' ;

این پرس‌وجو الگوهایی را می‌یابد که از مسیرهای 1/4/6/%، 1/4/% و 1/% نشأت می‌گیرد.
همچنین فرزندان (نوه‌های) یک گره، مثلا گره‌ی 4 را که مسیرش 1/4/ است را می‌توان با پرس‌وجوی زیر یافت:
  SELECT * FROM Comments AS c
WHERE c.path LIKE '1/4/' || '%' ;

الگوی 1/4/% با مسیرهای 1/4/5/، 1/4/6/ و 1/4/6/7/ تطابق می‌یابد.
همچنین می‌توان پرس‌وجوهای دیگری را نیز در این مسیر به سادگی انجام داد؛ مانند محاسبه‌ی مجموع هزینه‌ی گره‌ها در یک زیردرخت یا شمارش تعداد گره‌ها.
اضافه نمودن یک گره هم مانند ساختن خود مدل است. می‌توان یک گره‌ی غیر برگ را بدون نیاز به اصلاح هیچ سطری اضافه نمود. برای این کار مسیر را را از گره‌ی پدر کپی کرده و در انتها شماره‌ی خود گره را به آن اضافه می‌کنیم.
از مشکلات این روش می‌توان به عدم توانایی پایگاه داده‌ها در تحمیل این نکته که مسیر یک گره درست ایجاد شده است و یا تضمین وجود گره‌ای در مسیری خاص، اشاره نمود. همچنین نگهداری رشته‌ی مسیر یک گره مبتنی بر کد برنامه است و اعتبارسنجی آن کاری هزینه‌بر است. این رشته اندازه‌ای محدود دارد و درخت‌هایی با عمق نامحدود را پشتیبانی نمی‌کند.

مجموعه‌های تودرتو :
مجموعه‌های تودرتو، اطلاعات را با هر گره‌ای که مربوط به مجموعه‌ای از نوه‌هایش است، به جای این که تنها مربوط به یک فرزند بلافصلش باشد، ذخیره می‌کنند.

 این اطلاعات می‌توانند به وسیله‌ی هر گره‌ای که در درخت با دو شماره‌ی nsleft و nsright ذخیره شده، نمایش داده شوند:
  CREATE TABLE Comments ( comment_id SERIAL PRIMARY KEY,
nsleft INTEGER NOT NULL,
nsright INTEGER NOT NULL,
bug_id BIGINT UNSIGNED NOT NULL,
author BIGINT UNSIGNED NOT NULL,
comment_date DATETIME NOT NULL,
comment TEXT NOT NULL,
FOREIGN KEY (bug_id) REFERENCES Bugs (bug_id),
FOREIGN KEY (author) REFERENCES Accounts(account_id)
);

شماره‌ی سمت چپ یک گره از تمام شماره‌های سمت چپ فرزندان آن گره کوچک‌تر و شماره‌ی سمت راست آن گره از تمام شماره‌های سمت راست آن گره بزرگ‌تر است. این شماره‌ها هیچ ارتباطی به comment_id مربوط به آن گره ندارند.

یک راه حل ساده برای تخصیص این شماره‌ها به گره‌ها این است که از سمت چپ یک گره آغاز می‌کنیم و اولین شماره را اختصاص می‌دهیم و به همین به گره‌ای سمت چپ فرزندان می‌آییم و شماره‌ها را به صورت افزایشی به سمت چپ آن‌ها نیز اختصاص می‌دهیم. سپس در ادامه به سمت راست آخرین نود رفته و از آن جا به سمت بالا می‌آییم و به همین ترتیب به صورت بازگشتی تخصیص شماره‌ها را ادامه می‌دهیم.

با اختصتص شماره‌ها به هر گره، می‌توان از آن‌ها برای یافتن نیاکان و فرزندان آن گره بهره جست. برای مثال برای بازیابی گره‌ی 4 و فرزندان (نوه‌های) آن باید دنبال گره‌هایی باشیم که شماره‌های آن گره‌ها بین nsleft و nsright گره‌ی شماره‌4 باشد:

  SELECT c2.* FROM Comments AS c1
JOIN Comments as c2
ON c2.nsleft BETWEEN c1.nsleft AND c1.nsright
WHERE c1.comment_id = 4;

همچنین می‌توان گره‌ی شماره‌ی 6 و نیاکان آن را با دنبال نمودن گره‌هایی به دست آورد که شماره‌های آن‌ها در محدوده‌ی شماره‌ی گره‌ی 6 باشد: 
SELECT c2.*
FROM Comments AS c1
JOIN Comment AS c2
ON c1.nsleft BETWEEN c2.nsleft AND c2.nsright
WHERE c1.comment_id = 6;

یک مزیت مهم روش مجموعه‌ای تودرتو، این است که هنگامی که یک گره را حذف می‌کنیم، نوه‌های آن به طور مستقیم به عنوان فرزندان پدر گره‌ی حذف شده تلقی می‌شوند.
برخی از پرس‌وجوهایی که در روش لیست مجاورت ساده بودند، مانند بازیابی فرزند یا پدر بلافصل، در روش مجموعه‌های تودرتو پیچیده‌تر می‌باشند. برای مثال برای یافتن پدر بلافصل گره‌ی شماره‌ی 6 باید چنین نوشت: 
  SELECT parent.* FROM Comment AS c
JOIN Comment AS parent
ON c.nsleft BETWEEN parent.nsleft AND parent.nsright
LEFT OUTER JOIN Comment AS in_between
ON c.nsleft BETWEEN in_between.nsleft AND in_between.nsright
AND in_between.nsleft BETWEEN parent.nsleft AND parent.nsright
WHERE c.comment_id = 6
AND in_between.comment_id IS NULL;

دست‌کاری درخت، اضافه، حذف و جابجا نمودن گره‌ها در آن درروش مجموعه‌های تودرتو از مدل‌های دیگر پیچیده‌تر است. هنگامی که یک گره‌ی جدید را اضافه می‌کنیم، باید تمام مقادیر چپ و راست بزرگ‌تر از مقدار سمت چپ گره‌ی جدید را مجددا محاسبه کنیم؛ که این شامل برادر سمت راست گره‌ی جدید، نیاکان آن و برادر سمت راست نیاکان آن می‌باشد. همچنین اگر گره‌ی جدید به عنوان گره‌ی غیربرگ اضافه شده باشد، شامل فرزندان آن هم می‌شود. برای مثال اگر بخواهیم گره‌ی جدیدی به گره‌ی 5 اضافه نماییم، باید چنین بنویسیم: 
-- make space for NS values 8 and 9
UPDATE Comment
SET nsleft = CASE WHEN nsleft >= 8 THEN nsleft+2 ELSE nsleft END,
nsright = nsright+2
WHERE nsright >= 7;

-- create new child of comment #5, occupying NS values 8 and 9
INSERT INTO Comment (nsleft, nsright, author, comment)
VALUES (8, 9, 'Fran' , 'Me too!' );

تنها مزیت این روش نسبت به روش‌های قبلی ساده‌تر و سریع‌تر شدن ایجاد پرس‌وجوها برای پیدا کردن فرزندان یا پدران یک درخت است. اگر هدف استفاده از درخت شامل اضافه نمودن متعدد گره‌ها است، مجموعه‌های تودرتو انتخاب خوبی نیست.

Closure Table
راه حل closure table روشی دیگر برای ذخیره‌ی سلسه‌مراتبی است. این روش علاوه بر ارتباطات مستقیم پدر- فرزندی، تمام مسیرهای موجود در درخت را ذخیره می‌کند.

این روش علاوه بر داشتن یک جدول نظرها، یک جدول دیگر به نام TreePaths با دو ستون دارد که هر کدام از این ستون‌ها یک کلید خارجی به جدولComment هستند:
  CREATE TABLE Comments ( comment_id SERIAL PRIMARY KEY,
bug_id BIGINT UNSIGNED NOT NULL,
author BIGINT UNSIGNED NOT NULL,
comment_date DATETIME NOT NULL,
comment TEXT NOT NULL,
FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id),
FOREIGN KEY (author) REFERENCES Accounts(account_id)
);
CREATE TABLE TreePaths (
ancestor BIGINT UNSIGNED NOT NULL,
descendant BIGINT UNSIGNED NOT NULL,
PRIMARY KEY(ancestor, descendant),
FOREIGN KEY (ancestor) REFERENCES Comments(comment_id),
FOREIGN KEY (descendant) REFERENCES Comments(comment_id)
);

به جای استفاده از جدول Comments برای ذخیره‌ی اطلاعات مربوط به یک درخت از جدول TreePath استفاده می‌کنیم. به ازای هر یک جفت گره در این درخت یک سطر در جدول ذخیره می‌شود که ارتباط پدر فرزندی را نمایش می‌دهد و الزاما نباید این دو پدر فرزند بلافصل باشد. همچنین یک سطر هم به ازای ارتباط هر گره با خودش به جدول اضافه می‌گردد.

پرس‌وجوهای بازیابی نیاکان و فرزندان (گره‌ها) از طریق جدول TreePaths ساده‌تر از روش مجموعه‌های تودرتو است. مثلا برای بازیابی فرزندان (نوه‌های) گره‌ی شماره‌ی 4، سطرهایی که نیاکان آن‌ها 4 است را به دست می‌آوریم:

   SELECT c.*  FROM Comments AS c
JOIN TreePaths AS t ON c.comment_id = t.descendant
WHERE t.ancestor = 4;

برای به دست آوردن نیاکان گره‌ی شماره‌ی 6، سطرهایی از جول TreePaths را به دست می‌آوریم که فرزندان آن‌ها 6 باشد:
SELECT c.*
FROM Comments AS c
JOIN TreePaths AS t ON c.comment_id = t.ancestor
WHERE t.descendant = 6;

برای اضافه کردن گره‌ی جدید، برای مثال به عنوان فرزند گره‌ی شماره‌ی 5، ابتدا سطری که به خود آن گره برمی‌گردد را اضافه می‌کنیم، سپس یک کپی از سطوری که در جدول TreePaths، به عنوان فرزندان (نوه‌های) گره‌ی شماره‌5 هستند (که شامل سطری که به خود گره‌ی 5 به عنوان فرزند اشاره می‌کند) به جدول اضافه نموده و فیلد descendant آن را با شماره‌ی گره‌ی جدید جایگزین می‌کنیم:
  INSERT INTO TreePaths (ancestor, descendant) SELECT t.ancestor, 8
FROM TreePaths AS t
WHERE t.descendant = 5
UNION ALL
SELECT 8, 8;

در این جا می‌توان به اهمیت ارجاع یک گره به خودش به عنوان پدر (یا فرزند) پی برد.
برای حذف یک گره، مثلا گره‌ی شماره‌ی 7، تمام سطوری که فیلد descendant آن‌ها در جدول TreePaths برابر با 7 است حذف می‌کنیم:
   DELETE FROM TreePaths WHERE descendant = 7;

برای حذف یک زیردرخت کامل، برای مثال گره‌ی شماره‌ی 4 و فرزندان (نوه‌های) آن، تمام سطوری که در جدول TreePaths دارای فیلد descendant با مقدار 4 هستند، حذف می‌کنیم. علاوه بر این باید نودهایی که به عنوان descendant به فیلد descendant گره‌ی 4، ارجاع داده می‌شوند نیز باید حذف گردد: 

DELETE FROM TreePaths
WHERE descendant IN (SELECT descendant
FROM TreePaths
WHERE ancestor = 4);

دقت کنید وقتی گره‌ای را حذف می‌کنیم، بدان معنی نیست که خود گره (نظر) را حذف می‌کنیم. البته این برای مثال نظر و پاسخ آن مقداری عجیب است ولی در مثال کارمندان در چارت سازمانی امری معمول است. هنگامی که ارتباطات یک کاربر را تغییر می‌دهیم، از حذف در جدول TreePaths استفاده می‌کنیم و این قضیه که ارتباطات کارمندان در جدول جداگانه‌ای ذخیره شده است به ما انعطاف‌پذیری بیشتری می‌دهد. 
برای جابجایی یک زیردرخت از مکانی به مکان دیگری در درخت، سطرهایی که ancestor گره‌ی بالایی زیردرخت را برمی‌گردانند و فرزندان آن گره را حذف می‌کنیم. برای مثال برای جابجایی گره‌ی شماره‌ی 6 به عنوان فرزند گره‌ی شماره‌ی 4 و قرار دادن آن به عنوان فرزند گره‌ی شماره‌ی 3، این چنین عمل می‌کنیم. فقط باید حواسمان جمع باشد سطری که گره‌ی شماره‌ی 6 به خودش ارجاع داده است را حذف نکنیم:
DELETE FROM TreePaths
WHERE descendant IN (SELECT descendant
                                         FROM TreePaths
                                         WHERE ancestor = 6)
AND ancestor IN (SELECT ancestor
                             FROM TreePaths
                             WHERE descendant = 6
                                 AND ancestor != descendant);

آن‌گاه این زیردرخت جدا شده را با اضافه کردن سطرهایی که با ancestor مکان جدید و descendant زیردرخت، منطبق هستند، به جدول اضافه می‌کنیم:
INSERT INTO TreePaths (ancestor, descendant)
SELECT supertree.ancestor, subtree.descendant
FROM TreePaths AS supertree
CROSS JOIN TreePaths AS subtree
WHERE supertree.descendant = 3
AND subtree.ancestor = 6;

روش Closure Table آسان‌تر از روش مجموعه‌های تودرتو است. هر دوی آن‌ها روش‌های سریع و آسانی برای ایجاد پرس‌وجو برای نیاکان و نوه‌ها دارند. ولی Closure Table برای نگهداری اطلاعات سلسله مراتب آسان‌تر است. در هر دو طراحی ایجاد پرس‌وجو در فرزندان و پدر بلافصل سرراست‌تر از روش‌ای لیست مجاورت و شمارش مسیر می‌باشد.
می‌توان عملکرد Closure Table را برای ایجاد پرس‌وجو روی فرزندان و پدر بلافصل را آسان‌تر نیز نمود. اگر فیلد path_length را به جدول TreePaths اضافه نماییم این کار انجام می‌شود. path_length گره‌ای که به خودش ارجاع می‌شود، صفر است. path_length فرزند بلافصل هر گره 1، path_length نوه‌ی آن 2 می‌باشد و به همین ترتیب path_lengthها را در هر سطر مقداردهی می‌کنیم. اکنون یا فتن فرزند گره‌ی شماره‌ی 4 آسان‌تر است:   
SELECT *
FROM TreePaths
WHERE ancestor = 4 AND path_length = 1;


از کدام طراحی استفاده نماییم؟
در این جا این سؤال مطرح است که ما باید از کدام طراحی استفاده نماییم. در پاسخ به این سؤال باید گفت که هر کدام از این روش‌ها نقاط قوت و ضعفی دارند که ما باید نسبت به عملیاتی که می‌خواهیم انجام دهیم از این طراحی‌ها استفاده کنیم. جدولی که در ادامه آمده است، مقایسه‌ای است میان میزان سهولت اجرای این طراحی‌ها در استفاده از پرس‌وجوهای متفاوت.

 لازم به ذکر است در اینجا ستون سوم (Query Child) به معنای پرس‌وجوهایی است که با فرزندان کار می‌کند و ستون چهارم  (Query Tree)  به معنای پرس‌وجوهایی است که با کل درخت کار می‌کنند، می‌باشد.