مطالب
برنامه نویسی اندروید با Xamarin.Android - قسمت سوم
در این مقاله می‌خواهیم یک لیست ساده را ایجاد کرده و داخل یک کنترل (View)، از نوع ListView قرار دهیم. همچنین با برخی از کنترل‌های پرکاربرد، برای چیدمان کنترل‌ها در اندروید آشنا می‌شویم.

قبل از شروع به طراحی UI باید کمی با واحدهای اندازه گیری در اندروید آشنا شویم. بدانید و آگاه باشید که استفاده از واحد Pixel برای تعیین اندازه در اندروید کار بسیار اشتباهی است. طراح همیشه باید Density یا تراکم صفحه‌ی نمایش را در نظر بگیرد. تراکم صفحه‌ی نمایش به معنای تعداد پیکسل موجود در یک اینچ می‌باشد. اندازه‌ی 100 پیکسل در دستگاه‌های مختلف با (dpi(Dot Per Inchهای متفاوت به یک اندازه نیست.

واحد dpi: اندروید واحد dpi را برای طراحی و چیدمان Layoutها معرفی کرده است. dpi مخفف Device Independent Pixel هست و معمولا بصورت dp نوشته می‌شود که یک واحد پیکسلی مجازی است و بر پایه‌ی یک صفحه نمایش با رزولوشن 160dpi طراحی شده‌است. به عبارت دیگر یک dp، یک پیکسل در یک صفحه‌ی نمایش با رزولوشن 160dpi می‌باشد. این واحد این اطمینان را به شما می‌دهد که یک View، در صفحه نمایش‌های با رزولوشن متفاوت، بطور مناسبی بزرگ یا کوچک می‌شود.

واحد sp: مخفف Scale Independent Pixel است و شبیه dp عمل می‌کند؛ با این تفاوت که تنظیمات کاربر را (مثلا شخصی که بخاطر ضعف چشم اندازه‌ی قلم گوشی خود را بزرگ نموده) در محاسبات خود در نظر می‌گیرد. به دلیل آنکه از لحاظ زیبایی شناسی و همچنین چیدمان عناصر داخل UI زمانیکه از واحد اندازه گیری sp استفاده می‌کنیم ممکن است با مشکل مواجه شویم، بیشتر از dp استفاده می‌کنیم، مگر در بعضی مواقع آن هم برای مقداردهی به اندازه‌ی قلم!

خوب! به سراغ فولدر Layout رفته و Main.axml را باز نمایید. به قسمت Source بروید.
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:orientation="vertical"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent">
    <Button
        android:id="@+id/MyButton"
        android:layout_width="fill_parent"
        android:layout_height="wrap_content"
        android:text="@string/Hello" />
</LinearLayout>
در این سند axml یک LinearLayout مشاهده می‌نمایید. وقتی شما View را به LinearLayout اضافه می‌کنید، با توجه به اینکه orientation آن را vertical یا horizontal انتخاب کرده باشید، به صورت افقی و یا عمودی طرح بندی را انجام می‌دهد.

layout_width و layout_height (مقداردهی آن‌ها الزامی است) ابعاد layout ما را مشخص می‌کنند. مقدار fill_parent دیگر منسوخ شده و به جای آن match_parent استفاده می‌شود و به معنای آن است که تمام فضای موجود در کنترل را اشغال کند. مقدار دیگری که می‌توان به آن نسبت داد (و در layout_height مربوط به Button مشاهده می‌نمایید)، wrap_content می‌باشد که اعلام می‌کند فقط به میزان مورد نیاز برای محتویات، کنترل والد را اشغال کند. البته با تغییر میزان محتویات، اندازه‌ی کنترل متغییر است. شما می‌توانید مقادیر عددی را هم با واحد dp یا حتی pixel (که اصلا توصیه نمی‌شد) جایگزین نمایید.

در ادامه، کنترل (که در اندروید به آن View گفته می‌شود) Button را حذف نمایید و به جای آن یک ListView را قرار دهید و نامی را به آن نسبت دهید. ListView از کاربردی‌ترین و مهم‌ترین کنترل‌های اندروید می‌باشد. ListView شامل قسمت‌های زیر است:
Rows: قسمت نمایش دهنده‌ی داده‌ها.
Adapter: یک کلاس که وظیفه‌ی انقیاد منبع داده را به ListView، بر عهده دارد.
Fast Scrolling: یک دسته(handle) که به کاربر اجازه می‌دهد تا در طول ListView حرکت کند.
Section Index: یک view می‌باشد و جایگاه لیت را هنگام اسکرول مشخص میکند و معمولا در Contacts گوشی بصورت ابتدای حروف نام مخاطبین خود مشاهده کرده‌اید.
Layout زیر را در نظر بگیرید:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:orientation="vertical"
    android:layout_width="match_parent"
    android:layout_height="match_parent">
    <ListView
        android:background="#fff"
        android:id="@+id/NameListView"
        android:layout_width="match_parent"
        android:layout_height="match_parent" />
</LinearLayout>  
به MainActivity.cs بروید و کدهای مربوط به Button قبلی را که با ListView جایگزین کرده‌ایم، حذف نمایید. متد OnCreate به این صورت می‌باشد:
protected override void OnCreate(Bundle bundle)
        {
            base.OnCreate(bundle);
            SetContentView(Resource.Layout.Main);

            List<string> namesList = new List<string>
            {
                "Mohammad","Fatemeh","Ali","Hasan","Husein","Mohsen","Mahdi",
            };
            var namesAdapter = new ArrayAdapter<string>
                (this, Android.Resource.Layout.SimpleListItem1, namesList);

            var listview = FindViewById<ListView>(Resource.Id.NameListView);
            listview.Adapter = namesAdapter;
        }
همانطور که گفته شد SetContentView مشخص کننده‌ی layout مورد نظر ما برای نمایش می‌باشد. می‌توان بدون هیچ layout خاصی با کدهای سی شارپ، کنترل‌های مورد نظر را ایجاد کرد که کار زمانبری است؛ ولی بعضی مواقع مجبور به این کار هستیم.
namesList یک لیست ساده از نوع string با مقدار دهی اولیه است.
ArrayAdapter یک کلاس Adapter توکار می‌باشد که یک آرایه (یا لیست) را از نوع string، برای نمایش به ListView متصل می‌کند (bind). نوع جنریک آن یعنی <ArrayAdapter<T برای نوع‌های دیگر هم استفاده می‌شود. در واقع Adapter با دریافت یک لیست برای نمایش و یک Layout برای تعیین نوع نمایش، به ازای هر سطر از اطلاعات یک View را با اطلاعات آن سطر به سمت ListView ارسال می‌کند. در اینجا ما در سازنده‌ی ArrayAdapter با استفاده از Resourceهای توکار اندروید که از طریق Android.Resource به آن‌ها دسترسی داریم، یک layout ساده را شامل یک TextView(مانند label و یا textBlock)، به همراه namesList، برای Adapter ارسال کردیم.
متد FindViewById با توجه به Layout معرفی شده‌ی به Activity، به دنبال View با Id مورد نظر می‌پردازد. مهم نیست که در Layoutهای جداگانه نام‌های یکسانی استفاده کنید. این متد در کلاس View قرار دارد و تمام کنترل(View)ها، فرزند آن می‌باشند. در اینجا از نوع جنریک آن استفاده شده که عمل تبدیل View به ListView را خود متد بر عهده بگیرد.
در انتها Adapter مورد نظر به ویژگی Adpater کنترل ListView اضافه می‌شود.

ListView کنترل بسیار منعطفی می‌باشد. برخی ویژگی‌ها آن را در زیر می‌توانید مشاهده بفرمایید:
  • android:dividerHeight                    // ارتفاع جداکننده‌ی سطرها
  • android:divider                            // رنگ جداکننده‌ی سطرها
  • android:layoutAnimation               // انیمیشن برای layoutها 
  • android:background                    // رنگ ضمینه را مشخص میکند. البته میتوانید یک style را به ان نسبت دهید

خوب؛ حالا بیایید یک ListView را با ظاهر و Adapter سفارشی بسازیم.
ابتدا باید یک Layout را طراحی کنیم تا به ازای هر سطر برای ListView ارسال شود. با استفاده از Add->New item یک Layout را به فولدر layout اضافه کنید.
کد زیر را درون فایل axml مربوطه کپی کنید. 
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:orientation="horizontal"
    android:layout_width="match_parent"
    android:layout_height="wrap_content"
    android:padding="14dp">
    <TextView
        android:text=""
        android:gravity="center_vertical"
        android:layout_width="wrap_content"
        android:layout_height="match_parent"
        android:id="@+id/idTextView" />
    <TextView
        android:text=""
        android:gravity="center_vertical"
        android:layout_width="match_parent"
        android:layout_height="match_parent"
        android:id="@+id/nameTextView"
        android:layout_marginLeft="14dp" />
</LinearLayout>
کلاس زیر (یا هر کلاس دلخواه دیگری) را به عنوان مدل برنامه اضافه کنید.
namespace DotSystem.ir.App1.Model
{
    public class Person
    {
        public int Id { get; set; }
        public string PersonName { get; set; }

    }
حالا باید Adapter خود را بسازیم. ابتدا کلاسی را با نام PersonAdapter به برنامه اضافه نمایید. این کلاس باید از کلاس BaseAdapter (نوع جنریک آن هم موجود می‌باشد) و یا فرزندان آن ArrayAdapter، CursorAdapter و ... ارث بری نماید. اگر مستقیما از BaseAdapter استفاده کنیم، به دلیل Abstract بودن تعدادی از متدها و Propertyها مجبور به override کردن آن‌ها می‌شویم. ما در اینجا از BaseAdapter استفاده می‌کنیم. کد زیر را در نظر بگیرید:
namespace DotSystem.ir.App1.Adapters
{
    public class PersonAdapter : BaseAdapter<Model.Person>
    {
        public override Person this[int position]
        {
            get
            {
                throw new NotImplementedException();
            }
        }

        public override int Count
        {
            get
            {
                throw new NotImplementedException();
            }
        }

        public override long GetItemId(int position)
        {
            throw new NotImplementedException();
        }

        public override View GetView(int position, View convertView, ViewGroup parent)
        {
            throw new NotImplementedException();
        }
    }
}
BaseAdapter شامل یک Indexer برای دسترسی آسان به Itemهای لیست، یک ویژگی برای برگرداندن تعداد آیتم‌ها، متدی برای برگرداندن Id هر آیتم و مهمترین بخش آن یعنی متد GetView که برای نمایش هر آیتمی یک بار اجرا می‌شود و Layout مورد نظر ما را با اطلاعات پر کرده و به سمت ListView می‌فرستد.

در اینجا ما به چند فیلد داخل کلاس احتیاج داریم.
  • لیست اطلاعات مورد نظر.
  • Activity جاری که Adapter را استفاده می‌کند.
بنابراین دو فیلد را به همراه متد سازنده، برای مقدار دهی آن‌ها اضافه کرده و کلاس بالا را نیز تکمیل می‌کنیم.
namespace DotSystem.ir.App1.Adapters
{
    public class PersonAdapter : BaseAdapter<Person>
    {
        protected Activity _activity = null;
        protected List<Person> _list = null;
        public PersonAdapter(Activity activity, List<Person> list)
        {
            _activity = activity;
            _list = list;
        }
        public override Person this[int position]
        {
            get
            {
                return _list[position];
            }
        }

        public override int Count
        {
            get
            {
                return _list.Count;
            }
        }

        public override long GetItemId(int position)
        {
            return _list[position].Id;
        }

        public override View GetView(int position, View convertView, ViewGroup parent)
        {
            throw new NotImplementedException();
        }
    }
}
در این مرحله باید متد GetView را پیاده سازی کنیم. به پیاده سازی زیر دقت کنید:
public override View GetView(int position, View convertView, ViewGroup parent)
        {
            if (convertView == null)
                convertView = _activity.LayoutInflater
                    .Inflate(Resource.Layout.PersonListViewItemLayout, parent, false);

            var idTextView = convertView.FindViewById<TextView>(Resource.Id.idTextView);
            var nameTextView = convertView.FindViewById<TextView>(Resource.Id.NameListView);

            var persion = _list[position];

            idTextView.Text = persion.Id.ToString();
            nameTextView.Text = persion.PersonName;

            return convertView;
        }
در مرحله‌ی اول بررسی می‌کنیم که اگر convertView برابر با null بود، آن را مقدار دهی کند. این نکته بسیار مهم است، چرا که ListView برای کارآیی بهتر فقط آن آیتم هایی را که در دید کاربر باشد، با متد GetView لود میکند و دوباره با اسکرول لیست، عمل فراخوانی متد انجام می‌شود؛ البته اینبار بدون مقدار null برای convertView. بنابراین اگر دیدید که هنگام اسکرول لیست، آیتم‌ها جابجا شدند، این بخش از متد را دوباره بررسی نمایید.
Inflate متدی است که Layout و نگه دارنده‌ی  layout را گرفته و آن را برای نمایش در Activity آماده می‌کند. سپس دو View را که در Layout ما وجود دارند، گرفته مقدار دهی می‌کنیم و در آخر هم convertView را برای نمایش به سمت ListView می‌فرستیم.
حال متد OnCreate را به صورت زیر بازنویسی نموده و برنامه را اجرا می‌کنیم.
protected override void OnCreate(Bundle bundle)
        {
            base.OnCreate(bundle);
            SetContentView(Resource.Layout.Main);

            List<Model.Person> personList = new List<Model.Person>
            {
                new Model.Person() {Id = 1, PersonName = "Mohammad", },
                new Model.Person() {Id = 2, PersonName = "Ali", },
                new Model.Person() {Id = 3, PersonName = "Fatemeh", },
                new Model.Person() {Id = 4, PersonName = "hasan", },
                new Model.Person() {Id = 5, PersonName = "Husein", },
                new Model.Person() {Id = 6, PersonName = "Mohsen", },
                new Model.Person() {Id = 14, PersonName = "Mahdi", },
            };
            var personAdapter = new Adapters.PersonAdapter(this, personList);

            var listview = FindViewById<ListView>(Resource.Id.NameListView);
            listview.Adapter = personAdapter;
        }
مطالب
استفاده از MVVM زمانیکه امکان Binding وجود ندارد

ساده‌ترین تعریف MVVM، نهایت استفاده از امکانات Binding موجود در WPF و Silverlight است. اما خوب، همیشه همه چیز بر وفق مراد نیست. مثلا کنترل WebBrowser را در WPF در نظر بگیرید. فرض کنید که می‌خواهیم خاصیت Source آن‌را در ViewModel مقدار دهی کنیم تا صفحه‌ای را نمایش دهد. بلافاصله با خطای زیر متوقف خواهیم شد:

A 'Binding' cannot be set on the 'Source' property of type 'WebBrowser'.
A 'Binding' can only be set on a DependencyProperty of a DependencyObject.

بله؛ این خاصیت از نوع DependencyProperty نیست و نمی‌توان چیزی را به آن Bind کرد. بنابراین این نکته مهم را توسعه دهنده‌های کنترل‌های WPF و Silverlight همیشه باید بخاطر داشته باشند که اگر قرار است کنترل‌های شما MVVM friendly باشند باید کمی بیشتر زحمت کشیده و بجای تعریف خواص ساده دات نتی، خواص مورد نظر را از نوع DependencyProperty تعریف کنید.
الان که تعریف نشده چه باید کرد؟
پاسخ متداول آن این است: مهم نیست؛ خودمان می‌توانیم این‌کار را انجام دهیم! یک Attached property یا به عبارتی یک Behavior را تعریف و سپس به کمک آن عملیات Binding را میسر خواهیم ساخت. برای مثال:
در این Attached property قصد داریم یک خاصیت جدید به نام BindableSource را جهت کنترل WebBrowser تعریف کنیم:

using System;
using System.Windows;
using System.Windows.Controls;

namespace WebBrowserSample.Behaviors
{
public static class WebBrowserBehaviors
{
public static readonly DependencyProperty BindableSourceProperty =
DependencyProperty.RegisterAttached("BindableSource",
typeof(object),
typeof(WebBrowserBehaviors),
new UIPropertyMetadata(null, BindableSourcePropertyChanged));

public static object GetBindableSource(DependencyObject obj)
{
return (string)obj.GetValue(BindableSourceProperty);
}

public static void SetBindableSource(DependencyObject obj, object value)
{
obj.SetValue(BindableSourceProperty, value);
}

public static void BindableSourcePropertyChanged(DependencyObject o, DependencyPropertyChangedEventArgs e)
{
WebBrowser browser = o as WebBrowser;
if (browser == null) return;

Uri uri = null;

if (e.NewValue is string)
{
var uriString = e.NewValue as string;
uri = string.IsNullOrWhiteSpace(uriString) ? null : new Uri(uriString);
}
else if (e.NewValue is Uri)
{
uri = e.NewValue as Uri;
}

if (uri != null) browser.Source = uri;
}
}
}


یک مثال ساده از استفاده‌ی آن هم به صورت زیر می‌تواند باشد:
ابتدا ViewModel مرتبط با فرم برنامه را تهیه خواهیم کرد. اینجا چون یک خاصیت را قرار است Bind کنیم، همینجا داخل ViewModel آن‌را تعریف کرده‌ایم. اگر تعداد آن‌ها بیشتر بود بهتر است به یک کلاس مجزا مثلا GuiModel منتقل شوند.

using System;
using System.ComponentModel;

namespace WebBrowserSample.ViewModels
{
public class MainWindowViewModel : INotifyPropertyChanged
{
Uri _sourceUri;
public Uri SourceUri
{
get { return _sourceUri; }
set
{
_sourceUri = value;
raisePropertyChanged("SourceUri");
}
}

public MainWindowViewModel()
{
SourceUri = new Uri(@"C:\path\arrow.png");
}

#region INotifyPropertyChanged Members
public event PropertyChangedEventHandler PropertyChanged;
void raisePropertyChanged(string propertyName)
{
var handler = PropertyChanged;
if (handler == null) return;
handler(this, new PropertyChangedEventArgs(propertyName));
}
#endregion
}
}

در ادامه بجای استفاده از خاصیت Source که قابلیت Binding ندارد، از Behavior سفارشی تعریف شده استفاده خواهیم کرد. ابتدا باید فضای نام آن تعریف شود، سپس BindableSource مرتبط آن در دسترس خواهد بود:

<Window x:Class="WebBrowserSample.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:VM="clr-namespace:WebBrowserSample.ViewModels"
xmlns:B="clr-namespace:WebBrowserSample.Behaviors"
Title="MainWindow" Height="350" Width="525">
<Window.Resources>
<VM:MainWindowViewModel x:Key="vmMainWindowViewModel" />
</Window.Resources>
<Grid DataContext="{Binding Source={StaticResource vmMainWindowViewModel}}">
<WebBrowser B:WebBrowserBehaviors.BindableSource="{Binding SourceUri}" />
</Grid>
</Window>



نمونه مشابه این مورد را در مثال «استفاده از کنترل‌های Active-X در WPF» پیشتر در این سایت دیده‌اید.

مطالب
شروع به کار با EF Core 1.0 - قسمت 9 - بررسی رابطه‌ی One-to-One
بررسی رابطه‌ی One-to-Zero-or-One

زمانیکه نیاز است موجودیت A با هیچ و یا حداکثر یک وهله از موجودیت B در ارتباط باشد، به یک چنین رابطه‌ای One-to-Zero-or-One می‌گویند. برای اینکه یک چنین ارتباطی را تشکیل دهیم، نیاز است کلید اصلی یک جدول، در جدول مرتبط به آن، هم به عنوان کلید اصلی و هم به عنوان کلید خارجی معرفی شود؛ همانند شکل زیر که در آن CartableId، همزمان به صورت PK و FK تعریف شده‌است که به آن one-to-one association with shared primary key نیز می‌گویند:



الف) مدلسازی رابطه‌ی One-to-Zero-or-One توسط Fluent API

در اینجا دو موجودیت را ملاحظه می‌کنید که توسط دو navigation property به هم متصل شده‌اند:
    public class UserProfile
    {
        public int UserProfileId { get; set; }
        public string UserName { get; set; }

        public virtual Cartable Cartable { get; set; }
    }

    public class Cartable
    {
        public int CartableId { get; set; }

        public virtual UserProfile UserProfile { get; set; }
    }
برای اینکه بتوان CartableId را هم به عنوان PK و هم FK معرفی کرد، نیاز است از Fluent API به نحو ذیل استفاده کنیم:
    public class MyDBDataContext : DbContext
    {
        protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
        {
            optionsBuilder.UseSqlServer(@"Data Source=(local);Initial Catalog=testdb2;Integrated Security = true");
        }

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            modelBuilder.Entity<Cartable>(entity =>
            {
                entity.Property(e => e.CartableId).ValueGeneratedNever();

                entity.HasOne(d => d.UserProfile)
                    .WithOne(p => p.Cartable)
                    .HasForeignKey<Cartable>(d => d.CartableId);
            });
        }

        public virtual DbSet<Cartable> Cartables { get; set; }
        public virtual DbSet<UserProfile> UserProfiles { get; set; }
    }
در اینجا رابطه‌ی یک به یک، توسط متدهای HasOne و WithOne معرفی شده‌است. به علاوه FK بودن CartableId به صورت صریح توسط متد HasForeignKey نیز مشخص گردیده‌است.
همچنین بر روی CartableId، فراخوانی متد ValueGeneratedNever را مشاهده می‌کنید. این متد را در قسمت «روش‌های مختلف تولید خودکار مقادیر خواص» مطلب «شروع به کار با EF Core 1.0 - قسمت 5 - استراتژهای تعیین کلید اصلی جداول و ایندکس‌ها» پیشتر بررسی کردیم. هدف آن این است که به بانک اطلاعاتی اعلام کند، این فیلد یک کلید اصلی از نوع خود افزایش یابنده نیست و مقدار آن توسط برنامه به صورت صریح تنظیم می‌شود (چون کلید خارجی نیز هست و به کلید اصلی جدول سمت دیگر رابطه اشاره می‌کند).

ب) مدلسازی رابطه‌ی One-to-Zero-or-One توسط Data Annotations
برای تنظیم این رابطه توسط ویژگی‌ها نیاز است DatabaseGenerated به None تنظیم شود تا کلید اصلی CartableId به صورت خودکار توسط بانک اطلاعاتی تولید نشود. همچنین این کلید اصلی نیز باید به صورت کلید خارجی نیز معرفی شود. به علاوه توسط InversePropertyها، باید هر دو سطر به هم مرتبط، ذکر شوند:
    public class Cartable
    {
        [DatabaseGenerated(DatabaseGeneratedOption.None)]
        public int CartableId { get; set; }

        [ForeignKey("CartableId")]
        [InverseProperty("Cartable")]
        public virtual UserProfile UserProfile { get; set; }
    }

    public class UserProfile
    {
        public int UserProfileId { get; set; }
        public string UserName { get; set; }

        [InverseProperty("UserProfile")]
        public virtual Cartable Cartable { get; set; }
    }


بررسی رابطه‌ی One-to-One

تشکیل رابطه‌ی One-to-One که در آن برخلاف رابطه‌ی One-to-Zero-or-One، وجود هر دو سر رابطه اجباری هستند، در SQL Server میسر نیست (زیرا زمانیکه یک چنین رابطه‌ای تشکیل شود، نمی‌توان رکوردی را Insert کرد! چون زمانیکه هنوز یک سر رابطه ثبت نشده‌است، چگونه می‌توان Id آن‌را در سر دیگری به اجبار ثبت کرد؟!). SQL Server این رابطه را نیز به صورت همان One-to-Zero-or-One تشکیل می‌دهد. تنظیمات آن نیز با قبل تفاوتی ندارد. در این حالت اجباری بودن و یا نبودن یک سر رابطه همانند نکات قسمت «تعیین اجباری بودن یا نبودن ستون‌ها در EF Core» در مطلب «شروع به کار با EF Core 1.0 - قسمت 6 - تعیین نوع‌های داده و ویژگی‌های آن‌ها» است و این تنظیمات در اینجا صرفا از دیدگاه EF Core مفهوم دارند.
جهت تکمیل بحث، روش تشکیل رابطه‌ی One-to-One بدون استفاده از روش به اشتراک گذاری کلید اصلی (one-to-one association with shared primary key) به صورت زیر است:


همانطور که مشاهده می‌کنید، در اینجا هر بلاگ حداکثر یک تصویر را می‌تواند داشته باشد. علت آن نیز به ذکر MyBlogForeignKey بر می‌گردد که یک کلید خارجی نال نپذیر است.
    public class MyBlog
    {
        public int MyBlogId { get; set; }
        public string Url { get; set; }

        public MyBlogImage MyBlogImage { get; set; }
    }

    public class MyBlogImage
    {
        public int MyBlogImageId { get; set; }
        public byte[] Image { get; set; }
        public string Caption { get; set; }

        public int MyBlogForeignKey { get; set; }
        public MyBlog MyBlog { get; set; }
    }
با این تنظیمات:
modelBuilder.Entity<MyBlog>()
   .HasOne(p => p.MyBlogImage)
   .WithOne(i => i.MyBlog)
   .HasForeignKey<MyBlogImage>(b => b.MyBlogForeignKey);
در اینجا جدول MyBlogImage هنوز Id خود افزاینده‌ی خود را دارد، اما ثبت رکورد آن بدون وجود کلید خارجی MyBlog میسر نیست.
مطالب
MVC Scaffolding #2
از آنجائیکه اصل کار با MVC Scaffolding از طریق خط فرمان پاورشل انجام می‌شود، بنابراین بهتر است در ادامه با گزینه‌ها و سوئیچ‌های مرتبط با آن بیشتر آشنا شویم.
دو نوع پارامتر حین کار با MVC Scaffolding مهیا هستند:

الف) سوئیچ‌ها
مانند پارامترهای boolean عمل کرده و شامل موارد ذیل می‌باشند. تمام این پارامترها به صورت پیش فرض دارای مقدار false بوده و ذکر هرکدام در دستور نهایی سبب true شدن مقدار آن‌ها می‌گردد:
Repository: برای تولید کدها بر اساس الگوی مخزن
Force: برای بازنویسی فایل‌های موجود.
ReferenceScriptLibraries: ارجاعاتی را به اسکریپت‌های موجود در پوشه Scripts، اضافه می‌کند.
NoChildItems: در این حالت فقط کلاس کنترلر تولید می‌شود و از سایر ملحقات مانند تولید Viewها، DbContext و غیره صرفنظر خواهد شد.

ب) رشته‌ها
این نوع پارامترها، رشته‌ای را به عنوان ورودی خود دریافت می‌کنند و شامل موارد ذیل هستند:
ControllerName: جهت مشخص سازی نام کنترلر مورد نظر
ModelType: برای ذکر صریح کلاس مورد استفاده در تشکیل کنترلر بکار می‌رود. اگر ذکر نشود، از نام کنترلر حدس زده خواهد شد.
DbContext: نام کلاس DbContext تولیدی را مشخص می‌کند. اگر ذکر نشود از نامی مانند ProjectNameContex استفاده خواهد کرد.
Project: پیش فرض آن پروژه جاری است یا اینکه می‌توان پروژه دیگری را برای قرار دادن فایل‌های تولیدی مشخص کرد. (برای مثال هربار یک سری کد مقدماتی را در یک پروژه جانبی تولید کرد و سپس موارد مورد نیاز را از آن به پروژه اصلی افزود)
CodeLanguage: می‌تواند cs یا vb باشد. پیش فرض آن زبان جاری پروژه است.
Area: اگر می‌خواهید کدهای تولیدی در یک ASP.NET MVC area مشخص قرار گیرند، نام Area مشخصی را در اینجا ذکر کنید.
Layout: در حالت پیش فرض از فایل layout اصلی استفاده خواهد شد. اما اگر نیاز است از layout دیگری استفاده شود، مسیر نسبی کامل آن‌را در اینجا قید نمائید.

یک نکته:
نیازی به حفظ کردن هیچکدام از موارد فوق نیست. برای مثال در خط فرمان پاورشل، دستور Scaffold را نوشته و پس از یک فاصله، دکمه Tab را فشار دهید. لیست پارامترهای قابل اجرای در این حالت ظاهر خواهند شد. اگر در اینجا برای نمونه Controller انتخاب شود، مجددا با ورود یک فاصله و خط تیره و سپس فشردن دکمه Tab، لیست پارامترهای مجاز و همراه با سوئیچ کنترلر ظاهر می‌گردند.


MVC Scaffolding و مدیریت روابط بین کلاس‌ها

مثال قسمت قبلی بسیار ساده و شامل یک کلاس بود. اگر آن‌را کمی پیچیده‌تر کرده و برای مثال روابط one-to-many و many-to-many را اضافه کنیم چطور؟
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace MvcApplication1.Models
{
    public class Task
    {
        public int Id { set; get; }

        [Required]
        public string Name { set; get; }

        [DisplayName("Due Date")]
        public DateTime? DueDate { set; get; }

        [ForeignKey("StatusId")]
        public virtual Status Status { set; get; } // one-to-many
        public int StatusId { set; get; }

        [StringLength(450)]
        public string Description { set; get; }

        public virtual ICollection<Tag> Tags { set; get; } // many-to-many
    }

    public class Tag
    {
        public int Id { set; get; }

        [Required]
        public string Name { set; get; }

        public virtual ICollection<Task> Tasks { set; get; } // many-to-many
    }

    public class Status
    {
        public int Id { set; get; }

        [Required]
        public string Name { set; get; }
    }
}
کلاس Task تعریف شده اینبار دارای رابطه many-to-many با برچسب‌های مرتبط با آن است. همچنین یک رابطه one-to-many با کلاس وضعیت هر Task نیز تعریف شده است. به علاوه نکته تعریف «کار با کلیدهای اصلی و خارجی در EF Code first» نیز در اینجا لحاظ گردیده است.
در ادامه دستور تولید کنترلر‌های Task، Tag و Status ساخته شده با الگوی مخزن را در خط فرمان پاورشل ویژوال استودیو صادر می‌کنیم:
PM> Scaffold Controller -ModelType Task -ControllerName TasksController -DbContextType TasksDbContext -Repository -Force
PM> Scaffold Controller -ModelType Tag -ControllerName TagsController -DbContextType TasksDbContext -Repository -Force
PM> Scaffold Controller -ModelType Status -ControllerName StatusController -DbContextType TasksDbContext -Repository -Force
اگر به کارهایی که در اینجا انجام می‌شود دقت کنیم، می‌توان صرفه جویی زمانی قابل توجهی را شاهد بود؛ خصوصا در برنامه‌هایی که از ده‌ها فرم ورود اطلاعات تشکیل شده‌اند. فرض کنید قصد استفاده از ابزار فوق را نداشته باشیم. باید به ازای هر عملیات CRUD دو متد را ایجاد کنیم. یکی برای نمایش و دیگری برای ثبت. بعد بر روی هر متد کلیک راست کرده و Viewهای متناظری را ایجاد کنیم. سپس مجددا یک سری پیاده سازی «مقدماتی» تکراری را به ازای هر متد جهت ثبت یا ذخیره اطلاعات تدارک ببینیم. اما در اینجا پس از طراحی کلاس‌های برنامه، با یک دستور، حجم قابل توجهی از کدهای «مقدماتی» که بعدها مطابق نیاز ما سفارشی سازی و غنی‌تر خواهند شد، تولید می‌گردند.

چند نکته:
- با توجه به اینکه مدل‌ها تغییر کرده‌اند، نیاز است بانک اطلاعاتی متناظر نیز به روز گردد. مطالب مرتبط با آن‌را در مباحث Migrations می‌توانید مطالعه نمائید.
- View تولیدی رابطه many-to-many را پشتیبانی نمی‌کند. این مورد را باید دستی اضافه و طراحی کنید: (^ و ^)
- رابطه one-to-many به خوبی با View متناظری دارای یک drop down list تولید خواهد شد. در اینجا لیست تولیدی به صورت خودکار با مقادیر خاصیت Name کلاس Status پر می‌شود. اگر این نام دقیقا Name نباشد نیاز است توسط ویژگی به نام DisplayColumn که بر روی نام کلاس قرار می‌گیرد، مشخص کنید از کدام خاصیت باید استفاده شود.
@Html.DropDownListFor(model => model.StatusId,
((IEnumerable<Status>)ViewBag.PossibleStatus).Select(option => new SelectListItem {
  Text = (option == null ? "None" : option.Name),
  Value = option.Id.ToString(),
  Selected = (Model != null) && (option.Id == Model.StatusId)
}), "Choose...")
@Html.ValidationMessageFor(model => model.StatusId)


تولید آزمون‌های واحد به کمک MVC Scaffolding

MVC Scaffolding امکان تولید خودکار کلاس‌ها و متدهای آزمون واحد را نیز دارد. برای این منظور دستور زیر را در خط فرمان پاورشل وارد نمائید:
 PM> Scaffold MvcScaffolding.ActionWithUnitTest -Controller TasksController -Action ArchiveTask -ViewModel Task
دستوری که در اینجا صادر شده است نسبت به حالت‌های کلی قبلی، اندکی اختصاصی‌تر است. این دستور بر روی کنترلری به نام TasksController، جهت ایجاد اکشن متدی به نام ArchiveTask با استفاده از کلاس ViewModel ایی به نام Task اجرا می‌شود. حاصل آن ایجاد اکشن متد یاد شده به همراه کلاس TasksControllerTest است؛ البته اگر حین ایجاد پروژه جدید در ابتدای کار، گزینه ایجاد پروژه آزمون‌های واحد را نیز انتخاب کرده باشید. نام پروژه پیش فرضی که جستجوی می‌شود YourMvcProjectName.Test/Tests است.
 نکته مهم آن، عدم حذف یا بازنویسی کامل کنترلر یاد شده است. کاری هم که در تولید متد آزمون واحد متناظر انجام می‌شود، تولید بدنه متد آزمون واحد به همراه تولید کدهای اولیه الگوی Arrange/Act/Assert است. پر کردن جزئیات بیشتر آن با برنامه نویس است.
و یا به صورت خلاصه‌تر:
 PM> Scaffold UnitTest Tasks Delete
در اینجا متد آزمون واحد کنترلر Tasks و اکشن متد Delete آن، تولید می‌شود.

کار مقدماتی با MVC Scaffolding و امکانات مهیای در آن همینجا به پایان می‌رسد. در قسمت‌های بعد به سفارشی سازی این مجموعه خواهیم پرداخت.
مطالب
Functional Programming - قسمت پنجم - وسواس استفاده از نوع های اولیه
در ادامه سری مقالات مرتبط با برنامه نویسی تابعی ، قصد دارم به استفاده کردن یا نکردن از نوع‌های داده اولیه (Primitive Types) را بررسی کنیم. پیشنهاد میکنم در صورتی که قسمت‌های قبلی را مطالعه نکرده اید ابتدا قسمت‌های قبل را بخوانید.

در طراحی مدل دامین، بیشتر مواقع از نوع‌های اولیه مانند int , string,… استفاده میکنیم و به عبارتی میتوانیم بگوییم در استفاده از این نوع داده وسواس داریم. قطعه کد زیر را در نظر بگیرید:
public class UserFactory
{
    public User CreateUser(string email) {
        return new User(email);
    }
}
کلاس UserFactory، یک متد به نام CreateUser دارد که یک رشته را به عنوان ورودی میگیرد و یک شیء از کلاس User را بر می‌گرداند. خوب مشکل این متد کجاست؟
اگر به خاطر داشته باشید، در قسمت‌های قبلی در مورد مفهومی به نام Honesty صحبت کردیم. به طور ساده باید بتوانیم از روی امضای تابع، کاری را که تابع انجام میدهد و خروجی آن را ببینیم. این تابع Honest نیست؛ شرایطی که string می‌تواند درست نباشد، خالی باشد، طول غیر مجاز داشته باشد و ... را نمیتوانیم از امضای تابع حدس بزنیم.

برای روشن‌تر شدن بحث، مثال بالا را همیشه در ذهن خود داشته باشید. در این مثال، در تابع Divide که عمل تقسیم را انجام می‌دهد، پارامتر y که یک عدد از نوع int است، میتواند مقدار صفر را داشته باشد و باعث یک exception شود.و از آنجائیکه نوع خروجی این متد هم int است، انتظار دریافت یک exception را نداریم. در مورد exception‌ها به طول مفصل در قسمت قبلی صحبت کردیم. در مثال بالا تصور کنید که بجای یک ایمیل، از چند ایمیل به عنوان ورودی می‌خواهید استفاده کنید. آیا منطق Validation را به ازای هر پارامتر ورودی باید تکرار کنید؟

به طور کلی استفاده‌ی نابجا و بیش از حد از نوع‌های داده‌ی اولیه، باعث می‌شود تا Honesty متد‌ها را از دست بدهیم و قاعده‌ی DRY را نقض کنیم.

صحبت در مورد استفاده کردن یا نکردن، جنبه‌های زیادی دارد و یکی از مواردی است که در معماری DDD تحت عنوان Value Object به آن پرداخته شده. هدف ما در این قسمت از مقاله، صرفا پرداختن به گوشه‌ای از این مورد هست. ولی شما میتوانید برای مطالعه بیشتر و اطلاعات تکمیلی کتاب Domain-Driven Design: Tackling Complexity in the Heart of Software نوشته Eric Evans را مطالعه کنید.


به جای نوع‌های اولیه از چی استفاده کنیم؟

جواب خیلی ساده‌است؛ شما نیاز دارید تا یک Type اختصاصی را ایجاد کنید. برای مثال بجای استفاده از نوع string برای یک ایمیل، می‌توانید یک کلاس را به عنوان Email ایجاد کنید که مشخصه‌ای به نام Value دارد. این کار به روش‌های مختلفی قابل انجام است؛ اما پیشنهاد من استفاده از این روش هست:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.Reflection;

namespace ValueOf
{
    public class ValueOf<TValue, TThis> where TThis : ValueOf<TValue, TThis>, new()
    {
        private static readonly Func<TThis> Factory;

        /// <summary>
        /// WARNING - THIS FEATURE IS EXPERIMENTAL. I may change it to do
        /// validation in a different way.
        /// Right now, override this method, and throw any exceptions you need to.
        /// Access this.Value to check the value
        /// </summary>
        protected virtual void Validate()
        {
        }

        static ValueOf()
        {
            ConstructorInfo ctor = typeof(TThis)
                .GetTypeInfo()
                .DeclaredConstructors
                .First();

            var argsExp = new Expression[0];
            NewExpression newExp = Expression.New(ctor, argsExp);
            LambdaExpression lambda = Expression.Lambda(typeof(Func<TThis>), newExp);

            Factory = (Func<TThis>)lambda.Compile();
        }

        public TValue Value { get; protected set; }

        public static TThis From(TValue item)
        {
            TThis x = Factory();
            x.Value = item;
            x.Validate();

            return x;
        }

        protected virtual bool Equals(ValueOf<TValue, TThis> other)
        {
            return EqualityComparer<TValue>.Default.Equals(Value, other.Value);
        }

        public override bool Equals(object obj)
        {
            if (obj is null)
                return false;

            if (ReferenceEquals(this, obj))
                return true;

            return obj.GetType() == GetType() && Equals((ValueOf<TValue, TThis>)obj);
        }

        public override int GetHashCode()
        {
            return EqualityComparer<TValue>.Default.GetHashCode(Value);
        }

        public static bool operator ==(ValueOf<TValue, TThis> a, ValueOf<TValue, TThis> b)
        {
            if (a is null && b is null)
                return true;

            if (a is null || b is null)
                return false;

            return a.Equals(b);
        }

        public static bool operator !=(ValueOf<TValue, TThis> a, ValueOf<TValue, TThis> b)
        {
            return !(a == b);
        }

        public override string ToString()
        {
            return Value.ToString();
        }
    }
}
در این روش، یک کلاس را به عنوان Value Object ایجاد کرده‌ایم. این کلاس، نوع اولیه‌ای را که با آن سر و کار داریم، در بر خواهد گرفت و منطق مربوط به مقایسه، همچنین عملگرهای == و != را هم از طریق Equals و GetHashCode، پیاده سازی کرده. برای مثال جهت کلاس ایمیل می‌توانیم به صورت زیر عمل کنیم:
public class EmailAddress : ValueOf<string, EmailAddress> { }
همچنین برای مقدار دهی این کلاس میتوانید به صورت زیر عمل کنید:
EmailAddress emailAddress = EmailAddress.From("foo@bar.com");
برای مثال‌های پیچیده‌تر مانند آدرس، که شامل آدرس، کد پستی و … می‌باشد، میتوانید با استفاده از امکان Tuple‌ها که از سی شارپ 7 به بعد معرفی شده، مانند مثال زیر عمل کنید:
public class Address : ValueOf<(string firstLine, string secondLine, Postcode postcode), Address> { }
و در نهایت برای نوشتن منطق مربوط به validation می‌توانید متد Validate را Override کنید و قاعده‌ی DRY را هم نقض نکنید.

روش معرفی شده‌ی در این مقاله، صرفا جهت آشنایی بیشتر شما و داشتن کدی تمیز‌تر از طریق مفاهیم برنامه نویسی تابعی خواهد بود. در دنیای واقعی، احتمالا مسائلی را برای ذخیره سازی این آبجکت‌ها و یا کار با کتابخانه‌هایی مانند Entity Framework خواهید داشت که به سادگی قابل حل است.

در صورتیکه مشکلی در پیاده سازی داشتید، می‌توانید مشکل خود را زیر همین مطلب و یا بر روی gist آن کامنت کنید.
مطالب
درخت‌ها و گراف‌ها قسمت اول
در این مقاله یکی از ساختارهای داده را به نام ساختارهای درختی و گراف‌ها معرفی کردیم و در این مقاله قصد داریم این نوع ساختار را بیشتر بررسی نماییم. این ساختارها برای بسیاری از برنامه‌های مدرن و امروزی بسیار مهم هستند. هر کدام از این ساختارهای داده به حل یکی از مشکلات دنیای واقعی می‌پردازند. در این مقاله قصد داریم به مزایا و معایب هر کدام از این ساختار‌ها اشاره کنیم و اینکه کی و کجا بهتر است از کدام ساختار استفاده گردد. تمرکز ما بر درخت هایی دودویی، درخت‌های جست و جوی دو دویی و درخت‌های جست و جوی دو دویی متوازن خواهد بود. همچنین ما به تشریح گراف و انواع آن خواهیم پرداخت. اینکه چگونه آن را در حافظه نمایش دهیم و اینکه گراف‌ها در کجای زندگی واقعی ما یا فناوری‌های کامپیوتری استفاده می‌شوند.

ساختار درختی
در بسیاری از مواقع ما با گروهی از اشیاء یا داده‌هایی سر و کار داریم که هر کدام از آن‌ها به گروهی دیگر مرتبط هستند. در این حالت از ساختار خطی نمی‌توانیم برای توصیف این ارتباط استفاده کنیم. پس بهترین ساختار برای نشان دادن این ارتباط ساختار شاخه ای Branched Structure است.
یک ساختار درختی یا یک ساختار شاخه‌ای شامل المان‌هایی به اسم گره Node است. هر گره می‌تواند به یک یا چند گره دیگر متصل باشد و گاهی اوقات این اتصالات مشابه یک سلسه مراتب hierarchically می‌شوند.
درخت‌ها در برنامه نویسی جایگاه ویژه‌ای دارند به طوری که استفاده‌ی از آن‌ها در بسیاری از برنامه‌ها وجود دارد و بسیاری از مثال‌های واقعی پیرامون ما را پشتیبانی می‌کنند.
در نمودار زیر مثالی وجود دارد که در آن یک تیم نرم افزاری نمایش داده شده‌است. در اینجا هر یک از بخش‌ها وظایف و مسئولیت‌هایی را بر دوش خود دارند که این مسئولیت‌ها به صورت سلسله مراتبی در تصویر زیر نمایش داده شده‌اند.

ما در ساختار بالا متوجه می‌شویم که چه بخشی زیر مجموعه‌ی چه بخشی است و سمت بالاتر هر بخش چیست. برای مثال ما متوجه شدیم که مدیر توسعه دهندگان، "سرپرست تیم" است که خود نیز مادون "مدیر پروژه" است و این را نیز متوجه می‌شویم که مثلا توسعه دهنده‌ی شماره یک هیچ مادونی ندارد و مدیر پروژه در راس همه است و هیچ مدیر دیگری بالای سر او قرار ندارد.

اصطلاحات درخت
برای اینکه بیشتر متوجه روابط بین اشیا در این ساختار بشویم، به شکل زیر خوب دقت کنید:

در شکل بالا دایره‌هایی برای هر بخش از اطلاعت کشیده شده و ارتباط هر کدام از آن‌ها از طریق یک خط برقرار شده است. اعداد داخل هر دایره تکراری نیست و همه منحصر به فرد هستند. پس وقتی از اعداد اسم ببریم متوجه می‌شویم که در مورد چه چیزی صحبت می‌کنیم.

در شکل بالا به هر یک از دایره‌ها یک گره Node می‌گویند و به هر خط ارتباط دهنده بین گره‌ها لبه Edge گفته می‌شود. گره‌های 19 و 21 و 14 زیر گره‌های گره 7 محسوب می‌شوند. گره‌هایی که به صورت مستقیم به زیر گره‌های خودشان اشاره می‌کنند را گره‌های والد Parent می‌گویند و زیرگره‌های 7 را گره‌های فرزند ChildNodes. پس با این حساب می‌توانیم بگوییم گره‌های 1 و 12 و 31 را هم فرزند گره 19 هستند و گره 19 والد آن هاست. همچنین گره‌های یک والد را مثل 19 و 21 و 14 که والد مشترک دارند، گره‌های خواهر و برادر یا حتی همنژاد Sibling می‌گوییم. همچنین ارتباط بین گره 7 و گره‌های سطح دوم  و الی آخر یعنی 1 و 12 و 31 و 23 و 6 را که والد بودن آن به صورت غیر مستقیم است را جد یا ancestor می‌نامیم و نوه‌ها و نتیجه‌های آن‌ها را نسل descendants.

ریشه Root: به گره‌ای می‌گوییم که هیچ والدی ندارد و خودش در واقع اولین والد محسوب می‌شود؛ مثل گره 7.

برگ  Leaf: به گره‌هایی که هیچ فرزندی ندارند، برگ می‌گوییم. مثال گره‌های 1 و12 و 31 و 23 و 6

گره‌های داخلی Internal Nodes: گره هایی که نه برگ هستند و نه ریشه. یعنی حداقل یک فرزند دارند و خودشان یک گره فرزند محسوب می‌شوند؛ مثل گره‌های 19 و 14.

مسیر Path: راه رسیدن از یک گره به گره دیگر را مسیر می‌گویند. مثلا گره‌های 1 و 19 و 7 و 21 به ترتیب یک مسیر را تشکیل می‌دهند ولی گره‌های 1 و 19 و 23 از آن جا که هیچ جور اتصالی بین آن‌ها نیست، مسیری را تشکیل نمی‌دهند.

طول مسیر Length of Path: به تعداد لبه‌های یک مسیر، طول مسیر می‌گویند که می‌توان از تعداد گره‌ها -1 نیز آن را به دست آورد. برای نمونه : مسیر 1 و19 و 7 و 21 طول مسیرشان 3 هست.

عمق Depth: طول مسیر یک گره از ریشه تا آن گره را عمق درخت می‌گویند. عمق یک ریشه همیشه صفر است و برای مثال در درخت بالا، گره 19 در عمق یک است و برای گره 23 عمق آن 2 خواهد بود.

تعریف خود درخت Tree: درخت یک ساختار داده برگشتی recursive است که شامل گره‌ها و لبه‌ها، برای اتصال گره‌ها به یکدیگر است.

جملات زیر در مورد درخت صدق می‌کند:

  • هر گره می‌تواند فرزند نداشته باشد یا به هر تعداد که می‌خواهد فرزند داشته باشد.
  • هر گره یک والد دارد و تنها گره‌ای که والد ندارد، گره ریشه است (البته اگر درخت خالی باشد هیچ گره ای وجود ندارد).
  • همه گره‌ها از ریشه قابل دسترسی هستند و برای دسترسی به گره مورد نظر باید از ریشه تا آن گره، مسیری را طی کرد.
ار تفاع درخت Height: به حداکثر عمق یک درخت، ارتفاع درخت می‌گویند.
درجه گره Degree: به تعداد گره‌های فرزند یک گره، درجه آن گره می‌گویند. در درخت بالا درجه گره‌های 7 و 19 سه است. درجه گره 14 دو است و درجه برگ‌ها صفر است.
ضریب انشعاب Branching Factor: به حداکثر درجه یک گره در یک درخت، ضریب انشعاب آن درخت گویند.

پیاده سازی درخت

برای پیاده سازی یک درخت، از دو کلاس یکی جهت ساخت گره که حاوی اطلاعات است <TreeNode<T و دیگری جهت ایجاد درخت اصلی به همراه کلیه متدها و خاصیت هایش <Tree<T کمک می‌‌گیریم.

public class TreeNode<T>
{
    // شامل مقدار گره است
    private T value;
 
    // مشخص می‌کند که آیا گره والد دارد یا خیر
    private bool hasParent;
 
    // در صورت داشتن فرزند ، لیست فرزندان را شامل می‌شود
    private List<TreeNode<T>> children;
 
    /// <summary>سازنده کلاس </summary>
    /// <param name="value">مقدار گره</param>
    public TreeNode(T value)
    {
        if (value == null)
        {
            throw new ArgumentNullException(
                "Cannot insert null value!");
        }
        this.value = value;
        this.children = new List<TreeNode<T>>();
    }
 
    /// <summary>خاصیتی جهت مقداردهی گره</summary>
    public T Value
    {
        get
        {
            return this.value;
        }
        set
        {
            this.value = value;
        }
    }
 
    /// <summary>تعداد گره‌های فرزند را بر میگرداند</summary>
    public int ChildrenCount
    {
        get
        {
            return this.children.Count;
        }
    }
 
    /// <summary>به گره یک فرزند اضافه می‌کند</summary>
    /// <param name="child">آرگومان این متد یک گره است که قرار است به فرزندی گره فعلی در آید</param>
    public void AddChild(TreeNode<T> child)
    {
        if (child == null)
        {
            throw new ArgumentNullException(
                "Cannot insert null value!");
        }
 
        if (child.hasParent)
        {
            throw new ArgumentException(
                "The node already has a parent!");
        }
 
        child.hasParent = true;
        this.children.Add(child);
    }
 
    /// <summary>
    /// گره ای که اندیس آن داده شده است بازگردانده می‌شود
    /// </summary>
    /// <param name="index">اندیس گره</param>
    /// <returns>گره بازگشتی</returns>
    public TreeNode<T> GetChild(int index)
    {
        return this.children[index];
    }
}
 
/// <summary>این کلاس ساختار درخت را به کمک کلاس گره‌ها که در بالا تعریف کردیم میسازد</summary>
/// <typeparam name="T">نوع مقادیری که قرار است داخل درخت ذخیره شوند</typeparam>
public class Tree<T>
{
    // گره ریشه
    private TreeNode<T> root;
 
    /// <summary>سازنده کلاس</summary>
    /// <param name="value">مقدار گره اول که همان ریشه می‌شود</param>
    public Tree(T value)
    {
        if (value == null)
        {
            throw new ArgumentNullException(
                "Cannot insert null value!");
        }
 
        this.root = new TreeNode<T>(value);
    }
 
    /// <summary>سازنده دیگر برای کلاس درخت</summary>
    /// <param name="value">مقدار گره ریشه مثل سازنده اول</param>
    /// <param name="children">آرایه ای از گره‌ها که فرزند گره ریشه می‌شوند</param>
    public Tree(T value, params Tree<T>[] children)
        : this(value)
    {
        foreach (Tree<T> child in children)
        {
            this.root.AddChild(child.root);
        }
    }
 
    /// <summary>
    /// ریشه را بر میگرداند ، اگر ریشه ای نباشد نال بر میگرداند
    /// </summary>
    public TreeNode<T> Root
    {
        get
        {
            return this.root;
        }
    }
 
    /// <summary>پیمودن عرضی و نمایش درخت با الگوریتم دی اف اس </summary>
    /// <param name="root">ریشه (گره ابتدایی) درختی که قرار است پیمایش از آن شروع شود</param>
    /// <param name="spaces">یک کاراکتر جهت جداسازی مقادیر هر گره</param>
    private void PrintDFS(TreeNode<T> root, string spaces)
    {
        if (this.root == null)
        {
            return;
        }
 
        Console.WriteLine(spaces + root.Value);
 
        TreeNode<T> child = null;
        for (int i = 0; i < root.ChildrenCount; i++)
        {
            child = root.GetChild(i);
            PrintDFS(child, spaces + "   ");
        }
    }
 
    /// <summary>متد پیمایش درخت به صورت عمومی که تابع خصوصی که در بالا توضیح دادیم را صدا می‌زند</summary>
    public void TraverseDFS()
    {
        this.PrintDFS(this.root, string.Empty);
    }
}
 
/// <summary>
/// کد استفاده از ساختار درخت
/// </summary>
public static class TreeExample
{
    static void Main()
    {
        // Create the tree from the sample
        Tree<int> tree =
            new Tree<int>(7,
                new Tree<int>(19,
                    new Tree<int>(1),
                    new Tree<int>(12),
                    new Tree<int>(31)),
                new Tree<int>(21),
                new Tree<int>(14,
                    new Tree<int>(23),
                    new Tree<int>(6))
            );
 
        // پیمایش درخت با الگوریتم دی اف اس یا عمقی
        tree.TraverseDFS();
 
        // خروجی
        // 7
        //       19
        //        1
        //        12
        //        31
        //       21
        //       14
        //        23
        //        6
    }
}
کلاس TreeNode وظیفه‌ی ساخت گره را بر عهده دارد و با هر شیء‌ایی که از این کلاس می‌سازیم، یک گره ایجاد می‌کنیم که با خاصیت Children و متد AddChild آن می‌توانیم هر تعداد گره را که می‌خواهیم به فرزندی آن گره در آوریم که باز خود آن گره می‌تواند در خاصیت Children یک گره دیگر اضافه شود. به این ترتیب با ساخت هر گره و ایجاد رابطه از طریق خاصیت children هر گره درخت شکل می‌گیرد. سپس گره والد در ساختار کلاس درخت Tree قرار می‌گیرد و این کلاس شامل متدهایی است که می‌تواند روی درخت، عملیات پردازشی چون پیمایش درخت را انجام دهد.


پیمایش درخت به روش عمقی (DFS (Depth First Search

هدف از پیمایش درخت ملاقات یا بازبینی (تهیه لیستی از همه گره‌های یک درخت) تنها یکبار هر گره در درخت است. برای این کار الگوریتم‌های زیادی وجود دارند که ما در این مقاله تنها دو روش DFS و BFS را بررسی می‌کنیم.

روش DFS: هر گره‌ای که به تابع بالا بدهید، آن گره برای پیمایش، گره ریشه حساب خواهد شد و پیمایش از آن آغاز می‌گردد. در الگوریتم DFS روش پیمایش بدین گونه است که ما از گره ریشه آغاز کرده و گره ریشه را ملاقات می‌کنیم. سپس گره‌های فرزندش را به دست می‌آوریم و یکی از گره‌ها را انتخاب کرده و دوباره همین مورد را رویش انجام می‌دهیم تا نهایتا به یک برگ برسیم. وقتی که به برگی می‌رسیم یک مرحله به بالا برگشته و این کار را آنقدر تکرار می‌کنیم تا همه‌ی گره‌های آن ریشه یا درخت پیمایش شده باشند.

همین درخت را در نظر بگیرید:


 پیمایش درخت را از گره 7 آغاز می‌کنیم و آن را به عنوان ریشه در نظر می‌گیریم. حتی می‌توانیم پیمایش را از گره مثلا 19 آغاز کنیم و آن را برای پیمایش ریشه در نظر بگیریم ولی ما از همان 7 پیمایش را آغاز می‌کنیم:

ابتدا گره 7 ملاقات شده و آن را می‌نویسیم. سپس فرزندانش را بررسی می‌کنیم که سه فرزند دارد. یکی از فرزندان مثل گره 19 را انتخاب کرده و آن را ملاقات می‌کنیم (با هر بار ملاقات آن را چاپ می‌کنیم) سپس فرزندان آن را بررسی می‌کنیم و یکی از گره‌ها را انتخاب می‌کنیم و ملاقاتش می‌کنیم؛ برای مثال گره 1. از آن جا که گره یک، برگ است و فرزندی ندارد یک مرحله به سمت بالا برمی‌گردیم و برگ‌های 12 و 31 را هم ملاقات می‌کنیم. حالا همه‌ی فرزندان گره 19 را بررسی کردیم، بر می‌گردیم یک مرحله به سمت بالا و گره 21 را ملاقات می‌کنیم و از آنجا که گره 21 برگ است و فرزندی ندارد به بالا باز می‌گردیم و بعد گره 14 و فرزندانش 23 و 6 هم بررسی می‌شوند. پس ترتیب چاپ ما اینگونه می‌شود:

7-19-1-12-31-21-14-23-6


پیمایش درخت به روش (BFS (Breadth First Search 

در این روش (پیمایش سطحی) گره والد ملاقات شده و سپس همه گره‌های فرزندش ملاقات می‌شوند. بعد از آن یک گره انتخاب شده و همین پیمایش مجددا روی آن انجام می‌شود تا آن سطح کاملا پیمایش شده باشد. سپس به همین مرحله برگشته و فرزند بعدی را پیمایش می‌کنیم و الی آخر. نمونه‌ی این پیمایش روی درخت بالا به صورت زیر نمایش داده می‌شود:

7-19-21-14-1-12-31-23-6

اگر خوب دقت کنید می‌بینید که پیمایش سطحی است و هر سطح به ترتیب ملاقات می‌شود. به این الگوریتم، پیمایش موجی هم می‌گویند. دلیل آن هم این است که مثل سنگی می‌ماند که شما برای ایجاد موج روی دریاچه پرتاب می‌کنید.

برای این پیمایش از صف کمک گرفته می‌شود که مراحل زیر روی صف صورت می‌گیرد:

  • ریشه  وارد صف Q می‌شود.
  • دو مرحله زیر مرتبا تکرار می‌شوند:
  1. اولین گره صف به نام V را از Q در یافت می‌کنیم و آن را چاپ می‌کنیم.
  2. فرزندان گره V  را به صف اضافه می‌کنیم.
این نوع پیمایش، پیاده سازی راحتی دارد و همیشه نزدیک‌ترین گره‌ها به ریشه را می‌خواند و در هر مرحله گره‌هایی که می‌خواند از ریشه دورتر و دورتر می‌شوند.
مطالب
آشنایی با قابلیت جدید ASP.NET Web Forms Scaffolding
مایکروسافت با افزایش سرعت به روز رسانی توسعه پروژه‌های سورس باز خود جهت پاسخ دادن به نیاز توسعه دهندگان و توسعه ویژوال استادیو مطابق با آخرین تکنولوژی‌های تولید وب سایت، می‌کوشد تعداد بیشتری از توسعه دهندگان را به سمت استفاده از تکنولوژی‌های خود سوق دهد. 

سالها است که برنامه نویسان خبره با توجه به روش کاری خود از امکانات Code Generatorها برای تولید کدهای لایه‌های Data Access ، Logic و یا حتی User Interface استفاده می‌نمایند. پس از عرضه Entity Framework و تولید خودکار کدهای لایه های Data Access و Logic، این بار این امکان علاوه بر ASP.NET MVC در ASP.NET Web Forms نیز فراهم گردیده‌است تا بدون کد نویسی خسته کننده و تکراری، کدهای لایه رابط کاربر (Create-Read-Update-Delete (CRUD را نیز تولید نماییم. 

شروع کار با ASP.NET Scaffolding
پیش نیاز این کار استفاده از Visual Studio 2012 به همراه Web Tools 2012.2 می‌باشد.
  1. اول، ابزار Microsoft ASP.NET Scaffolding را از منوی Tools گزینه Extensions and Updates دریافت و نصب نمایید.
  2. دوم پروژه جدیدی از نوع Visual C# ASP.NET Web Forms Application با فریم ورک 4.5 ایجاد نمایید.
  3. از پنجره NuGet Package manager با دستور install کتابخانه ASP.NET Web Forms Scaffold Generator را دریافت نمایید
    install-package Microsoft.AspNet.Scaffolding.WebForms -pre
  4. کلاس Person را مانند زیر در فولدر Models ایحاد نمایید
     public class Person
        {
            [ScaffoldColumn(false)]
            public int ID { get; set; }
            public string FirstName { get; set; }
            public string LastName { get; set; }
        }
    ویژگی ScaffoldColumn را برای ID، برابر false قرار دهید تا از ایجاد این ستون جلوگیری نمائید.
  5. پروژه را Build نمایید.
  6. بر روی پروژه راست کلیک و از گزینه Add، گزینه ...Scaffold را انتخاب نمایید.

  7. از پنجره Add Scaffold باز شده بر روی گزینه Add، کلیک کنید.

  8. پنجره  Add Web Forms Pages مانند زیر باز می‌شود که امکان انتخاب کلاس،Data Context و MasterPage فراهم می‌باشد.

  9. از گزینه Data Context class گزینه New Data Context را انتخاب نمایید. صفحات مورد نیاز را در فولدر Views/Person ایجاد می‌نمایید.
  10. کد‌های تولید شده را می‌توانید بازبینی نمایید پروژه را اجرا تا خروجی کار را مشاهده نمایید.

نظرات مطالب
مقدار دهی اولیه‌ی بانک اطلاعاتی توسط Entity framework Core
برای اعمال OwnsOne  وقتی کلاسهای زیر را داشته باشیم چگونه باید عمل کرد؟
namespace Loans.Models
{
    public class Product
    {
        public Product()
        {
            Rating = new Rating();
        }

        public Rating Rating { get; set; }

        public int Id { get; set; }

        public string Name { get; set; }

        public double Price { get; set; }

        public double OfferPrice { get; set; }

        public Group Group { get; set; }

        public int GroupId { get; set; }

        public List<Image> Images { get; set; }
    }

    public class Rating
    {
        public Rating()
        {
        }

        public Rating(double totalRating, int totalRaters, double averageRating)
        {
            TotalRating = totalRating;
            TotalRaters = totalRaters;
            AverageRating = averageRating;
        }


        public double TotalRating { get; set; } = 0.0;

        public int TotalRaters { get; set; } = 0;

        public double AverageRating { get; set; } = 0.0;
    }

    public class Group
    {
        public int Id { get; set; }

        public string Name { get; set; }

        public Group ParentGroup { get; set; }

        public int? ParentGroupId { get; set; }

        public List<Group> ChildrenGroups { get; set; }

        public List<Product> Products { get; set; }

        public Image Image { get; set; }
    }

    public class Image
    {
        public Guid Id { get; set; }

        public string Name { get; set; }

        public Group Group { get; set; }

        public int? GroupId { get; set; }

        public Product Product { get; set; }

        public int? ProductId { get; set; }
    }
}
حالا اگر برای ownsOne  طبق زیر عمل کنم:
modelBuilder.Entity<Product>().OwnsOne(p => p.Rating)
در هنگام حذف Product  آن را حذف نمیکند و ارور زیر را میدهد:
 "The entity of type 'Product' is sharing the table 'Products' with entities of type 'Rating ',
 but there is no entity of this type with the same key value ."
البته از EFCore2.2 استفاده میکنم. 
مطالب دوره‌ها
تبدیلگر تاریخ شمسی برای AutoMapper
فرض کنید مدل معادل با جدول بانک اطلاعاتی ما چنین ساختاری را دارد:
public class User
{
    public int Id { set; get; }
    public string Name { set; get; }
    public DateTime RegistrationDate { set; get; }
}
و ViewModel ایی که قرار است به کاربر نمایش داده شود این ساختار را دارد:
public class UserViewModel
{
    public int Id { set; get; }
    public string Name { set; get; }
    public string RegistrationDate { set; get; }
}
در اینجا می‌خواهیم حین تبدیل User به UserViewModel، تاریخ میلادی به صورت خودکار، تبدیل به یک رشته‌ی شمسی شود. برای مدیریت یک چنین سناریوهایی توسط AutoMapper، امکان نوشتن تبدیلگرهای سفارشی نیز پیش بینی شده‌است.


تبدیلگر سفارشی تاریخ میلادی به شمسی مخصوص AutoMapper

در ذیل یک تبدیلگر سفارشی مخصوص AutoMapper را با پیاده سازی اینترفیس ITypeConverter آن ملاحظه می‌کنید:
public class DateTimeToPersianDateTimeConverter : ITypeConverter<DateTime, string>
{
    private readonly string _separator;
    private readonly bool _includeHourMinute;
 
    public DateTimeToPersianDateTimeConverter(string separator = "/", bool includeHourMinute = true)
    {
        _separator = separator;
        _includeHourMinute = includeHourMinute;
    }
 
    public string Convert(ResolutionContext context)
    {
        var objDateTime = context.SourceValue;
        return objDateTime == null ? string.Empty : toShamsiDateTime((DateTime)context.SourceValue);
    }
 
    private string toShamsiDateTime(DateTime info)
    {
        var year = info.Year;
        var month = info.Month;
        var day = info.Day;
        var persianCalendar = new PersianCalendar();
        var pYear = persianCalendar.GetYear(new DateTime(year, month, day, new GregorianCalendar()));
        var pMonth = persianCalendar.GetMonth(new DateTime(year, month, day, new GregorianCalendar()));
        var pDay = persianCalendar.GetDayOfMonth(new DateTime(year, month, day, new GregorianCalendar()));
        return _includeHourMinute ?
            string.Format("{0}{1}{2}{1}{3} {4}:{5}", pYear, _separator, pMonth.ToString("00", CultureInfo.InvariantCulture), pDay.ToString("00", CultureInfo.InvariantCulture), info.Hour.ToString("00"), info.Minute.ToString("00"))
            : string.Format("{0}{1}{2}{1}{3}", pYear, _separator, pMonth.ToString("00", CultureInfo.InvariantCulture), pDay.ToString("00", CultureInfo.InvariantCulture));
    } 
}
ITypeConverter دو پارامتر جنریک را قبول می‌کند. پارامتر اول نوع ورودی و پارامتر دوم، نوع خروجی مورد انتظار است. در اینجا باید خروجی متد Convert را بر اساس آرگومان دوم ITypeConverter مشخص کرد. توسط ResolutionContext می‌توان به برای مثال context.SourceValue که معادل DateTime دریافتی است، دسترسی یافت. سپس این DateTime را بر اساس متد toShamsiDateTime تبدیل کرده و بازگشت می‌دهیم.


ثبت و معرفی تبدیلگرهای سفارشی AutoMapper

پس از تعریف یک تبدیلگر سفارشی AutoMapper، اکنون نیاز است آن‌را به AutoMapper معرفی کنیم:
public class TestProfile1 : Profile
{
    protected override void Configure()
    {
        // این تنظیم سراسری هست و به تمام خواص زمانی اعمال می‌شود
        this.CreateMap<DateTime, string>().ConvertUsing(new DateTimeToPersianDateTimeConverter()); 
        this.CreateMap<User, UserViewModel>();
     }
 
    public override string ProfileName
    {
        get { return this.GetType().Name; }
    }
}
جهت مدیریت بهتر نگاشت‌های AutoMapper ابتدا یک کلاس Profile را آغاز خواهیم کرد و سپس توسط متدهای CreateMap، کار معرفی نگاشت‌ها را آغاز می‌کنیم.
همانطور که مشاهده می‌کنید در اینجا دو نگاشت تعریف شده‌اند. یکی برای تبدیل User به UserViewModel و دیگری، معرفی نحوه‌ی نگاشت DateTime به string، توسط تبدیلگر سفارشی DateTimeToPersianDateTimeConverter است که به کمک متد الحاقی ConvertUsing صورت گرفته‌است.
باید دقت داشت که تنظیمات تبدیلگرهای سفارشی سراسری هستند و در کل برنامه و به تمام پروفایل‌ها اعمال می‌شوند.


بررسی خروجی تبدیلگر سفارشی تاریخ

اکنون کار استفاده از تنظیمات AutoMapper با ثبت پروفایل تعریف شده آغاز می‌شود:
Mapper.Initialize(cfg => // In Application_Start()
{
     cfg.AddProfile<TestProfile1>();
});
سپس نحوه‌ی استفاده از متد Mapper.Map همانند قبل خواهد بود:
var dbUser1 = new User
{
    Id = 1,
    Name = "Test",
    RegistrationDate = DateTime.Now.AddDays(-10)
};
 
var uiUser = new UserViewModel();

Mapper.Map(source: dbUser1, destination: uiUser);
در اینجا در حین کار تبدیل و نگاشت dbUser به uiUser، زمانیکه AutoMapper به هر خاصیت DateTime ایی می‌رسد، مقدار آن‌را با توجه به تبدیلگر سفارشی تاریخی که به آن معرفی کردیم، تبدیل به معادل رشته‌ای شمسی می‌کند.


نوشتن تبدیلگرهای غیر سراسری

همانطور که عنوان شد، معرفی تبدیلگرها به AutoMapper سراسری است و در کل برنامه اعمال می‌شود. اگر نیاز است فقط برای یک مدل خاص و یک خاصیت خاص آن تبدیلگر نوشته شود، باید نگاشت مورد نظر را به صورت ذیل تعریف کرد:
this.CreateMap<User, UserViewModel>()
             .ForMember(userViewModel => userViewModel.RegistrationDate,
                        opt => opt.ResolveUsing(src =>
                        {
                             var dt = src.RegistrationDate;
                             return dt.ToShortDateString();
                        }));
اینبار در همان کلاس پروفایل ابتدای بحث، نگاشت User به ViewModel آن با کمک متد ForMember، سفارشی سازی شده‌است. در اینجا عنوان شده‌است که اگر به خاصیت ویژه‌ی RegistrationDate رسیدی، مقدار آن‌را با توجه به فرمولی که مشخص شده، محاسبه کرده و بازگشت بده. این تنظیم خصوصی است و به کل برنامه اعمال نمی‌شود.


خصوصی سازی تبدیلگرها با تدارک موتورهای نگاشت اختصاصی

اگر می‌خواهید تنظیمات TestProfile1 به کل برنامه اعمال نشود، نیاز است یک MappingEngine جدید و مجزای از MappingEngine سراسری AutoMapper را ایجاد کرد:
var configurationStore = new ConfigurationStore(new TypeMapFactory(), MapperRegistry.Mappers);
configurationStore.AddProfile<TestProfile1>();
var mapper = new MappingEngine(configurationStore);
mapper.Map(source: dbUser1, destination: uiUser);
به صورت پیش فرض و در پشت صحنه، متد Mapper.Map از یک MappingEngine سراسری استفاده می‌کند. اما می‌توان در یک برنامه چندین MappingEngine مجزا داشت که نمونه‌ای از آن‌را در اینجا مشاهده می‌کنید.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید:
AM_Sample02.zip
نظرات مطالب
C# 7 - Pattern matching and switch expressions
C# 7.1 - Pattern-Matching with Generics

C# 7.1 پشتیبانی بهتری از pattern-matching را جهت کار با Generics ارائه داده‌است.
public class Car {}
public class SportsCar : Car
{
   public string Color { get; set; }
}
در اینجا یک کلاس پایه خودرو و سپس یک کلاس مشتق شده‌ی خودرو‌های ورزشی را داریم. اکنون در جائی از برنامه می‌خواهیم متد راندن این خودروها را تعریف کنیم:
public static void Run<T>(T car) where T : Car
{
   if (car is SportsCar sportsCar)
   {
   }

   switch (car)
   {
      case SportsCar sCar:
      break;
   }
}
در اینجا نوع خودرو به صورت جنریک تعریف شده‌است و سپس با استفاده از قابلیت‌های pattern-matching سعی در انطباق با آن‌ها را داریم. کامپایل این قطعه کد در C# 7.0 با خطای کامپایلر ذیل متوقف می‌شود:
 An expression of type "T" cannot be handled by a pattern of type "SportsCar"

اگر این قطعه کد را بخواهیم با C# 7.0 کامپایل کنیم نیاز است ابتدا شیء دریافتی به object تبدیل شود و سپس کار pattern-matching با موفقیت صورت خواهد گرفت:
public static void Run<T>(T car) where T : Car
{
   if ((object)car is SportsCar sportsCar)
   {
   }

   switch ((object)car)
   {
      case SportsCar sCar:
      break;
   }
}
این محدودیت در C# 7.1 برطرف شده‌است و دیگر نیازی به این cast اضافه نیست و می‌توان (object) را از قطعه کد فوق حذف کرد.