مطالب
React 16x - قسمت 7 - ترکیب کامپوننت‌ها - بخش 1 - ارسال داده‌ها، مدیریت رخ‌دادها
تا اینجا، تنها با یک تک کامپوننت کار کردیم؛ اما یک برنامه‌ی واقعی ترکیبی است از چندین کامپوننت که در نهایت درخت کامپوننت‌ها را در React تشکیل می‌دهند. به همین جهت در طی چند قسمت، نکات ترکیب کامپوننت‌ها را بررسی می‌کنیم.


ترکیب کامپوننت‌ها

در ادامه، همان برنامه‌ی تا قسمت 5 را که کار نمایش یک counter را انجام می‌دهد، تکمیل می‌کنیم. در این برنامه اگر به فایل index.js دقت کنید، کار رندر تک کامپوننت Counter را انجام می‌دهیم:
ReactDOM.render(<Counter />, document.getElementById("root"));
اما یک برنامه‌ی واقعی React، متشکل از درختی از کامپوننت‌ها است. به این ترتیب با ترکیب و در کنار هم قرار دادن کامپوننت‌های مختلف، می‌توان به UI ای کارآمد و پیچیده رسید.
برای نمایش این مفهوم، کامپوننت جدید src\components\counters.jsx را ایجاد می‌کنیم. قصد داریم در این کامپوننت، لیستی از کامپوننت‌های Counter را رندر کنیم. سپس در index.js، بجای رندر کامپوننت Counter، کامپوننت جدید Counters را رندر می‌کنیم. به این ترتیب درخت کامپوننت‌های برنامه، در سطح بالایی خودش از کامپوننت Counters شروع می‌شود و سپس فرزندان آن‌را کامپوننت‌های Counter تشکیل می‌دهند. به همین جهت فایل index.js را به صورت زیر ویرایش می‌کنیم تا به کامپوننت Counters اشاره کند:
import Counters from "./components/counters";

ReactDOM.render(<Counters />, document.getElementById("root"));
سپس به فایل جدید src\components\counters.jsx مراجعه کرده و با استفاده از قطعه کدهای کمکی imrc و cc که در قسمت‌های قبل با آن‌ها آشنا شدیم، ساختار بدنه‌ی کامپوننت جدید Counters را ایجاد می‌کنیم. اکنون در متد render آن، یک div را ایجاد کرده و داخل آن، چندین کامپوننت Counter را رندر می‌کنیم:
import React, { Component } from "react";

import Counter from "./counter";

class Counters extends Component {
  state = {};

  render() {
    return (
      <div>
        <Counter />
        <Counter />
        <Counter />
        <Counter />
      </div>
    );
  }
}

export default Counters;
در این حالت اگر به مرورگر مراجعه کنیم، مشاهده خواهیم کرد که هر کامپوننت، state خاص خودش را دارد و از سایر کامپوننت‌ها ایزوله است:


در مرحله‌ی بعد، بجای رندر و درج دستی این کامپوننت‌ها، آرایه‌ای از اشیاء counter را ایجاد کرده و سپس آن‌ها را توسط متد Array.map رندر می‌کنیم:
import React, { Component } from "react";
import Counter from "./counter";

class Counters extends Component {
  state = {
    counters: [
      { id: 1, value: 0 },
      { id: 2, value: 0 },
      { id: 3, value: 0 },
      { id: 4, value: 0 }
    ]
  };

  render() {
    return (
      <div>
        {this.state.counters.map(counter => (
          <Counter key={counter.id} />
        ))}
      </div>
    );
  }
}

export default Counters;
در اینجا یک خاصیت جدید را به شیء منتسب به خاصیت state به نام counters اضافه کرده‌ایم. این خاصیت حاوی آرایه‌ای از اشیاء counter است که هر کدام دارای یک id (که در قسمت key ذکر خواهد شد) و مقداری اولیه است. سپس آرایه‌ی this.state.counters را توسط متد map، رندر کرده‌ایم. تا اینجا پس از ذخیره‌ی فایل و بارگذاری مجدد برنامه، همان خروجی قبلی را مشاهده خواهیم کرد.


ارسال داده‌ها به کامپوننت‌ها

مشکل! مقدار value هر شیء شمارشگر تعریف شده، به کامپوننت‌های مرتبط رندر شده اعمال نشده‌است. برای مثال اگر value اولین شیء را به 4 تغییر دهیم، هنوز هم این کامپوننت با همان مقدار صفر شروع به کار می‌کند. برای رفع این مشکل، به همان روشی که ویژگی key کامپوننت Counter را مقدار دهی کردیم، می‌توان ویژگی‌های سفارشی دیگری را تعریف و مقدار دهی کرد:
  render() {
    return (
      <div>
        {this.state.counters.map(counter => (
          <Counter key={counter.id} value={counter.value} selected={true} />
        ))}
      </div>
    );
پس از تعریف ویژگی‌های دلخواه value و selected که یکی از آن‌ها به مقدار value شیء counter مرتبط متصل است، به خود کامپوننت Counter مراجعه کرده و سپس در ابتدای متد render آن، خاصیت props به ارث رسیده شده‌ی از کلاس پایه‌ی Component را جهت بررسی بیشتر لاگ می‌کنیم:
class Counter extends Component {
  state = {
    count: 0
  };

  render() {
    console.log("props", this.props);
    //...
پس از ذخیره‌ی فایل counter.jsx و بارگذاری مجدد برنامه، یک چنین خروجی در کنسول توسعه دهندگان مرورگر قابل مشاهده است:


خاصیت this.props، یک شیء ساده‌ی جاوا اسکریپتی است و شامل تمام ویژگی‌هایی می‌باشد که ما در کامپوننت Counters برای هر کدام از کامپوننت‌های Counter رندر شده‌ی توسط آن، تعریف کردیم. برای نمونه دو ویژگی جدید value و selected را که به تعاریف المان‌های Counter در کامپوننت Counters اضافه کردیم، در اینجا به همراه مقادیر منتسب به آن‌ها، قابل مشاهده هستند. البته در این خروجی، key را ملاحظه نمی‌کنید؛ چون هدف اصلی آن، معرفی یکتای المان‌ها در DOM مجازی React است.
بنابراین اکنون می‌توان به value تنظیم شده‌ی در کامپوننت Counters به صورت this.props.value در کامپوننت Counter دسترسی یافت و سپس از آن جهت مقدار دهی اولیه‌ی counter استفاده کرد.
class Counter extends Component {
  state = {
    count: this.props.value
  };
اکنون اگر تغییرات کامپوننت Counter را ذخیره کرده و به مرورگر مراجعه کنیم، در اولین بار نمایش برنامه و بدون اعمال هیچگونه تغییری، یک چنین خروجی حاصل می‌شود:


یک نکته: در اینجا selected={true} را داریم. اگر مقدار آن‌را حذف کنیم، یعنی selected تنها درج شود، مقدار آن، همان true دریافت خواهد شد.


تعریف فرزند برای المان‌های کامپوننت‌ها

ویژگی‌های اضافه شده‌ی به تعاریف المان‌های کامپوننت‌ها، توسط خاصیت this.props، به هر کدام از آن کامپوننت‌ها منتقل می‌شوند. این خاصیت props، یک خاصیت ویژه را به نام children، نیز دارا است و از آن برای دسترسی به المان‌های تعریف شده‌ی بین تگ‌های یک المان اصلی استفاده می‌شود:
  render() {
    return (
      <div>
        {this.state.counters.map(counter => (
          <Counter key={counter.id} value={counter.value} selected={true}>
            <h4>‍Counter #{counter.id}</h4>
          </Counter>
        ))}
      </div>
    );
  }
در اینجا بین تگ‌های ابتدا و انتهای تعریف المان Counter، یک محتوا نیز تعریف شده‌است. اکنون اگر به خروجی کنسول توسعه دهندگان مرورگر دقت کنیم، خاصیت جدید اضافه شده‌ی children را نیز می‌توان مشاهده کرد:


یک نمونه مثال واقعی این قابلیت، امکان تعریف محتوای دیالوگ باکس‌ها، توسط استفاده کنند‌ه‌ی از آن است.


روش دیباگ برنامه‌های React

افزونه‌ی مفید React developer tools را می‌توانید برای مرورگرهای کروم و فایرفاکس، دریافت و نصب کنید. برای نمونه پس از نصب آن در مرورگر کروم، یک برگه‌ی جدید به لیست برگه‌های کنسول توسعه دهندگان آن اضافه می‌شود:


همانطور که مشاهده کنید، درخت کامپوننت‌های برنامه را در برگه‌ی جدید Components، می‌توان مشاهده کرد. در اینجا با انتخاب هر کدام از فرزندان این درخت، مشخصات آن نیز مانند props و state، در کنار صفحه ظاهر می‌شوند. همچنین در بالای همین قسمت، 4 آیکن مشاهده‌ی سورس، مشاهده‌ی DOM و یا لاگ کردن جزئیات شیء کامپوننت انتخابی در کنسول هم درج شده‌اند:


که برای نمونه چنین خروجی را لاگ می‌کند:



بررسی تفاوت‌های خواص props و state

در کامپوننت Counter، از props برای مقدار دهی اولیه‌ی state استفاده می‌کنیم:
class Counter extends Component {
  state = {
    count: this.props.value
  };
اکنون این سؤال مطرح می‌شود که چه تفاوتی بین props و state وجود دارد؟
- props حاوی اطلاعاتی است که به یک کامپوننت ارسال می‌کنیم؛ اما state حاوی اطلاعاتی است که مختص به آن کامپوننت بوده و private است. یعنی سایر کامپوننت‌ها نمی‌توانند به state کامپوننت دیگری دسترسی پیدا کنند. برای مثال در کامپوننت Counters، تمام attributes سفارشی تنظیم شده‌ی بر روی تعاریف المان‌های کامپوننت Counter، جزئی از اطلاعات props خواهند بود. در اینجا نمی‌توان به state کامپوننت مدنظری دسترسی یافت و آن‌را مقدار دهی کرد. به همین ترتیب state کامپوننت Counters نیز در سایر کامپوننت‌ها قابل دسترسی نیست.
- همچنین باید درنظر داشت که props، در مقایسه با state، فقط خواندنی است. به عبارتی مقدار ورودی به یک کامپوننت را داخل آن کامپوننت نمی‌توان تغییر داد. برای مثال سعی کنید در داخل متد رویدادگردان کلیک موجود در کامپوننت Counter، مقدار this.props.value را به صفر تنظیم کنید. در این حالت با کلیک بر روی دکمه‌ی Increment، بلافاصله خطای readonly بودن خواص شیء منتسب به props را دریافت می‌کنیم. در اینجا اگر نیاز است این مقدار را داخل کامپوننت تغییر دهیم، باید ابتدا این مقدار را دریافت کرده و سپس آن‌را داخل state قرار دهیم. پس از آن امکان ویرایش اطلاعات منتسب به state، داخل یک کامپوننت وجود خواهد داشت.


صدور و مدیریت رخ‌دادها

در ادامه می‌خواهیم در کنار هر دکمه‌ی Increment کامپوننت شمارشگر، یک دکمه‌ی Delete هم قرار دهیم:


مشکل! اگر کد مدیریتی handleDelete را در کامپوننت Counter قرار دهیم، چگونه باید به لیست آرایه‌ی اشیاء counters والد آن، یعنی کامپوننت Counters که سبب رندر شدن کامپوننت‌های شمارشگر شده (state = { counters: [ ] })، دسترسی یافت و شیء‌ای را از آن حذف کرد؟ در React، کامپوننتی که state ای را تعریف می‌کند، باید کامپوننتی باشد که قرار است آن‌را تغییر دهد و اطلاعات state هر کامپوننت، صرفا متعلق به آن کامپوننت بوده و جزو اطلاعات خصوصی آن است. بنابراین مدیریت حذف و یا افزودن کامپوننت‌ها در لیست نمایش داده شده، باید جزو وظایف کامپوننت Counters باشد و نه Counter.
برای حل این مشکل، کامپوننت Counter تعریف شده (کامپوننت فرزند) باید سبب بروز رخ‌داد onDelete شود تا کامپوننت Counters (کامپوننت والد)، آن‌را توسط متد handleDelete مدیریت کند. بنابراین ابتدا به کامپوننت Counters (کامپوننت والد) مراجعه کرده و متد رویدادگردان handleDelete را به آن اضافه می‌کنیم:
  handleDelete = () => {
    console.log("handleDelete called.");
  };
سپس ارجاعی از این متد را به صورت خاصیتی از props به کامپوننت Counter (کامپوننت فرزند) ارسال خواهیم کرد؛ برای این منظور در کامپوننت Counters (کامپوننت والد)، ویژگی onDelete را به تعریف المان Counter اضافه کرده و آن‌را با ارجاعی به متدhandleDelete  مقدار دهی می‌کنیم:
<Counter
     key={counter.id}
     value={counter.value}
     selected={true}
     onDelete={this.handleDelete}
/>
پس از آن به کامپوننت Counter مراجعه کرده و دکمه‌ی جدید Delete را به صورت زیر در کنار دکمه‌ی Increment تعریف می‌کنیم:
<button
  onClick={this.props.onDelete}
  className="btn btn-danger btn-sm m-2"
>
  Delete
</button>
در اینجا onClick، به خاصیت onDelete شیء props ارسالی به کامپوننت متصل شده‌است.
اکنون اگر برنامه را ذخیره کرده و پس از بارگذاری مجدد برنامه در مرورگر بر روی دکمه‌ی Delete کلیک کنیم، پیام «handleDelete called» در کنسول توسعه دهندگان مرورگر لاگ می‌شود. به این ترتیب کامپوننت فرزند سبب بروز رخ‌دادی شده و والد آن، این رخ‌داد را مدیریت می‌کند.


به روز رسانی state

تا اینجا دکمه‌ی Delete فرزند، به متد handleDelete والد متصل شده‌است. مرحله‌ی بعد، پیاده سازی واقعی حذف یک المان از DOM مجازی و به روز رسانی state است. برای اینکار ابتدا به رخ‌دادگردان onClick، در کامپوننت شمارشگر، مراجعه کرده و id دریافتی را به سمت والد ارسال می‌کنیم:
onClick={() => this.props.onDelete(this.props.id)}
البته در سمت والد نیز باید این id را به صورت یک خاصیت جدید به props اضافه کنیم (تا this.props.id فوق کار کند)؛ چون ویژگی key، مختص DOM مجازی بوده و به props اضافه نمی‌شود:
<Counter
  key={counter.id}
  value={counter.value}
  selected={true}
  onDelete={this.handleDelete}
  id={counter.id}
/>
اکنون این id را در کامپوننت والد دریافت و به آن واکنش نشان می‌دهیم:
  handleDelete = counterId => {
    console.log("handleDelete called.", counterId);
    const counters = this.state.counters.filter(
      counter => counter.id !== counterId
    );
    this.setState({ counters }); // = this.setState({ counters: counters });
  };
همانطور که پیشتر نیز در این سری عنوان شده، در React، مقدار state را به صورت مستقیم تغییر نمی‌دهیم و اینکار باید از طریق متد setState آن صورت گیرد. به عبارت دیگر مستقیما خاصیت counters شیء منتسب به خاصیت state را تغییر نمی‌دهیم. ابتدا یک آرایه‌ی جدید از المان‌ها را تولید کرده و به متد setState ارسال می‌کنیم. سپس React، هم خاصیت counters و هم UI را بر این اساس به روز رسانی خواهد کرد. در اینجا، لیست جدید counters، بر اساس id دریافتی از کامپوننت فرزند، تولید شده و به متد this.setState ارسال می‌شود. در این حالت اگر برنامه را ذخیره کرده و پس از بارگذاری مجدد آن در مرورگر، بر روی دکمه‌ی Delete هر ردیف کلیک کنیم، آن ردیف از UI حذف خواهد شد.

البته پیاده سازی ما تا به اینجا بدون مشکل کار می‌کند، اما به ازای هر خاصیت counter، یک ویژگی جدید را به تعریف المان مرتبط اضافه کرده‌ایم که در طول زمان بیش از اندازه طولانی خواهد شد. برای رفع این مشکل، خود شیء counter را به صورت یک ویژگی جدید به کامپوننت مرتبط با آن ارسال می‌کنیم. به این ترتیب اگر در آینده خاصیتی را به این شیء اضافه کردیم، دیگر نیازی نیست تا آن‌را به صورت دستی و مجزا تعریف کنیم. به همین جهت ابتدا تعریف المان Counter را به صورت زیر خلاصه می‌کنیم که در آن ویژگی جدید counter، حاوی کل شیء counter است:
<Counter
  key={counter.id}
  counter={counter}
  onDelete={this.handleDelete}
/>
سپس در سمت کامپوننت فرزند شمارشگر، دو تغییر this.props.counter.value و this.props.counter.id باید صورت گیرند تا مقادیر شیء counter به درستی خوانده شوند.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: sample-07.zip
مطالب
حساسیت سیستم فیلترینگ به عبارات کوکی‌های سایت‌ها

از دیروز نمی‌تونستم به یک سایت آزمایشی ASP.NET وصل بشم. مشکل هم با فایرفاکس بود. با IE تست کردم و سایت وارد شد. بنابراین سایت فیلتر نشده بود. مشکل از کجا بود؟


بله ... سیستم فیلترینگ به هدرها هم حساس شده. کوکی را دستی پاک کردم. مجددا پس از لاگین، با ساخته شدن کوکی جدید، مشکل برطرف شد.
این حروف هم به صورت اتفاقی تولید می‌شوند؛ بنابراین ممکن است با این نوع مسایل زیاد مواجه شوید! اگر یک سایت را با دو مرورگر متفاوت، یکی فیلتر شده و دیگری بدون مشکل باز کردید، یعنی یکبار باید کوکی‌های سایت را در مرورگری که با آن مشکل وجود دارد، پاک کنید!

خطایی را هم که مشاهده خواهید کرد این است:

IMB2-6
http://10.10.34.34?type=Invalid Pattern&policy=MainPolicy

مطالب
قابلیت جدید بلاگر؛ دیدهای پویا

بلاگر اخیرا قابلیتی رو به وبلاگ‌های خود تحت عنوان دیدهای پویا اضافه کرده که به صورت زیر قابل دسترسی است:

ادعاهای مرورگرهای جدید رو در مورد سرعت پردازش جاوا اسکریپت اینجا به وضوح می‌توان بررسی کرد. برای مثال سرعت و خصوصا CPU usage فایرفاکس 4 و IE 9 را با آدرس‌های فوق آزمایش کنید.

ماخذ: (+)
مطالب
کار با Docker بر روی ویندوز - قسمت سوم - نصب Docker بر روی ویندوز سرور
در قسمت قبل، Docker for Windows را بر روی ویندوز 10 نصب کردیم تا بتوانیم از هر دوی Linux Containers و Windows Containers استفاده کنیم. در این قسمت، نحوه‌ی نصب Docker را بر روی ویندوز سرور، صرفا جهت اجرای Windows Containers، بررسی می‌کنیم؛ از این جهت که در دنیای واقعی، عموما Linux Containers را بر روی سرورهای لینوکسی و Windows Containers را بر روی سرورهای ویندوزی اجرا می‌کنند.


Docker for Windows چگونه از هر دوی کانتینرهای ویندوزی و لینوکسی پشتیبانی می‌کند؟

زمانیکه docker for windows را اجرا می‌کنیم، سرویسی را ایجاد می‌کند که سبب اجرای پروسه‌ی ویژه‌ای به نام com.docker.proxy.exe می‌شود:


هنگامیکه برای مثال فرمان docker run nginx را توسط Docker CLI اجرا می‌کنیم، Docker CLI از طریق واسط یاد شده، دستورات را به MobyLinuxVM منتقل می‌کند. به این صورت است که امکان اجرای Linux Containers، بر روی ویندوز میسر می‌شوند:


اکنون اگر به Windows Containers سوئیچ کنیم (از طریق کلیک راست بر روی آیکن Docker در قسمت Tray Icons ویندوز)، پروسه‌ی dockerd.exe یا docker daemon شروع به کار خواهد کرد:


اینبار اگر مجددا از Docker CLI برای اجرای مثلا IIS Container استفاده کنیم، دستور ما از طریق واسط‌های com.docker.proxy و dockerd‌، به کانتینر ویندوزی منتقل و اجرا می‌شود:



نگاهی به معماری Docker بر روی ویندوز سرور

داکر بر روی ویندوز سرور، تنها به همراه موتور مدیریت کننده‌ی Windows Containers است:


در اینجا با صدور فرمان‌های Docker CLI، پیام‌ها مستقیما به dockerd یا موتور داکر بر روی ویندوز سرور ارسال شده و سپس کار اجرا و مدیریت یک Windows Container انجام می‌شود.


نصب Docker بر روی ویندوز سرور

جزئیات مفصل و به روز Windows Containers را همواره می‌توانید در این آدرس در سایت مستندات مجازی سازی مایکروسافت مطالعه کنید (قسمت Container Host Deployment - Windows Server آن). پیشنیاز کار با آن نیز نصب حداقل ویندوز سرور 2016 می‌باشد و بهتر است تمام به روز رسانی‌های آن‌را نیز نصب کرده باشید؛ چون تعدادی از بهبودهای کار با کانتینرهای آن، به همراه به روز رسانی‌ها آن ارائه شده‌اند.
برای شروع به نصب، نیاز است کنسول PowerShell ویندوز را با دسترسی Admin اجرا کنید.
سپس اولین دستوراتی را که نیاز است اجرا کنید، کار نصب موتور Docker و CLI آن‌را به صورت خودکار بر روی ویندوز سرور انجام می‌دهند:
Install-Module -Name DockerMsftProvider -Repository PSGallery -Force
Install-Package -Name docker -ProviderName DockerMsftProvider
Restart-Computer -Force
- که پس از نصب و ری‌استارت سیستم، نتیجه‌ی آن‌را در پوشه‌ی c:\Program Files\Docker می‌توانید ملاحظه کنید.
- به علاوه اگر دستور *get-service *docker را در کنسول PowerShell صادر کنید، مشاهده خواهید کرد که سرویس جدیدی را به نام Docker نیز نصب و راه اندازی کرده‌است که به dockerd.exe اشاره می‌کند.
- و یا اگر در کنسول PowerShell دستور docker را صادر کنید، ملاحظه خواهید کرد که CLI آن، فعال و قابل استفاده‌است. برای مثال، دستور docker version را صادر کنید تا بتوانید نگارش docker نصب شده را ملاحظه نمائید.


اجرای Image مخصوص NET Core. بر روی ویندوز سرور

تگ‌های مختلف Image مخصوص NET Core. را در اینجا ملاحظه می‌کنید. در ادامه قصد داریم tag مرتبط با nanoserver آن‌را نصب کنیم (با حجم 802MB):
docker run microsoft/dotnet:nanoserver
زمانیکه این دستور را اجرا می‌کنیم، پس از اجرای آن، ابتدا یک \:C را نمایش می‌دهد و بعد خاتمه یافته و به command prompt بازگشت داده می‌شویم. برای مشاهده‌ی علت آن، اگر دستور docker ps -a را اجرا کنیم، در ستون command آن، قسمتی از دستوری را که اجرا کرده‌است، می‌توان مشاهده کرد. برای مشاهده‌ی کامل این دستور، نیاز است دستور docker ps -a --no-trunc را اجرا کنیم. در اینجا سوئیچ no-trunc به معنای no truncate است یا عدم حذف قسمت انتهایی یک دستور طولانی. در این حالت مشاهده خواهیم کرد که این دستور، کار اجرای cmd.exe واقع در پوشه‌ی ویندوز را انجام می‌دهد (یا همان command prompt معمولی ویندوز). چون دستور docker run فوق به آن متصل نشده‌است، این پروسه ابتدا \:c را نمایش می‌دهد و سپس خاتمه پیدا می‌کند. برای رفع این مشکل، از interactive command که در قسمت قبل توضیح دادیم، استفاده خواهیم کرد:
docker run -it microsoft/dotnet:nanoserver
اینبار اگر این دستور را اجرا کنیم، به command prompt آغاز شده‌ی توسط آن، متصل خواهیم شد. اکنون اگر در همینجا (داخل container در حال اجرا) دستور dotnet --info را صادر کنید، می‌توان مشخصات NET Core SDK. نصب شده را مشاهده کرد. برای خروج از آن نیز دستور exit را صادر کنید.


چرا حجم Image مخصوص NET Core. نگارش nanoserver آن حدود 800 مگابایت است؟

در مثال قبلی، دسترسی به command prompt مجزایی نسبت به command prompt اصلی سیستم، در داخل یک container، شاید اندکی غیر منتظره بود و اکنون این سؤال مطرح می‌شود که یک image، شامل چه چیزهایی است؟
یک image شاید در ابتدای کار صرفا شامل فایل‌های اجرایی یک برنامه‌ی خاص به نظر برسد؛ اما زمانیکه قرار است تبدیل به یک container قابل اجرا شود، شامل بسیاری از فایل‌های دیگر نیز خواهد شد. برای درک این موضوع نیاز است لایه‌های نرم افزاری که یک سیستم را تشکیل می‌دهند، بررسی کنیم:


در این تصویر از پایین‌ترین لایه‌ای را که با سخت افزار ارتباط برقرار می‌کند تا بالاترین لایه‌ی موجود نرم افزاری را مشاهده می‌کنید. دراینجا هر چیزی را که در ناحیه‌ی کرنل قرار نمی‌گیرد، User Space می‌نامند. برنامه‌های قرار گرفته‌ی در User Space برای کار با سخت افزار نیاز است با کرنل ارتباط برقرار کنند و برای این منظور از System Calls استفاده می‌کنند که عموما کتابخانه‌هایی هستند که جزئی از سیستم عامل می‌باشند؛ مانند API ویندوز. برای مثال MongoDB توسط Win32 API و System Calls، فرامینی را به کرنل منتقل می‌کند.
در روش متداول توزیع و نصب نرم افزار، ما عموما همان بالاترین سطح را توزیع و نصب می‌کنیم؛ برای مثال خود MongoDB را. در اینجا نصاب MongoDB فرض می‌کند که در سیستم جاری، تمام لایه‌های دیگر، موجود و آماده‌ی استفاده هستند و اگر اینگونه نباشد، به مشکل برخواهد خورد و اجرا نمی‌شود. برای اجتناب از یک چنین مشکلاتی مانند عدم حضور وابستگی‌هایی که یک برنامه برای اجرا نیاز دارد، imageهای docker، نحوه‌ی توزیع نرم افزارها را تغییر داده‌اند. اینبار یک image بجای توزیع فقط MongoDB، شامل تمام قسمت‌های مورد نیاز User Space نیز هست:


به این ترتیب دیگر مشکلاتی مانند عدم وجود یک وابستگی یا حتی وجود یک وابستگی غیرسازگار با نرم افزار مدنظر، وجود نخواهند داشت. حتی می‌توان تصویر فوق را به صورت زیر نیز خلاصه کرد:


به همین جهت بود که برای مثال در قسمت قبل موفق شدیم IIS مخصوص ویندوز سرور با تگ nanoserver را بر روی ویندوز 10 که بسیاری از وابستگی‌های مرتبط را به همراه ندارد، با موفقیت اجرا کنیم.
به علاوه چون یک container صرفا به معنای یک running process از یک image است، هر فایل اجرایی داخل آن image را نیز می‌توان به صورت یک container اجرا کرد؛ مانند cmd.exe داخل image مرتبط با NET Core. که آن‌را بررسی کردیم.


کارآیی Docker Containers نسبت به ماشین‌های مجازی بسیار بیشتر است

مزیت دیگر یک چنین توزیعی این است که اگر چندین container در حال اجرا را داشته باشیم:


 در نهایت تمام آن‌ها فقط با یک لایه‌ی کرنل کار می‌کنند و آن هم کرنل اصلی سیستم جاری است. به همین جهت کارآیی docker containers نسبت به ماشین‌های مجازی بیشتر است؛ چون هر ماشین مجازی، کرنل مجازی خاص خودش را نسبت به یک ماشین مجازی در حال اجرای دیگر دارد. در اینجا برای ایجاد یک لایه ایزوله‌ی اجرای برنامه‌ها، تنها کافی است یک container جدید را اجرا کنیم و در این حالت وارد فاز بوت شدن یک سیستم عامل کامل، مانند ماشین‌های مجازی نمی‌شویم.

شاید مطابق تصویر فوق اینطور به نظر برسد که هرچند تمام این containers از یک کرنل استفاده می‌کنند، اما اگر قرار باشد هر کدام OS Apps & Libs خاص خودشان را در حافظه بارگذاری کنند، با کمبود شدید منابع روبرو شویم. دقیقا مانند حالتیکه چند ماشین مجازی را اجرا کرده‌ایم و دیگر سیستم اصلی قادر به پاسخگویی به درخواست‌های رسیده به علت کمبود منابع نیست. اما در واقعیت، یک image داکر، از لایه‌های مختلفی تشکیل می‌شود که فقط خواندنی هستند و غیرقابل تغییر و زمانیکه docker یک لایه‌ی فقط خواندنی را در حافظه بارگذاری کرد، اگر container دیگری، از همان لایه‌ی تعریف شده‌، در image خود نیز استفاده می‌کند، لایه‌ی بارگذاری شده‌ی فقط خواندنی در حال اجرای موجود را با آن به اشتراک می‌گذارد (مانند تصویر زیر). به این ترتیب میزان مصرف منابع docker containers نسبت به ماشین‌های مجازی بسیار کمتر است:



روش کنترل پروسه‌ای که درون یک کانتینر اجرا می‌شود

با اجرای دستور docker run -it microsoft/dotnet:nanoserver ابتدا به command prompt داخلی و مخصوص این container منتقل می‌شویم و سپس می‌توان برای مثال با NET Core CLI. کار کرد. اما امکان اجرای این CLI به صورت زیر نیز وجود دارد:
docker run -it microsoft/dotnet:nanoserver dotnet --info
این دستور، مشخصات SDK نصب شده را نمایش می‌دهد و سپس مجددا به command prompt سیستم اصلی (که به آن میزبان، host و یا container host نیز گفته می‌شود) بازگشت داده خواهیم شد؛ چون کار NET Core CLI. خاتمه یافته‌است، پروسه‌ی متعلق به آن نیز خاتمه می‌یابد.
بدیهی است در این حالت تمام فایل‌های اجرایی داخل این container را نیز می‌توان اجرا کرد. برای مثال می‌توان کنسول پاورشل داخل این container را اجرا کرد:
docker run -it microsoft/dotnet:nanoserver powershell
زمانیکه به این کنسول دسترسی پیدا کردید، برای مثال دستور get-process را اجرا کنید. به این ترتیب می‌توانید لیست تمام پروسه‌هایی ر که هم اکنون داخل این container در حال اجرا هستند، مشاهده کنید.


هر کانتینر دارای یک File System ایزوله‌ی خاص خود است

تا اینجا دریافتیم که هر image، به همراه فایل‌های user space مورد نیاز خود نیز می‌باشد. به عبارتی هر image یک file system را نیز ارائه می‌دهد که تنها درون همان container قابل دسترسی می‌باشد و از مابقی سیستم جاری ایزوله شده‌است.
برای آزمایش آن، کنسول پاورشل را در سیستم میزبان (سیستم عامل اصلی که docker را اجرا می‌کند)، باز کرده و دستور \:ls c را صادر کنید. به این ترتیب می‌توانید لیست پوشه‌ها و فایل‌های موجود در درایو C میزبان را مشاهده نمائید. سپس دستور docker run -it microsoft/dotnet:nanoserver powershell را اجرا کنید تا به powershell داخل کانتینر NET Core. دسترسی پیدا کنیم. اکنون دستور \:ls c را مجددا اجرا کنید. خروجی آن کاملا متفاوت است نسبت به گزارشی که پیشتر بر روی سیستم میزبان تهیه کردیم؛ دقیقا مانند اینکه هارد درایو یک container متفاوت است با هارد درایو سیستم میزبان.


این تصویر زمانی تهیه شده‌است که دستور docker run یاد شده را صادر کرده‌ایم و درون powershell آن قرار داریم. همانطور که مشاهده می‌کنید یک Disk جدید، به ازای این Container در حال اجرا، به سیستم میزبان اضافه شده‌است. این Disk زمانیکه در powershell داخل container، دستور exit را صادر کنیم، بلافاصله محو می‌شود. چون پروسه‌ی container، به این ترتیب خاتمه یافته‌است.
اگر دستور docker run یاد شده را دو بار اجرا کنیم، دو Disk جدید ظاهر خواهند شد:


یک نکته: اگر بر روی این درایوهای مجازی کلیک راست کرده، گزینه‌ی change drive letter or path را انتخاب نموده و یک drive letter را به آن‌ها نسبت دهید، می‌توانید محتویات داخل آن‌ها را توسط Windows Explorer ویندوز میزبان نیز به صورت یک درایو جدید، مشاهده کنید.


خلاصه‌ای از ایزوله سازی‌های کانتینرها تا به اینجا

تا اینجا یک چنین ایزوله سازی‌هایی را بررسی کردیم:
- ایزوله سازی File System و وجود یک disk مجازی مجزا به ازای هر کانتینر در حال اجرا.

- پروسه‌های کانتینرها از پروسه‌های میزبان ایزوله هستند. برای مثال اگر دستور get-process را داخل یک container اجرا کنید، خروجی آن با خروجی اجرای این دستور بر روی سیستم میزبان یکی نیست. یعنی نمی‌توان از داخل کانتینرها، به پروسه‌های میزبان دسترسی داشت و دخل و تصرفی را در آن‌ها انجام داد که از لحاظ امنیتی بسیار مفید است. هر چند اگر به task manager ویندوز میزبان مراجعه کنید، می‌توان پروسه‌های داخل یک container را توسط Job Object ID یکسان آن‌ها تشخیص دهید (مثال آخر قسمت قبل)، اما یک container، قابلیت شمارش پروسه‌های خارج از مرز خود را ندارد.

- ایزوله سازی شبکه مانند کارت شبکه‌ی مجازی کانتینر IIS که در قسمت قبل بررسی کردیم. برای آزمایش آن دستور ipconfig را در داخل container و سپس در سیستم میزبان اجرا کنید. نتیجه‌ای را که مشاهده خواهید کرد، کاملا متفاوت است. یعنی network stack این دو کاملا از هم مجزا است. شبیه به اینکه به یک سیستم، چندین کارت شبکه را متصل کرده باشید. اینکار در اینجا با تعریف virtual network adaptors انجام می‌شود و لیست آن‌ها را در قسمت «All Control Panel Items\Network Connections» سیستم میزبان می‌توانید مشاهده کنید. یکی از مهم‌ترین مزایای آن این است که اگر در یک container، وب سروری را بر روی پورت 80 آن اجرا کنید، مهم نیست که در سیستم میزبان، یک IIS در حال سرویس دهی بر روی پورت 80 هم اکنون موجود است. این دو پورت با هم تداخل نمی‌کنند.

- در حالت کار با Windows Containers، رجیستری کانتینر نیز از میزبان آن مجزا است و یا متغیرهای محیطی این‌ها یکی نیست. برای مثال دستور \:ls env را در کانتینر و سیستم میزبان اجرا کنید تا environment variables را گزارش گیری کنید. خروجی این دو کاملا متفاوت است. برای مثال حداقل computer name، user name‌های قابل مشاهده‌ی در این گزارش‌ها، متفاوت است و یا دستور \:ls hkcu را در هر دو اجرا کنید تا خروجی رجیستری متعلق به کاربر جاری هر کدام را مشاهده کنید که در هر دو متفاوت است.

- در حالت کار با Linux Containers هر چیزی که ذیل عنوان namespace مطرح می‌شود مانند شبکه، PID، User، UTS، Mount و غیره شامل ایزوله سازی می‌شوند.


دو نوع Windows Containers وجود دارند

در ویندوز، Windows Server Containers و Hyper-V Containers وجود دارند. در این قسمت تمام کارهایی را که بر روی ویندوز سرور انجام دادیم، در حقیقت بر روی Windows Server Containers انجام شدند و تمام Containerهای ویندوزی را که در قسمت قبل بر روی ویندوز 10 ایجاد کردیم، از نوع Hyper-V Containers بودند.
تفاوت مهم این‌ها در مورد نحوه‌ی پیاده سازی ایزوله سازی آن‌ها است. در حالت Windows Server Containers، کار ایزوله سازی پروسه‌ها توسط کرنل اشتراکی بین کانتینرها صورت می‌گیرد اما در Hyper-V Containers، این ایزوله سازی توسط hypervisor آن انجام می‌شود؛ هرچند نسبت به ماشین‌های مجازی متداول بسیار سریع‌تر است، اما بحث به اشتراک گذاری کرنل هاست را که پیشتر در این قسمت بررسی کردیم، در این حالت شاهد نخواهیم بود. ویندوز سرور 2016 می‌تواند هر دوی این ایزوله سازی‌ها را پشتیبانی کند، اما ویندوز 10، فقط نوع Hyper-V را پشتیبانی می‌کند.


روش اجرای Hyper-V Containers بر روی ویندوز سرور

در صورت نیاز برای کار با Hyper-V Containers، نیاز است مانند قسمت قبل، ابتدا Hyper-V را بر روی ویندوز سرور، فعالسازی کرد:
Install-WindowsFeature hyper-v
Restart-Computer -Force
اکنون برای اجرای دستور docker run ای که توسط Hyper-V مدیریت می‌شود، می‌توان به صورت زیر، از سوئیچ isolation استفاده کرد:
docker run -it --isolation=hyperv microsoft/dotnet:nanoserver powershell
در این حالت اگر به disk management سیستم میزبان مراجعه کنید، دیگر حالت اضافه شدن disk مجازی را مشاهده نمی‌کنید. همچنین اگر به task manager ویندوز میزبان مراجعه کنید، دیگر لیست پروسه‌های داخل container را نیز در اینجا نمی‌بینید. علت آن روش ایزوله سازی متفاوت آن با Windows Server Containers است و بیشتر شبیه به ماشین‌های مجازی عمل می‌کند. در کل اگر نیاز به حداکثر و شدیدترین حالت ایزوله سازی را دارید، از این روش استفاده کنید.
مطالب
Angular Material 6x - قسمت دوم - معرفی Angular Flex layout
در این سری قصد داریم یک برنامه‌ی ساده‌ی دفترچه تلفن را توسط Angular 6x و کامپوننت‌های متریال آن ایجاد کنیم؛ اما Grid جزئی از بسته‌ی Angular Material نیست. بنابراین برای طرحبندی برنامه و قرار دادن المان‌های مختلف در مکان‌های تعیین شده‌ی صفحه، از Angular FlexBox Module استفاده خواهیم کرد که محصور کننده‌ی CSS 3 FlexBox است.


آشنایی با Flex Layout Box Model

برای طراحی ظاهر یک برنامه‌ی وب نیاز است عناصر آن‌را در مکان‌های مختلفی از صفحه قرار داد که به آن Layout گفته می‌شود. برای این منظور عموما 4 روش ذیل مرسوم هستند:
1. Table
2. Float, position, clear
3. CSS Grids
4. FlexBox CSS

امروزه دیگر آنچنان روش‌های 1 و 2 به صورت مستقیم مورد استفاده قرار نمی‌گیرند. CSS Grid روش نهایی طراحی Layout در آینده خواهد بود و در حال حاضر تعداد مرورگرهایی که از آن پشتیبانی می‌کنند، قابل توجه نیست؛ اما از FlexBox در IE 11، کروم 21 و فایرفاکس 22 به بعد پشتیبانی می‌شود.


FlexBox CSS، سیلان المان‌های قرار گرفته‌ی در داخل آن‌را سبب می‌شود. در اینجا یک container اصلی وجود دارد که در برگیرنده‌ی المان‌ها است. در تصویر فوق دو محور را مشاهده می‌کنید. محور افقی از چپ به راست ادامه پیدا می‌کند. محور عمودی نحوه‌ی ارتباط عناصر را مشخص می‌کند.
اکنون این سؤال مطرح می‌شود که چه تفاوتی بین یک Grid و FlexBox CSS وجود دارد؟ در یک Grid طراحی دو بعدی سطرها و ستون وجود دارد. اما به FlexBox باید به صورت سیلان یک بعدی سلول‌ها نگاه کرد. برای مثال عناصر قرار گرفته‌ی درون Container یا به صورت افقی درون آن گسترده شده و قرار می‌گیرند و یا به صورت عمودی.


نحوه‌ی تفکر و کارکرد با FlexBox چگونه است؟

در اینجا باید به دو مفهوم دقت داشت:
الف) سیلان عناصر درون Container که می‌تواند افقی و یا عمودی باشد.
ب) اندازه‌ی المان‌ها که می‌تواند ثابت و یا نسبی باشد.

یک Container، جهت سیلان عناصر درون آن‌را مشخص می‌کند. المان‌های آن، اندازه، فاصله‌ی از یکدیگر و ترتیب قرارگیری را ارائه می‌دهند. یک flex container می‌تواند شامل چندین flex container تو در تو نیز باشد.


نحوه‌ی سیلان عناصر در FlexBox چگونه است؟

برای نمونه طرحبندی متداول ذیل را درنظر بگیرید:


نحوه تفکر در مورد طراحی این طرحبندی، باید از بیرون به درون و از بالا به پایین (سیلان عمودی) باشد:


سپس نحوه‌ی سیلان عناصر درون Containerهای تعریف شده را مشخص می‌کنیم. برای مثال اولین Container دارای سیلان افقی از چپ به راست خواهد بود که عنصر سوم آن به دلیل اندازه‌های مشخص دو عنصر قبلی، به سطر دوم منتقل شده‌است.


در ادامه به قسمت میانی می‌رسیم که آن نیز دارای سیلان افقی از چپ به راست است:


در اینجا نیز می‌توان سه Container را متصور شد که وسطی دارای سیلان افقی از راست به چپ است و مواردی که بر اساس اندازه‌ی آن‌ها در یک سطر جا نشده‌اند، به سطر بعدی منتقل خواهند شد:


و تمام این سیلان‌ها و انتقال به سطرهای بعدی بر اساس اندازه‌ی المان‌ها صورت می‌گیرد:


البته در این تصویر یک ایراد هم وجود دارد. با توجه به اینکه در ناحیه‌ی میانی سه Container تعریف خواهند شد. Container ایی که در میان آن قرار می‌گیرد، دارای سیلان خاص خودش است و اندازه‌های آن باید نسبت به این Container تعریف شوند و نه نسبت به کل ناحیه‌ی میانی. یعنی بجای اینکه 50 درصد، 25، 25 و 50 درصد را داشته باشیم، این‌ها در اصل 100 درصد، 50 و 50 درصد و سپس 100 درصد هستند.


معرفی کتابخانه‌ی Angular Flex Layout

برای کار با Flex CSS نیاز است:
- مقدار زیادی کد CSS نوشت.
- نیاز به درک عمیقی از Flex Box دارد.
- نیاز است با باگ‌های مرورگرها و تفاوت‌های پیاده سازی‌های آن‌ها در مورد FlexBox آشنا بود.
- نیاز به Prefixing دارد.
- برای Angular طراحی نشده‌است.

جهت رفع این مشکلات و محدودیت‌ها، تیم Angular کتابخانه‌ای را به نام Angular Flex Layout مخصوص نگارش‌های جدید Angular طراحی کرده‌است. این کتابخانه مستقل از Angular Material است اما عموما به همراه آن استفاده می‌شود.

مزایای کار با کتابخانه‌ی Angular flex layout
- یک کتابخانه‌ی متکی به خود و مستقل است و برای کار با آن الزامی به استفاده‌ی از Angular Material نیست.
- به همراه هیچ فایل CSS جانبی ارائه نمی‌شود.
- پیاده سازی TypeScript ایی دارد. در اصل یک سری directives مخصوص Angular است که با TypeScript نوشته شده‌است.
- به صورت پویا و inline تمام CSSهای مورد نیاز را تولید و تزریق می‌کند.
- به همراه یک API استاتیک است و همچنین یک API واکنشگرا
- با Angular CLI نیز یکپارچه شده‌است.


نصب و تنظیم کتابخانه‌ی Angular Flex layout

برای نصب این کتابخانه، در ریشه‌ی پروژه دستور زیر را صادر کنید:
 npm install @angular/flex-layout --save
سپس ماژول آن‌را باید به shared.module.ts اضافه کرد:
import { FlexLayoutModule } from "@angular/flex-layout";

@NgModule({
  imports: [
    FlexLayoutModule
  ],
  exports: [
    FlexLayoutModule
  ]
})
export class SharedModule {
}


کار با API استاتیک Angular Flex layout

API استاتیک Angular Flex layout شامل این مزایا و مشخصات است:
- به صورت یکسری دایرکتیو Angular طراحی شده‌است که به HTML قالب کامپوننت‌ها اضافه می‌شود.
- از data binding پشتیبانی می‌کند.
- CSS نهایی را به صورت پویا و inline تولید و به صفحه تزریق می‌کند. Inline CSS تزریق شده به ویژگی‌های styles هر المان تزریق می‌شوند و موارد مشابه را در صورت وجود بازنویسی می‌کنند.
- از تشخیص تغییرات پشتیبانی می‌کند.
- به همراه ویژگی‌های fxHide و fxShow است.
- کارآیی مطلوبی دارد.

در اینجا برای تعریف container اصلی از دایرکتیوهای زیر استفاده می‌شود:
- fxLayout جهت‌های flex را مشخص می‌کند.
<div fxLayout="row" 
     fxLayout.xs="column"></div>
- fxLayout می‌تواند دارای مقداری مانند row، column و row-reverse و column-reverse باشد. برای مثال مقدار row-reverse‌، نمایش از راست به چپ را سبب می‌شود.
- fxLayoutWrap مشخص می‌کند که آیا المان‌ها باید به سطر و یا ستون بعدی منتقل شوند یا خیر؟
<div fxLayoutWrap></div>
- fxLayoutGap فاصله‌ی بین المان‌ها را مشخص می‌کند.
<div fxLayoutGap="10px"></div>
- fxLayoutAlign نحوه‌ی چیدمان المان را تعیین می‌کند.
<div fxLayoutAlign="start stretch"></div>

چند مثال:


و یا حالت راست به چپ آن به صورت زیر است:


و برای تعریف آیتم‌های قرار گرفته‌ی درون containers می‌توان از دایرکتیوهای زیر استفاده کرد:
- fxflex برای تعیین اندازه و flex المان‌ها
<div fxFlex="1 2 calc(15em + 20px)"></div>
در اینجا سه مقداری که ذکر می‌شوند (و یا تنها یک مقدار) چنین معنایی را به همراه دارند:
 fxFlex="grow shrink basis"
و یا
 fxFlex="basis"
- grow به این معنا است که آیتم جاری در صورت وجود فضا (طراحی واکنشگرا و واکنش نشان دادن به اندازه‌ی صفحه)، نسبت به سایر المان‌ها تا چه اندازه‌ای می‌تواند بزرگ شود.
- shrink به این معنا است که اگر به اندازه‌ی کافی فضا وجود نداشت، این المان نسبت به سایر المان‌های دیگر تا چه اندازه‌ای می‌تواند کوچک شود.
- basis به معنای اندازه‌ی پیش‌فرض المان است.

در اینجا اندازه‌ها برحسب پیکسل، درصد و یا calcs, em, cw, vh می‌توانند تعیین شوند. همچنین یک سری نام مستعار مانند grow, initial, auto, none, nogrow, noshrink هم قابل استفاده هستند.

- fxflexorder برای تعیین ترتیب قرارگیری یک المان
<div fxFlexOrder="2"></div>
-  fxflexoffset برای تعیین فاصله یک المان از container آن
 <div fxFlexOffset="20px"></div>
-  fxflexAlign برای تعیین محل قرارگیری المان
 <div fxFlexAlign="center"></div>
- fxflexfill برای تعیین اینکه این المان کل ردیف یا ستون را پر خواهد کرد
 <div fxFlexFill></div>

چند مثال:


در اینجا سه نمایشی را که در ذیل تعریف div‌ها مشاهده می‌کنید بر اساس تغییر اندازه‌ی صفحه حاصل شده‌اند. چون آیتم دوم دارای مقدار grow مساوی 5 است، به همین جهت با تغییر اندازه‌ی صفحه و دسترسی به مقدار فضای بیشتر، بزرگ‌تر شده‌است.

یک مثال کامل
اگر علاقمند باشید تا توانمندی‌های angular flex layout را در قالب یک مثال کامل مشاهده کنید، به آدرس زیر مراجعه نمائید:
https://tburleson-layouts-demos.firebaseapp.com/#/docs
در این مثال با تغییر گزینه‌‌های مختلف، کد معادل angular flex layout آن نیز تولید می‌شود.
همچنین wiki خود پروژه نیز به همراه مثال‌های بیشتری است:
https://github.com/angular/flex-layout/wiki



کار با API واکنشگرای Angular Flex layout


در طراحی واکنشگرا، container و عناصر داخل آن بر اساس تغییرات اندازه‌ی صفحه و یا اندازه‌ی وسیله‌ی نمایشی، تغییر اندازه و همچنین موقعیت می‌دهند و این تغییرات بر اساس انطباق با viewport وسیله‌ی نمایشی صورت می‌گیرند. به همین جهت برای طراحی واکنشگرا نیاز به Flex CSS و همچنین Media Query است. نوشتن Medial Query و ترکیب آن با Flex CSS کار مشکلی است. به همین جهت Angular Flex layout به همراه یک API واکنشگرا نیز هست که در پشت صحنه Flex CSS را بر اساس طراحی متریال و Medial Queries مورد استفاده قرار می‌دهد.
اگر علاقمند هستید تا اندازه‌های واکنشگرای استاندارد متریال را ملاحظه کنید، می‌توانید به آدرس زیر مراجعه نمائید (قسمت Breakpoint system آن):
https://material.io/design/layout/responsive-layout-grid.html#breakpoints
برای مثال هر اندازه‌ای کمتر از 600px در گروه extra small قرار می‌گیرد (با مخفف xs). از 600px تا 1024px در بازه‌ی small (با مخفف sm)، از 1024px تا 1440px در بازه‌ی medium (با مخفف md) و از 1440px تا 1920px در بازه‌ی large (با مخفف lg) و بیشتر از آن در بازه‌ی xlrage قرار می‌گیرند (با مخفف xl). این اعداد و بازه‌ها، پایه‌ی طراحی API واکنشگرای Angular Flex layout هستند. به همین جهت نام این بازه‌ها در این API به صورت مخفف xs, sm, md, lg, xl درنظر گرفته شده‌اند و مورد استفاده قرار می‌گیرند. همچنین اگر اندازه‌های مدنظر از این بازه‌ها کمتر باشند، می‌توان از lt-sm, lt-md, lt-lg, lt-xl نیز استفاده کرد. در اینجا lt به معنای less than است و یا اگر بازه‌های مورد نیاز بیش از این اندازه‌ها باشند می‌توان با gt-xs, gt-sm, gt-md, gt-lg کار کرد. در اینجا gt به معنای greater than است.
به این مخفف‌ها «media query alias» هم گفته می‌شود و اکنون که لیست آن‌ها مشخص است، تنها کافی است آن‌ها را به API استاتیکی که پیشتر بررسی کردیم، اضافه کنیم. برای مثال:
fxLayout.sm = "..."
fxLayoutAlign.md = "..."
fxHide.gt-sm = "..."
برای نمونه فرض کنید یک چنین طرحبندی دسکتاپی را داریم:


معادل طراحی آن با API استاتیک Angular Flex Layout به صورت زیر است:

که در اینجا دو container را ملاحظه می‌کنید. ابتدا Container بیرونی جهت ارائه‌ی ستونی از سه المان اضافه شده‌است. سپس یک Container میانی برای  تعریف ردیفی از سه المان تعریف شده‌است. توسط روش "fxFlex="grow shrink basis نیز اندازه‌های آن‌ها مشخص شده‌اند.

اکنون که این طرحبندی دسکتاپ را داریم، چگونه باید آن‌را تبدیل به طرحبندی موبایل، مانند شکل زیر کنیم؟


برای اینکار ابتدا fxLayout.xs را به سطر میانی اضافه می‌کنیم تا هرگاه به این اندازه رسیدیم، بجای ردیف، تبدیل به ستون شود. سپس توسط fxFlexOrder.xs، در اندازه‌ی xs، محل قرارگیری المان‌های این ستون را هم مشخص می‌کنیم:


همانطور که ملاحظه می‌کنید کار کردن با این API بسیار ساده‌است و نیازی به کارکردن مستقیم با Media Queries و یا برنامه نویسی مستقیم ندارد و تمام آن در قالب HTML یک کامپوننت قابل پیاده سازی است.
یک نکته: مثال کاملی که پیشتر در این بحث مطرح شد، به همراه مثال واکنشگرا نیز هست که برای مشاهده‌ی اثر آن‌ها بهتر است اندازه‌ی مرورگر را کوچک و بزرگ کنید.


مخفی کردن و یا نمایش قسمتی از صفحه بر اساس اندازه‌ی آن

علاوه بر media query alias هایی که عنوان شد، امکان نمایش و یا مخفی سازی قسمت‌های مختلف صفحه بر اساس اندازه‌ی صفحه‌ی نمایشی نیز هست:
 <div fxShow fxHide.xs="false" fxHide.lg="true"></div>
در اینجا fxShow سبب نمایش این div در حالت عادی می‌شود (پیش‌فرض آن xl، md و sm است). اما اگر اندازه‌ی صفحه lg باشد، fxHide.lg تنظیم شده‌ی به true سبب مخفی سازی آن خواهد شد و در اندازه‌ی xs مجددا نمایش داده می‌شود.


تغییر اندازه‌ی قسمتی از صفحه بر اساس اندازه‌ی آن

در مثال زیر اگر اندازه‌ی صفحه gt-sm باشد (بیشتر از small)، اندازه‌ی این div به 100 درصد بجای 50 درصد حالت‌های دیگر، تنظیم می‌شود:
 <div fxFlex="50%" fxFlex.gt-sm="100%"></div>

حالت‌های ویژه‌ی طراحی واکنشگرا در Angular Flex Layout

در API واکنشگرای آن حالت‌های ویژه‌ی fxshow, fxhide, ngclass  و  ngstyle نیز درنظر گرفته شده‌اند که امکان فعالسازی آن‌ها در اندازه‌های مختلف صفحه مسیر است:
<div fxShow [fxShow.xs]="isVisibleOnMobile()"></div>
<div fxHide [fxHide.gt-sm]="isVisibleOnDesktop()"></div>
<div [ngClass.sm]="{'fxClass-sm': hasStyle}" ></div>
<div [ngStyle.xs]="{color: 'blue'}"></div>


امکان کار با API واکنشگرا از طریق برنامه نویسی

برای این منظور می‌توان از سرویس ObservableMedia مانند مثال زیر استفاده کرد:


در اینجا به فعالسازی یک بازه‌ی خاص گوش فرا خواهیم داد. برای مثال اگر اندازه‌ی صفحه xs بود، سبب بارگذاری محتوای خاص مرتبط با موبایل خواهیم شد.



برای مطالعه‌ی بیشتر
قسمت‌های عمده‌ای از مطلب جاری، از ویدیوی زیر که توسط نویسنده‌ی اصلی angular flex layout تهیه شده‌است، گردآوری شدند.
 
نظرات مطالب
پشتیبانی از IE در برنامه‌های Angular
باتوجه به اینکه ie از دور مرورگرها خارج شده با اینحال چرا باید خصوصیات جاوااسکریپت را به ie اضافه کنیم؟ دلیل این کار چیست؟
پاسخ به بازخورد‌های پروژه‌ها
Report Viewer
- نه. حاصل این گزارشات یا کلا فایل‌های PDF نوعی HTML نیستند. PDF یک فرمت مستقل و بسیار پیشرفته‌تر است. (من در مورد عکس آن یعنی تبدیل HTML به PDF مطلب نوشتم)
- یک سری مثال در سورس‌های این کتابخانه موجود است که نحوه استفاده از active-x خود شرکت adobe را جهت نمایش گزارشات در winforms و wpf بیان می‌کند.
- در وب هم این اکتیو ایکس به صورت خودکار کار می‌کند. فقط کافی است استفاده کننده adobe reader را نصب کرده باشد.
- به علاوه امکان تبدیل PDF به تصویر هم وجود دارد. می‌تونید لینک‌های این گروه رو دنبال کنید:
iTextSharp
در لینک‌ها فوق، شما یک سری جمع آوری اطلاعات را در مورد نحوه‌های دیگر نمایش فایل‌های PDF، مشاهده می‌کنید و از هم مهم‌تر در این بین پروژه pdf.js فایرفاکس است (که از نگارش 15 جزئی از فایرفاکس شده).