مطالب
C# 12.0 - Experimental Attribute
گاهی از اوقات ممکن است یک ویژگی تکمیل نشده، سر از نگارش‌های release درآورد؛ چون نیاز به دریافت بازخوردی در این مورد وجود دارد و یا اینکه قرار است در طی چند مرحله تکمیل شود. برای اینکه یک چنین مساله‌ای خصوصا از طرف نویسندگان کتابخانه‌ها و فریم‌ورک‌ها مشخص شود، ویژگی جدید System.Diagnostics.CodeAnalysis.ExperimentalAttribute به دات‌نت 8 اضافه شده‌است.
در این حالت اگر کدی، شروع به استفاده‌ی از یک چنین عضو‌های آزمایشی کند، یک خطای زمان کامپایل رخ می‌دهد؛ مگر اینکه آن قطعه کد نیز دقیقا با همین ویژگی مزین شود. در اینجا می‌توان نوع‌ها، اسمبلی‌ها و حتی اعضای آن‌ها را آزمایشی تعریف کرد. اگر کل یک نوع را به صورت آزمایشی معرفی کنیم، تمام اعضای آن هم آزمایشی خواهند بود.


بررسی ویژگی Experimental با یک مثال

در ادامه نحوه‌ی اعمال ویژگی Experimental را به همراه یک diagnosticId که به کل یک کلاس اعمال شده‌است، مشاهده می‌کنید. از این diagnosticId در حین تولید متن خطاها و یا برای شناسایی آن‌ها، استفاده می‌شود:
using System.Diagnostics.CodeAnalysis;

namespace CS8Tests;

[Experimental(diagnosticId: "Test001")]
public class ExperimentalAttributeDemo
{
    public void Print()
    {
        Console.WriteLine("Hello Experimental Attribute");
    }
}
پس از این تعریف، اگر در قسمت دیگری از برنامه بخواهیم از این کلاس استفاده کنیم:
var experimentalAttributeDemo = new ExperimentalAttributeDemo();
با خطای زیر مواجه خواهیم شد:
error Test001: 'CS8Tests.ExperimentalAttributeDemo' is for evaluation purposes only
and is subject to change or removal in future updates. Suppress this diagnostic to proceed.
برای مواجه شدن با یک چنین خطایی، می‌توان دو روش زیر را در پیش گرفت:
الف) غیرفعال کردن سراسری گزارش این نوع خطاها در فایل csproj. برنامه:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net8.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>

    <NoWarn>Test001</NoWarn>
  </PropertyGroup>
</Project>
در اینجا اضافه شدن NoWarn را بر اساس diagnosticId ویژگی آزمایشی تعریف شده، مشاهده می‌کنید. این تنظیم سراسری است و به تمام قسمت‌های پروژه‌ی جاری اعمال می‌شود. اضافه کردن آن هم فقط یکبار صورت می‌گیرد.

ب) غیرفعال کردن موضعی آن، صرفا در محل استفاده
برای غیرفعال کردن محلی این بررسی، تنها کافی است با استفاده از pragma warning# یکبار آن‌را غیرفعال کرده و پس از پایان کار، مجددا آن‌را فعال کنیم:
#pragma warning disable Test001
var demo = new ExperimentalAttributeDemo();
#pragma warning restore Test001
همانطور که مشاهده می‌کنید، این فعال و غیرفعال کردن هم بر اساس diagnosticId صورت می‌گیرد. بدیهی است این تنظیم سراسری نبوده و درصورت بکارگیری این قطعه کد در قسمت‌های دیگر برنامه، باید مجددا تکرار شود.

و اگر این مثال را کمی پیچیده‌تر کنیم، به حالت زیر می‌رسیم:
using System.Diagnostics.CodeAnalysis;

namespace CS8Tests;

[Experimental(diagnosticId: "Test001")]
public class ExperimentalAttributeDemo
{
    [Experimental(diagnosticId: "Test002")]
    public void Print()
    {
        Console.WriteLine("Hello Experimental Attribute");
    }
}
در اینجا دو ویژگی آزمایشی، با دو diagnosticId متفاوت تعریف شده‌اند. در این حالت اگر سعی کنیم قطعه کد زیر را کامپایل کنیم:
var demo = new ExperimentalAttributeDemo();
demo.Print();
به ازای هر ویژگی آزمایشی تعریف شده، یک خطای کامپایلر جداگانه را دریافت می‌کنیم. به همین جهت برای رفع این خطاها، یا باید از روش غیرفعال سازی سراسری آن‌ها پیش‌رفت:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net8.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>

    <NoWarn>Test001,Test002</NoWarn>
  </PropertyGroup>
</Project>
 و یا می‌توان به صورت محلی زیر عمل کرد:
#pragma warning disable Test001,Test002
var demo = new ExperimentalAttributeDemo();
demo.Print();
#pragma warning restore Test001,Test002
در اینجا ذکر هر دو diagnosticId، ضروری است.
مطالب
C# 12.0 - Interceptors
به C# 12 و دات‌نت 8، ویژگی «آزمایشی» جدیدی به نام Interceptors اضافه شده‌است که به آن «monkey patching» هم می‌گویند. هدف از آن، جایگزین کردن یک پیاده سازی، با پیاده سازی دیگری است. به این ترتیب توسعه دهندگان دات‌نتی می‌توانند فراخوانی متدهایی خاص را ره‌گیری کرده (interception) و سپس آن‌را به فراخوانی یک پیاده سازی جدید، هدایت کنند.


Interceptor چیست؟

از زمان ارائه‌ی NET 8 preview 6 SDK. به بعد، امکان ره‌گیری هر متدی از کدهای برنامه، به دات‌نت اضافه شده‌است؛ به همین جهت از واژه‌ی Interceptor/ره‌گیر در اینجا استفاده می‌شود. خود تیم دات‌نت از این قابلیت در جهت بازنویسی پویای قسمت‌هایی از کدهای زیرساخت دات‌نت که از Reflection استفاده می‌کنند، با نگارش‌های کامپایل شده‌ی مختص به برنامه‌ی شما، کمک می‌گیرند. به این ترتیب سرعت و کارآیی برنامه‌های دات‌نت 8، بهبود قابل ملاحظه‌ای را پیدا کرده‌اند. برای مثال ahead-of-time compilation (AOT) در دات‌نت 8 و ASP.NET Core 8x بر اساس این ویژگی پیاده سازی شده‌است. این ویژگی جدید، مکمل source generators است که در نگارش‌های پیشین دات‌نت ارائه شده بود.


بررسی  Interceptors با تهیه‌ی یک مثال ساده

فرض کنید می‌خواهیم فراخوانی متد GetText زیر را ره‌گیری کرده و سپس آن‌را با نمونه‌ی دیگری جایگزین کنیم:
namespace CS8Tests;

public class InterceptorsSample
{
    public string GetText(string text)
    {
        return $"{text}, World!";
    }
}
برای اینکار ابتدا نیاز است یک فایل جدید را به نام InterceptsLocationAttribute.cs با محتوای زیر به پروژه اضافه کرد:
namespace System.Runtime.CompilerServices;

[AttributeUsage(AttributeTargets.Method, AllowMultiple = true, Inherited = false)]
public sealed class InterceptsLocationAttribute : Attribute
{
    public InterceptsLocationAttribute(string filePath, int line, int character)
    {
    }
}
همانطور که در مقدمه‌ی بحث هم عنوان شد، این ویژگی هنوز آزمایشی است و نهایی نشده و ویژگی فوق نیز هنوز به دات‌نت اضافه نشده‌است. به همین جهت فعلا باید آن‌را به صورت دستی به پروژه اضافه کرد و احتمالا در نگارش‌های بعدی دات‌نت، امضای آن تغییر خواهد کرد ... یا حتی ممکن است بطور کامل حذف شود!

سپس فرض کنید فراخوانی متد GetText در فایل Program.cs برنامه به صورت زیر انجام شده‌است:
using CS8Tests;

var example = new InterceptorsSample();
var text = example.GetText("Hello");
Console.WriteLine(text); //Hello, World!
یعنی متد GetText، در سطر چهارم و کاراکتر 20 ام آن فراخوانی شده‌است. این اعداد مهم هستند!

در ادامه از این اطلاعات در ره‌گیر سفارشی زیر استفاده خواهیم کرد:
using System.Runtime.CompilerServices;

namespace CS8Tests;

public static class MyInterceptor
{
    [InterceptsLocation("C:\\Path\\To\\CS8Tests\\Program.cs", 4, 20)] 
    public static string InterceptorMethod(this InterceptorsSample example, string text)
    {
        return $"{text}, DNT!";
    }
}
این ره‌گیر که به صورت متدی الحاقی برای کلاس InterceptorsSample دربرگیرنده‌ی متد GetText تهیه می‌شود، کار جایگزینی فراخوانی آن‌را در سطر چهارم و کاراکتر 20 ام فایل Program.cs انجام می‌دهد. امضای پارامترهای این متد، باید با امضای پارامترهای متد ره‌گیری شده، یکی باشد.

اکنون اگر برنامه را اجرا کنیم ... با خطای زیر مواجه می‌شویم:
 error CS9137: The 'interceptors' experimental feature is not enabled in this namespace. Add
'<InterceptorsPreviewNamespaces>$(InterceptorsPreviewNamespaces);CS8Tests</InterceptorsPreviewNamespaces>'
to your project.
عنوان می‌کند که این ویژگی آزمایشی است و باید فایل csproj. را به صورت زیر تغییر داد تا بتوان از آن استفاده نمود:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net8.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
    <!--<NoWarn>Test001</NoWarn>-->
    <InterceptorsPreviewNamespaces>$(InterceptorsPreviewNamespaces);CS8Tests</InterceptorsPreviewNamespaces>
  </PropertyGroup>
</Project>
اینبار برنامه کامپایل شده و اجرا می‌شود. در این حالت خروجی جدید برنامه، خروجی تامین شده‌ی توسط ره‌گیر سفارشی ما است:
Hello, DNT!


سؤال: آیا ره‌گیری انجام شده، در زمان کامپایل انجام می‌شود یا در زمان اجرا؟

برای این مورد می‌توان به Low-Level C# code تولیدی مراجعه کرد. برای مشاهده‌ی یک چنین کدهایی می‌توانید از منوی Tools->IL Viewer برنامه‌ی Rider استفاده کرده و در برگه‌ی ظاهر شده، گزینه‌ی Low-Level C# آن‌را انتخاب نمائید:
using CS8Tests;
using System;
using System.Runtime.CompilerServices;

[CompilerGenerated]
internal class Program
{
  private static void <Main>$(string[] args)
  {
    Console.WriteLine(new InterceptorsSample().InterceptorMethod("Hello"));
  }

  public Program()
  {
    base..ctor();
  }
}
همانطور که مشاهده می‌کنید، این ره‌گیری و جایگزینی، در زمان کامپایل انجام شده و کامپایلر، به‌طور کامل نحوه‌ی فراخوانی متد GetText اصلی را به متد ره‌گیر ما تغییر داده و بازنویسی کرده‌است.


سؤال: آیا این قابلیت واقعا کاربردی است؟!

اکنون شاید این سؤال مطرح شود که ... واقعا چه کسی قرار است مسیر کامل یک فایل، شماره سطر و شماره ستون فراخوانی متدی را به اینگونه در اختیار سیستم ره‌گیری قرار دهد؟! آیا واقعا این قابلیت، یک قابلیت کاربردی و مناسب است؟!
اینجا است که اهمیت source generators مشخص می‌شود. توسط source generators دسترسی کاملی به syntax trees وجود دارد و همچنین یکسری اطلاعات تکمیلی مانند FilePath و سپس CSharpSyntaxNodeها که دسترسی به داده‌های متد ()GetLocation را دارند که مکان دقیق سطر و ستون‌های فراخوانی‌ها را مشخص می‌کند.


کاربردهای فعلی ره‌گیرها در دات نت 8

در دات نت 8، این موارد با استفاده از ره‌گیرها بهینه سازی شده و سرعت آن‌ها افزایش یافته‌اند:
- فراخوانی‌هایی که تمام اطلاعات آن‌ها در زمان کامپایل فراهم است، مانند Regex.IsMatch(@"a+b+") که از یک الگوی ثابت و مشخص استفاده می‌کند، ره‌گیری شده و پیاده سازی آن با کدی استاتیک، جایگزین می‌شود.
- در ASP.NET Minimal API، استفاده از lambda expressions جهت ارائه‌ی تعاریفی مانند:
app.MapGet("/products", handler: (int? page, int? pageLength, MyDb db) => { ... })
مرسوم است. این نوع فراخوانی‌ها نیز توسط ره‌گیرها برای جایگزینی handler آن‌ها با کدهای استاتیک، جهت بالابردن کارآیی و کاهش تخصیص‌های حافظه انجام می‌شود.
- بهبود کارآیی foreach loops جهت استفاده از ریاضیات برداری و SIMD در صورت امکان.
- بهبود کارآیی تزریق وابستگی‌ها، زمانیکه به تعاریف مشخصی مانند ()<provider.Register<MyService ختم می‌شود.
- بجای استفاده از expression trees در زمان اجرای برنامه، اکنون می‌توان کدهای SQL معادل را در زمان کامپایل برنامه تولید کرد.
- بهبود کارآیی Serializers، زمانیکه از یک نوع مشخص مانند ()<Serialize<MyType استفاده می‌شود و کامپایلر می‌تواند آن‌را با کدهای زمان کامپایل، جایگزین کند.


محدودیت‌های ره‌گیرها در دات‌نت 8

- ره‌گیرهای دات‌نت 8 فقط با متدها کار می‌کنند.
- مسیر ارائه شده حتما باید یک مسیر کامل و مشخص باشد. یعنی اگر این قطعه کد، به سیستم دیگری منتقل شود، کامپایل نخواهد شد و امکان ارائه‌ی مسیرهای نسبی وجود ندارد.
- امضای متدها، حتما باید یکی باشد. یعنی نمی‌توان یک ره‌گیر جنریک را تعریف کرد.
مطالب
کامپایلر C# 9.0، خطاها و اخطارهای بیشتری را نمایش می‌دهد
یکی از مواردی را که در حین ارتقاء پروژه‌های خود به NET 5.0. و C# 9.0 احتمالا مشاهده خواهید کرد، گزارش خطاهای کامپایلری است که پیشتر با نگارش‌های قبلی #C و NET Core.، اصلا خطا نبوده و بدون مشکل کامپایل می‌شدند. یعنی کدی که با NET Core SDK 3x. بدون مشکل کامپایل می‌شود، الزامی ندارد که با NET 5.0 SDK. نیز کامپایل شود. در این مطلب، تغییرات صورت گرفته‌ی در تنظیمات کامپایلر #C را در NET 5.0 SDK.، بررسی می‌کنیم.


معرفی AnalysisLevel در کامپایلر C# 9.0 و .NET 5.0 SDK

سال‌ها است که تیم کامپایلر #C قصد داشته‌است تا اخطارهای بیشتری را به توسعه دهندگان نمایش دهد؛ اما چون ممکن بود در حالت تنظیم پروژه جهت تبدیل اخطارها به خطا، اینکار به عملی ناخوشایند تبدیل شود، آن‌را انجام نداده بودند. با ارائه‌ی NET 5.، گزینه‌ی جدیدی به نام AnalysisLevel‌، به تنظیمات کامپایلر C# 9.0 اضافه شده‌است که توسط آن می‌توان سطوح نمایش خطاها و اخطارهای ارائه شده را تنظیم کرد. حالت پیش‌فرض آن برای پروژه‌های مبتنی بر net5.0، به عدد 5 تنظیم شده‌است و حتی این مورد را برای سایر SDKها نیز می‌توان تنظیم کرد:
Target Framework             Default for AnalysisLevel
net5.0                       5
netcoreapp3.1 or lower       4
netstandard2.1 or lower      4
.NET Framework 4.8 or lower  4
عدد 5 پیش‌فرض در اینجا سبب خواهد شد تا تعداد اخطارهای قابل ملاحظه‌ای را دریافت کنید؛ مواردی را که پیشتر با نگارش‌های قبلی کامپایلر #C، از آن‌ها ناآگاه بودید.
البته اگر از نگارش‌های کمتر از net5.0 استفاده می‌کنید نیز می‌توانید یک سطر AnalysisLevel زیر را به صورت دستی به فایل csproj خود اضافه کنید تا از اخطارهای بیشتری آگاه شوید:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>netcoreapp3.1</TargetFramework>
    <!-- get more advanced warnings for this project -->
    <AnalysisLevel>5</AnalysisLevel>
  </PropertyGroup>
</Project>
یک نکته: اگر می‌خواهید همواره آخرین حد اخطارهای موجود ممکن را مشاهده کنید، مقدار AnalysisLevel را به latest تنظیم کنید:
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>netcoreapp3.1</TargetFramework>
    <!-- be automatically updated to the newest stable level -->
    <AnalysisLevel>latest</AnalysisLevel>
  </PropertyGroup>
</Project>
با اینکار با نصب یک SDK جدید، نیازی به به روز رسانی مقدار AnalysisLevel نخواهد بود و یا اگر می‌خواهید بالاترین سطح ممکن و حتی موارد آزمایشی را نیز بر روی پروژه‌ی خود آزمایش کنید، مقدار سطح آنالیز را به preview تنظیم نمائید:
<AnalysisLevel>preview</AnalysisLevel>
و یا اگر نمی‌خواهید تا این اخطارهای جدید را مشاهده کنید، آن‌را غیرفعال کنید:
<!-- I am just fine thanks -->
<AnalysisLevel>none</AnalysisLevel>


معرفی AnalysisMode در کامپایلر C# 9.0 و NET 5.0 SDK.

از زمان ارائه‌ی NET 5.0 RC2.، گزینه‌ی جدید دیگری به نام AnalysisMode نیز به تنظیمات کامپایلر C# 9.0 اضافه شده‌است:
<PropertyGroup>
  <AnalysisMode>AllEnabledByDefault</AnalysisMode>
</PropertyGroup>
هدف از آن انجام کنترل کیفیت بر روی کدها و ارائه‌ی آن‌ها به صورت اخطارهای کامپایلر است. این گزینه سه مقدار را می‌تواند داشته باشد:
- Default: در این حالت تعداد کمی از گزینه‌‌های کنترل کیفیت فعال هستند.
- AllEnabledByDefault: شدیدترین حالت ممکن؛ با انتخاب آن تمام گزینه‌های تعریف شده به صورت اخطارهای کامپایلر ظاهر می‌شوند.
- AllDisabledByDefault: جهت غیرفعال کردن این گزینه.

نکته 1: اگر می‌خواهید این اخطارها به صورت خطاهای کامپایلر ظاهر شوند، گزینه‌ی CodeAnalysisTreatWarningsAsErrors را به true تنظیم کنید:
<PropertyGroup>
   <CodeAnalysisTreatWarningsAsErrors>false</CodeAnalysisTreatWarningsAsErrors>
</PropertyGroup>

نکته 2: آنالیز کدها در پروژه‌های مبتنی بر NET 5.0 SDK. به صورت خودکار فعال است. اگر می‌خواهید آن‌ها را در نگارش‌های پیشین NET Core. هم فعال کنید، خاصیت EnableNETAnalyzers را به true تنظیم نمائید:
<PropertyGroup>
   <EnableNETAnalyzers>true</EnableNETAnalyzers>
</PropertyGroup>
لیست کامل مواردی که توسط این گزینه بررسی می‌شوند.


امکان بررسی استایل کد نویسی در کامپایلر C# 9.0 و NET 5.0 SDK.

گزینه‌ی امکان بررسی استایل کدنویسی در کامپایلر C# 9.0، هنوز در مرحله‌ی آزمایشی به سر می‌برد. به همین جهت به صورت پیش‌فرض غیرفعال است. اگر می‌خواهید آن‌را فعال کنید، روش آن به صورت زیر است که پس از آن، مشکلات موجود به صورت اخطارهایی ظاهر خواهند شد:
<PropertyGroup>
   <EnforceCodeStyleInBuild>true</EnforceCodeStyleInBuild>
</PropertyGroup>


روش اعمال سراسری تنظیمات کامپایلر به تمام پروژه‌های یک Solution

اگر Solution شما از چندین زیر پروژه تشکیل شده‌است، یا می‌توانید تنظیمات یاد شده را یکی یکی به هر کدام اضافه کنید و یا یک فایل مخصوص Directory.Packages.props را در بالاترین پوشه‌ی Solution خود ایجاد کرده و آن‌را به صورت زیر تکمیل نمائید:
<Project>
  <PropertyGroup>
    <AnalysisLevel>latest</AnalysisLevel>
    <AnalysisMode>AllEnabledByDefault</AnalysisMode>
    <CodeAnalysisTreatWarningsAsErrors>true</CodeAnalysisTreatWarningsAsErrors>
    <EnableNETAnalyzers>true</EnableNETAnalyzers>
    <EnforceCodeStyleInBuild>true</EnforceCodeStyleInBuild>
  </PropertyGroup>
</Project>
نظرات مطالب
C# 12.0 - Collection Expressions & Spread Operator
اصلاحیه: کارآیی spread operator بیشتر نیست!

در متن در مورد spread operator عنوان شده «که ... نگارش C# 12 آن کارآیی بیشتری دارد». این مورد بدون توجه به #Low-Level C تولیدی، نوشته شد و ... متاسفانه نادرست است!
برای مثال فرض کنید، چنین متدی را دارید که با استفاده از spread operator، کار بازکردن یک آرایه را انجام می‌دهد:
public int[] WithSpread()
{
   int[] data = new int[10_000];
   int[] results = [..data];
   return results;
}
معادل #Low-Level C آن (کد نهایی که کامپایلر برای تبدیل آن به IL تولید می‌کند) به صورت زیر است ( #Low-Level C را در Rider، در منوی #Tools -> IL Viewer -> Select Low-Level C می‌توانید تولید کنید):
public int[] WithSpread()
{
  int[] numArray1 = new int[10000];
  int index1 = 0;
  int[] numArray2 = new int[numArray1.Length];
  int[] numArray3 = numArray1;
  for (int index2 = 0; index2 < numArray3.Length; ++index2)
  {
    int num = numArray3[index2];
    numArray2[index1] = num;
    ++index1;
  }
  return numArray2;
}
همانطور که مشاهده می‌کنید، این قطعه کد در C#12 و دات‌نت 8، به شدت ابتدایی تولید شده و به همراه هیچ نوع بهینه سازی نیست. کارآیی این قطعه کد، نسبت به زمانیکه از متد قدیمی CopyTo آرایه‌ها استفاده می‌شود، به مراتب کمتر است (تا 3 برابر!)؛ چون متد CopyTo به همراه بهینه سازی‌های سخت‌افزاری هم هست. به نظر قرار شده بهینه سازی کارآیی spread operator در نگارش بعدی دات‌نت انجام شود.

برای آزمایش شخصی آن، از کلاس زیر استفاده کنید:
using BenchmarkDotNet.Attributes;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace SpreadBenchmark
{
    [MemoryDiagnoser]
    public class Tests
    {
        private readonly int[] _myData = new int[10_000];

        [Benchmark(Baseline = true)]
        public int[] WithToArray()
        {
            int[] results = _myData.ToArray();
            return results;
        }

        [Benchmark]
        public int[] WithCopyTo()
        {
            int[] results = new int[_myData.Length];
            _myData.CopyTo(results, 0);
            return results;
        }

        [Benchmark]
        public int[] WithSpread()
        {
            int[] results = [.._myData];
            return results;
        }
    }
}
که در فایل Program.cs به این صورت فراخوانی می‌شود:
using BenchmarkDotNet.Running;
using SpreadBenchmark;

BenchmarkRunner.Run<Tests>();
با این وابستگی:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net8.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="BenchmarkDotNet" Version="0.13.10" />
  </ItemGroup>
</Project>
مطالب
معرفی واژه‌ی کلیدی جدید required در C# 11
واژه‌ی کلیدی جدید required در C# 11.0، همانند خواص init-only که پیشتر معرفی شدند، با هدف آغاز و نمونه سازی دقیق‌تر و ساده‌تر اشیایی است که برای اینکار، به تعاریف ویژه‌ی سازنده‌ی کلاس‌ها وابسته نیستند.


امکان نمونه سازی بدون قید و شرط کلاس‌ها

تعریف کلاس Article1 را به صورت زیر درنظر بگیرید:
public class Article1
{
    public string Title { get; set; }
    public string? Subtitle { get; set; }
    public string Author { get; set; }
    public DateTime Published { get; set; }
}
ساختار پروژه‌های دات نت 7 نیز به صورت پیش‌فرض به صورت زیر است:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net7.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>
</Project>
یعنی nullable reference types در آن‌ها فعال است. با این فعال بودن، به اخطارهای زیر می‌رسیم:
Non-nullable property 'Title' must contain a non-null value when exiting constructor. Consider declaring the property as nullable. [CS11Tests]csharp(CS8618)
Non-nullable property 'Author' must contain a non-null value when exiting constructor. Consider declaring the property as nullable. [CS11Tests]csharp(CS8618)
عنوان می‌کند که خاصیت‌های Title و Author، به صورت غیرنال‌پذیر تعریف شده‌اند (و همانند Subtitle نال‌پذیر نیستند)؛ اما تعریف این کلاس به نحوی است که این مساله را الزامی نمی‌کند. یعنی می‌توان نمونه‌ای از Article1 را ایجاد کرد که در آن، هر دوی این خواص نال باشند؛ هرچند در این حالت مشکلی از لحاظ کامپایل وجود نخواهد داشت، اما ممکن است به علت اشتباه استفاده‌ی از آن‌ها، به null reference exceptions برسیم. چون یکی از مهم‌ترین اهداف استفاده از یک چنین تعاریفی و فعال سازی nullable reference type در یک پروژه، ارائه‌ی متادیتای بهتری جهت خواص و پارامترها و خروجی‌های متدهاست تا استفاده کننده دقیقا بداند که آیا این خواص می‌توانند نال باشد یا خیر. اگر  public string ای تعریف شده، یعنی این خاصیت قطعا نال نخواهد بود و می‌توان بدون مشکل و بدون بررسی مقدار آن، از آن استفاده کرد و اگر ?public string ای تعریف شده، یعنی ممکن است مقدار آن نال نیز باشد و بهتر است پیش از استفاده‌ی از آن، حتما مقدار آن بررسی شود. اکنون مشکل اینجا است که هیچگونه قیدی، جهت اجبار به مقدار دهی خواص غیرنال پذیر در اینجا وجود ندارند و می‌توان نمونه‌ای از شیء Article1 را ایجاد کرد که در آن متادیتای خواص غیرنال پذیر تعریفی در آن، نقض شوند.


مدیریت کردن نحوه‌ی نمونه سازی کلاس‌ها، با وابستگی به سازنده‌های آن

یکی از روش‌های مدیریت مشکلی که تا اینجا بررسی شد، تعریف سازنده‌های متعددی برای یک کلاس است؛ تا توسط آن بتوان مقدار دهی یک سری از خواص را اجباری کرد:
public class Article2
{
    public Article2(string title, string subtitle, string author, DateTime published)
    {
        Title = title;
        Subtitle = subtitle;
        Author = author;
        Published = published;
    }

    public Article2(string title, string author, DateTime published)
    {
        Title = title;
        Author = author;
        Published = published;
    }

    public string Title { get; set; }
    public string? Subtitle { get; set; }
    public string Author { get; set; }
    public DateTime Published { get; set; }
}
در این کلاس، نمونه‌ی بهبود یافته‌ی Article1 را مشاهده می‌کنید که استفاده کننده را وادار به مقدار دهی title و author می‌کند. در این حالت اخطارهای کامپایلری را که مشاهده کردید، رفع می‌شوند؛ اما به همراه این مسایل است:
- تعداد سطرهای تعریف این کلاس، به شدت افزایش یافته‌است.
- با اضافه شدن خواص بیشتری به کلاس، به تعاریف بیشتری نیاز خواهد بود.
- سازنده‌ها کار خاصی را بجز نگاشت مقادیر ارائه شده، به خواص کلاس، انجام نمی‌دهند.
- نمونه سازی این کلاس‌ها، شکل طولانی و غیرواضح زیر را پیدا می‌کند و زیبایی inline object initializers را ندارند:
 Article2 article = new("C# 11 Required Keyword", "A new language feature", "Name",  new DateTime(2022, 11, 12));

البته روش دیگر مدیریت یک چنین اخطارهایی، استفاده از مقدار ویژه‌ی !default است که سبب محو اخطارهای یاد شده می‌شود؛ اما باز هم مقدار دهی آن‌را الزامی نمی‌کند. فقط به این معنا است که قول می‌دهیم این خاصیت را در جای دیگری مقدار دهی کنیم و هیچگاه نال نباشد!
 public string Title { get; set; } = default!;


مدیریت کردن نحوه‌ی نمونه سازی کلاس‌ها، بدون وابستگی به سازنده‌های آن در C# 11.0

C# 11 به همراه واژه‌ی کلیدی جدیدی به نام required است تا دیگر نیازی نباشد همانند راه حل فوق، سازنده‌های متعددی را جهت اجبار به مقدار دهی خواص یک شیء، تعریف کنیم. در این حالت تعریف کلاس Article به صورت زیر خلاصه می‌شود و دیگر به همراه اخطارهای کامپایلر نمایش داده شده نیز نیست:
public class Article3
{
    public required string Title { get; set; }
    public string? Subtitle { get; set; }
    public required string Author { get; set; }
    public DateTime Published { get; set; }
}
به این ترتیب هنوز می‌توان از زیبایی و خوانایی به همراه نمونه سازی توسط روش inline object initializers بهره‌مند شد و همچنین مطمئن بود که اگر استفاده کننده خاصیت غیرنال‌پذیر Title را مقدار دهی نکند، اینبار با یک خطای کامپایلر متوقف خواهد شد:



معرفی ویژگی جدید SetsRequiredMembers

کلاس Book زیر را که به همراه یک خاصیت required و دو سازنده‌است، درنظر بگیرید:
public class Book
{
    public Book() => Name = string.Empty;

    public Book(string name) => Name = name;

    public required string Name { get; set; }
}
اکنون فرض کنید که بر این اساس، شیء‌ای را به صورت زیر نمونه سازی کرده‌ایم:
Book book = new("Book's Name");
این قطعه کد با خطای زیر کامپایل نمی‌شود:
Required member 'Book.Name' must be set in the object initializer or attribute constructor. [CS11Tests]csharp(CS9035)
عنوان می‌کند که باید خاصیت Name را حتما مقدار دهی کرد؛ چون از نوع required است. هرچند سازنده‌‌ای که از آن استفاده شده، این مقدار دهی را انجام داده‌است و مشکلی از لحاظ عدم مقدار دهی خاصیت Name در اینجا وجود ندارد. برای رفع این مشکل، باید تغییر زیر را اعمال کرد:
public class Book
{
    [SetsRequiredMembers]
    public Book() => Name = string.Empty;

    [SetsRequiredMembers]
    public Book(string name) => Name = name;

    public required string Name { get; set; }
}
با استفاده از ویژگی جدید SetsRequiredMembers عنوان می‌کنیم که این سازنده‌ی خاص، حتما خواص از نوع required را نیز مقدار دهی می‌کند و نیازی به صدور خطای یاد شده نیست. در این حالت بررسی خواص required توسط کامپایلر غیرفعال می‌شود.


محدودیت‌های کار با خواص required

- واژه‌ی کلیدی required را می‌توان تنها به خواص و فیلدهای نوع‌های class, record, record struct اعمال کرد. امکان اعمال این واژه‌ی کلیدی به اجزای یک اینترفیس وجود ندارد.
- میدان دید اعضای required باید حداقل در حد نوع‌های دربرگیرنده‌ی آن‌ها باشند. برای مثال اگر کلاسی public است، نمی‌توان در آن یک فیلد required با میدان دید protected را تعریف کرد.
- نوع‌های مشتق شده‌ی از یک نوع پایه، نمی‌توانند اعضای required آن‌را مخفی کنند و اگر قصد بازنویسی آن‌را دارند، باید حتما واژه‌ی کلیدی required را لحاظ کنند.
- اگر سازنده‌ای به سازنده‌ی دیگری از طریق ذکر ()base و یا ()this زنجیر شده باشد نیز باید ویژگی SetsRequiredMembers مرتبط را تکرار کند.
اشتراک‌ها
فعالسازی strict mode در C# compiler
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>netcoreapp2.1</TargetFramework>
    <Features>strict</Features>
  </PropertyGroup>
</Project>
فعالسازی strict mode در C# compiler
مطالب
کاهش تعداد بار تعریف using ها در C# 10.0 و NET 6.0.
در مطلب «روش بازگشت به قالب‌های کلاسیک پروژه‌ها در دات نت 6» مشاهده کردیم که قالب پیش‌فرض یک برنامه‌ی کنسول دات نت 6، چنین فایل Program.cs ای را تولید می‌کند:
// See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");
که در حقیقت همان اجبار به استفاده‌ی از سبک «Top Level Programs» ارائه شده‌ی در C# 9.0 است. اما اگر به همین دو سطر هم دقت کنید، یک تفاوت مهم را با نمونه‌ی C# 9.0 دارد و آن هم عدم ذکر عبارت using System در ابتدای آن است. علت اینجا است که فایل csproj پیش‌فرض پروژه‌های مبتنی بر NET 6.0.، دو تغییر مهم دیگر را هم دارند:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net6.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>
</Project>
الف) فعال بودن nullable reference types که در C# 8.0 ارائه شد.
ب) فعال بودن ImplicitUsings که مختص به C# 10.0 است.


بررسی مفهوم  global using directives در C# 10.0

هدف اصلی از وجود Using directives در زبان #C که از نگارش 1 آن در دسترس هستند، خلاصه نویسی نام طولانی اشیاء و متدها است. برای مثال نام اصلی متد Console.WriteLine به صورت System.Console.WriteLine است که با درج فضای نام System در ابتدای فایل، می‌توان از ذکر مجدد آن جلوگیری کرد. از این دست می‌توان به نوع System.Collections.Generic.List نیز اشاره کرد که کمتر کسی علاقمند است تا این نام طولانی را تایپ کند. به همین جهت با استفاده از یک using directive متناظر با فضای نام System.Collections.Generic، ذکر نام این نوع، به List خلاصه می‌شود.
طراحی دات نت 6 مبتنی بر سبک minimalism است! برای نمونه خلاصه کردن نزدیک به 10 سطر فایل Program.cs کلاسیک، به تنها یک سطر که به همراه ذکر using System در ابتدای آن هم نیست. در C# 10.0 دیگر نیازی نیست تا برای مثال ذکر using System را در ده‌ها و یا صدها فایل، بارها و بارها تکرار کرد. برای اینکار تنها کافی است یکبار آن‌را به صورت global تعریف کنیم و پس از آن دیگر نیازی به ذکر آن در کل پروژه نیست:
global using System;
می‌توان این سطر را در ابتدای یک تک فایل cs. قرار داد و ذکر آن به معنای الحاق خودکار آن، در ابتدای تک تک فایل‌های cs. برنامه است.

چند نکته:
- امکان ترکیب global using‌ها و using‌ها معمولی در یک فایل هست.
- امکان تعریف global using‌های استاتیک نیز پیش‌بینی شده‌است:
global using static System.Console;
که برای نمونه در این حالت بجای ذکر Console.WriteLine، تنها ذکر نام متد WriteLine در سراسر برنامه کفایت می‌کند.


مفهوم جدید implicit global using directives در C# 10.0 و به کمک NET SDK 6.0.

تا اینجا دریافتیم که می‌توان دایرکتیوهای سراسری using را در برنامه به صورت دستی تعریف و استفاده کرد. اما ... پروژه‌ی کنسولی که به صورت پیش‌فرض توسط NET SDK 6.0. ایجاد می‌شود، به همراه هیچ global using ای نیست. این مورد توسط تنظیم زیر که جزئی از NET SDK 6.0. است، فعال می‌شود:
<ImplicitUsings>enable</ImplicitUsings>
زمانیکه ImplicitUsings را در فایل csproj برنامه فعال می‌کنیم، یعنی قرار است از یکسری global using‌های از پیش تعریف شده‌ی توسط SDK استفاده کنیم. بنابراین «global using directives» جزئی از ویژگی‌های جدید C# 10.0 است اما « implicit global using directives» تنها یک لطف ارائه شده‌ی توسط NET SDK. است. برای یافتن لیست آن‌ها، پروژه را build کرده و سپس به پوشه‌ی obj\Debug\net6.0 مراجعه کنید. در اینجا به دنبال فایلی مانند MyProjectName. GlobalUsings.g.cs بگردید. محتویات آن به صورت زیر است:
// <auto-generated/>
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Threading;
global using global::System.Threading.Tasks;
این‌ها همان global using هایی هستند که با فعالسازی تنظیم ImplicitUsings در فایل csproj، به صورت خودکار توسط NET SDK. تولید و به برنامه الحاق می‌شوند.
البته این فایل ویژه به ازای نوع‌های پروژه‌های مختلف، محتوای متفاوتی را دارد. برای مثال در برنامه‌های ASP.NET Core، چنین محتوای پیش‌فرضی را پیدا می‌کند:
// <autogenerated />
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Threading;
global using global::System.Threading.Tasks;
global using global::System.Net.Http.Json;
global using global::Microsoft.AspNetCore.Builder;
global using global::Microsoft.AspNetCore.Hosting;
global using global::Microsoft.AspNetCore.Http;
global using global::Microsoft.AspNetCore.Routing;
global using global::Microsoft.Extensions.Configuration;
global using global::Microsoft.Extensions.DependencyInjection;
global using global::Microsoft.Extensions.Hosting;
global using global::Microsoft.Extensions.Logging;
این تعاریف در اصل در پوشه‌ی C:\Program Files\dotnet\sdk\6.0.100-rc.2.21505.57\Sdks\Microsoft.NET.Sdk\targets و در فایل Microsoft.NET.GenerateGlobalUsings.targets آن قرار دارند.


روش حذف و یا اضافه‌ی global using‌های پیش‌فرض

اگر به هر دلیلی نمی‌خواهید تعدادی از global usingهای پیش‌فرض به همراه گزینه‌ی ImplicitUsings استفاده کنید، می‌توانید آن‌ها را در فایل csproj به صورت زیر، Remove و یا حتی موارد جدیدی را Include کنید:
<ItemGroup>
   <Import Remove="System.Threading" />
   <Import Include="Microsoft.Extensions.Logging" />
</ItemGroup>
یکی از کاربردهای این قابلیت، تولید کتابخانه‌های multi-target است که می‌توان توسط Conditionها، فضاهای نامی را که نباید برای target خاصی include کرد، مشخص نمود:
<ItemGroup Condition="'$(TargetFramework)' == 'net472'">
</ItemGroup>
مطالب
C# 8.0 - Nullable Reference Types
نوع‌های ارجاعی (Reference Types) در #C، همیشه نال‌پذیر بوده‌اند؛ در مقابل نوع‌های مقداری (value types) مانند DateTime که برای نال‌پذیر کردن آن‌ها باید یک علامت سؤال را در حین تعریف نوع آن‌ها ذکر کرد تا تبدیل به یک نوع نال‌پذیر شود (DateTime? Created). بنابراین عنوانی مانند «نوع‌های ارجاعی نال‌نپذیر» شاید آنچنان مفهوم نباشد.
خالق Null در زبان‌های برنامه نویسی، آن‌را یک اشتباه چند میلیارد دلاری می‌داند! و به عنوان یک توسعه دهنده‌ی دات نت، غیرممکن است که در حین اجرای برنامه‌های خود تابحال به null reference exception برخورد نکرده باشید. هدف از ارائه‌ی قابلیت جدید «نوع‌های ارجاعی نال‌نپذیر» در C# 8.0، مقابله‌ی با یک چنین مشکلاتی است و خصوصا غنی سازی IDEها برای ارائه‌ی اخطارهایی پیش از کامپایل برنامه، در مورد قسمت‌هایی از کد که ممکن است سبب بروز null reference exception شوند.


فعالسازی «نوع‌های ارجاعی نال‌نپذیر»

قابلیت «نوع‌های ارجاعی نال‌نپذیر» به صورت پیش‌فرض غیرفعال است. برای فعالسازی آن می‌توان فایل csproj را به صورت زیر، با افزودن خاصیت NullableContextOptions، ویرایش کرد:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>netcoreapp3.0</TargetFramework>
    <LangVersion>8.0</LangVersion>
    <NullableContextOptions>enable</NullableContextOptions>
  </PropertyGroup>
</Project>
یک نکته: در نگارش‌های بعدی NET Core SDK. و همچنین ویژوال استودیو (از نگارش 16.2.0 به بعد)، خاصیت NullableContextOptions به صرفا Nullable تغییر نام یافته و ساده شده‌است. بنابراین اگر در این نگارش‌ها به خطاهای ذیل برخوردید:
CS8632: The annotation for nullable reference types should only be used in code within a ‘#nullable’ context.
CS8627: A nullable type parameter must be known to be a value-type or non-nullable reference type. Consider adding a ‘class’, ‘struct’ or type constraint.
صرفا به معنای استفاده‌ی از نام قدیمی این ویژگی است که باید به Nullable تغییر پیدا کند:
<PropertyGroup>
  <LangVersion>preview</LangVersion>
  <Nullable>enable</Nullable>
</PropertyGroup>
اما در زمان نگارش این مطلب که 3.0.100-preview5-011568 در دسترس است، فعلا همان نام قدیمی NullableContextOptions کار می‌کند.


تغییر ماهیت نوع‌های ارجاعی #C با فعالسازی NullableContextOptions


در #C ای که ما می‌شناسیم، رشته‌ها قابلیت پذیرش نال را دارند و همچنین ذکر آن‌ها به صورت nullable بی‌معنا است. اما پس از فعالسازی ویژگی نوع‌های ارجاعی نال‌نپذیر، اکنون عکس آن رخ می‌دهد. رشته‌ها نال‌نپذیر می‌شوند؛ اما می‌توان در صورت نیاز، آن‌ها را nullable نیز تعریف کرد.


یک مثال: بررسی تاثیر فعالسازی NullableContextOptions بر روی یک پروژه

کلاس زیر را در نظر بگیرید:
    public class Person
    {
        public string FirstName { get; set; }

        public string MiddleName { get; set; }

        public string LastName { get; set; }

        public Person(string first, string last) =>
            (FirstName, LastName) = (first, last);

        public Person(string first, string middle, string last) =>
            (FirstName, MiddleName, LastName) = (first, middle, last);

        public override string ToString() => $"{FirstName} {MiddleName} {LastName}";
    }
با فعالسازی خاصیت NullableContextOptions، بلافاصله اخطار زیر در IDE ظاهر می‌شود (اگر ظاهر نشد، یکبار پروژه را بسته و مجددا بارگذاری کنید):


در این کلاس، دو سازنده وجود دارند که یکی MiddleName را دریافت می‌کند و دیگری خیر. در اینجا کامپایلر تشخیص داده‌است که چون در سازنده‌ی اولی که MiddleName را دریافت نمی‌کند، مقدار پیش‌فرض خاصیت MiddleName، نال خواهد بود و همچنین ما NullableContextOptions را نیز فعال کرده‌ایم، بنابراین این خاصیت دیگر به صورت معمول و متداول یک نوع ارجاعی نال‌پذیر عمل نمی‌کند و دیگر نمی‌توان نال را به عنوان مقدار پیش‌فرض آن، به آن نسبت داد. به همین جهت اخطار فوق ظاهر شده‌است.
برای رفع این مشکل:
به کامپایلر اعلام می‌کنیم: «می‌دانیم که MiddleName می‌تواند نال هم باشد» و آن‌را در این زمینه راهنمایی می‌کنیم:
public string? MiddleName { get; set; }
پس از این تغییر، اخطار فوق که ذیل سازنده‌ی اول کلاس Person ظاهر شده بود، محو می‌شود. اما اکنون مجددا کامپایلر، در جائیکه می‌خواهیم از آن استفاده کنیم:
    public static class NullableReferenceTypes
    {
        //#nullable enable // Toggle to enable

        public static string Exemplify()
        {
            var vahid = new Person("Vahid", "N");
            var length = GetLengthOfMiddleName(vahid);

            return $"{vahid.FirstName}'s middle name has {length} characters in it.";

            static int GetLengthOfMiddleName(Person person)
            {
                string middleName = person.MiddleName;
                return middleName.Length;
            }
        }
    }
اخطارهایی را صادر می‌کند:


در اینجا در متد محلی (local function) تعریف شده، سعی در دسترسی به خاصیت MiddleName وجود دارد و اکنون با تغییر جدیدی که اعمال کردیم، به صورت نال‌پذیر تعریف شده‌است.
همچنین در سطر بعدی آن نیز نتیجه‌ی نهایی middleName، مورد استفاده قرار گرفته‌است که آن نیز مشکل‌دار تشخیص داده شده‌است.
مشکل اولین سطر را به این صورت می‌توانیم برطرف کنیم:
var middleName = person.MiddleName;
در اینجا بجای ذکر صریح نوع string، از var استفاده شده‌است. پیشتر با ذکر صریح نوع string، آن‌را یک رشته‌ی نال‌نپذیر تعریف کرده بودیم. اما اکنون چون person.MiddleName نال‌پذیر تعریف شده‌است، var نیز به صورت خودکار به این رشته‌ی نال‌پذیر اشاره می‌کند.
اما مشکل سطر دوم هنوز باقی است:


علت اینجا است که متغیر middleName نیز اکنون ممکن است مقدار نال را داشته باشد. برای رفع این مشکل می‌توان از اپراتور .? استفاده کرد و سپس اگر مقدار نهایی این عبارت نال بود، مقدار صفر را بازگشت می‌دهیم:
static int GetLengthOfMiddleName(Person person)
{
   var middleName = person.MiddleName;
   return middleName?.Length ?? 0;
}
هدف از این قابلیت و ویژگی کامپایلر، کمک کردن به توسعه دهنده‌ها جهت نوشتن کدهایی امن‌تر و مقاوم‌تر به null reference exception‌ها است.


امکان خاموش و روشن کردن ویژگی نوع‌های ارجاعی نال‌نپذیر به صورت موضعی

زمانیکه خاصیت NullableContextOptions را فعال می‌کنیم، بر روی کل پروژه تاثیر می‌گذارد. برای مثال اگر یک چنین قابلیتی را بر روی پروژه‌های قدیمی خود فعال کنید، با صدها اخطار مواجه خواهید شد. به همین جهت است که این ویژگی حتی با فعالسازی C# 8.0 و انتخاب آن، به صورت پیش‌فرض غیرفعال است. بنابراین برای اینکه بتوان پروژه‌های قدیمی را قدم به قدم و سر فرصت، «مقاوم‌تر» کرد، می‌توان تعیین کرد که کدام قسمت، تحت تاثیر این ویژگی قرار بگیرد و کدام قسمت‌ها خیر:
public static class NullableReferenceTypes
{
#nullable disable // Toggle to enable
در اینجا می‌توان با استفاده از compiler directive جدید nullable# به کامپایلر اعلام کرد که از این قسمت صرفنظر کن. مقدار آن می‌تواند disable و یا enable باشد.


مجبور ساختن خود به «مقاوم سازی» برنامه

اگر NullableContextOptions را فعال کنید، کامپایلر صرفا یکسری اخطار را در مورد مشکلات احتمالی صادر می‌کند؛ اما برنامه هنوز کامپایل می‌شود. برای اینکه خود را مقید به «مقاوم سازی» برنامه کنیم، می‌توانیم با فعالسازی ویژگی TreatWarningsAsErrors در فایل csprj، این اخطارها را تبدیل به خطای کامپایلر کرده و از کامپایل برنامه جلوگیری کنیم:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>netcoreapp3.0</TargetFramework>
    <LangVersion>8.0</LangVersion>
    <NullableContextOptions>enable</NullableContextOptions>
    <TreatWarningsAsErrors>true</TreatWarningsAsErrors>
  </PropertyGroup>
</Project>
البته TreatWarningsAsErrors تمام اخطارهای برنامه را تبدیل به خطا می‌کند. اگر می‌خواهید انتخابی‌تر عمل کنید، می‌توان از خاصیت WarningsAsErrors استفاده کرد:
<WarningsAsErrors>CS8600;CS8602;CS8603</WarningsAsErrors>


آیا اگر برنامه‌ای با C# 7.0 کامپایل شود، کتابخانه‌های تهیه شده‌ی با C# 8.0 را می‌تواند استفاده کند؟

پاسخ: بله. از دیدگاه برنامه‌های قدیمی، کتابخانه‌های تهیه شده‌ی با C# 8.0، تفاوتی با سایر کتابخانه ندارند. آن‌ها نوع‌های نال‌پذیر جدید را مانند ?string مشاهده نمی‌کنند؛ آن‌ها فقط string را مشاهده می‌کنند و روش کار کردن با آن‌ها نیز همانند قبل است. بدیهی است در این حالت از مزایای کامپایلر C# 8.0 در تشخیص زود هنگام مشکلات برنامه محروم خواهند بود؛ اما عملکرد برنامه تفاوتی نمی‌کند.


وضعیت برنامه‌ی C# 8.0 ای که از کتابخانه‌های C# 7.0 و یا قبل از آن استفاده می‌کند، چگونه خواهد بود؟

چون کتابخانه‌های قدیمی‌تر از مزایای کامپایلر C# 8.0 استفاده نمی‌کنند، خروجی‌های آن بدون بروز خطایی توسط کامپایلر C# 8.0 استفاده می‌شوند؛ چون حجم اخطارهای صادر شده‌ی در این حالت بیش از حد خواهد بود. یعنی این بررسی‌های کامپایلر صرفا برای کتابخانه‌های جدید فعال هستند و نه برای کتابخانه‌های قدیمی.


مهارت‌های مواجه شدن با اخطارهای ناشی از فعالسازی NullableContextOptions

در مثالی که بررسی شد، یک نمونه از روش‌های مواجه شدن با اخطارهای ناشی از فعالسازی ویژگی نوع‌های ارجاعی نال‌نپذیر را بررسی کردیم. در ادامه روش‌های تکمیلی دیگری را بررسی می‌کنیم.

1- هرجائیکه قرار است متغیر ارجاعی نال‌پذیر باشد، آن‌را صراحتا اعلام کنید.
string name = null; // ERROR
string? name = null; // OK!
این مثال را پیشتر بررسی کردیم. با فعالسازی ویژگی نوع‌های ارجاعی نال‌نپذیر، ماهیت آن‌ها نیز تغییر می‌کند و دیگر نمی‌توان به آن‌ها null را انتساب داد. اگر نیاز است حتما اینکار صورت گیرد، آن‌ها را توسط ? به صورت nullable تعریف کنید.
نمونه‌ی دیگر آن مثال زیر است:
public class Person
{
    public Address? Address { get; set; };
    public string Country => Address?.Country;   // ERROR! 
}
در اینجا Address یک نوع ارجاعی نال‌پذیر است. بنابراین حاصل Address?.Country می‌تواند نال باشد و به Country نال‌نپذیر قابل انتساب نیست. برای رفع این مشکل کافی است دقیقا مشخص کنیم که این رشته نیز نال‌پذیر است:
public class Person
{
    public Address? Address { get; set; };
    public string? Country => Address?.Country;  // OK!
}

البته در این حالت باید به مثال زیر دقت داشت:
var node = this; // Initialize non-nullable variable
while (node != null)
{
   node = null; // ERROR!
}
چون node در اینجا توسط var تعریف شده‌است، دقیقا نوع this را که non-nullable است، پیدا می‌کند. بنابراین بعدها نمی‌توان به آن null را انتساب داد. اگر چنین موردی نیاز بود، باید صریحا نوع آن‌را بدو امر، nullable تعریف کرد؛ چون هنوز امکان تعریف ?var میسر نیست:
Node? node = this;   // Initialize nullable variable
while (node != null) {
   node = null; // OK!
}


2- نوع‌های خود را مقدار دهی اولیه کنید.
در مثال زیر:
public class Person
{
   public string Name { get; set; } // ERROR!
}
در این حالت چون خاصیت Name، در سازنده‌ی کلاس مقدار دهی اولیه نشده‌است، یک اخطار صادر می‌شود که بیانگر احتمال نال بودن آن است. یک روش مواجه شدن با این مشکل، تعریف آن به صورت یک خاصیت نال‌پذیر است:
public class Person
{
   public string? Name { get; set; }
}

یا یک استثناء را صادر کنید:
public class Person
{
    public string Name { get; set; }
    public Person(string name) {
        Name = name ?? throw new ArgumentNullException(nameof(name));
    }
}
به این ترتیب کامپایلر می‌داند که اگر نام دریافتی نال بود، دقیقا باید چگونه رفتار کند.
البته در این حالت برای مقدار دهی اولیه‌ی Name، حتما نیاز به تعریف یک سازنده‌است و در این حالت کدهایی را که از سازنده‌ی پیش‌فرض استفاده کرده بودند (مانند new Person { Name = "Vahid" })، باید تغییر دهید.

راه‌حل دیگر، مقدار دهی اولیه‌ی این خواص بدون تعریف یک سازنده‌ی اضافی است:
public class Person
{
   public string Name { get; set; } = string.Empty;
   // -or-
   public string Name { get; set; } = "";
}
برای مثال می‌توان از مقادیر خالی زیر برای مقدار دهی اولیه‌ی رشته‌ها، آرایه‌ها و مجموعه‌ها استفاده کرد:
String.Empty
Array.Empty<T>()
Enumerable.Empty<T>()
یا حتی می‌توان اشیاء دیگر را نیز به صورت زیر مقدار دهی اولیه کرد:
public class Person
{
   public Address Address { get; set; } = new Address();
}
البته در این حالت باید مفهوم فلسفی «خالی بودن» را پیش خودتان تفسیر و تعریف کنید که دقیقا مقصود از یک آدرس خالی چیست؟ به همین جهت شاید تعریف این شیء به صورت nullable بهتر باشد.
نظرات مطالب
شروع به کار با EF Core 1.0 - قسمت 4 - کار با بانک‌های اطلاعاتی از پیش موجود
مهندسی معکوس انواع و اقسام بانک‌های اطلاعاتی از پیش‌موجود به کلاس‌های Context و موجودیت‌های EF Core Code First

الف) SQL Server
وابستگی‌های مورد نیاز در یک پروژه‌ی classlib فرضی:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <TargetFramework>net7.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="7.0.10">
      <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
      <PrivateAssets>all</PrivateAssets>
    </PackageReference>
    <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer" Version="7.0.10" />
    <PackageReference Include="Microsoft.EntityFrameworkCore.Tools" Version="7.0.10">
      <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
      <PrivateAssets>all</PrivateAssets>
    </PackageReference>
  </ItemGroup>
</Project>
و همچنین نصب ابزارهای خط‌فرمان EF:
dotnet tool update --global dotnet-ef --version 7.0.10
سپس اجرای دستور زیر در ریشه‌ی پروژه:
dotnet ef dbcontext scaffold "Data Source=(localdb)\mssqllocaldb;Initial Catalog=DbName;Encrypt=false;" Microsoft.EntityFrameworkCore.SqlServer -o Output -f

ب) MySQL
وابستگی‌های مورد نیاز در یک پروژه‌ی classlib فرضی:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <TargetFramework>net7.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.EntityFrameworkCore.Tools" Version="7.0.10">
      <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
      <PrivateAssets>all</PrivateAssets>
    </PackageReference>
    <PackageReference Include="Pomelo.EntityFrameworkCore.MySql" Version="7.0.0" />
    <PackageReference Include="Pomelo.EntityFrameworkCore.MySql.Design" Version="1.1.2" />
  </ItemGroup>
</Project>
 و همچنین نصب ابزارهای خط‌فرمان EF:
dotnet tool update --global dotnet-ef --version 7.0.10
سپس اجرای دستور زیر در ریشه‌ی پروژه:
dotnet ef dbcontext scaffold "server=localhost;port=3306;user=root;password=MyPass;database=MyDbName;TreatTinyAsBoolean=true;AllowZeroDateTime=true;ConvertZeroDateTime=true;" Pomelo.EntityFrameworkCore.MySql -o Output -f

ج) Postgres 
وابستگی‌های مورد نیاز در یک پروژه‌ی classlib فرضی:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <TargetFramework>net7.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.EntityFrameworkCore.Tools" Version="7.0.10">
      <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
      <PrivateAssets>all</PrivateAssets>
    </PackageReference>
    <PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="7.0.10">
      <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
      <PrivateAssets>all</PrivateAssets>
    </PackageReference>
    <PackageReference Include="Npgsql.EntityFrameworkCore.PostgreSQL" Version="7.0.4"/>
  </ItemGroup>
</Project>
و همچنین نصب ابزارهای خط‌فرمان EF:
dotnet tool update --global dotnet-ef --version 7.0.10
سپس اجرای دستور زیر در ریشه‌ی پروژه:
dotnet ef dbcontext scaffold "User ID=Vahid;Password=MyPass;Host=localhost;Port=5432;Database=MyDbName;Pooling=true;" Npgsql.EntityFrameworkCore.PostgreSQL -o Output -f

د) SQLite
وابستگی‌های مورد نیاز در یک پروژه‌ی classlib فرضی: 
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <TargetFramework>net7.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="7.0.10">
      <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
      <PrivateAssets>all</PrivateAssets>
    </PackageReference>
    <PackageReference Include="Microsoft.EntityFrameworkCore.Sqlite" Version="7.0.10" />
    <PackageReference Include="Microsoft.EntityFrameworkCore.Sqlite.Core" Version="7.0.10" />
    <PackageReference Include="Microsoft.EntityFrameworkCore.Tools" Version="7.0.10">
      <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
      <PrivateAssets>all</PrivateAssets>
    </PackageReference>
  </ItemGroup>
</Project>
 و همچنین نصب ابزارهای خط‌فرمان EF:
dotnet tool update --global dotnet-ef --version 7.0.10
سپس اجرای دستور زیر در ریشه‌ی پروژه: 
dotnet ef dbcontext scaffold "Data Source=C:\\Path\\db.sqlite" Microsoft.EntityFrameworkCore.Sqlite -o Output
نظرات مطالب
C# 8.0 - Nullable Reference Types
بهبودهای نوع‌های ارجاعی نال‌نپذیر در NET Core 3.0 Preview 7.

پس از نصب SDK جدید، نحوه‌ی فعالسازی این قابلیت در فایل csproj، به صورت زیر درآمده‌است:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>netcoreapp3.0</TargetFramework>
    <LangVersion>8.0</LangVersion>
    <Nullable>enable</Nullable>
  </PropertyGroup>
</Project>

این موارد در Preview 7 جدید هستند:
1) امکان اضافه کردن قید جدید notnull در حین تعریف نوع‌های جنریک
    interface IDoStuff<TIn, TOut> where TIn : notnull where TOut : notnull
    {
        TOut DoStuff(TIn input);
    }

2) اضافه شدن یک سری ویژگی توکار جدید برای «پیش» بررسی کار با نوع‌های ارجاعی نال نپذیر

ویژگی AllowNull به فراخوان‌ها امکان ارسال نال را حتی اگر مجاز نباشد، می‌دهد.  این ویژگی جدید در فضای نام System.Diagnostics.CodeAnalysis تعریف شده‌است. برعکس آن ویژگی DisallowNull، سبب خواهد شد تا فراخوان‌ها حتی در صورت مجاز بودن نیز نتوانند نال ارسال کنند.
using System;
using System.Diagnostics.CodeAnalysis;

namespace ConsoleApp
{
    public class MyClass
    {
        private string _innerValue = string.Empty;

        [AllowNull]
        public string MyValue
        {
            get
            {
                return _innerValue;
            }
            set
            {
                _innerValue = value ?? string.Empty;
            }
        }
    }
در مثال فوق ویژگی AllowNull سبب می‌شود تا در قسمت setter امکان دریافت نال نیز میسر شود؛ برای مثال جهت سازگاری با نگارش‌های قبلی برنامه.
دو ویژگی یاد شده را می‌توان بر روی پارامترهای متدها، پارامترهایی از نوع in و ref، فیلدها، خواص و ایندکسرها اعمال کرد.

3) اضافه شدن یک سری ویژگی توکار جدید برای «پس» بررسی کار با نوع‌های ارجاعی نال نپذیر

دو ویژگی جدید MaybeNull و NotNull کار پس بررسی نال پذیری را انجام می‌دهند:
    public class MyArray
    {
        // Result is the default of T if no match is found
        [return: MaybeNull]
        public static T Find<T>(T[] array, Func<T, bool> match)
        {
            //...
        }

        // Never gives back a null when called
        public static void Resize<T>([NotNull] ref T[]? array, int newSize)
        {
            //...
        }
    }
در این مثال، متد Find با تعریف ویژگی return: MaybeNull، ممکن است نال برگرداند. برای مثال اگر چیزی یافت نشد، default را بر گرداند.
در متد Resize، پارامتر array، می‌تواند نال دریافت کند، چون نال‌پذیر تعریف شده‌است؛ اما چون به ویژگی NotNull مزین است، حاصل تغییرات بر روی آن (خروجی از متد، از طریق پارامتری از نوع ref) نمی‌تواند نال باشد.

دو ویژگی یاد شده را می‌توان بر روی خروجی متدها، پارامترهایی از نوع out و ref، فیلدها، خواص و ایندکسرها اعمال کرد.

4) اضافه شدن یک سری ویژگی توکار جدید برای «پس» بررسی «شرطی» کار با نوع‌های ارجاعی نال نپذیر

در مثال‌های زیر کاربردهای دو ویژگی شرطی جدید NotNullWhen و MaybeNullWhen را مشاهده می‌کنید:
    public class MyString
    {
        // True when 'value' is null
        public static bool IsNullOrEmpty([NotNullWhen(false)] string? value)
        {
            //...
        }
    }
در اینجا با بکارگیری ویژگی [NotNullWhen(false)] به فراخوان اعلام می‌کنیم که اگر IsNullOrEmpty مقدار false را بر‌گرداند، مقدار value ارسال شده‌ی به آن، نال نیست.

    public class MyVersion
    {
        // If it parses successfully, the Version will not be null.
        public static bool TryParse(string? input, [NotNullWhen(true)] out Version? version)
        {
            //...
        }
    }
در اینجا با بکارگیری ویژگی [NotNullWhen(true)] به فراخوان اعلام می‌کنیم که اگر TryParse مقدار true را بر‌گرداند، مقدار version خروجی آن، نال نیست.

    public class MyQueue<T>
    {
        // 'result' could be null if we couldn't Dequeue it.
        public bool TryDequeue([MaybeNullWhen(false)] out T result)
        {
            //...
        }
    }
در اینجا با بکارگیری ویژگی [MaybeNullWhen(false)] به فراخوان اعلام می‌کنیم که اگر TryDequeue مقدار false را برگرداند، مقدار result خروجی آن، می‌تواند نال هم باشد.

5) اضافه شدن یک سری ویژگی توکار جدید برای شرط گذاشتن بین ورودی و خروجی، در حین کار با نوع‌های ارجاعی نال نپذیر

در متد زیر، هم خروجی و هم ورودی آن می‌توانند نال باشند. اما می‌خواهیم اگر path نال نباشد، اطمینان حاصل کنیم که استفاده کننده می‌داند، خروجی این متد، حتما نال نخواهد بود:
    class MyPath
    {
        [return: NotNullIfNotNull("path")]
        public static string? GetFileName(string? path)
        {
            //...
        }
    }
برای انجام یک چنین اطلاع رسانی‌هایی می‌توان از ویژگی جدید NotNullIfNotNull استفاده کرد. از آن می‌توان برای مزین سازی خروجی متدها و یا پارامترهایی از نوع ref استفاده کرد.

6) اضافه شدن یک سری ویژگی توکار جدید برای بررسی سیلان برنامه، در حین کار با نوع‌های ارجاعی نال نپذیر

در اینجا نحوه‌ی استفاده از دو ویژگی جدید DoesNotReturn و DoesNotReturnIf را مشاهده می‌کنید:
    internal static class ThrowHelper
    {
        [DoesNotReturn]
        public static void ThrowArgumentNullException(ExceptionArgument arg)
        {
            //...
        }
    }
اگر متد ThrowArgumentNullException در جائی فراخوانی شود، سبب بروز یک استثناء می‌شود. استفاده از DoesNotReturn سبب می‌شود تا به کامپایلر اعلام کند، پس از این نقطه، دیگر نیازی به بررسی نال بودن اشیاء نیست؛ چون آن قطعه از کد، غیرقابل اجرا و رسیدن می‌شود. این ویژگی را تنها بر روی متدها می‌توان قرار داد.

    public static class MyAssertionLibrary
    {
        public static void MyAssert([DoesNotReturnIf(false)] bool condition)
        {
            //...
        }
    }
اگر متد MyAssert فراخوانی شود و ورودی آن false باشد، یک استثناء را صادر می‌کند. با بکارگیری ویژگی [DoesNotReturnIf(false)] این موضوع را به کامپایلر اعلام کرده و از آن درخواست می‌کنیم تا کار بررسی نال بودن اشیاء را از آن سطر به بعد، انجام ندهد. این ویژگی را تنها بر روی پارامترها می‌توان اعمال کرد.