مطالب
الگویی برای مدیریت دسترسی همزمان به ConcurrentDictionary
ConcurrentDictionary، ساختار داده‌ای است که امکان افزودن، دریافت و حذف عناصری را به آن به صورت thread-safe میسر می‌کند. اگر در برنامه‌ای نیاز به کار با یک دیکشنری توسط چندین thread وجود داشته باشد، ConcurrentDictionary راه‌حل مناسبی برای آن است.
اکثر متدهای این کلاس thread-safe طراحی شده‌اند؛ اما با یک استثناء: متد GetOrAdd آن thread-safe نیست:
 TValue GetOrAdd(TKey key, Func<TKey, TValue> valueFactory);


بررسی نحوه‌ی کار با متد GetOrAdd

این متد یک کلید را دریافت کرده و سپس بررسی می‌کند که آیا این کلید در مجموعه‌ی جاری وجود دارد یا خیر؟ اگر کلید وجود داشته باشد، مقدار متناظر با آن بازگشت داده می‌شود و اگر خیر، delegate ایی که به عنوان پارامتر دوم آن معرفی شده‌است، اجرا خواهد شد، سپس مقدار بازگشت داده شده‌ی توسط آن به مجموعه اضافه شده و در آخر این مقدار به فراخوان بازگشت داده می‌شود.
var dictionary = new ConcurrentDictionary<string, string>();
 
var value = dictionary.GetOrAdd("key1", x => "item 1");
Console.WriteLine(value);
 
value = dictionary.GetOrAdd("key1", x => "item 2");
Console.WriteLine(value);
در این مثال زمانیکه اولین GetOrAdd فراخوانی می‌شود، مقدار item 1 بازگشت داده خواهد شد و همچنین این مقدار را در مجموعه‌ی جاری، به کلید key1 انتساب می‌دهد. در دومین فراخوانی، چون key1 در دیکشنری، دارای مقدار است، همان را بازگشت می‌دهد و دیگر به value factory ارائه شده مراجعه نخواهد کرد. بنابراین خروجی این مثال به صورت ذیل است:
item 1
item 1


دسترسی همزمان به متد GetOrAdd امن نیست

ConcurrentDictionary برای اغلب متدهای آن به صورت توکار مباحث قفل‌گذاری چند ریسمانی را اعمال می‌کند؛ اما نه برای متد GetOrAdd. زمانیکه valueFactory آن در حال اجرا است، دسترسی همزمان به آن thread-safe نیست و ممکن است بیش از یکبار فراخوانی شود.
یک مثال:
using System;
using System.Collections.Concurrent;
using System.Threading.Tasks;

namespace Sample
{
    class Program
    {
        static void Main(string[] args)
        {
            var dictionary = new ConcurrentDictionary<int, int>();
            var options = new ParallelOptions { MaxDegreeOfParallelism = 100 };
            var addStack = new ConcurrentStack<int>();

            Parallel.For(1, 1000, options, i =>
            {
                var key = i % 10;
                dictionary.GetOrAdd(key, k =>
                {
                    addStack.Push(k);
                    return i;
                });
            });

            Console.WriteLine($"dictionary.Count: {dictionary.Count}");
            Console.WriteLine($"addStack.Count: {addStack.Count}");
        }
    }
}
یک نمونه خروجی این مثال می‌تواند به صورت ذیل باشد:
dictionary.Count: 10
addStack.Count: 13
در اینجا هر چند 10 آیتم در دیکشنری ذخیره شده‌اند، اما عملیاتی که در value factory متد GetOrAdd آن صورت گرفته، 13 بار اجرا شده‌است (بجای 10 بار).
علت اینجا است که در این بین، متد GetOrAdd توسط ترد A فراخوانی می‌شود، اما key را در دیکشنری جاری پیدا نمی‌کند. به همین جهت شروع به اجرای valueFactory آن خواهد کرد. در همین زمان ترد B نیز به دنبال همین key است. ترد قبلی هنوز به پایان کار خودش نرسیده‌است که مجددا valueFactory متعلق به همین key اجرا خواهد شد. به همین جهت است که در ConcurrentStack اجرا شده‌ی در valueFactory، بیش از 10 آیتم موجود هستند.


الگویی برای مدیریت دسترسی همزمان امن به متد GetOrAdd‌

یک روش برای دسترسی همزمان امن به متد GetOrAdd، توسط تیم ASP.NET Core به صورت ذیل ارائه شده‌است:
// 'GetOrAdd' call on the dictionary is not thread safe and we might end up creating the pipeline more
// once. To prevent this Lazy<> is used. In the worst case multiple Lazy<> objects are created for multiple
// threads but only one of the objects succeeds in creating a pipeline.
private readonly ConcurrentDictionary<Type, Lazy<RequestDelegate>> _pipelinesCache = 
new ConcurrentDictionary<Type, Lazy<RequestDelegate>>();
در اینجا با استفاده از کلاس Lazy، از ایجاد چندین pipeline به ازای یک key مشخص جلوگیری شده‌است.
یک مثال:
namespace Sample
{
    class Program
    {
        static void Main(string[] args)
        {
            var dictionary = new ConcurrentDictionary<int, Lazy<int>>();
            var options = new ParallelOptions { MaxDegreeOfParallelism = 100 };
            var addStack = new ConcurrentStack<int>();

            Parallel.For(1, 1000, options, i =>
            {
                var key = i % 10;
                dictionary.GetOrAdd(key, k => new Lazy<int>(() =>
                {
                    addStack.Push(k);
                    return i;
                }));
            });

            // Access the dictionary values to create lazy values.
            foreach (var pair in dictionary)
                Console.WriteLine(pair.Value.Value);

            Console.WriteLine($"dictionary.Count: {dictionary.Count}");
            Console.WriteLine($"addStack.Count: {addStack.Count}");
        }
    }
}
با این خروجی:
10
1
2
3
4
5
6
7
8
9
dictionary.Count: 10
addStack.Count: 10
اینبار، هم dictionary و هم addStack دارای 10 عضو هستند که به معنای تنها اجرای 10 بار value factory است و نه بیشتر.
در این مثال دو تغییر صورت گرفته‌اند:
الف) مقادیر ConcurrentDictionary به صورت Lazy معرفی شده‌اند.
ب) متد GetOrAdd نیز یک مقدار Lazy را بازگشت می‌دهد.

زمانیکه از اشیاء Lazy استفاده می‌شود، خروجی‌های بازگشتی از GetOrAdd، توسط این اشیاء Lazy محصور خواهند شد. اما نکته‌ی مهم اینجا است که هنوز value factory آن‌ها فراخوانی نشده‌است. این فراخوانی تنها زمانی صورت می‌گیرد که به خاصیت Value یک شیء Lazy دسترسی پیدا کنیم و این دسترسی نیز به صورت thread-safe طراحی شده‌است. یعنی حتی اگر چند ترد new Lazy یک key مشخص را بازگشت دهند، تنها یکبار value factory متد GetOrAdd با دسترسی به خاصیت Value این اشیاء Lazy فراخوانی می‌شود و مابقی تردها منتظر مانده و تنها مقدار ذخیره شده‌ی در دیکشنری را دریافت می‌کنند و سبب اجرای مجدد value factory سنگین و زمانبر آن، نخواهند شد.

بر این مبنا می‌توان یک LazyConcurrentDictionary را نیز به صورت ذیل طراحی کرد:
    public class LazyConcurrentDictionary<TKey, TValue>
    {
        private readonly ConcurrentDictionary<TKey, Lazy<TValue>> _concurrentDictionary;
        public LazyConcurrentDictionary()
        {
            _concurrentDictionary = new ConcurrentDictionary<TKey, Lazy<TValue>>();
        }

        public TValue GetOrAdd(TKey key, Func<TKey, TValue> valueFactory)
        {
            var lazyResult = _concurrentDictionary.GetOrAdd(key,
             k => new Lazy<TValue>(() => valueFactory(k), LazyThreadSafetyMode.ExecutionAndPublication));
            return lazyResult.Value;
        }
    }
در اینجا ممکن است چندین ترد همزمان متد GetOrAdd را دقیقا با یک کلید مشخص فراخوانی کنند؛ اما تنها چندین شیء Lazy بسیار سبک که هنوز اطلاعات محصور شده‌ی توسط آن‌ها اجرا نشده‌است، ایجاد خواهند شد. اولین تردی که به خاصیت Value آن دسترسی پیدا کند، سبب اجرای delegate زمانبر و سنگین آن شده و مابقی تردها مجبور به منتظر ماندن جهت بازگشت این نتیجه از دیکشنری خواهند شد (و نه اجرای مجدد delegate).
در مثال فوق، به صورت صریحی پارامتر LazyThreadSafetyMode نیز مقدار دهی شده‌است. هدف از آن اطمینان حاصل کردن از آغاز این شیء Lazy با دسترسی به خاصیت Value آن، تنها توسط یک ترد است.

نمونه‌ی دیگر کار با خاصیت ویژه‌ی Value شیء Lazy را در مطلب «پشتیبانی توکار از ایجاد کلاس‌های Singleton از دات نت 4 به بعد» پیشتر در این سایت مطالعه کرده‌اید.
مطالب
بدست آوردن برگهای یک درخت توسط Recursive CTE
امروز در یک تالار سوالی مطرح شد با این عنوان "چگونه می‌توانم گره‌های برگ یک شاخه را بدست بیاورم". خب راه حلی که فورا به ذهنم رسید استفاده از یک query بازگشتی (recursive) بود.
به  ساختار سلسله مراتبی زیر توجه بفرمایید:

گره هایی که با رنگ سبز علامت گذاری شده اند را گره‌های برگ می‌نامیم چون که آن گره‌ها بدون زیر شاخه هستند.
فرض کنید از ما خواسته شده است با داشتن گره A تمام برگهای این شاخه را بدست بیاوریم.
دو مرحله را باید طی کنیم ابتدا تمام گره هایی که زیر شاخه گره A هستند را باید بدست آورد سپس توسط یک گزاره گره‌های برگ را فیلتر کنیم.

در واقع گره هایی برگ هستند که پدر هیچ گره‌ی دیگری نباشند. 

declare @t table
(id char(1) primary key,
parent char(1));

insert @t values 
('A',null),                                   --Level 1
('B', 'A'), ('C', 'A'),                       --Level 2
('D', 'B'), ('E', 'B'),('R','B'), ('F', 'C'), --Level 3
('G', 'D'),  --Level 4
('H', 'G'), ('I', 'G');                       --Level 5

;with cte as
(
select id, rnk=0 from @t
where parent = 'A'
 
union all
 
select t.id, rnk+1
from cte join @t t
on cte.id = t.parent
)
select *
  from cte
 where not exists
       (select *
          from @t
         where parent = cte.id);


و حالا به درخت زیر توجه بفرمایید:

هدف پیدا کردن برگ هایی از شاخه مورد نظر است که در پایین‌ترین سطح قرار گرفته باشند. برای این منظور از همان query بازگشتی استفاده کرده و با کمک تابع dense_ranke گره‌های مورد نظر را بدست میاوریم.
;with cte as
(
select id, rnk=0 from @t
where parent = 'A'

union all

select t.id, rnk+1
from cte join @t t
on cte.id = t.parent
)
select *
from
(
   select *, dense_rank() over(order by rnk desc) rk
     from cte
)t
where rk = 1


اشتراک‌ها
معماری Vertical Slice بهتر است از کار با لایه‌ها!

Vertical Slice Architecture, not Layers! 

Why Vertical Slice Architecture? Nobody wants to deal with a system that is hard to change and easy to introduce bugs because it's a spaghetti code mess of various technical concerns. Clean Architecture is popular because it separates concerns into many different layers. But why are we organizing code by layers? Does adding a new feature require you to modify files across multiple projects in your UI, business, and data access layers? Vertical Slice Architecture is about how you organize code and focus on features instead of technical layers will make your system easier to change. 

معماری Vertical Slice بهتر است از کار با لایه‌ها!
اشتراک‌ها
بررسی بهبودهای کارآیی در NET 7.

TL;DR: .NET 7 is fast. Really fast. A thousand performance-impacting PRs went into runtime and core libraries this release, never mind all the improvements in ASP.NET Core and Windows Forms and Entity Framework and beyond. It’s the fastest .NET ever. If your manager asks you why your project should upgrade to .NET 7, you can say “in addition to all the new functionality in the release, .NET 7 is super fast.” 

بررسی بهبودهای کارآیی در NET 7.
اشتراک‌ها
نسخه RTM برای 1.0 ASP.NET Core ارایه شد

We are excited to announce the release of .NET Core 1.0, ASP.NET Core 1.0 and Entity Framework 1.0, available on Windows, OS X and Linux! .NET Core is a cross-platform, open source, and modular .NET platform for creating modern web apps, microservices, libraries and console applications.

This release includes the .NET Core runtime, libraries and tools and the ASP.NET Core libraries. We are also releasing Visual Studio and Visual Studio Code extensions that enable you to create .NET Core projects. You can get started at https://dot.net/core. Read the release notes for detailed release information. 

نسخه RTM برای 1.0 ASP.NET Core ارایه شد
اشتراک‌ها
مصاحبه با خالق ++C

مطالبی که در این ویدئو به آن پرداخته میشود :

What is the keynote about?
How do we write modern C++ code?
Guideline support library and Static analysis
Call to action for the C++ community!
Enhancing productivity by eliminating whole classes of bugs
Extending the C++ core guidelines
What do you expect from these static analysis checkers?
How can I get started?
مصاحبه با خالق ++C