مطالب
اهمیت ارائه‌ی برنامه‌های دات نت به صورت release

یکی از مواردی که بعضی از همکاران هنگام ارائه برنامه‌های خود رعایت نمی‌کنند، تفاوت قائل نشدن بین حالت release و debug در زمان کامپایل پروژه، برای ارائه نهایی است.
هنگام استفاده از حالت release ، گزینه‌های بهینه سازی کامپایلر فعال شده و همچنین debug symbols از اسمبلی نهایی تولید شده حذف می‌گردد (بنابراین حجم اسمبلی نهایی نیز کمتر خواهد شد). لازم به ذکر است در حالت release ، میزان مصرف حافظه برنامه تولید شده نیز کمتر از حالت debug خواهد بود. گاهی از اوقات سرعت اجرای این دو حالت تا چندین برابر در بعضی از الگوریتم‌ها می‌توانند متفاوت باشند.
مطابق مستندات موجود، وجود debug symbols هیچگونه تاثیری بر روی کارآیی یک برنامه دات نت ندارند.
لازم به ذکر است که عمده بهینه‌سازی‌ها در دات نت توسط JIT compiler صورت می‌گیرد (تا 99 درصد) و نه توسط کامپایلر زبان مورد استفاده (به همین جهت است که عده‌ای اعتقاد دارند در نهایت و هنگام اجرا تفاوتی مابین زبان‌های مختلف دات نت وجود نخواهد داشت). بر روی JIT compiler نیز می‌توان تاثیر گذاشت و نحوه عملکرد آنرا تغییر داد (حتی بر روی یک اسمبلی کامپایل شده). برای مثال یک فایل ini کنار اسمبلی پروژه خود ایجاد کنید (xyz.ini که در اینجا xyz.exe نام فایل اجرایی برنامه است). محتویات این فایل می‌تواند به صورت زیر باشد:

[.NET Framework Debugging Control]
GenerateTrackingInfo=1
AllowOptimize=0

در اینجا می‌توان بهینه سازی را فعال و غیر فعال کرد و یا مطابق تنظیمات فوق برنامه را جهت دیباگ آماده نمود. (این روش با اسمبلی‌های ASP.Net کار نمی‌کند)
در دات نت فریم ورک 2 ، TrackingInfo مربوط به JIT compiler همواره تولید خواهد شد اما می‌توان بر روی بهینه سازی نهایی به صورت فوق نیز تاثیرگذار بود.

نکته:
اگر می‌خواهید هنگام مشاهده گزارش خطا، شماره سطر مورد نظر نیز در کدهای شما گوشزد ‌شود فایلهای pdb - program database تولید شده را هم ارائه دهید. حال شاید بخواهید هم برنامه را در حالت release ارائه دهید و هم pdb آن تولید شود، در این حالت باید خط فرمان کامپایل برنامه، با سوئیچ debug:pdbonly/ اجرا شود.
این مورد را در قسمت خواص پروژه، گزینه build و با کلیک بر روی دکمه advanced نیز می‌توان تنظیم نمود. (حالت پیش فرض release در VS.Net است)

خلاصه‌ی کلام: لطفا هنگام ارائه نهایی، گزینه release را از بالای صفحه در VS.Net انتخاب کنید. با تشکر!

مطالب
مقدمه‌ای بر LINQ بخش اول
کلمه‌ی LINQ مخفف Language Integrated Query یا زبان پرس و جوی یکپارچه می‌باشد. LINQ برای اولین بار در ویژوال استودیوی 2008 و دات نت فریم ورک 3.5 برای پرکردن خلع بین دنیای اشیاء برنامه نویسی (Object Oriented World) و دنیای داده‌ها (Data World) ارائه شد.

چرا LINQ؟ 
در نگاهی کلی، مزایایی که از طریق LINQ حاصل می‌شوند عبارتند از:
• کاهش حجم کدنویسی 
• درک بهتر از عملکرد کد‌های نوشته شده
• پس از یادگیری اصول LINQ به راحتی می‌توانید از این اصول پرس و جو نویسی برای کار بر روی مجموعه داده‌های مختلف استفاده کنید
• کنترل صحت کدهای پرس و جو‌ها در زمان کامپایل ( Compile-Time Type Checking )

اجزای سازنده‌ی LINQ
دو جزء اصلی سازنده‌ی LINQ عبارت است از:
  • Elements عناصر
  • Sequences توالی‌ها
توالی‌ها می‌توانند لیستی از اطلاعات مختلف باشند. هر آیتم در لیست را عنصر می‌گوییم. توالی نمونه‌ای از یک کلاس است که اینترفیس <IEnumarable<T را پیاده سازی کرده باشد. این اینترفیس تضمین می‌کند که توالی قابلیت پیمایش عناصر را دارد.
به آرایه‌ی تعریف شده‌ی زیر دقت کنید:
int[] fibonacci = {0, 1, 1, 2, 3, 5};
متغیر fibonacci در اینجا نشان دهنده‌ی توالی و هر یک از اعداد آرایه، یک عنصر محسوب می‌شوند.
توالی می‌تواند درون حافظه‌ای باشد (In Memory Object) که به آن Local Sequence می‌گویند و یا می‌تواند یک بانک اطلاعاتی SQL Server باشد که به آن Remote Sequence می‌گویند.
در حالت Remote باید اینترفیس <IQuerable<T پیاده سازی شده باشد.
پرس و جو هایی را که بر روی توالی‌های محلی اجرا می‌شوند، اصطلاحا Local Query و یا LINQ-To-Object  نیز می‌نامند.
عملگرهای پرس و جوی  زیادی به شکل متد الحاقی در کلاس System.Linq.Enumerable طراحی شده‌اند. این مجموعه از عملگرهای پرس جو را اصطلاحا Standard Query Operator می‌گویند.
نکته‌ی مهم این است که عملگرهای پرس و جو تغییری را در توالی ورودی نمی‌دهند و نتیجه‌ی خروجی یک مجموعه جدید و یا یک مقدار عددی می‌باشد.

توالی خروجی و مقدار بازگشتی Scalar
در بخش قبل گفتیم که خروجی یک پرس و جو می‌تواند یک مجموعه و یا یک مقدار عددی باشد. در مثال زیر عملگر Count را بر روی مجموعه‌ی fibonacci  اعمال کردیم و عددی که نشان دهنده‌ی تعداد عناصر مجموعه است، بعنوان خروجی بازگردانده شده است.
int[] fibonacci = { 0, 1, 1, 2, 3, 5 };
int numberOfElements = fibonacci.Count();
Console.WriteLine($"{numberOfElements}");
IEnumerable<int> distinictNumbers = fibonacci.Distinct();
Console.WriteLine("Elements in output sequence:");
foreach (var number in distinictNumbers)
{
    Console.WriteLine(number);
}
در کد بالا توسط تابع Distinct، عناصر یکتا را از توالی ورودی استخراج کرده و بازگردانده‌ایم.
خروجی برنامه‌ی فوق به شکل زیر است :
6
Elements in output sequence:
0
1
2
3
5

مفهوم Deffer Execution  (
اجرای به تاخیر افتاده )
عمده‌ی عملگر‌های پرس و جو بلافاصله پس از ایجاد، اجرا نمی‌شوند. این عملگرها در طول اجرای برنامه اجرا خواهند شد (اجرای با تاخیر). به همین خاطر می‌توان بعد از ساخت پرس و جو  تغییرات دلخواهی را به توالی ورودی اعمال کرد.
در کد زیر  قبل از اجرای پرس و جو ، توالی ورودی ویرایش شده :
int[] fibonacci = { 0, 1, 1, 2, 3, 5 };
// ایجاد پرس و جو 
IEnumerable<int> numbersGreaterThanTwoQuery = fibonacci.Where(x => x > 2);
// در این مرحله پرس و جو ایجاد شده ولی هنوز اجرا نشده است
// تغییر عنصر اول توالی
fibonacci[0] = 99;
// حرکت بر روی عناصر توالی باعث اجرای پرس و جو می‌شود
foreach (var number in numbersGreaterThanTwoQuery)
{
   Console.WriteLine(number);
}
پرس و جو تا زمان اجرای حلقه‌ی Foreach اجرا نخواهد شد. خروجی مثال بالا به شکل زیر است :
99
3
5

به غیر از بعضی از عملگرها مثل Count,Min,Last سایر عملگر‌ها بصورت اجرای با تاخیر عمل می‌کنند. عملگری مثل Count باعث اجرای فوری پرس و جو می‌شود.
تعدادی عملگر تبدیل (Conversion Operator) هم وجود دارد که باعث می‌شوند پرس و جو بلافاصله اجرا شود :
• ToList
• ToArray
• ToLookup
• ToDictionary
عملگر‌های فوق پس از اجرا، خروجی را در یک ساختمان داده‌ی جدید باز می‌گردانند.
در کد زیر اصلاح توالی متغیر Fibonacci بعد از اجرای تابع ToArray صورت گرفته است.
int[] fibonacci = { 0, 1, 1, 2, 3, 5 };
// ساخت پرس و جو
IEnumerable<int> numbersGreaterThanTwoQuery = fibonacci.Where(x => x > 2) .ToArray();
// در این مرحله به خاطر عملگر استفاده شده پرس و جو اجرا می‌شود
// تغییر اولین عنصر توالی
fibonacci[0] = 99;
// حرکت بر روی نتیجه
foreach (var number in numbersGreaterThanTwoQuery)
{
   Console.WriteLine(number);
}
خروجی مثال بالا:
3
5
همانطور که می‌بینید عدد 99 در خروجی مشاهده نمی‌شود. علت فراخوانی عملگر ToArray است که بلافاصله باعث اجرای پرس و جو شده و خروجی را باز می‌گرداند . به همین خاطر تغییر عنصر اول توالی ورودی، تاثیری بر روی نتیجه‌ی خروجی ندارد. 
مطالب
OpenCVSharp #12
قطعه بندی (segmentation) تصویر با استفاده از الگوریتم watershed

در تصویر ذیل، تصویر یک راه‌رو را مشاهده می‌کنید که توسط ماوس قطعه بندی شده‌است (تصویر اصلی یا سمت چپ). تصویر سمت راست، نسخه‌ی قطعه بندی شده‌ی این تصویر به کمک الگوریتم watershed است.

همانطور که در تصویر نیز مشخص است، نمایش هر ناحیه‌ی قطعه بندی شده، شبیه به سیلان آب است که با رسیدن به مرز قطعه‌ی بعدی متوقف شده‌است. به همین جهت به آن watershed (آب پخشان) می‌گویند.


انتخاب نواحی مختلف به کمک ماوس

در اینجا کدهای آغازین مثال بحث جاری را ملاحظه می‌کنید:
var src = new Mat(@"..\..\Images\corridor.jpg", LoadMode.AnyDepth | LoadMode.AnyColor);
var srcCopy = new Mat();
src.CopyTo(srcCopy);
 
var markerMask = new Mat();
Cv2.CvtColor(srcCopy, markerMask, ColorConversion.BgrToGray);
 
var imgGray = new Mat();
Cv2.CvtColor(markerMask, imgGray, ColorConversion.GrayToBgr);
markerMask = new Mat(markerMask.Size(), markerMask.Type(), s: Scalar.All(0));
 
var sourceWindow = new Window("Source (Select areas by mouse and then press space)")
{
    Image = srcCopy
};
 
var previousPoint = new Point(-1, -1);
sourceWindow.OnMouseCallback += (@event, x, y, flags) =>
{
    if (x < 0 || x >= srcCopy.Cols || y < 0 || y >= srcCopy.Rows)
    {
        return;
    }
 
    if (@event == MouseEvent.LButtonUp || !flags.HasFlag(MouseEvent.FlagLButton))
    {
        previousPoint = new Point(-1, -1);
    }
    else if (@event == MouseEvent.LButtonDown)
    {
        previousPoint = new Point(x, y);
    }
    else if (@event == MouseEvent.MouseMove && flags.HasFlag(MouseEvent.FlagLButton))
    {
        var pt = new Point(x, y);
        if (previousPoint.X < 0)
        {
            previousPoint = pt;
        }
 
        Cv2.Line(img: markerMask, pt1: previousPoint, pt2: pt, color: Scalar.All(255), thickness: 5);
        Cv2.Line(img: srcCopy, pt1: previousPoint, pt2: pt, color: Scalar.All(255), thickness: 5);
        previousPoint = pt;
        sourceWindow.Image = srcCopy;
    }
};
ابتدا تصویر راه‌رو بارگذاری شده‌است. سپس یک نسخه‌ی سیاه و سفید تک کاناله به نام markerMask از آن استخراج می‌شود. از آن برای ترسیم خطوط انتخاب نواحی مختلف تصویر به کمک ماوس استفاده می‌شود. به علاوه متد FindContours که در ادامه معرفی خواهد شد، نیاز به یک تصویر 8 بیتی تک کاناله دارد (به هر یک از اجزای RGB یک کانال گفته می‌شود).
همچنین این نسخه‌ی سیاه و سفید تک کاناله به یک تصویر سه کاناله برای نمایش رنگ‌های قسمت‌های مختلف قطعه بندی شده، تبدیل می‌شود.
سپس پنجره‌ی نمایش تصویر اصلی برنامه ایجاد شده و در اینجا روال رخدادگردان OnMouseCallback آن به صورت inline مقدار دهی شده‌است. در این روال می‌توان مدیریت ماوس را به عهده گرفت و کار نمایش خطوط مختلف را با فشرده شدن و سپس رها شدن کلیک سمت چپ ماوس انجام داد.
خط ترسیم شده بر روی دو تصویر از نوع Mat نمایش داده می‌شود. تصویر srcCopy، همان تصویر نمایش داده شده‌ی در پنجره‌ی اصلی است و تصویر markerMask، بیشتر جنبه‌ی محاسباتی دارد و در متدهای بعدی OpenCV استفاده خواهد شد.


تشخیص کانتورها (Contours) در تصویر

پس از ترسیم نواحی مورد نظر توسط ماوس، یک سری خطوط به هم پیوسته در شکل قابل مشاهده هستند. می‌خواهیم این خطوط را تشخیص داده و سپس از آن‌ها جهت محاسبات قطعه بندی تصویر استفاده کنیم. تشخیص این خطوط متصل، توسط متدی به نام FindContours انجام می‌شود. کانتورها، قسمت‌های خارجی اجزای متصل به هم هستند.
Point[][] contours; //vector<vector<Point>> contours;
HiearchyIndex[] hierarchyIndexes; //vector<Vec4i> hierarchy;
Cv2.FindContours(
    markerMask,
    out contours,
    out hierarchyIndexes,
    mode: ContourRetrieval.CComp,
    method: ContourChain.ApproxSimple);
متد FindContours همان تصویر markerMask را که توسط ماوس، قسمت‌های مختلف تصویر را علامتگذاری کرده‌است، دریافت می‌کند. سپس کانتورهای آن را استخراج خواهد کرد. کانتورها در مثال‌های اصلی OpenCV با verctor مشخص شده‌اند. در اینجا (در کتابخانه‌ی OpenCVSharp) آن‌ها را توسط یک آرایه‌ی دو بعدی از نوع Point مشاهده می‌کنید یا شبیه به لیستی از آرایه‌ی نقاط کانتورهای مختلف تشخیص داده شده (هر کانتور، آرایه‌ی از نقاط است). از hierarchyIndexes جهت یافتن و ترسیم این کانتورها در متد DrawContours استفاده می‌شود.
متد FindContours یک تصویر 8 بیتی تک کاناله را دریافت می‌کند. اگر mode آن CCOMP یا FLOODFILL تعریف شود، امکان دریافت یک تصویر 32 بیتی را نیز خواهد داشت.
پارامتر hierarchy آن یک پارامتر اختیاری است که بیانگر اطلاعات topology تصویر است.
توسط پارامتر Mode، نحوه‌ی استخراج کانتور مشخص می‌شود. اگر به external تنظیم شود، تنها کانتورهای خارجی‌ترین قسمت‌ها را تشخیص می‌دهد. اگر مساوی list قرار گیرد، تمام کانتورها را بدون ارتباطی با یکدیگر و بدون تشکیل hierarchy استخراج می‌کند. حالت ccomp تمام کانتورها را استخراج کرده و یک درخت دو سطحی از آن‌ها را تشکیل می‌دهد. در سطح بالایی مرزهای خارجی اجزاء وجود دارند و در سطح دوم مرزهای حفره‌ها مشخص شده‌اند. حالت و مقدار tree به معنای تشکیل یک درخت کامل از کانتورهای یافت شده‌است.
پارامتر method اگر به none تنظیم شود، تمام نقاط کانتور ذخیره خواهند شد و اگر به simple تنظیم شود، قطعه‌های افقی، عمودی و قطری، فشرده شده و تنها نقاط نهایی آن‌ها ذخیره می‌شوند. برای مثال در این حالت یک کانتور مستطیلی، تنها با 4 نقطه ذخیره می‌شود.


ترسیم کانتورهای تشخیص داده شده بر روی تصویر


می‌توان به کمک متد DrawContours، مرزهای کانتورهای یافت شده را ترسیم کرد:
var markers = new Mat(markerMask.Size(), MatType.CV_32S, s: Scalar.All(0));
 
var componentCount = 0;
var contourIndex = 0;
while ((contourIndex >= 0))
{
    Cv2.DrawContours(
        markers,
        contours,
        contourIndex,
        color: Scalar.All(componentCount + 1),
        thickness: -1,
        lineType: LineType.Link8,
        hierarchy: hierarchyIndexes,
        maxLevel: int.MaxValue);
 
    componentCount++;
    contourIndex = hierarchyIndexes[contourIndex].Next;
}
پارامتر اول آن تصویری است که قرار است ترسیمات بر روی آن انجام شوند. پارامتر کانتور، آرایه‌ای است از کانتورهای یافت شده‌ی در قسمت قبل. پارامتر ایندکس مشخص می‌کند که اکنون کدام کانتور باید رسم شود. برای یافتن کانتور بعدی باید از hierarchyIndexes یافت شده‌ی توسط متد FindContours استفاده کرد. خاصیت Next آن، بیانگر ایندکس کانتور بعدی است و اگر مساوی منهای یک شد، کار متوقف می‌شود. مقدار maxLevel مشخص می‌کند که بر اساس پارامتر hierarchyIndexes، چند سطح از کانتورهای به هم مرتبط باید ترسیم شوند. در اینجا چون به حداکثر مقدار Int32 تنظیم شده‌است، تمام این سطوح ترسیم خواهند شد. اگر پارامتر ضخامت به یک عدد منفی تنظیم شود، سطوح داخلی کانتور ترسیم و پر می‌شوند.



اعمال الگوریتم watershed

در مرحله‌ی آخر، تصویر کانتورهای ترسیم شده را به متد Watershed ارسال می‌کنیم. پارامتر اول آن تصویر اصلی است و پارامتر دوم، یک پارامتر ورودی و خروجی محسوب می‌شود و کار قطعه بندی تصویر بر روی آن انجام خواهد شد.
کار الگوریتم watershed، ایزوله سازی اشیاء موجود در تصویر از پس زمینه‌ی آن‌ها است. این الگوریتم، یک تصویر سیاه و سفید را دریافت می‌کند؛ به همراه یک تصویر ویژه به نام marker. تصویر marker کارش مشخص سازی اشیاء، از پس زمینه‌ی آن‌ها است که در اینجا توسط ماوس ترسیم و سپس به کمک یافتن کانتورها و ترسیم آ‌ن‌ها بهینه سازی شده‌است.
var rnd = new Random();
var colorTable = new List<Vec3b>();
for (var i = 0; i < componentCount; i++)
{
    var b = rnd.Next(0, 255); //Cv2.TheRNG().Uniform(0, 255);
    var g = rnd.Next(0, 255); //Cv2.TheRNG().Uniform(0, 255);
    var r = rnd.Next(0, 255); //Cv2.TheRNG().Uniform(0, 255);
 
    colorTable.Add(new Vec3b((byte)b, (byte)g, (byte)r));
}
 
Cv2.Watershed(src, markers);
 
var watershedImage = new Mat(markers.Size(), MatType.CV_8UC3);
 
// paint the watershed image
for (var i = 0; i < markers.Rows; i++)
{
    for (var j = 0; j < markers.Cols; j++)
    {
        var idx = markers.At<int>(i, j);
        if (idx == -1)
        {
            watershedImage.Set(i, j, new Vec3b(255, 255, 255));
        }
        else if (idx <= 0 || idx > componentCount)
        {
            watershedImage.Set(i, j, new Vec3b(0, 0, 0));
        }
        else
        {
            watershedImage.Set(i, j, colorTable[idx - 1]);
        }
    }
}
 
watershedImage = watershedImage * 0.5 + imgGray * 0.5;
Cv2.ImShow("Watershed Transform", watershedImage);
Cv2.WaitKey(1); //do events
متد Cv2.TheRNG یک تولید کننده‌ی اعداد تصادفی توسط OpenCV است و متد Uniform آن شبیه به متد Next کلاس Random دات نت عمل می‌کند. به نظر این کلاس تولید اعداد تصادفی، آنچنان هم تصادفی عمل نمی‌کند. به همین جهت از کلاس Random دات نت استفاده شد. در اینجا به ازای تعداد کانتورهای ترسیم شده، یک رنگ تصادفی تولید شده‌است.
پس از اعمال متد Watershed، هر نقطه‌ی تصویر marker مشخص می‌کند که متعلق به کدام قطعه‌ی تشخیص داده شده‌است. سپس به این نقطه، رنگ آن قطعه را نسبت داده و آن‌را در تصویر جدیدی ترسیم می‌کنیم.
در آخر، پس زمینه، با نواحی تشخیص داده ترکیب شده‌اند (watershedImage * 0.5 + imgGray * 0.5) تا تصویر ابتدای بحث حاصل شود. اگر این ترکیب صورت نگیرد، چنین تصویری حاصل خواهد شد:




کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
اشتراک‌ها
تنظیمات برنامه

در این پست با نحوه ایجاد و ذخیره اطلاعات مربوط به تنظیمات در خود نرم‌افزار با استفاده ویژوال استودیو آشنا خواهید شد. قابلیت توکار تنظیمات برنامه(Application Settings) در برنامه‌های دسکتاپ تحت دات نت، راه آسان جهت امکان ایجاد، ذخیره سازی و سفارشی سازی برنامه را در اختیار برنامه‌نویس قرار خواهد داد. این در حالی است که تنظیمات نرم‌افزار دسکتاپ شما قادر به ذخیره هر نوع از داده‌ها قابل پشتیبانی دات‌نت خواهد بود...

تنظیمات برنامه
مطالب
مدیریت پیشرفته‌ی حالت در React با Redux و Mobx - قسمت اول - Redux چیست؟
Redux و Mobx، کتابخانه‌های کمکی هستند برای مدیریت حالت برنامه‌های پیچیده‌ی React. هرچند React به صورت توکار به همراه امکانات مدیریت حالت است، اما این کتابخانه‌ها مزایای ویژه‌ای را به آن اضافه می‌کنند. در این سری ابتدا کتابخانه‌ی Redux را به صورت خالص و مجزای از React بررسی می‌کنیم. از این کتابخانه در برنامه‌های Angular و Ember هم می‌توان استفاده کرد و به صورت اختصاصی برای React طراحی نشده‌است. سپس آن‌را به برنامه‌های React متصل می‌کنیم. در آخر کتابخانه‌ی محبوب دیگری را به نام Mobx بررسی می‌کنیم که برای مدیریت حالت، اصول برنامه نویسی شیءگرا و همچنین Reactive را با هم ترکیب می‌کند و این روزها در برنامه‌های React، بیشتر از Redux مورد استفاده قرار می‌گیرد.


چرا به ابزارهای مدیریت حالت نیاز داریم؟

به محض رد شدن از مرز پیاده سازی امکانات اولیه‌ی یک برنامه، نیاز به ابزارهای مدیریت حالت نمایان می‌شوند؛ خصوصا زمانیکه نیاز است با اطلاعات قابل توجهی سر و کار داشت. مهم‌ترین دلیل استفاده‌ی از یک ابزار مدیریت حالت، مدیریت منطق تجاری برنامه است. منطق نمایشی برنامه مرتبط است به نحوه‌ی نمایش اجزای آن در صفحه؛ مانند نمایش یک صفحه‌ی مودال، تغییر رنگ عناصر با عبور کرسر ماوس از روی آن‌ها و در کل منطقی که مرتبط و یا وابسته‌ی به هدف اصلی برنامه نیست. از سوی دیگر منطق تجاری برنامه مرتبط است با مدیریت، تغییر و ذخیره سازی اشیاء تجاری مورد نیاز آن؛ مانند اطلاعات حساب کاربری شخص و دریافت اطلاعات برنامه از یک API که مختص به برنامه‌ی خاص ما است و به همین دلیل نیاز به ابزاری برای مدیریت بهینه‌ی آن وجود دارد. برای مثال اینکه در کجا باید منطق تجاری و نمایشی را به هم متصل کرد، می‌تواند چالش بر انگیر باشد. چگونه باید اطلاعات کاربر را ذخیره کرد؟ چگونه React باید متوجه شود که اطلاعات ما تغییر کرده‌است و در نتیجه‌ی آن کامپوننتی را مجددا رندر کند؟ یک ابزار مدیریت حالت، تمام این مسایل را به نحو یک‌دستی در سراسر برنامه، مدیریت می‌کند.
اگر از یک ابزار مدیریت حالت استفاده نکنیم، مجبور خواهیم شد تمام اطلاعات منطق تجاری را در داخل state کامپوننت‌ها ذخیره کنیم که توصیه نمی‌شود؛ چون مقیاس پذیر نیست. برای مثال فرض کنید قرار است تمام اطلاعات state را داخل یک کامپوننت ذخیره کنیم. هر زمانیکه بخواهیم این state را از طریق یک کامپوننت فرزند تغییر دهیم، نیاز خواهد بود این اطلاعات را به والد آن کامپوننت ارسال کنیم که اگر از تعداد زیادی کامپوننت تو در تو تشکیل شده باشد، زمانبر و به همراه کدهای تکراری زیادی خواهد بود. همچنین اینکار سبب رندر مجدد کل برنامه با هر تغییری در state آن می‌شود که غیرضروری بوده و کارآیی برنامه را کاهش می‌دهد. به علاوه در این بین مشخص نیست هر قسمت از state، از کدام کامپوننت تامین شده‌است. به همین جهت نیاز به روشی برای مدیریت حالت در بین کامپوننت‌های برنامه وجود دارد.


داشتن تنها یک محل برای ذخیره سازی state در برنامه

همانطور که در قسمت 8 ترکیب کامپوننت‌ها در سری React 16x بررسی کردیم، هر کامپوننت در React، دارای state خاص خودش است و این state از سایر کامپوننت‌ها کاملا مستقل و ایزوله‌است. این مورد با بزرگ‌تر شدن برنامه و برقراری ارتباط بین کامپوننت‌ها، مشکل ایجاد می‌کند. برای مثال اگر بخواهیم دکمه‌ای را در صفحه قرار داده و توسط این دکمه درخواست صفر شدن مقدار هر کدام از شمارشگرها را صادر کنیم، با صفر کردن value هر کدام از این کامپوننت‌ها، اتفاقی رخ نمی‌دهد. چون state محلی این کامپوننت‌ها، با سایر اجزای صفحه به اشتراک گذاشته نمی‌شود و باید آن‌را تبدیل به یک controlled component کرد، بطوریکه دارای local state خاص خودش نیست و تمام داده‌های دریافتی را از طریق this.props دریافت می‌کند و هر زمانیکه قرار است داده‌ای تغییر کند، رخ‌دادی را به والد خود صادر می‌کند. بنابراین این کامپوننت به طور کامل توسط والد آن کنترل می‌شود. تازه این روش در مورد کامپوننت‌هایی صدق می‌کند که رابطه‌ی والد و فرزندی بین آن‌ها وجود دارد. اگر چنین رابطه‌ای وجود نداشت، باید state را به یک سطح بالاتر انتقال داد. برای مثال باید state کامپوننت Counters را به والد آن که کامپوننت App است، منتقل کرد. پس از آن چون کامپوننت‌های ما، از کامپوننت App مشتق می‌شوند، اکنون می‌توان این state را به تمام فرزندان App توسط props منتقل کرد و به اشتراک گذاشت. این مورد هم مانند مثال انتقال اطلاعات کاربر لاگین شده‌ی به سیستم، به تمام زیر قسمت‌های برنامه، نیاز به ارسال اطلاعات از طریق props یک کامپوننت، به کامپوننت بعدی را دارد و به همین ترتیب برای مابقی که به props drilling مشهور است و روش پسندیده‌ای نیست.


Redux چیست؟ ذخیره سازی کل درخت state یک برنامه، در یک محل. به این ترتیب به یک شیء جاوا اسکریپتی بزرگ خواهیم رسید که در برگیرنده‌ی تمام state برنامه‌است. یکی از مزایای آن امکان serialize و deserialize کل این شیء، به سادگی است. برای مثال توسط متد JSON.stringify می‌توان آن‌را در جائی ذخیره کرد و سپس آن‌را به صورت یک شیء جاو اسکریپتی در زمانی دیگر بازیابی کرد. یکی از مزایای آن، امکان بازیابی دقیق شرایط کاربری است که دچار مشکل شده‌است و سپس دیباگ و رفع مشکل او، در زمانی دیگر.


تاریخچه‌ای از سیستم‌های مدیریت حالت

همه چیز با AngularJS 1x شروع شد که از data binding دو طرفه پشتیبانی می‌کرد. هرچند این روش برای همگام نگه داشتن View و مدل برنامه، مفید است، اما در Viewهای پیچیده، برنامه را کند می‌کند. در همین زمان فیس‌بوک، روش مدیریت حالتی را به نام Flux ارائه داد که از data binding یک طرفه پشتیبانی می‌کرد. به این معنا که در این روش، همواره اطلاعات از View به مدل، جریان پیدا می‌کند. کار کردن با آن ساده‌است؛ چون نیازی نیست حدس زده شود که اکنون جریان اطلاعات از کدام سمت است. اما مشکل آن عدم هماهنگی model و view، در بعضی از حالات است. Flux از این جهت به وجود آمد که مدیریت حالت در برنامه‌های React آن زمان، پیچیده بود و مقیاس پذیری کمی داشت (پیش از ارائه‌ی Context و Hooks). در کل Flux صرفا یکسری الگوی مدیریت حالت را بیان می‌کند و یک کتابخانه‌ی مجزا نیست. بر مبنای این الگوها و قراردادها، می‌توان کتابخانه‌های مختلفی را ایجاد کرد. از این رو در سال 2015، کتابخانه‌های زیادی مانند Reflux, Flummox, MartyJS, Alt, Redux و غیره برای پیاده سازی آن پدید آمدند. در این بین، کتابخانه‌ی Redux ماندگار شد و پیروز این نبرد بود!


توابع خالص و ناخالص (Pure & Impure Functions)

پیش از شروع بحث، نیاز است با یک‌سری از واژه‌ها مانند توابع خالص و ناخالص آشنا شد. این نکات از این جهت مهم هستند که Redux فقط با توابع خالص کار می‌کند.
توابع خالص: تعدادی آرگومان را دریافت کرده و بر اساس آن‌ها، مقداری را باز می‌گردانند.
// Pure
const add = (a, b) => {
  return a + b;
}
در اینجا یک تابع خالص را مشاهده می‌کنید که a و b را دریافت کرده و بر این اساس، یک خروجی کاملا مشخص را بازگشت می‌دهد.

توابع ناخالص: این نوع توابع سبب تغییراتی در متغیرهایی خارج از میدان دید خود می‌شوند و یا به همراه یک سری اثرات جانبی (side effects) مانند تعامل با دنیای خارج (وجود یک console.log در آن تابع و یا دریافت اطلاعاتی از یک API خارجی) هستند.
// Impure
const b;

const add = (a) => {
  return a + b;
}
تابع تعریف شده‌ی در اینجا ناخالص است؛ چون با اطلاعاتی خارج از میدان دید خود مانند متغیر b، تعامل دارد. این تعامل با دنیای خارج، حتی در حد نوشتن یک console.log:
// Impure
const add = (a, b) => {
  console.log('lolololol');
  return a + b;
}
یک تابع خالص را تبدیل به یک تابع ناخالص می‌کند و یا نمونه‌ی دیگر این تعاملات، فراخوانی سرویس‌های backend در برنامه هستند که یک تابع را ناخالص می‌کنند:
// Impure
const add = (a, b) => {
   Api.post('/add', { a, b }, (response) => {
    // Do something.
   });
};


روش‌هایی برای جلوگیری از تغییرات در اشیاء در جاوا اسکریپت

ایجاد تغییرات در آرایه‌ها و اشیاء (Mutating arrays and objects) نیز ناخالصی ایجاد می‌کند؛ از این جهت که سبب تغییراتی در دنیای خارج (خارج از میدان دید تابع) می‌شویم. به همین جهت نیاز به روش‌هایی وجود دارد که از این نوع تغییرات جلوگیری کرد:
// Copy object
const original = { a: 1, b: 2 };
const copy = Object.assign({}, original);
برای تغییری در یک شیء، تنها کافی است خاصیتی را به آن اضافه کنیم و یا با استفاده از واژه‌ی کلیدی delete، خاصیتی را از آن حذف کنیم. به همین جهت برای اینکه تغییرات ما بر روی شیء اصلی اثری را باقی نگذارند، یکی از روش‌ها، استفاده از متد Object.assign است. کار آن، یکی کردن اشیایی است که به آن ارسال می‌شوند. به همین جهت در اینجا با یک شیء خالی، از صفر شروع می‌کنیم. سپس دومین آرگومان آن را به همان شیء مدنظر، تنظیم می‌کنیم. به این ترتیب به یک کپی از شیء اصلی می‌رسیم که دیگر به آن، اتصالی را ندارد. به همین جهت اگر بر روی این شیء کپی تغییراتی را ایجاد کنیم، به شیء اصلی کپی نمی‌شود و سبب تغییرات در آن (mutation) نخواهد شد.
برای مثال در React، برای انجام رندر نهایی، در پشت صحنه کار مقایسه‌ی اشیاء صورت می‌گیرد. به همین جهت اگر همان شیءای را که ردیابی می‌کند تغییر دهیم، دیگر نمی‌تواند به صورت مؤثری فقط قسمت‌های تغییر کرده‌ی آن‌را تشخیص داده و کار رندر را فقط بر اساس آن‌ها انجام دهد و مجبور خواهد شد کل یک شیء را بارها و بارها رندر کند که اصلا بهینه نیست. به همین جهت، ایجاد تغییرات مستقیم در شیءای که به state آن انتساب داده می‌شود، مجاز نیست.

متد Object.assign، چندین شیء را نیز می‌تواند با هم یکی کند و شیء جدیدی را تشکیل دهد:
// Extend object
const original = { a: 1, b: 2 };
const extension = { c: 3 };
const extended = Object.assign({}, original, extension);
روش دیگر ایجاد یک کپی و یا clone از یک شیء را که پیشتر در سری «React 16x» بررسی کردیم، به کمک امکانات ES-6، به صورت زیر است:
// Copy object
const original = { a: 1, b: 2 };
const copy = { ...original };
در اینجا نیز ابتدا یک شیء خالی را ایجاد می‌کنیم و سپس توسط spread operator، خواص شیء قبلی را درون آن باز کرده و قرار می‌دهیم. به این ترتیب به یک clone از شیء اصلی می‌رسیم. این حالت نیز از ترکیب چندین شیء با هم، پشتیبانی می‌کند:
// Extend object
const original = { a: 1, b: 2 };
const extension = { c: 3 };
const extended = { ...original, ...extension };


روش‌هایی برای جلوگیری از تغییرات در آرایه‌ها در جاوا اسکریپت

متد slice آرایه‌ها نیز بدون ذکر آرگومانی، یک کپی از آرایه‌ی اصلی را ایجاد می‌کند:
// Copy array
const original = [1, 2, 3];
const copy = [1, 2, 3].slice();
همچنین معادل همین قطعه کد در ES-6 به همراه spread operator به صورت زیر است:
// Copy array
const original = [1, 2, 3];
const copy = [ ...original ];
و یا اگر بخواهیم یک کپی از چندین آرایه را ایجاد کنیم می‌توان از متد concat استفاده کرد:
// Extend array
const original = [1, 2, 3];
const extended = original.concat(4);
const moreExtended = original.concat([4, 5]);
متد Array.push، هرچند سبب افزوده شدن عنصری به یک آرایه می‌شود، اما یک mutation را نیز ایجاد می‌کند؛ یعنی تغییرات آن به دنیای خارج اعمال می‌گردد. اما Array.concat یک آرایه‌ی کاملا جدید را ایجاد می‌کند و همچنین امکان ترکیب آرایه‌ها را نیز به همراه دارد.
معادل قطعه کد فوق در ES-6 و به همراه spread operator آن به صورت زیر است:
// Extend array
const original = [1, 2, 3];
const extended = [ ...original, 4 ];
const moreExtended = [ ...original, ...extended, 5 ];


مفاهیم ابتدایی Redux


در Redux برای ایجاد تغییرات در شیء کلی state، از مفهومی به نام dispatch actions استفاده می‌شود. action در اینجا به معنای رخ‌دادن چیزی است؛ مانند کلیک بر روی یک دکمه و یا دریافت اطلاعاتی از یک API. در این حالت مقایسه‌ای بین وضعیت قبلی state و وضعیت فعلی آن صورت می‌گیرد و تغییرات مورد نیاز جهت اعمال به UI، محاسبه خواهند شد.
اصلی‌ترین جزء Redux، تابعی است به نام Reducer. این تابع، یک تابع خالص است و دو آرگومان را دریافت می‌کند:


تابع Reducer، بر اساس action و یا رخ‌دادی، ابتدا کل state برنامه را دریافت می‌کند و سپس خروجی آن بر اساس منطق این تابع، یک state جدید خواهد بود. اکنون که این state جدید را داریم، برنامه‌ی React ما می‌تواند به تغییرات آن گوش فرا داده و بر اساس آن، UI را به روز رسانی کند. به این ترتیب کار اصلی مدیریت state، به خارج از برنامه‌ی React منتقل می‌شود.

در این تصویر، تابع action creator را هم ملاحظه می‌کند که کاملا اختیاری است. یک action می‌تواند یک رشته و یا یک عدد باشد. با پیچیده شدن برنامه، نیاز به ارسال یک‌سری متادیتا و یا اطلاعات بیشتری از اکشن رسیده‌است. کار action creator، ایجاد شیء action، به صورت یک دست و یکنواخت است تا دیگر نیازی به ایجاد دستی آن نباشد.


مزایای کار با Redux

- داشتن یک مکان مرکزی برای ذخیره سازی کلی حالت برنامه (به آن «source of truth» و یا store هم گفته می‌شود): به این ترتیب مشکل ارسال خواص در بین کامپوننت‌های عمیق و چند سطحی، برطرف شده و هر زمانیکه نیاز بود، از آن اطلاعاتی را دریافت و یا با قالب خاصی، آن‌را به روز رسانی می‌کنند.
- رسیدن به به‌روز رسانی‌های قابل پیش بینی state: هرچند در حالت کار با Redux، یک شیء بزرگ جاوا اسکریپتی، کل state برنامه را تشکیل می‌دهد، اما امکان کار مستقیم با آن و تغییرش وجود ندارد. به همین جهت است که برای کار با آن، باید رویدادی را از طریق actionها به تابع Reducer آن تحویل داد. چون Reducer یک تابع خالص است، با دریافت یک سری ورودی مشخص، همواره یک خروجی مشخص را نیز تولید می‌کند. به همین جهت قابلیت ضبط و تکرار را پیدا می‌کند؛ همان بحث serialize و deseriliaze، توسط ابزاری مانند: logrocket. به علاوه قابلیت undo و redo را نیز می‌توان به این ترتیب پیاده سازی کرد (state جدید محاسبه شده، مشخص است، کل state قبلی را نیز داریم یا می‌توان ذخیره کرد و سپس برای undo، آن‌را جایگزین state جدید نمود). افزونه‌ی redux dev tools نیز قابلیت import و export کل state را به همراه دارد.
- چون تابع Reducer، یک تابع خالص است و همواره خروجی‌های مشخصی را به ازای ورودی‌های مشخصی، تولید می‌کند، آزمایش کردن، پیاده سازی و حتی logging آن نیز ساده‌تر است. در این بین حتی یک افزونه‌ی مخصوص نیز برای دیباگ آن تهیه شده‌است: redux-devtools-extension. تابع خالص، تابعی است که به همراه اثرات جانبی نیست (side effects)؛ به همین جهت عملکرد آن کاملا قابل پیش بینی بوده و آزمون پذیری آن به دلیل نداشتن وابستگی‌های خارجی، بسیار بالا است.


Context API خود React چطور؟

در قسمت 33 سری React 16x، مفهوم React Context را بررسی کردیم. پس از معرفی آن با React 16.3، مقالات زیادی منتشر شدند که ... Redux مرده‌است (!) و یا بجای Redux از React context استفاده کنید. اما واقعیت این است که React Redux در پشت صحنه از React context استفاده می‌کند و تابع connect آن دقیقا به همین زیر ساخت متصل می‌شود.
کار با Redux مزایایی مانند کارآیی بالاتر، با کاهش رندر‌های مجدد کامپوننت‌ها، دیباگ ساده‌تر با افزونه‌های اختصاصی و همچنین سفارشی سازی، مانند نوشتن میان‌افزارها را به همراه دارد. اما شاید واقعا نیازی به تمام این امکانات را هم نداشته باشید؛ اگر هدف، صرفا انتقال ساده‌تر اطلاعات بوده و برنامه‌ی مدنظر نیز کوچک است. React Context برخلاف Redux، نگهدارنده‌ی state نیست و بیشتر هدفش محلی برای ذخیره سازی اطلاعات مورد استفاده‌ی در چندین و چند کامپوننت تو در تو است. هرچند شبیه به Redux می‌توان اشاره‌گرهایی از متدها را به استفاده کنندگان از آن ارسال کرد تا سبب بروز رویدادها و اکشن‌هایی در کامپوننت تامین کننده‌ی Contrext شوند (یا یک کتابخانه‌ی ابتدایی شبیه به Redux را توسط آن تهیه کرد). بنابراین برای انتخاب بین React Context و Redux باید به اندازه‌ی برنامه، تعداد نفرات تیم، آشنایی آن‌ها با مفاهیم Redux دقت داشت.
مطالب
از NET Standard. به NET 5.
 ارائه‌ی NET 5. یا پایان NET Standard.

تا پیش از ارائه‌ی NET 5.، پیاده سازی‌های مجزایی از دات نت مانند Full .NET Framework ،.NET Core ،Xamarin و غیره وجود داشتند و دارند. در این حالت برای اینکه بتوان یک class library قابل اجرای بر روی تمام این‌ها را ارائه داد، نیاز به ارائه‌ی API ای بود که بین تمام آن‌ها به اشتراک گذاشته شود و این دقیقا هدف وجودی NET Standard. است؛ اما ... مشکلات زیر را نیز به همراه دارد:
هر زمانیکه نیاز به افزودن یک API جدید باشد، نیاز خواهد بود تا یک نگارش جدید از NET Standard. ارائه شود. سپس تمام نگارش‌های مختلف دات نت باید سعی کنند به صورت مجزایی این API جدید را پیاده سازی کنند. این پروسه بسیار کند است. همچنین همواره باید مراجع مختلف را دقیق بررسی کنید که برای مثال کدام نگارش از دات نت، کدام نگارش از NET Standard. را پیاده سازی کرده‌است.
با ارائه‌ی NET 5.، وضعیت کاملا فرق کرده‌است. در اینجا یک «کد پایه‌ی اشتراکی» را برای تمام نگارش‌های مختلف دات نت داریم و این نگارش می‌خواهد مخصوص دسکتاپ یا برنامه‌های موبایل باشد، تفاوتی نمی‌کند. اکنون که تمام نگارش‌های مختلف دات نت بر فراز یک کد اشتراکی پایه کار می‌کنند، دیگر نیازی به ارائه‌ی مجزای یک API استاندارد و سپس پیاده سازی مجزای دیگری از آن، نیست.


نگارش‌های ویژه‌ی NET 5.، مخصوص سکوهای کاری مختلف

همانطور که عنوان شد، NET 5. در اصل یک «مجموعه کد اشتراکی» بین NET Core ،Mono ،Xamarin. و سایر پیاده سازی‌های دات نت است. اما سکوهای کاری مختلف، مانند Android، iOS، ویندوز و غیره، به همراه کدهای قابل توجهی که مختص به آن سیستم عامل‌های خاص باشند نیز هستند. برای رفع این مشکل، یکسری TFM یا target framework name/Target Framework Moniker ارائه شده‌اند. برای مثال net5.0 یکی از آن‌ها است. زمانیکه از این TFM استفاده می‌کنید، یعنی در حال کار با API ای هستید که در تمام نگارش‌های چندسکویی مختلف دات نت، مهیا و قابل استفاده‌است. نام جدید «net5.0» جایگزین کننده‌ی نام‌های قدیمی «netcoreapp» و «netstandard» است.
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <TargetFramework>net5.0</TargetFramework>
  </PropertyGroup>
</Project>
در اینجا اگر نیاز به کار با API مخصوص ویندوز را نیز داشتید، می‌توانید از TFM مخصوص آن که net5.0-windows نام دارد استفاده کنید. «net5.0-windows» به این معنا است که به تمام امکانات net5.0 دسترسی دارید؛ به علاوه‌ی API ای که مختص به سیستم عامل ویندوز است (مانند Windows Forms و WPF). در دات نت 6، دو TFM جدید net6.0-android و net6.0-ios را نیز شاهد خواهیم بود.
کار کردن با این اسامی و درک آن‌ها نیز ساده‌است. برای مثال net6.0-ios به این معنا است که این قطعه کد و اسمبلی آن، می‌تواند تمام کتابخانه‌های مخصوص net5.0 و net6.0 را نیز استفاده کند؛ اما نه کتابخانه‌هایی که به صورت اختصاصی برای net5.0-windows و یا net6.0-android کامپایل شده‌اند.
این توضیحات به معنای پایان کار «NET Standard.» است. پس از NET Standard 2.1. فعلی، دیگر هیچ نگارش جدیدتری از آن ارائه نخواهد شد و البته net5.0 و تمام نگارش‌های پس از آن، قابلیت استفاده‌ی از کتابخانه‌های مبتنی بر NET Standard 2.1. و پیش از آن‌را نیز دارا هستند. بنابراین از این پس، net5.0 را به عنوان پایه‌ی به اشتراک گذاری کدها مدنظر داشته باشید.


سؤال: اگر امروز خواستیم کتابخانه‌ای را تولید کنیم، باید از کدام TFM استفاده کرد؟

net5.0 و تمام نگارش‌های پس از آن، از کتابخانه‌های مبتنی بر NET Standard 2.1. و قبل از آن نیز پیشیبانی می‌کنند. در این حالت تنها دلیل تغییر TFM کتابخانه‌های قدیمی موجود به net5.0، می‌تواند دسترسی به یکسری API جدید باشد. اما در مورد کتابخانه‌های جدید چطور؟ آیا باید برای مثال از netstandard2.0 استفاده کرد و یا از net5.0؟ این مورد بستگی به نوع پروژه‌ی در حال تهیه دارد:
- اجزای مختلف یک برنامه: اگر از کتابخانه‌ها برای شکستن برنامه‌ی خود به چندین قسمت استفاده می‌کنید، بهتر است از نام جدید netX.Y استفاده کنید (مانند net5.0). که در اینجا X.Y، منظور پایین‌ترین شماره نگارش NET. ای است که برنامه‌ی شما قرار است بر مبنای آن تهیه شود.
- کتابخانه‌های با قابلیت استفاده‌ی مجدد: اگر قرار است از کتابخانه‌ی شما در NET 4x. نیز استفاده شود، با netstandard2.0 شروع کنید. بهتر است netstandard1x را فراموش کنید؛ چون دیگر پشتیبانی نمی‌شود. اگر نیازی به پشتیبانی از NET 4x. ندارید، می‌توانید یا از netstandard2.1 و یا از net5.0 استفاده کنید و اگر در این حالت نیازی به پشتیبانی از NET Core 3x. ندارید، می‌توانید مستقیما با net5.0 شروع کنید.
بنابراین به صورت خلاصه:
- netstandard2.0 امکان اشتراک کدها را بین NET 4x. و سایر سکوهای کاری میسر می‌کند.
- netstandard2.1 امکان اشتراک کدها را بین Mono ،Xamarin و NET Core 3x. میسر می‌کند.
- net5.0، مخصوص نگارش فعلی و آینده‌ی دات نت است.

و یا حتی می‌توانید یک کتابخانه را به صورت multi-targeting با پشتیبانی از تمام TFMهای یاد شده‌ی فوق نیز تولید کنید:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <TargetFrameworks>net5.0;netstandard2.1;netstandard2.0;net461</TargetFrameworks>
  </PropertyGroup>
</Project>
مطالب
لینک‌های هفته اول دی

وبلاگ‌ها و سایت‌های ایرانی

امنیت



ASP. Net


طراحی وب

PHP


اس‌کیوال سرور


سی شارپ


عمومی دات نت


مسایل اجتماعی و انسانی برنامه نویسی


کتاب‌های رایگان جدید


متفرقه
  • آهن بجای کروم! (یک برنامه نویس آلمانی قسمت‌هایی از مرورگر کروم را که در جهت جمع آوری اطلاعات برای گوگل بکار می‌رفته، حذف کرده و مرورگر دیگری به نام آهن را ارائه داده است!)

نظرات مطالب
EF Code First #1
اگر قبلا نخواندید ، خواندن این سوال و جواب  خالی از لطف نیست.
چه دلیل قانع کننده ای وجود داره برای پروژه ای که از صفر شروع می‌شود از روشی غیر از Code First استفاده شود ؟ حتی برای پروژه هایی که پایگاه داده‌ی آنها وجود دارد هم ابزارهای مهندسی معکوس (جهت تولید خودکار موجودیت ها) وجود دارد.