نظرات مطالب
خواندن اطلاعات از سرور و نمایش آن توسط Angular در ASP.NET MVC
ممنون از مطلب مفیدی که منتشر کردید.
برای نمایش دادن لیستی از شهرها در یک DropDown بهتر است  از بانک اطلاعاتی خواند شود یا شهرها را  با استفاده از JavaScript در Client تعریف کنیم؟
مطالب
بهبود کارآیی LINQ در دات نت 7
LINQ یا همان Language-Integrated Query، یک زبان ساده‌ی کوئری نوشتن یکپارچه‌ی با دات نت است. به کمک آن می‌توان اعمال پیچیده‌ای را بر روی اشیاء، به زبانی ساده بیان کرد و امروزه تقریبا توسط تمام توسعه دهندگان دات نت مورد استفاده قرار می‌گیرد. اما ... این سادگی، بهایی را نیز به همراه دارد: کمتر بودن سرعت اجرا و همچنین افزایش مصرف حافظه. با توجه به گستردگی استفاده‌ی از LINQ، اگر بهبودی در این زمینه حاصل شود، بر روی کارآیی تمام برنامه‌های دات نتی تاثیر خواهد گذاشت و این امر در دات نت 7 محقق شده‌است. کارآیی متدهای LINQ to Objects در دات نت 7 (مانند متدهای Enumerable.Max, Enumerable.Min, Enumerable.Average, Enumerable.Sum) به شدت افزایش یافته و این افزایش گاهی حتی بیشتر از 10 برابر نسبت به نگارش‌های قبلی دات نت است؛ اما چگونه به چنین کارآیی رسیده‌اند؟


تدارک یک آزمایش برای بررسی میزان افزایش کارآیی متدهای LINQ در دات نت 7

در ادامه یک آزمایش ساده‌ی بررسی کارآیی متدهای Enumerable.Max, Enumerable.Min, Enumerable.Average, Enumerable.Sum را با استفاده از کتابخانه‌ی معروف BenchmarkDotNet مشاهده می‌کنید:
using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Running;
using System.Collections.Generic;
using System.Linq;


[MemoryDiagnoser(displayGenColumns: false)]
public partial class Program
{
  static void Main(string[] args) =>
    BenchmarkSwitcher.FromAssembly(typeof(Program).Assembly).Run(args);

  [Params (10, 10000)]
  public int Size { get; set; }
  private IEnumerable<int> items;

  [GlobalSetup]
  public void Setup()
  {
    items = Enumerable.Range(1, Size).ToArray();
  }  

  [Benchmark]
  public int Min() => items.Min();

  [Benchmark]
  public int Max() => items.Max();

  [Benchmark]
  public double Average() => items.Average();

  [Benchmark]
  public int Sum() => items.Sum();
}
برای آزمایش آن، یکبار target framework پروژه را بر روی net6.0 و بار دیگر بر روی net7.0 قرار داده و برنامه را اجرا می‌کنیم. خلاصه‌ی مفهومی نتایج حاصل به صورت زیر است که ... شگفت‌انگیز هستند!
در مورد کار با آرایه‌ها:


- زمان اجرای یافتن Min در آرایه‌های کوچک، در دات نت 7، نسبت به دات نت 6، حدودا 10 برابر کاهش یافته و اگر این آرایه بزرگتر شود و برای مثال حاوی 10 هزار المان باشد، این زمان 20 برابر کاهش یافته‌است.
- این کاهش زمان‌ها برای سایر متدهای LINQ نیز تقریبا به همین صورت است؛ منها متد Sum که اندازه‌ی آرایه، تاثیری را بر روی نتیجه‌ی نهایی ندارد.
- همچنین در دات نت 7، با فراخوانی متدهای LINQ، افزایش حافظه‌ای مشاهده نمی‌شود.

در مورد کار با لیست‌ها:


- در دات نت 6، اعمال صورت گرفته‌ی توسط LINQ بر روی آرایه‌ها، نسبت به لیست‌ها، همواره سریعتر است.
- در دات نت 7 هم در مورد مجموعه‌های کوچک، وضعیت همانند دات نت 6 است. اما اگر مجموعه‌ها بزرگتر شوند، تفاوتی بین مجموعه‌ها و آرایه‌ها وجود ندارد و حتی وضعیت مجموعه‌ها بهتر است: کارآیی کار با لیست‌ها 32 برابر بیشتر شده‌است!


اما چگونه در دات نت 7، چنین بهبود کارآیی خیره‌کننده‌ای در متدهای LINQ حاصل شده‌است؟

برای بررسی چگونگی بهبود کارآیی متدهای LINQ در دات نت 7 باید به نحوه‌ی پیاده سازی آن‌ها در نگارش‌های مختلف دات نت مراجعه کرد. برای مثال پیاده سازی متد الحاقی Min تا دات نت 6 به صورت زیر است:
public static int Min(this IEnumerable<int> source)
{
  if (source == null)
  {
    ThrowHelper.ThrowArgumentNullException(ExceptionArgument.source);
  }

  int value;
  using (IEnumerator<int> e = source.GetEnumerator())
  {
    if (!e.MoveNext())
    {
      ThrowHelper.ThrowNoElementsException();
    }

    value = e.Current;
    while (e.MoveNext())
    {
      int x = e.Current;
      if (x < value)
      {
        value = x;
      }
    }
  }
  return value;
}
این متد نسبتا ساده‌است. یک IEnumerable را دریافت کرده و سپس با استفاده از متد MoveNext، مقدار فعلی را با مقدار بعدی مقایسه می‌کند. در این مقایسه، کوچکترین مقدار ذخیره می‌شود تا در نهایت به انتهای مجموعه برسیم.
اما ... پیاده سازی این متد در دات نت 7 متفاوت است:
public static int Min(this IEnumerable<int> source) => MinInteger(source);

private static T MinInteger<T>(this IEnumerable<T> source)
  where T : struct, IBinaryInteger<T>
{
  T value;

  if (source.TryGetSpan(out ReadOnlySpan<T> span))
  {
    if (Vector.IsHardwareAccelerated && 
        span.Length >= Vector<T>.Count * 2)
    {
      .... // Optimized implementation
      return ....;
    }
  }
  .... //Implementation as in .NET 6
}
در اینجا در ابتدا سعی می‌شود تا یک ReadOnlySpan از مجموعه‌ی ارائه شده، تهیه شود. اگر این کار میسر نشد، کدهای همان روش قبلی دات نت 6 که توضیح داده شد، اجرا می‌شود. البته در آزمایشی که ما تدارک دیدیم، چون از لیست‌ها و آرایه‌ها استفاده شده بود، همواره امکان تهیه‌ی یک ReadOnlySpan از آن‌ها میسر است. بنابراین به قسمت اجرایی همانند دات نت 6 نمی‌رسیم.
اما ... ReadOnlySpan چیست؟ نوع‌های Span و ReadOnlySpan، یک ناحیه‌ی پیوسته‌ی مدیریت شده و مدیریت نشده‌ی حافظه را بیان می‌کنند. یک Span از نوع ref struct است؛ یعنی تنها می‌تواند بر روی stack قرار گیرد که مزیت آن، عدم نیاز به تخصیص حافظه‌ی اضافی و بهبود کارآیی است. همچنین ساختار داخلی Span در سی شارپ 11 اندکی تغییر کرده‌است که در آن از ref fields جهت دسترسی امن به این ناحیه‌ی از حافظه استفاده می‌شود. پیشتر از نوع داخلی ByReference برای اشاره به ابتدای این ناحیه‌ی از حافظه استفاده می‌شد که به همراه بررسی امنیتی در این باره نبود.

پس از دریافت ReadOnlySpan، به سطر زیر می‌رسیم:
if (Vector.IsHardwareAccelerated && span.Length >= Vector<T>.Count * 2)
که بررسی می‌کند آیا سخت افرار فعلی از قابلیت‌های SIMD برخوردار است یا خیر؟ اگر بله، اینبار با استفاده از ریاضیات برداری شتاب یافته‌ی توسط سخت افزار، محاسبات را انجام می‌دهد:
private static T MinInteger<T>(this IEnumerable<T> source)
where T : struct, IBinaryInteger<T>
{
  .... 
  if (Vector.IsHardwareAccelerated && span.Length >= Vector<T>.Count * 2)
  {
    var mins = new Vector<T>(span);
    index = Vector<T>.Count;
    do
    {
      mins = Vector.Min(mins, new Vector<T>(span.Slice(index)));
      index += Vector<T>.Count;
    }
    while (index + Vector<T>.Count <= span.Length);

    value = mins[0];
    for (int i = 1; i < Vector<T>.Count; i++)
    {  
      if (mins[i] < value)
      {
        value = mins[i];
      }
    }
  ....
}
بنابراین به صورت خلاصه در دات نت 7 با استفاده از بکارگیری نوع‌های ویژه‌ی Span و نوع‌های برداری شتاب‌یافته‌ی توسط اکثر سخت افزارهای امروزی، سبب بهبود قابل ملاحظه‌ی کارآیی متدهای LINQ شده‌اند.
مطالب
بهبود کارآیی حلقه‌های foreach در دات نت 7
بالاخره تفاوت کارآیی بین حلقه‌های for و foreach در دات نت 7 برطرف شده‌است که این مورد نیز یکی دیگر از دلایل بهبود کارآیی LINQ در دات نت 7 است. در این مطلب به همراه آزمایشی، این مورد را بررسی خواهیم کرد.


تدارک یک آزمایش برای بررسی کارآیی حلقه‌های for و foreach در دات نت 7

یک برنامه‌ی کنسول جدید را ایجاد کرده و سپس کتابخانه‌ی BenchmarkDotNet را با TargetFramework دات نت 7 به صورت زیر به پروژه اضافه می‌کنیم:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net7.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="BenchmarkDotNet" Version="0.13.4" />
  </ItemGroup>
</Project>
در ادامه به این پروژه، کلاس زیر را اضافه می‌کنیم:
using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Jobs;

namespace NET7Loops;

[SimpleJob(RuntimeMoniker.Net60)]
[SimpleJob(RuntimeMoniker.Net70)]
[MemoryDiagnoser(false)]
public class Benchmarks
{
    private int[] ItemsArray;
    private List<int> ItemsList;

    [GlobalSetup]
    public void Setup()
    {
        var random = new Random(420);
        var randomItems = Enumerable.Range(0, 1000).Select(_ => random.Next());
        ItemsArray = randomItems.ToArray();
        ItemsList = randomItems.ToList();
    }

    [Benchmark]
    public void For_Array()
    {
        for (var i = 0; i < ItemsArray.Length; i++)
        {
            var item = ItemsArray[i];
        }
    }

    [Benchmark]
    public void For_List()
    {
        for (var i = 0; i < ItemsList.Count; i++)
        {
            var item = ItemsList[i];
        }
    }

    [Benchmark]
    public void ForEach_Array()
    {
        foreach (var item in ItemsArray)
        {
        }
    }

    [Benchmark]
    public void ForEach_List()
    {
        foreach (var item in ItemsList)
        {
        }
    }
}
که توسط دستورات زیر در حالت release اجرا شده و نتایج نهایی را نمایش می‌دهد:
using BenchmarkDotNet.Running;
using NET7Loops;

BenchmarkRunner.Run<Benchmarks>();
توضیحات:

- می‌توان یک پروژه را یکبار بر اساس دات نت 7 و یکبار هم بر اساس دات نت 6 با تغییر target framework آن‌ها کامپایل و اجرا کرد تا بتوان نتایج این دو را با هم مقایسه کرد و یا می‌توان با ذکر [SimpleJob(RuntimeMoniker.Net60)] و همچنین [SimpleJob(RuntimeMoniker.Net70)]، این مورد را به صورت خودکار به BenchmarkDotNet دات نت واگذار کرد.
- در این آزمایش، ابتدا یک آرایه و یک لیست را تهیه می‌کنیم.
- سپس یکبار حلقه‌های for و foreach را بر روی آرایه و همین عملیات را بر روی لیست تهیه شده، تکرار می‌کنیم.

نتایج حاصل به صورت زیر هستند:


همانطور که در نتایج فوق هم مشاهده می‌کنید:
در دات نت 6
- تفاوتی بین کارآیی حلقه‌ها‌ی for و foreach، زمانیکه بر روی یک آرایه اجرا می‌شوند، وجود ندارد.
- اما کارآیی حلقه‌ی foreach نسبت به حلقه‌ی for، زمانیکه بر روی یک لیست اجرا می‌شوند، تقریبا 50 درصد کمتر است.

در دات نت 7
- تفاوتی بین کارآیی حلقه‌ها‌ی for و forach، زمانیکه بر روی یک آرایه اجرا می‌شوند، وجود ندارد. بنابراین از این لحاظ با دات نت 6 تفاوتی ندارد.
- اما کارآیی حلقه‌ی foreach نسبت به حلقه‌ی for، زمانیکه بر روی یک لیست اجرا می‌شود، تقریبا یکسان و قابل چشم‌پوشی است. یعنی در دات نت 7، کارآیی این دو حلقه یکی شده‌است. اما چرا؟


روشی در جهت یافتن یکی بودن سرعت حلقه‌های for و foreach بر اساس خروجی کامپایلر

با مشاهده‌ی نتایج حاصل از BenchmarkDotNet می‌توان به بهبود کارآیی حاصل پی‌برد؛ اما برای مثال چرا زمانیکه از آرایه استفاده می‌شود، حتی در دات نت 6، تفاوتی بین دو حلقه‌ی for و foreach وجود ندارد، اما زمانیکه از لیست‌ها استفاده می‌شود، این کارآیی 50 درصد افت می‌کند؟
برای پاسخ به این سؤال می‌توان از IL Viewer موجود در Rider استفاده کرد که آخرین نگارش آن به همراه نمایش #Low-level C هم هست:

این همان خروجی است که توسط کامپایلر، پیش از تولید کدهای باینری نهایی، تهیه می‌شود. یعنی اگر قصد داشته باشیم تا درک کامپایلر را نسبت به قطعه کدی مشاهده کنیم، می‌توان به این خروجی مراجعه کرد که به صورت زیر است:
// Decompiled with JetBrains decompiler
// Type: NET7Loops.Benchmarks
// Assembly: NET7Loops, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
// MVID: E398BEE7-8123-4C55-AF9A-F7D83DDA73F1
// Assembly location: C:\Prog\1401\Net7Tests\NET7Loops\bin\Debug\net7.0\NET7Loops.dll
// Compiler-generated code is shown

using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Jobs;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.CompilerServices;

namespace NET7Loops
{
  [NullableContext(1)]
  [Nullable(0)]
  [SimpleJob(RuntimeMoniker.Net60, -1, -1, -1, -1, null, false)]
  [SimpleJob(RuntimeMoniker.Net70, -1, -1, -1, -1, null, false)]
  [MemoryDiagnoser(false)]
  public class Benchmarks
  {
    private int[] ItemsArray;
    private List<int> ItemsList;

    [GlobalSetup]
    public void Setup()
    {
      Benchmarks.<>c__DisplayClass2_0 cDisplayClass20 = new Benchmarks.<>c__DisplayClass2_0();
      cDisplayClass20.random = new Random(420);
      IEnumerable<int> source = Enumerable.Range(0, 1000).Select<int, int>(new Func<int, int>((object) cDisplayClass20, __methodptr(<Setup>b__0)));
      this.ItemsArray = source.ToArray<int>();
      this.ItemsList = source.ToList<int>();
    }

    [Benchmark(23, "C:\\Prog\\1401\\Net7Tests\\NET7Loops\\Benchmarks.cs")]
    public void For_Array()
    {
      for (int index = 0; index < this.ItemsArray.Length; ++index)
      {
        int items = this.ItemsArray[index];
      }
    }

    [Benchmark(32, "C:\\Prog\\1401\\Net7Tests\\NET7Loops\\Benchmarks.cs")]
    public void For_List()
    {
      for (int index = 0; index < this.ItemsList.Count; ++index)
      {
        int items = this.ItemsList[index];
      }
    }

    [Benchmark(41, "C:\\Prog\\1401\\Net7Tests\\NET7Loops\\Benchmarks.cs")]
    public void ForEach_Array()
    {
      int[] itemsArray = this.ItemsArray;
      for (int index = 0; index < itemsArray.Length; ++index)
      {
        int num = itemsArray[index];
      }
    }

    [Benchmark(49, "C:\\Prog\\1401\\Net7Tests\\NET7Loops\\Benchmarks.cs")]
    public void ForEach_List()
    {
      List<int>.Enumerator enumerator = this.ItemsList.GetEnumerator();
      try
      {
        while (enumerator.MoveNext())
        {
          int current = enumerator.Current;
        }
      }
      finally
      {
        enumerator.Dispose();
      }
    }

    public Benchmarks()
    {
      base..ctor();
    }

    [CompilerGenerated]
    private sealed class <>c__DisplayClass2_0
    {
      [Nullable(0)]
      public Random random;

      public <>c__DisplayClass2_0()
      {
        base..ctor();
      }

      internal int <Setup>b__0(int _)
      {
        return this.random.Next();
      }
    }
  }
}
در این خروجی بهتر می‌توان مشاهده کرد که چرا در حالت استفاده‌ی از آرایه‌ها، تفاوتی بین حلقه‌های for و foreach نیست؛ چون هر دو به صورت حلقه‌ی for تفسیر می‌شوند:
for (int index = 0; index < this.ItemsArray.Length; ++index)
{
   int items = this.ItemsArray[index];
}
اما زمانیکه به لیست‌ها می‌رسیم، حلقه‌ی foreach به صورت زیر تفسیر می‌شود که بدیهی است نسبت به حلقه‌ی for، کندتر اجرا خواهد شد:
      List<int>.Enumerator enumerator = this.ItemsList.GetEnumerator();
      try
      {
        while (enumerator.MoveNext())
        {
          int current = enumerator.Current;
        }
      }
      finally
      {
        enumerator.Dispose();
      }
اگر این خروجی را برای دات نت 6 و دات نت 7 تهیه کنیم، به یک جواب خواهیم رسید. یعنی از دیدگاه #Low-level C، تفاوتی بین IL دات نت 6 و 7 از این لحاظ وجود ندارد. تفاوتی اصلی در بهبودهای JIT دات نت 7 است که سبب شده، خروجی نهایی حلقه‌‌های foreach با for یکی باشد.
نظرات مطالب
Blazor 5x - قسمت یازدهم - مبانی Blazor - بخش 8 - کار با جاوا اسکریپت
اضافه شدن JavaScript initializers   به Blazor 6x

در اینجا می‌توان فایل ویژه‌ای به نام NAME.lib.module.js را به پوشه‌ی wwwroot پروژه اضافه کرد که name آن، همان نام اسمبلی، کتابخانه و در اصل package identifier پروژه‌است؛ با این محتوا:
export function beforeStart(options, extensions) {
    console.log("beforeStart");
}

export function afterStarted(blazor) {
    console.log("afterStarted");
}
قالب این محتوا باید به همین نحو باشد و معرف اجرای کدهایی پیش از و پس از load برنامه است. به این ترتیب می‌توان به این مزایا دست یافت:
- سفارشی سازی نحوه‌ی بارگذاری یک برنامه‌ی Blazor
- اجرای کدهای سفارشی، پیش و پس از بارگذاری برنامه
- امکان تنظیم ویژگی‌های Blazor

یک مثال: بارگذاری یک اسکریپت پس از کامل شدن بارگذاری Blazor
<body>
    ...

    <script src="_framework/blazor.{webassembly|server}.js" 
        autostart="false"></script>
    <script>
      Blazor.start().then(function () {
        var customScript = document.createElement('script');
        customScript.setAttribute('src', 'scripts.js');
        document.head.appendChild(customScript);
      });
    </script>
</body>
نظرات مطالب
آموزش TypeScript #1
یکی از دلایل محبوبیت زبان JavaScript، راحتی در نوشتن کد با این زبان است. اگر قرار باشد این زبان یک محصول همه منظوره باشد به طور قطع دچار پیچیدگی‌های پیاده سازی شده و این همه محبوبیت به دست نمی‌آورد. هدف اولیه از تولید و توسعه زبان JavaScript، استفاده از آن در پروژه‌های سمت کلاینت بود. اما با مرور زمان و محبوبیت بیش از اندازه، توسعه گران مختلف تصمیم به توسعه این زبان گرفتند که هر محصول برای یک منظور خاص به وجود آمد.  برای مثال Node.Js برای پروژه‌های RealTime استفاه می‌شود و بر مبنای منطق event-driven می‌باشد که خیلی‌ها از آن به عنوان Server side JavaScript یاد می‌کنند یا به عنوان مثال دیگر Dart محصول شرکت گوگل در سال 2011 (طراحی شده بر مبنای Scratch)و TypeScript محصول  شرکت مایکروسافت در سال 2012 (طراحی شده بر مبنای JavaScript)عرضه شدند که هدف اصلی از تولید این زبان‌ها پشتیبانی از مبحث static typing و مباحث OOP برای پیاده سازی پروژه‌های در سطوحی با مقیاس بزرگ بود. JavaScript به عنوان زبان پایه باقی خواهد ماند و نسخه‌های مختلف در شکل سایر زبان‌ها و فریم ورک‌های مختلف عرضه می‌شوند تا هر کدام یک نیاز را برطرف سازند. البته در پایان این نکته را هم متذکر شوم که JavaScript هم روند با توسعه ECMAScript تغییر می‌کند. برای مثال در نسخه ECMASCript 6، امکان تعریف کلاس و ماژول در JavaSCript فراهم شده است.
اشتراک‌ها
کتابخانه JSIL
JSIL is a compiler that transforms .NET applications and libraries from their native executable format - CIL bytecode - into standards-compliant, cross-browser JavaScript. You can take this JavaScript and run it in a web browser or any other modern JavaScript runtime. Unlike other cross-compiler tools targeting JavaScript, JSIL produces readable, easy-to-debug JavaScript that resembles the code a developer might write by hand, while still maintaining the behavior and structure of the original .NET code.  Demo
کتابخانه JSIL