نظرات مطالب
اهمیت Controller های ساده در ASP.NET MVC
Controller فقط مصرف کننده‌ی منطق نهایی است ، بدنه‌ی کنترلر‌ها جای مناسبی برای پیاده سازی منطق تجاری نیست. BL که شما از آن یاد می‌کنید در لایه‌ی دیگری رخ می‌دهد ، یکی اسم آم را Task می‌گذارد ، یکی Service و دیگری BlaBla ..
MVC جایگزینی برای N-Tier  نیست ، بلکه روشی برای سازماندهی لایه‌ی نمایش می‌باشد.
ViewModel‌ها  (ViewModel === Model Of View) اشیایی هستند که از طریق لایه‌ی سرویس تولید می‌شوند و در واقع داده ای که باید در View به کاربر نمایش داده شود را نگهداری می‌کنند.
نگرانی و مسئولیت Controller فراهم کردن داده  (از طریق اجرای Business logic) برای UI می‌باشد.
مطالب دوره‌ها
مروری اجمالی بر الگوریتم های داده کاوی و پارامترهای مرتبط با آنها موجود در SSAS
این بخش مروری اجمالی بر الگوریتم‌های موجود در Analysis Services و پارامترهای قابل تنظیم و مقدار پیش فرض هر پارامتر می‌باشد، به منظور بررسی بیشتر هر یک به لینک‌های زیر مراجعه کنید:

1 -  Microsoft Association Rules

به منظور ایجاد قوانینی که توصیف کننده این موضوع باشد که چه مواردی احتمالاً با یکدیگر در تراکنش‌ها ظاهر می‌شوند، استفاده می‌شود.

 Range    Default  Parameter  
(...,1]
200000 
MAXIMUM_ITEMSET_COUNT  
[0,500]
3 
MAXIMUM_ITEMSET_SIZE  
(...,0.0) 1.0 
MAXIMUM SUPPORT  
(...,...)
999999999
MINIMUM IMPORTANCE  
[1,500]
1 
MINIMUM_ITEMSET_SIZE  
 [0.0,1.0]
0.4 
MINIMUM PROBABILITY  
(...,0.0] 0.0  MINIMUM SUPPORT 

2 - Microsoft Clustering
به منظور شناسائی روابطی که در یک مجموعه داده ممکن است از طریق مشاهده منطقی به نظر نرسد، استفاده می‌شود. در واقع این الگوریتم با استفاده از تکنیک‌های تکرار شونده رکوردها را در خوشه هایی که حاوی ویژگی‌های مشابه هستند گروه بندی می‌کند.

 Range
Default
Parameter
(...,0] 10 
CLUSTER COUNT 
(...,0]
0
CLUSTER SEED 
1,2,3,4
1
CLUSTERING METHOD 
[0,65535]
255
MAXIMUM_INPUT_ATTRIBUTES 
[2,65535],0 100
MAXIMUM STATES 
(...,0)
1
MINIMUM SUPPORT 
 [1,50] 10
MODELLING_CARDINALITY 
(...,100],0 50000
SAMPLE SIZE 
(...,0) 10
STOPPING TOLERANCE 

3 - Microsoft Decision Trees
مبتنی بر روابط بین ستونهای یک مجموعه داده ای باعث پیش بینی روابط مدل‌ها می‌شود، که به صورت یک سری درختوار ویژگی‌ها در آن شکسته می‌شوند.
به منظور انجام پیش بینی از هر دو ویژگی پیوسته و گسسته پشتیبانی می‌شود. 

 
Range 
 Default   Parameter 
(0.0,1.0)
  COMPLEXITY_PENALTY 
    FORCE REGRESSOR 
[0,65535]
255
MAXIMUM_INPUT_ATTRIBUTES 
[0,65535]
255
MAXIMUM_OUTPUT_ATTRIBUTES 
(...,0.0) 
10.0
MINIMUM SUPPORT 
 1,3,4 4
SCORE METHOD 
 [1,3] 
3
SPLIT METHOD 

4 - Microsoft Linear Regression
چنانچه یک وابستگی خطی میان متغیر هدف و متغیرهای مورد بررسی وجود داشته باشد، کارآمدترین رابطه میان متغیر هدف و ورودی‌ها را پیدا می‌کند.
به منظور انجام پیش بینی از ویژگی پیوسته پشتیبانی می‌کند.

Range 
 Default  Parameter 
 
  FORCE REGRESSOR 
[0,65535]  
255
MAXIMUM_INPUT_ATTRIBUTES 
[0,65535]  
255
MAXIMUM_OUTPUT_ATTRIBUTES 
 
5 - Microsoft Logistic Regression
به منظور تجزیه و تحلیل عواملی که در یک تصمیم گیری مشارکت دارند که پی آمد آن به وقوع یا عدم وقوع یک رویداد می‌انجامد از این الگوریتم استفاده می‌شود.
جهت انجام پیش بینی از هر دو ویژگی پیوسته و گسسته پشتیبانی می‌کند.

 Range   Default  Parameter 
(0,100)  
30
HOLDOUT_PERCENTAGE 
(...,...) 
0
HOLDOUT SEED 
[0,65535]  
255
MAXIMUM_INPUT_ATTRIBUTES 
[0,65535]  
255
MAXIMUM_OUTPUT_ATTRIBUTES 
[2,65535],
100
MAXIMUM STATES 
(...,0] 
10000
SAMPLE SIZE 
 
6 - Microsoft Naïve Bayes
احتمال ارتباط میان تمامی ستون‌های ورودی و ستون‌های قابل پیش بینی را پیدا می‌کند.  همچنین این الگوریتم برای تولید سریع مدل کاوش به منظور کشف ارتباطات بسیار سودمند می‌باشد. تنها از ویژگی‌های گسسته یا گسسته شده پشتیبانی می‌کند و با تمامی ویژگی‌های ورودی به شکل مستقل رفتار می‌کند. 

 Range   Default   Parameter 
[0,65535] 
255
MAXIMUM_INPUT_ATTRIBUTES 
[0,65535] 
255
MAXIMUM_OUTPUT_ATTRIBUTES 
[2,65535],0 
100
MAXIMUM STATES 
(0,1)  
0.5
MINIMUM_DEPENDENCY_PROBABILITY 
 
7 - Microsoft Neural Network
به منظور تجزیه و تحلیل داده‌های ورودی پیچیده یا مسائل بیزنسی که برای آنها مقدار قابل توجهی داده آموزشی در دسترس می‌باشد اما به آسانی نمی‌توان با استفاده از الگوریتم‌های دیگر این قوانین را بدست آورد، استفاده می‌شود. با استفاده از این الگوریتم می‌توان چندین ویژگی را پیش بینی نمود. همچنین این الگوریتم می‌تواند به منظور طبقه بندی برای ویژگی‌های گسسته و ویژگی‌های پیوسته رگرسیون مورد استفاده قرار گیرد. 

 Range   Default   Parameter 
(...,0]  
4.0
HIDDEN_NODE_RATIO 
(0,100)  
30
HOLDOUT PERCENTAGE 
(...,...)  
0
HOLDOUT SEED 
[0,65535] 
255
MAXIMUM_INPUT_ATTRIBUTES 
[0,65535] 
255
MAXIMUM_OUTPUT_ATTRIBUTES 
[2,65535],0
100
MAXIMUM STATES 
(...,0]  
10000
SAMPLE SIZE 
 
8 - Microsoft Sequence Clustering
به منظور شناسائی ترتیب رخدادهای مشابه در یک دنباله استفاده می‌شود. در واقع این الگوریتم ترکیبی از تجزیه تحلیل توالی و خوشه را فراهم می‌کند.

 Range   Default   Parameter 
(...,0] 
10
CLUSTER COUNT 
[2,65535],0 
64
MAXIMUM_SEQUENCE_STATES 
[2,65535],0 
100
MAXIMUM STATES 
(...,0] 
10
MINIMUM SUPPORT 

9 - Microsoft Time Series
  به منظور تجزیه و تحلیل داده‌های زمانی (داده‌های مرتبط با زمان) در یک درخت تصمیم گیری خطی استفاده می‌شود. الگوهای کشف شده می‌توانند به منظور پیش بینی مقادیر آینده در سری‌های زمانی استفاده شوند. 

 
 Range  Default 
 Parameter 
[0.0,1.0]  
0.6
AUTO_DETECT_PERIODICITY 
(1.0,...) 
0.1
COMPLEXITY_PENALTY 
ARIMA,ARTXP,MIXED 
MIXED
FORECAST METHOD 
[0,100] 
1
HISTORIC_MODEL_COUNT 
(...,1]  
10
HISTORIC_MODEL_GAP 
[0.0,1.0]  
1.0
INSTABILITY_SENSITIVITY 
[...,column maximum] 
1E308+
MAXIMUM_SERIES_VALUE 
[column minimum,...] 
1E308-
MINIMUM_SERIES_VALUE 
(...,1]  
10
MINIMUM SUPPORT 
None,Previous,Mean 
 None MISSING_VALUE_SUBSTITUTION 
{...list of integers...}
{1}
PERIODICITY_HINT 
[0.0,1.0]  
0.5
PREDICTION SMOOTHING 
مطالب
الگوریتم های داده کاوی در SQL Server Data Tools یا SSDT - قسمت دوم - الگوریتم Naïve Bayes
در قسمت قبل به صورت اجمالی با الگوریتم‌های داده کاوی در SSDT آشنا شدید. در این قسمت به الگوریتم Naive Bayes خواهیم پرداخت.


برای روشن‌تر شدن مطلب، سیستم رای گیری را در نظر بگیرید، در رابطه با سیستم رای گیری از طریق این الگوریتم می‌توان به پرسش‌های زیر پاسخ داد: 
  • مهمترین آرای هر حزب چه هستند؟
  • توزیع آرا در رابطه با یک عمل خاص (پرداخت یارانه یا عدم پرداخت آن) چگونه بوده است؟
  • توزیع آرای یک عمل خاص درمیان آرای اعمال دیگر چگونه بوده است و چه ارتباطی بین آنها است؟

این الگوریتم، ارتباط بین ویژگی‌ها را مشخص می‌کند، این درحالی است که از طریق الگوریتم‌های دیگر این کار به سادگی قابل کشف نیست. 
یک راه خوب برای شروع داده کاوی ساخت مدل Naïve Bayes و چک کردن ورودی و خروجی برروی تمام ستون‌ها است. مدل حاصل سبب می‌شود که درک بهتری از داده‌ها پیدا کرده و ساخت مدل‌های دیگر داده کاوی مانند درخت تصمیم و ... راحت‌تر انجام پذیرد. به همین جهت، اولین الگوریتم معرفی شده نیز این الگوریتم می‌باشد.
بنابراین زمانیکه با یک مجموعه داده جدید روبرو می‌شویم، راحت‌ترین راه برای شروع داده کاوی، ساخت یک مدل از Naïve Bayes است، به طوریکه تمامی ستون‌های غیرکلید را به عنوان predict یا همان هم ورودی-هم خروجی در نظر می‌گیریم. پس از آموزش مدل به قسمت Dependency Network می‌رویم. نمونه ای از شبکه وابستگی‌ها را در شکل زیر مشاهده می‌کنید که در حقیقت گرافی از نودها است.

نودهای مختلف نشان دهنده ستون‌های انتخاب شده هستند و جهت ارتباط بین نودها از ورودی به سمت خروجی است. ارتباط‌های دوطرفه نشان دهنده این هستند که از هر یک از دو نود می‌توان دیگری را پیش بینی کرد. سمت چپ این گراف در SSDT یک نوار وجود دارد (که در شکل زیر آمده است)، هرچه نوار کناری را به سمت پایین ببریم ارتباط‌های قوی‌تر نشان داده شده و ارتباط هایی که دارای قدرت کمتری هستند حذف می‌شوند. بنابراین زمانی که نوار کناری را در پایین‌ترین حالت قرار دهیم می‌توان قوی‌ترین ارتباط بین ستون‌های ورودی و خروجی را مشاهده نمود.


نکته مهم: اگر هدف ما پیش بینی یک ویژگی باشد، ارتباط قوی ما بین دو ورودی، مشخص می‌کند که استفاده از هردوی آن‌ها برای پیش بینی یک ویژگی خروجی، کاری بس اشتباه است؛ زیرا ورودی‌های شبیه به هم می‌توانند اثر دوبرابری داشته باشند. برای مثال در شکل بالا در صورتی که ارتباط موجود بین دو ویژگی Young Frankenstein و Monty Python and the Holy Grail قوی باشد بایستی از انتخاب هر دوی این ویژگی‌ها به عنوان ورودی برای پیش بینی ویژگی Princess Bride پرهیز نمود.

جهت درک بهتر داده‌ها می‌توان به قسمت Attribute Profile مراجعه نمود. همانطور که درشکل زیر آمده است در این بخش ماتریسی از نحوه ارتباط بین تمامی حالات ورودی‌ها و خروجی‌ها نشان داده شده است.

 از لیست کشویی، خروجی مدنظر را انتخاب می‌کنیم و ماتریس درصد پیش بینی خروجی از روی ورودی یا ورودی‌ها نشان داده می‌شود. 
اگر هدف درک شباهت‌ها و اختلافات حالت‌های هدف پیش بینی باشد می‌توان از دو قسمت Attribute Characteristics و Attribute Discrimination استفاده نمود. در رابطه با Attribute Characteristics دو مساله را باید در نظر داشت:
  1. قدرت پیش بینی ندارد یعنی نباید در این قسمت از روی ویژگی‌ها به پیش بینی هدفی پرداخت. 
  2. ورودی هایی که امتیازشان از مینیمم امتیاز یک گره پایین‌تر است نشان داده نمی‌شوند.  
نمایی از Attribute Characteristics را در زیر مشاهده می‌نمایید.

 و اما در رابطه با Attribute Discrimination نیز باید قبل از هر قضاوتی، مراقب سطح پشتیبانی (support level) ویژگی‌ها باشیم. برای مثال در رابطه با رای گیری در رابطه با یک عمل خاص مشاهده می‌شود که اختلاف زیادی بین حزب دموکرات و حزب مستقل وجود دارد که متاسفانه این تفسیر اشتباه است چرا که پس از بررسی مجموعه داده به این نتیجه می‌رسیم که داده مربوط به حزب مستقل فقط دو مورد است و هردوی آن‌ها در این آمار آمده‌اند. یعنی 100 درصد آن‌ها و این درحالی است که داده مربوط به حزب دموکرات زیاد بوده و ممکن است این درصد اعلام شده روی این عمل خاص حتی از حزب مستقل پایین‌تر باشد. شکل زیر نمایی از Attribute Discrimination می باشد.


از آنجاکه فاز پردازش این الگوریتم فقط اولین دسته مرتب شده از ارتباط بین ورودی و خروجی‌ها را حساب می‌کند، پس نگرانی از بابت پردازش نیست. بنابراین این الگوریتم برای مجموعه داده‌های خیلی بزرگ با ویژگی‌های بسیار زیاد، مناسب است.

در این الگوریتم ورودی و خروجی باید Discrete (گسسته) باشند و در صورتیکه Continuous (پیوسته) باشند بایستی Discretize شوند. البته باید درنظر داشت که در حالت کلی این الگوریتم در رابطه با داده‌های Continuous کاربرد مناسبی ندارد. بنابراین پیش بینی این داده‌ها حتی اگر Discretize شوند با این الگوریتم خوب نیست.
در پایان بهتر است دوباره به این نکته اشاره شود که بایستی مراقب بود تا ورودی‌ها تقریبا مستقل از یکدیگر انتخاب شوند؛ زیرا ورودی‌های شبیه به هم می‌توانند اثر دوبرابری و مخربی داشته باشند که بایستی از آن اجتناب کرد. به دلیل چنین رفتاری، ارزیابی مدل توسط lift chart حتما پیشنهاد می‌شود.
مطالب
افزودن یک DataType جدید برای نگه‌داری تاریخ خورشیدی - 2
پیش از هرچیز به شما پیش‌نهاد می‌کنم؛ بار دیگر کد سی‌شارپ درس نخست را در پروژه‌ی خود کپی کنید و سپس Publish را بزنید. پس از ارسال آن مطلب، تغییراتی در جهت بهینه‌سازی کد دادم که به نظرم بهتر است شما نیز در پروژه‌ی خود به کار برید.

چرا از این نوع داده استفاده کنیم؟
نخستین پرسشی که ممکن است برای شما پیش بیاید این است که چرا بهتر است از این نوع داده استفاده کنیم. برای پاسخ به این پرسش باید راه‌کارهای گذشته را بررسی کنیم. معمولاً طراحان پایگاه داده‌ها برای استفاده از تاریخ خورشیدی، زمان را به صورت میلادی ثبت می‌کنند؛ سپس با یک scalar-valued function زمان درج شده را به خورشیدی تبدیل می‌کنند. در این صورت می‌توان با یک تابع کوچک دیگر بخش مربوط به ساعت را نیز از همان ستون به دست آورد. در این صورت می‌توانیم از کلیه‌ی متدهای مربوط به DateTime در SQL از جمله افزایش و کاهش و تفاضل دو تاریخ بهره برد. برخی دیگر از طراحان، ستونی از نوع (char(10 در نظر می‌گیرند و تاریخ خورشیدی را به صورت ده‌کاراکتری در آن ذخیره می‌کنند. این روش هرچند نیاز به تبدیل به خورشیدی را ندارد ولی کلیه‌ی مزایایی که در استفاده از DateTime به آن‌ها دسترسی داریم از دست می‌دهیم. افزون بر این جهت نگه‌داری زمان باید یک فیلد دیگر از نوع کاراکتری و یا در نگارش‌های نوین‌تر از نوع time تعریف کنیم. برخی دیگر از هر دو را در کنار هم استفاده می‌کنند و در واقع جهت سرعت بالاتر نمایش و بررسی داده‌ها از طریق محیط SQL Server از فیلد کاراکتری تاریخ خورشیدی و برای مقایسه و بدست آوردن ساعت از فیلد نوع DateTime استفاده می‌کنند.

از نظر فضای اشغال‌شده نوع DataTime، هشت بایت، smalldatetime (در صورت استفاده) 4 بایت و فیلد 10 کاراکتری تاریخ 10 بایت فضا اشغال می‌کند در صورتی که نوع JalaliDate با درنظر گرفتن همه‌ی مزایای انواع داده‌ی استفاده‌شده برای تاریخ، فقط 8 بایت فضا اشغال می‌کند. با استفاده از این نوع به راحتی داده‌ی تاریخ را بر اساس تقویم ایرانی اعتبارسنجی می‌کنید و بخش‌های مختلف زمان از سال تا ثانیه را با یک متد به دست می‌آورید. می‌توانید به راحتی به تاریخ خود زمانی را بیفزایید یا بکاهید و در گزارش‌ها بدون نگرانی از تبدیل درست استفاده کنید. چون کدباز است می‌توانید با کمی حوصله امکانات دیگر مد نظر خود را به آن بیفزایید و از آن در SQL بهره ببرید.

چگونه این نوع داده را حذف کنم!؟
شما می‌توانید به سادگی نوع داده‌ی ایجادشده توسط CLR را در مسیر زیر بیابید و اقدام به حذف آن نمایید:

همان‌طور که مشاهده می‌شود؛ حتی نوع داده‌ی سیستمی hierarchyid که جهت ساختار سلسله‌مراتبی مانند چارت سازمانی یا درخت تجهیزات استفاده می‌شود؛ نیز یک نوع داده‌ی CLR است.

آیا راه دیگری نیز برای افزودن این نوع داده به SQL به جز Publish کردن وجود دارد؟
مانند بسیاری دیگر از گونه‌های پروژه، در اینجا نیز شما یک فایل DLL خواهید داشت. این فایل برپایه‌ی تنظیماتی که شما در قسمت Properties پروژه‌ی خود انجام می‌دهید ساخته می‌شود. پس از تغییر مسیر فایل DLL در دستور زیر توسط یک New Query از Database خود، آن را اجرا کنید:

CREATE ASSEMBLY JalaliDate
FROM 'F:\prgJalaliDate.dll' 
WITH PERMISSION_SET = SAFE;
هم‌چنین در صورت ویرایش‌های دوباره پروژه از دستور زیر استفاده کنید:
ALTER ASSEMBLY JalaliDate
FROM 'F:\prgJalaliDate.dll'
با استفاده از دستورهای زیر می‌توانید از چگونگی درج فایل‌های افزوده شده آگاه شوید:
select * from sys.assemblies
select * from sys.assembly_files
تا اینجا SQL Server، دی‌ال‌ال مربوط به پروژه را شناخته است. برای تعریف نوع داده از دستور زیر بهره ببرید:
CREATE TYPE dbo.JalaliDate 
EXTERNAL NAME JalaliDate.[JalaliDate];
این کار همانند استفاده از گزینه‌ی Publish در Visual Studio است.
هم‌چنین چنان‌چه در SQL Server 2012 از منوی راست‌کلیک پایگاه داده‌ها روی گزینه Tasks و سپس Generate Scripts را انتخاب کنیم، از مشاهده‌ی سند ساخته شده، درخواهیم یافت که حتی دستورهای مربوط به ساخت اسمبلی CLR با تبدیل فایل به کد در Scripts وجود دارد و با اجرای آن در سروری دیگر، انتقال می‌یابد.

GO
/****** Object:  SqlAssembly [prgJalaliDate]    Script Date: 2013/04/30 08:27:00 ب.ظ ******/
CREATE ASSEMBLY [prgJalaliDate]
FROM 0x4D5A90000300000004000000FFFF0000B8000000000000 ..... بقیه‌ی کدها حذف شده
WITH PERMISSION_SET = SAFE

GO
ALTER ASSEMBLY [prgJalaliDate]
ADD FILE FROM 0x4D6963726F736F667420432F432B2B204D534620372E30300D0A1A44530..... بقیه‌ی کدها حذف شده
AS N'prgJalaliDate.pdb'

GO
/****** Object:  UserDefinedType [dbo].[JalaliDate]    Script Date: 2013/04/30 08:27:00 ب.ظ ******/
CREATE TYPE [dbo].[JalaliDate]
EXTERNAL NAME [prgJalaliDate].[JalaliDate]

GO

دنباله دارد ...
مطالب
سیستم‌های توزیع شده در NET. - بخش چهارم - تعاریف، مزایا و معایب
بدلیل اینکه یکی از مهمترین معایب سیستم‌های توزیع شده، پیچیدگی در طراحی و پیاده سازی این نوع از سیستمها می‌باشد و آشنا بودن ما با تعاریف، خصوصیات، مزایا، معایب، اهداف و اصطلاحات موجود در این نوع سیستمها، باعث کاهش این پیچیدگیها و مدیریت و کنترل بیشتری بر روی این پیچیدگی‌ها می‌شود، پیش نیاز ورود به دنیای سیستم‌های توزیع شده و استفاده از ابزارهای مرتبط با آنها، آشنا بودن با مفاهیم فوق است.

 در این بخش تعاریف، خصوصیات، مزایا و معایب مرتبط با این نوع سیستم‌ها بررسی می‌شوند.


تعریف سیستمهای توزیع شده

تعاریف مختلفی توسط اشخاص و گروه‌های مختلف، از سیستم‌های توزیع شده وجود دارد. در اینجا سعی شده که اکثر این تعاریف معرفی شوند؛ بگونه‌ای که با ارائه نکات کلیدی این تعاریف به درک بهتری از خصوصیات سیستم‌های توزیع شده برسیم.


تعاریف سیستم‌های توزیع شده

تعریف اول: سیستمهای توزیع  شده از مجموعه‌ای از سخت افزارها و نرم افزارها که برای رسیدن به یک هدف واحد از طریق شبکه با یکدیگر در ارتباطند تشکیل شده.
تعریف دوم: یک مجموعه از Computerهای مستقل که از نظر کاربر یک Computer و یک سیستم واحد و منسجمند.
تعریف سوم: سیستم‌های توزیع شده در واقع هنری هستند که بوسیله آنها می‌توانید مشکلاتی را که در یک کامپیوتر وجود دارند، با استفاده از چند کامپیوتر رفع کنید و معمولا به این دلیل انتخاب می‌شوند که این مشکلات توسط یک کامپیوتر رفع نمی‌شوند.
تعریف چهارم: زیر سیستمهایی که بصورت همزمان می‌توانند پردازش یک سیستم بزرگ را انجام دهند؛ البته همزمانی که در آن مانند سیستمهای Parallel از یک حافظه مشترک استفاده نشود.
تعریف پنجم: مجموعه ای از پردازشهای مرتبط به هم، بصورتی که هر پردازش از حافظه داخلی مرتبط با خودش استفاده کند و تمام این پردازش‌ها از طریق Message passing در سطح شبکه با یکدیگر در ارتباطند.
تعریف ششم: تقسیم بندی وظایف یک سیستم بزرگ به زیرسیستمهایی که در سخت افزارهای مجزا اجرا می‌شوند و کاربر هیچ تصوری از وجود این زیر سیستمها ندارد.

در تعاریف فوق نکات کلیدی وجود دارد که می‌توانند خصوصیات سیستم‌های توزیع شده نیز باشند و با در نظر گرفتن آنها می‌توانید به درک بهتری از سیستم‌های توزیع شده برسید.


نکات کلیدی یا خصوصیات سیستمهای توزیع شده

1- داشتن یک هدف واحد در سیستم‌های توزیع شده، زیر سیستمهایی که از نظر کاربر یک سیستم واحد و متمرکزند:  این یکی از خصوصیات و نکات کلیدی سیستم‌های توزیع شده‌است که تمام اجزاء و زیرسیستم‌ها در راه رسیدن به یک هدف واحد با یکدیگر در ارتباط اند. ارتباطی که باعث همکاری آنها می‌شود و همکاری که باید بصورت کامل از دید کاربر مخفی بماند (داشتن یک هدف واحد یکی از تفاوتهای سیستم‌های توزیع شده با Cloud distributed systemها می‌باشد. چون در Cloud distributed systemها لزوما تمام اجزا برای رسیدن به یک هدف مشترک با یکدیگر کار نمی‌کنند).

2- کامپیوتر‌های مستقل، حافظه‌های داخلی جداگانه، عدم وجود حافظه مشترک:  یکی از مهمترین تفاوتهای سیستم‌های توزیع شده با سیستمهای Parallel، عدم وجود حافظه مشترک بین پردازش‌های جداگانه است. یعنی در این نوع سیستم‌ها، هر زیرسیستم در یک کامپیوتر مجزا که حافظه داخلی خودش را دارد اجرا می‌شود.

3- تقسیم بندی وظایف: که یکی از نکات کلیدی این نوع سیستمها می‌باشد. تقسیم بندی می‌تواند به هر دلیلی که شما درنظر می‌گیرید صورت بپذیرد. دلایلی برای بالا بردن کارآیی، امنیت، در دسترس بودن، یا حتی دلایل مربوط به Business سیستم شما.

4- ارتباط از طریق شبکه، ارتباطی که از طریق Message passing صورت می‌پذیرد: این خصوصیت در واقع پایه تمام تعاریف سیستم‌های توزیع شده‌است. در سیستم‌های توزیع شده همه چیز از ارتباط‌هایی که از طریق شبکه صورت می‌پذیرد، شروع می‌شود .


مزایای استفاده از سیستم‌های توزیع شده

1- کارآیی بسیار بالاتر: بدلیل همزمان اجرا شدن کارها در سخت افزارهای مختلف، کارآیی این نوع سیستم‌ها بسیار بیشتر از سیستم‌های متمرکز است.
2- قابلیت همکاری بیشتر: بدلیل اینکه این سیستمها ذاتا توزیع شده هستند، با کمترین هزینه و پیچیدگی می‌توانند با سایر سیستمها همکاری لازم را داشته باشند.
3- قابلیت در دسترس بودن و اطمینان بیشتر: در این سیستم‌ها با روشهای مختلفی مانند replication، به راحتی می‌توان این دو قابلیت را در بالاترین سطح قرار داد.
4- مقیاس پذیری: مقیاس پذیری در این سیستمها با قرار دادن کامپوننت‌هایی که قابلیت استفاده مجدد بالایی را دارند در سرور‌های جدید به راحتی و بدون از دسترس خارج شدن سیستم صورت می‌پذیرد.
5- قابلیت گسترش: برای گسترش سیستم و اضافه کردن نیازمندی‌های جدید در این سیستم‌ها، به راحتی می‌توان کامپوننت‌ها و زیرسیستمهای جدیدی را پیاده سازی کرد و بدون از دسترس خارج شدن سیستم و به گونه‌ای که به راحتی با سایر قسمت‌های موجود در ارتباط باشند، آنها را به سیستم اضافه کرد.
6- بهره وری بالاتر و زمان توسعه کمتر: بدلیل تقسیم بندی قسمتهای بزرگ به قسمتهای کوچکتر، تیمهای مختلف می‌توانند بصورت همزمان قسمتهای کوچک را توسعه دهند.
7- قابلیت استفاده مجدد بسیار بالا: در این نوع سیستم‌ها به راحتی می‌توانید از یک زیرسیستم یا کامپوننت خاص که یکبار پیاده سازی شده و در سخت افزار جداگانه‌ای اجرا شده، در تمام Application‌ها استفاده کنید.
8- کاهش هزینه: در مواردی مانند قابلیت استفاده‌ی مجدد بالا و توسعه پذیری سیستم، می‌توانند باعث کاهش هزینه‌ها شوند (در صورت انتخاب نادرست این نوع سیستم، این مزیت می‌تواند تبدیل به یکی از معایب سیستم شود).
9- امنیت: بدلیل اینکه هر زیرسیستم در یک سخت افزار جداگانه اجرا می‌شود که مکان آن از قبل مشخص نیست و همچنین تقسیم بندی قسمت‌هایی که نیاز به امنیت بالایی دارند، می‌تواند بر اساس نیاز و در سخت افزارهایی که حتی به اینترنت هم متصل نیستند، صورت بپذیرد. این نوع سیستم می‌تواند از امنیت بالایی برخوردار باشد (البته در صورت طراحی نادرست، امنیت می‌تواند بعنوان یکی از معایب این نوع سیستمها نیز مطرح شود).


معایب  استفاده از سیستم‌های توزیع شده

1- پیچیدگی در انتخاب، طراحی و پیاده سازی سیستمهای توزیع شده: یکی از اصلی‌ترین معایب سیستم‌های توزیع شده، پیچیدگی‌هایی است که در انتخاب، طراحی و پیاده سازی آنها وجود دارد. به دلیل پیچیدگی‌هایی که در هریک از این قسمت‌ها وجود دارد، در صورت اتخاذ تصمیمات نادرست، در هر یک از این قسمتها اکثر مزایای آنها می‌توانند تبدیل به معایب این نوع سیستم‌ها شوند.

2- بالا رفتن زمان طراحی و پیاده سازی: بدلیل بوجود آمدن مفاهیم جدید و پیچیدگی که در این نوع سیستم وجود دارد و همچنین بدلیل کم بودن نیروی متخصص در این نوع سیستم، زمان توسعه آنها می‌تواند بیشتر از سیستم‌های متمرکز باشد.

3- هزینه طراحی و پیاده سازی بیشتر: دلایل 1 و 2 می‌توانند باعث بالا رفتن هزینه‌های طراحی و پیاده سازی این نوع سیستم‌ها شوند.

4- هزینه‌های بیشتر مرتبط با شبکه: در این نوع سیستم‌ها بدلیل استفاده بیشتر از منابع، مانند سخت افزار‌ها و ابزارهای مرتبط با شبکه، هزینه‌های مرتبط با استفاده از منابع، مانند برق و شبکه بیشتر از سیستم‌های متمرکز است.

5- کاهش امنیت: توزیع نادرست منابع سیستم در سخت افزارهای متفاوت و مدیریت نادرست این منابع باعث کاهش امنیت این نوع سیستم‌ها می‌شود.

6- مدیریت دشوارتر: بدلیل اینکه سیستمهای توزیع شده از زیرسیستم‌های زیادی تشکیل شده و هر یک از این زیر سیستمها در سخت افزارهای متفاوتی اجرا شده‌اند، مدیریت و سازماندهی این نوع سیستم‌ها دشوار‌تر از سیستم‌های متمرکز است.

بدلیل اینکه همیشه قسمتهای مرتبط با پیاده سازی این نوع سیستم‌ها از تعاریف آنها جذابتر است، سعی کرده‌ام در این بخش و بخش بعد که اهداف و اصطلاحات مرتبط با سیستمهای توزیع شده را بررسی میکند، کمتر وارد جزئیات مفاهیم شوم. در صورت نیاز به توضیح بیشتر در مورد قسمت خاصی از این مفاهیم، در قسمت نظرات آن‌ها را مطرح کنید.
مطالب
آموزش Linq - بخش ششم: عملگرهای پرس و جو قسمت پنجم (پایانی)
عملگرهای اتصال (Join Operators)
• Join
• GroupJoin
• Zip

عملگر Join

این عملگر همانند inner join در SQL، دو مجموعه را بر اساس کلید‌های مرتبط که از طریق پارامترها  به آن ارسال می‌شوند، با یکدیگر ترکیب می‌کند.
در عملیات Join، یک توالی ورودی که به آن توالی خارجی (Outer Sequence) گفته می‌شود با یک توالی دیگر که به آن توالی داخلی (Inner Sequence) می‌گوییم، بر اساس کلید‌های مشخص شده، ترکیب شده و یک توالی خروجی تولید می‌شود.

بررسی پارامتر‌های عملگر Join:
public static IEnumerable<TResult> Join<TOuter,TInner,TKey,TResult>
(this IEnumerable<TOuter> outer,
IEnumerable<TInner> inner,
Func<TOuter,TKey> outerKeySelector,
Func<TInner,TKey> innerKeySelector,
Func<TOuter,TInner,TResult> resultSelector)
 • <Inner IEnumerable<TInner: نشان دهنده توالی داخلی می‌باشد.
 • Func<Touter,Tkey> outerKeySelector : عنصر کلید، در توالی خارجی
 • Func<Tinner,Tkey> innerKeySelector : عنصر کلید، در توالی داخلی
 • Func<Touter,Tinner,Tresult> resultSelector : یک عبارت Lambda است که ظاهر عناصر خروجی را مشخص می‌کند.

نکته
: بطور کلی T در پارامتر‌های بالا معرف Generic Type Parameter می‌باشد؛ T==>Type  (هر نوع داده‌ای که ما مشخص کنیم).
نکته : عملگر Join یک امضاء دیگر نیز دارد که اجازه مشخص کردن IEqualityComparer را می‌دهد.

کد زیر استفاده از عملگر Join را نشان می‌دهد. توجه داشته باشید که اعلان صریح نوع داده‌ها در عبارات Lambda نوشته شده، فقط برای روشن‌تر شدن فرآیند عملیات می‌باشد.
تعریف دو آرایه از کلاس‌های Recipe و  Review:
Recipe[] recipes =
{
   new Recipe {Id = 1, Name = "Mashed Potato"},
   new Recipe {Id = 2, Name = "Crispy Duck"},
   new Recipe {Id = 3, Name = "Sachertorte"}
};

// inner sequence
Review[] reviews =
{
   new Review {RecipeId = 1, ReviewText = "Tasty!"},
   new Review {RecipeId = 1, ReviewText = "Not nice :("},
   new Review {RecipeId = 1, ReviewText = "Pretty good"},
   new Review {RecipeId = 2, ReviewText = "Too hard"},
   new Review {RecipeId = 2, ReviewText = "Loved it"}
};

  var query = recipes // recipes توالی خارجی
.Join(reviews, // reviewsتوالی داخلی
  (Recipe outerKey) => outerKey.Id, // کلید انخاب شده از توالی خارجی
  (Review innerKey) => innerKey.RecipeId, // کلید انتخاب شده از توالی داخلی
  // نحوه قالب بندی خروجی
  (recipe, review) => recipe.Name + " - " + review.ReviewText);

foreach (string item in query)
{
   Console.WriteLine(item);
}
خروجی مثال بالا:
Mashed Potato - Tasty!
Mashed Potato - Not nice :(
Mashed Potato - Pretty good
Crispy Duck - Too hard
Crispy Duck - Loved it
ساده‌تر شده‌ی کد بالا:
var query =
recipes.Join
(reviews,
outerKey => outerKey.Id,
innerKey => innerKey.RecipeId,
(recipe, review) => recipe.Name + " - " + review.ReviewText);
همانطور که مشاهده می‌کنید در خروجی مثال بالا، عبارت Sachertorte مشاهده نمی‌شود. علت آن است که عملیات انجام شده، عملیات Left Join می‌باشد. بدین معنا که عناصری که در توالی خارجی هیچ عنصر متناظری در توالی داخلی ندارند، در توالی خروجی ظاهر نخواهند شد.

پیاده سازی توسط عبارت‌های جستجو
کلمه کلیدی Join، در زمان استفاده از روش عبارت‌های پرس و جو، مورد استفاده قرار گرفت. دستور Join در قسمت چهارم از این سری آموزشی بطور کامل بررسی شده است. کد زیر نحوه اجرای دستور Join را به روش عبارت‌های پرس و جو، نشان می‌دهد.
var query = from recipe in recipes
join review in reviews
on
recipe.Id equals review.RecipeId
select new //انواع بی نام
{
    RecipeName = recipe.Name,
    RecipeReview = review.ReviewText
};

foreach (var item in query)
{
    Console.WriteLine(item.RecipeName + " - " + item.RecipeReview);
}
نکته : بررسی‌ها نشان داده است که استفاده از دستور Join، به روش عبارت‌های پرس و جو نسبت به عملگر‌های پرس و جو، خوانایی بیشتری دارد.

عملگر GroupJoin
نحوه عملکرد عملگر GroupJoin، شبیه عملگر Join می‌باشد؛ با این تفاوت که خروجی حاصل از دستور GroupJoin، یک ساختار سلسله مراتبی می‌باشد. توالی خروجی، مجموعه‌ای  از گروه‌ها می‌باشد که هر گروه، تشکیل شده‌است از عناصر توالی درونی.

بررسی پارامتر‌های عملگر GroupJoin
• <Inner IEnumerable<TInner : نشان دهنده توالی داخلی
• Func<Touter,Tkey> outerKeySelector : عنصر کلید، در توالی خارجی
• Func<Tinner,Tkey> innerKeySelector : عنصر کلید، در توالی داخلی
• Func<Touter,Ienumerable<Tinner>,Tresult> resultSelector : قالب بندی گروه‌های تولید شده خروجی را مشخص می‌کند

کد زیر استفاده از عملگر GroupJoin را نشان می‌دهد :
// outer sequence
Recipe[] recipes =
{
   new Recipe {Id = 1, Name = "Mashed Potato"},
   new Recipe {Id = 2, Name = "Crispy Duck"},
   new Recipe {Id = 3, Name = "Sachertorte"}
};

// inner sequence
Review[] reviews =
{
   new Review {RecipeId = 1, ReviewText = "Tasty!"},
   new Review {RecipeId = 1, ReviewText = "Not nice :("},
   new Review {RecipeId = 1, ReviewText = "Pretty good"},
   new Review {RecipeId = 2, ReviewText = "Too hard"},
   new Review {RecipeId = 2, ReviewText = "Loved it"}
};

var query = recipes
.GroupJoin(
reviews,
(Recipe outerKey) => outerKey.Id,//outer key
(Review innerKey) => innerKey.RecipeId,//inner key
(Recipe recipe, IEnumerable<Review> rev )=>تعریف ساختار گروه‌ها new
{
  RecipeName = recipe.Name,
  Reviews = rev
}
);

foreach (var item in query)
{
   Console.WriteLine($"Reviews for {item.RecipeName}");
   foreach (var review in item.Reviews)
   {
      Console.WriteLine($" - {review.ReviewText}");
   }
}
خروجی مثال فوق:
Reviews for Mashed Potato
 - Tasty!
 - Not nice :(
 - Pretty good
Reviews for Crispy Duck
 - Too hard
 - Loved it
Reviews for Sachertorte
همانطور که مشاهده می‌کنید گروه "Sachertorte" در خروجی اضافه شده است؛ در صورتی که هیچ عضوی ندارد.

پیاده سازی توسط عبارت‌های جستجو
var query =
from recipe in recipes
join review in reviews on recipe.Id equals review.RecipeId
into reviewGroup
select new //انواع بی نام
{
  RecipeName = recipe.Name,
  Reviews = reviewGroup//کلیه بازخورد‌ها مرتبط با یک دستور غذایی
};
خروجی مثال فوق:
Reviews for Mashed Potato
 - Tasty!
 - Not nice :(
 - Pretty good
Reviews for Crispy Duck
 - Too hard
 - Loved it
Reviews for Sachertorte

عملگر Zip

عملگر Zip، رفتاری متفاوت نسبت به عملگر GroupJoin و Join دارد و هیچ آیتمی را به عنوان کلید، از دو توالی دریافت نمی‌کند. عملگر Zip همه عناصر دو توالی را یک به یک، به ترتیب کنار هم قرار می‌دهد. مثل زیپ در دنیای واقعی که لبه‌های دو طرف زیپ را به هم می‌رساند.
 public class Ingredient
{
  public string Name { get; set; }
  public int Calories { get; set; }
}

string[] names = { "Flour", "Butter", "Sugar" };
int[] calories = { 100, 400, 500 };
IEnumerable<Ingredient> ingredients =
names.Zip(calories, (name, calorie) =>
new Ingredient
{
  Name = name,
  Calories = calorie
});
foreach (var item in ingredients)
{
Console.WriteLine($"{item.Name} has {item.Calories} calories");
}
خروجی مثال بالا :
Flour has 100 calories
Butter has 400 calories
Sugar has 500 calories
نکته: اگر تعداد اعضای مجموعه‌ها برابر نباشد، اعضای اضافی نادیده گرفته می‌شوند.

پیاده سازی توسط عبارت‌های جستجو
معادل عملگر Zip، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.
بازخوردهای دوره
آشنایی با AOP Interceptors
- یکی از اهداف مهم AOP این است که به صورت لایه‌ای نامریی عمل کند و هر زمان که نیاز باشد، بتوان بدون کوچکترین تغییری در کدهای اصلی برنامه، کل منطق آن‌را حذف، یا با نمونه‌‌ای دیگر جایگزین کرد. بنابراین دریافت یک مقدار از Interceptor داخل متدی در برنامه، نقض کننده‌ی فلسفه‌ی وجودی این عملیات است.
- اما توسط پارامتر IInvocation و مقداری Reflection، دسترسی کاملی به اطلاعات متد فراخوان هست و در اینجا می‌توان در صورت نیاز، پارامتر و مقداری را نیز به آن ارسال کرد.
- در ASP.NET MVC، مفهوم فیلترها دقیقا پیاده سازی کننده‌ی Interceptor‌های AOP هستند. در اینجا نیز مستقیما اطلاعاتی به فراخوان، در صورت نیاز بازگشت داده نمی‌شود. اما Context جاری در اختیار Interceptor و فیلتر هست. به این ترتیب Interceptor فرصت خواهد داشت به این Context مشترک، اطلاعاتی را اضافه کند یا تغییر دهد. مثلا به لیست خطاهای آن یک خطای اعتبارسنجی جدید را اضافه کند.
نظرات مطالب
شروع به کار با DNTFrameworkCore - قسمت 6 - پیاده‌سازی عملیات CRUD موجودیت‌ها با استفاده از ASP.NET Core MVC
اگر از روش مطرح شده در مطلب « طراحی یک گرید با jQuery Ajax و ASP.NET MVC به همراه پیاده سازی عملیات CRUD»  استفاده می‌کنید، یک چنین نیازی خواهید داشت؛ اکشن‌متد زیر در قالب مشخصی این اطلاعات را به پارشال‌ویو مورد نظر ارسال خواهد کرد.
public async Task<IActionResult> List(TFilteredPagedQueryModel query)
{
    if (!await CheckPermissionAsync(ViewPermissionName)) return Forbid();

    query = query ?? Factory<TFilteredPagedQueryModel>.CreateInstance();
    var result = await ReadPagedListAsync(query);

    var model = new PagedListModel<TReadModel, TFilteredPagedQueryModel>
    {
        Query = query,
        Result = result
    };

    return PartialView(ListViewName, model);
}

نظرات مطالب
اعتبارسنجی مبتنی بر JWT در ASP.NET Core 2.0 بدون استفاده از سیستم Identity
سلام.  سناریویی رو در نظر بگیرید که کاربر(client) برای دسترسی به اکشن‌ها در کنترلر‌های api هر بار با درخواست خود access token که در مرحله قبلی ایجاد و ارسال شده را به سمت سرور ارسال کند. در این مورد میشه فقط با access token کار کرد و refresh token را از سیستم فوق حذف کرد. چون در مطلب فوق فرمودید : "refreshToken فقط یک Guid است. کار آن ساده سازی و به روز رسانی عملیات Login بدون ارائه‌ی نام کاربری و کلمه‌ی عبور است. ".  فلسفه استفاده از refreshToken در سیستم مذکور  با خود accessToken قابل پیاده سازی نیست؟ هر بار که کاربر درخواستی به سمت سرور ارسال کرد AccessToken را ارسال و پس از بررسی و احراز هویت کاربر دسترسی‌ها رو مشخص کند.
نظرات مطالب
مقایسه نتایج الگوریتم‌های هش کردن اطلاعات در اس کیوال سرور و دات نت
سلام،
- شما لطف دارید.
- بر روی select نمی‌شود تریگر تعریف کرد بنابراین ...
و در کل فرقی نمی‌کند. یا یک رویه ذخیره شده بنویسید و کل عملیات را در آن پیاده کنید و سپس مثلا یک 0 یا 1 یا true یا false بازگشت دهید که شخص یوزر نیم و پسورد درستی وارد کرده (در این حالت می‌شود از روش اس کیوال سرور استفاده کرد برای هش کردن پسورد وارد شده و سپس مقایسه)
یا پسورد را هش کنید (توسط کلاینت دات نتی) و سپس با نمونه موجود در دیتابیس مقایسه کنید.
هر دو راه قابل انجام است و تفاوتی هم ندارد.
روش رویه ذخیره شده بهینه‌تر است و بدلیل کامپایل شدن سریعتر هم خواهد بود.