مطالب
خواندنی‌های 19 تیر


امنیت

توسعه وب

دات نت فریم ورک

دبلیو سی اف

دبلیو پی اف و سیلور لایت

متفرقه

محیط‌های مجتمع توسعه

مرورگرها

مسایل انسانی، اجتماعی و مدیریتی برنامه نویسی

ویندوز

پی اچ پی

مطالب
ممنوعیت استفاده از کوکی‌های ثالث توسط مرورگرها و تاثیر آن بر روی اعتبارسنجی برنامه‌ها

کوکی‌ها به اندازه‌ی خود اینترنت قدیمی هستند و تا سال‌ها، تنها گزینه‌ی شخصی سازی تجربه‌ی کاربری در وب و انتقال آن از یک صفحه به صفحه‌ی دیگری به‌شمار می‌آمدند؛ به این نوع کوکی‌ها، First-party cookies هم می‌گویند و توسط خود سایت ارائه دهنده‌ی محتوا و برنامه‌ها، تنظیم می‌شوند. در مقابل آن، third-party cookies یا کوکی‌های ثالث هم وجود دارند که از طریق دومین دیگری بجز دومین اصلی برنامه، ارائه و تنظیم می‌شوند؛ به همین جهت به آن‌ها Cross-site cookies هم می‌گویند. یکی از اهداف کوکی‌های ثالث، ردیابی فعالیت کاربران در بین سایت‌های مختلف است و این روزها به علت سوء استفاده‌های زیادی که از آن‌ها می‌شوند،‌ یکی از وسایل به اشتراک‌گذاری و جمع آوری اطلاعات خصوصی کاربران شده‌اند.

البته کوکی‌های ثالث، کاربردهای مفیدی هم دارند؛ مانند امکان پیاده سازی لاگین و اعتبارسنجی یکپارچه‌ی بین چندین برنامه که به آن SSO یا Single Sign On هم گفته می‌شود؛ نمونه‌ی آن، استفاده از Identity server و یا OpenId dict در دنیای دات‌نت است.

اما ... در کل به علت مشکلات یاد شده، اکثر مرورگرها تصمیم به عدم پذیرش و پردازش آن‌ها گرفته‌اند. برای مثال مرورگر Safari سال‌ها است که اینگونه کوکی‌ها را بلاک می‌کند و یا مرورگر فایرفاکس، کوکی‌های ثالث ردیاب‌ها را بلاک می‌کند و ... مرورگر کروم نیز تصمیم گرفته‌است، تا پایان سال 2024، به این جمع محلق شود. هرچند اخیرا اعلام کرده‌اند، بجای اینکه مرورگر کروم، راسا این کار را انجام دهد، قرار است امکان انتخاب این گزینه به خود کاربر واگذار شود (چون ... خود گوگل از این نوع کوکی‌ها منتفع است!). البته این تصمیم، به‌نظر W3C خوش نیامده و اعلام کرده‌اند که این نوع کوکی‌ها باید بروند!

روش آزمایش برنامه‌ها برای بررسی تاثیر ممنوعیت کوکی‌های ثالث

برای اینکه پیش از موعد، امکان آزمایش برنامه‌ی خود را داشته باشید و بتوانید تاثیر ممنوعیت بکارگیری کوکی‌های ثالث را بررسی کنید، در مرورگر کروم به آدرس زیر مراجعه کرده:

chrome://flags/#test-third-party-cookie-phaseout

و سپس این گزینه را فعال کنید و یا روش دوم فعالسازی آن، اجرای مرورگر کروم با سوئیچ test-third-party-cookie-phaseout-- از طریق خط فرمان است.

کدام برنامه‌ها با ممنوعیت کوکی‌های ثالث مشکل پیدا می‌کنند؟

اگر برنامه‌ی SSO شما، مبتنی بر اعتبارسنجی یکپارچه‌ی از نوع implicit flow است، حتما مشکل پیدا می‌کنید. در این حالت بهتر است به نوع امن‌تر authorization flow + PKCE‌ مهاجرت کنید.

علت مسدود شدن نوع اعتبارسنجی و احراز هویت implicit flow که در برنامه‌های تک صفحه‌ای وب (SPA/single-page apps) مرسوم است، شباهت بسیار زیاد آن به کاری است که ردیاب‌های اینترنتی انجام می‌دهند. در این‌حالت، سایت‌های ثالث، یک iframe مخفی را در پشت صحنه، درون سایت جاری باز کرده و توسط آن شروع به استفاده‌ی از امکانات مرتبط با کوکی‌ها می‌کنند. این الگو دقیقا همان کاری است که توسط implicit flow هم انجام می‌شود. بنابراین مرورگری که کوکی‌های ثالث از این دست را مسدود می‌کند، قابلیت اعتبارسنجی یکپارچه‌ی برنامه‌های SPA را هم غیرفعال خواهد کرد.

مطالب دوره‌ها
مروری بر روش ها و رویکردهای مختلف در یادگیری مدل
مقدمه
همان گونه که اشاره شد در روش‌های با ناظر (برای مثال الگوریتم‌های دسته بندی) کل مجموعه داده‌ها به دو بخش مجموعه داده‌های آموزشی و مجموعه داده‌های آزمایشی تقسیم می‌شود. در مرحله یادگیری (آموزش) مدل، الگوریتم براساس مجموعه داده‌های آموزشی یک مدل می‌سازد که شکل مدل ساخته شده به الگوریتم یادگیرنده مورد استفاده بستگی دارد. در مرحله ارزیابی براساس مجموعه داده‌های آزمایشی دقت و کارائی مدل ساخته شده بررسی می‌شود. توجه داشته باشید که مجموعه داده‌های آزمایشی برای مدل ساخته شده پیش از این ناشناخته هستند.
در مرحله یادگیری مدل؛ برای مقابله با مشکل به خاطرسپاری (Memorization) مجموعه داده‌های آموزشی، در برخی موارد بخشی از مجموعه داده‌های آموزشی را از آن مجموعه جدا می‌کنند که با عنوان مجموعه داده ارزیابی (Valid Dataset) شناسائی می‌شود. استفاده از مجموعه داده ارزیابی باعث می‌شود که مدل ساخته شده، مجموعه داده‌های آموزشی را حقیقتاً یاد بگیرد و در پی به خاطرسپاری و حفظ آن نباشد. به بیان دیگر در مرحله یادگیری مدل؛ تا قبل از رسیدن به لحظه ای، مدل در حال یادگیری و کلی سازی (Generalization) است و از آن لحظه به بعد در حال به خاطرسپاری (Over Fitting) مجموعه داده‌های آموزشی است. بدیهی است به خاطرسپاری باعث افزایش دقت مدل برای مجموعه داده‌های آموزشی و بطور مشابه باعث کاهش دقت مدل برای مجموعه داده‌های آزمایشی می‌شود. بدین منظور جهت جلوگیری از مشکل به خاطرسپاری از مجموعه داده ارزیابی استفاده می‌شود که به شکل غیر مستقیم در فرآیند یادگیری مدل، وارد عمل می‌شوند. بدین ترتیب مدلی که مفهومی را از داده‌های آموزشی فرا گرفته، نسبت به مدلی که صرفاً داده‌های آموزشی را به خوبی حفظ کرده است، برای مجموعه داده آزمایشی دقت به مراتب بالاتری دارد. این حقیقت در بیشتر فرآیندهای آموزشی که از مجموعه داده ارزیابی بهره می‌گیرند قابل مشاهده است.
در روش‌های بدون ناظر یا روش‌های توصیفی (برای مثال خوشه بندی) الگوریتم‌ها فاقد مراحل آموزشی و آزمایشی هستند و در پایان عملیات یادگیری مدل، مدل ساخته شده به همراه کارائی آن به عنوان خروجی ارائه می‌شود، برای مثال در الگوریتم‌های خوشه بندی خروجی همان خوشه‌های ایجاد شده هستند و یا خروجی در روش کشف قوانین انجمنی عبارت است از مجموعه ای از قوانین «اگر- آنگاه» که بیانگر ارتباط میان رخداد توامان مجموعه ای از اشیاء با یکدیگر می‌باشد.

در این قسمت عملیات ساخت مدل در فرآیند داده کاوی برای سه روش دسته بندی، خوشه بندی و کشف قوانین انجمنی ارائه می‌شود. بدیهی است برای هر کدام از این روش‌ها علاوه بر الگوریتم‌های معرفی شده، الگوریتم‌های متنوعی دیگری نیز وجود دارد. در ادامه سعی می‌شود به صورت کلان به فلسفه یادگیری مدل پرداخته شود. فهرست مطالب به شرح زیر است:
1- دسته بندی:
1-1- دسته بندی مبتنی بر درخت تصمیم (Decision Tree based methods) :  
1-2- دسته بندهای مبتنی بر قانون (Rule based methods) :  
1-3- دسته بندهای مبتنی بر نظریه بیز (Naïve Bayes and Bayesian belief networks) :  
2- خوشه بندی:
2-1- خوشه بندی افرازی (Centroid Based Clustering) :  
2-1-1- الگوریتم خوشه بندی K-Means :  
2-1-2- الگوریتم خوشه بندی K-Medoids :  
2-1-3- الگوریتم خوشه بندی Bisecting K-Means :  
2-1-4- الگوریتم خوشه بندی Fuzzy C-Means :  
2-2- خوشه بندی سلسله مراتبی (Connectivity Based Clustering (Hierarchical Clustering : 
2-2-1- روش‌های خوشه بندی تجمیعی (Agglomerative Clustering) :  
2-2-2- روش‌های خوشه بندی تقسیمی (Divisive Clustering) :  
2-3- خوشه بندی مبتنی بر چگالی (Density Based Clustering) :  
3- کشف قوانین انجمنی :
3-1- الگوریتم های  Apriori ، Brute-Force و FP-Growth: 

1- دسته بندی:
در الگوریتم‌های دسته بندی، برای هر یک از رکوردهای مجموعه داده مورد کاوش، یک برچسب که بیانگر حقیقتی از مساله است تعریف می‌شود و هدف الگوریتم یادگیری؛ یافتن نظم حاکم بر این برچسب هاست. به بیان دیگر در مرحله آموزش؛ مجموعه داده‌های آموزشی به یکی از الگوریتم‌های دسته بندی داده می‌شود تا بر اساس سایر ویژگی‌ها برای مقادیر ویژگی دسته، مدل ساخته شود. سپس در مرحله ارزیابی؛ دقت مدل ساخته شده به کمک مجموعه داده‌های آزمایشی ارزیابی خواهد شد. انواع گوناگون الگوریتم‌های دسته بندی را می‌توان بصورت ذیل برشمرد:

1-1- دسته  بندی مبتنی بر درخت تصمیم (Decision Tree based methods):
از مشهورترین روش‌های ساخت مدل دسته بندی می‌باشد که دانش خروجی را به صورت یک درخت از حالات مختلف مقادیر ویژگی‌ها ارائه می‌کند. بدین ترتیب دسته بندی‌های مبتنی بر درخت تصمیم کاملاً قابل تفسیر می‌باشند. در حالت کلی درخت تصمیم بدست آمده برای یک مجموعه داده آموزشی؛ واحد و یکتا نیست. به بیان دیگر براساس یک مجموعه داده، درخت‌های تصمیم مختلفی می‌توان بدست آورد. عموماً به منظور فراهم نمودن اطلاعات بیشتری از داده ها، از میان ویژگی‌های موجود یک Case ابتدا آنهایی که دارای خاصیت جداکنندگی بیشتری هستند انتخاب می‌شوند. در واقع براساس مجموعه داده‌های آموزشی از میان ویژگی ها، یک ویژگی انتخاب می‌شود و در ادامه مجموعه رکوردها براساس مقدار این ویژگی شکسته می‌شود و این فرآیند ادامه می‌یابد تا درخت کلی ساخته شود. پس از ساخته شدن مدل، می‌توان آن را بر روی مجموعه داده‌های آزمایشی اعمال (Apply) نمود. منظور از اعمال کردن مدل، پیش بینی مقدار ویژگی یک دسته برای یک رکورد آزمایشی براساس مدل ساخته شده است. توجه شود هدف پیش بینی ویژگی دسته این رکورد، براساس درخت تصمیم موجود است.
بطور کلی الگوریتم‌های تولید درخت تصمیم مختلفی از جمله SPRINT، SLIQ، C4.5، ID3، CART و HUNT وجود دارد. این الگوریتم‌ها به لحاظ استفاده از روش‌های مختلف جهت انتخاب ویژگی و شرط توقف در ساخت درخت با یکدیگر تفاوت دارند. عموماً الگوریتم‌های درخت تصمیم برای شناسائی بهترین شکست، از یک مکانیزم حریصانه (Greedy) استفاده می‌کنند که براساس آن شکستی که توزیع دسته‌ها در گره‌های حاصل از آن همگن باشد، نسبت به سایر شکست‌ها بهتر خواهد بود. منظور از همگن بودن گره این است که همه رکوردهای موجود در آن متعلق به یک دسته خاص باشند، بدین ترتیب آن گره به برگ تبدیل خواهد شد. بنابراین گره همگن گره ای است که کمترین میزان ناخالصی (Impurity) را دارد. به بیان دیگر هر چه توزیع دسته‌ها در یک گره همگن‌تر باشد، آن گره ناخالصی کمتری خواهد داشت. سه روش مهم برای محاسبه ناخالصی گره وجود دارد که عبارتند از: ضریب GINI، روش Entropy و Classification Error.
از مزایای درخت تصمیم می‌توان به توانایی کار با داده‌های گسسته و پیوسته، سهولت در توصیف شرایط (با استفاده از منطق بولی) در درخت تصمیم، عدم نیاز به تابع تخمین توزیع، کشف روابط غیرمنتظره یا نامعلوم و ... اشاره نمود.
همچنین از معایب درخت تصمیم نسبت به دیگر روش‌های داده کاوی می‌توان این موارد را برشمرد: تولید درخت تصمیم گیری هزینه بالائی دارد، در صورت همپوشانی گره‌ها تعداد گره‌های پایانی زیاد می‌شود، طراحی درخت تصمیم گیری بهینه دشوار است، احتمال تولید روابط نادرست وجود دارد و ... .
می‌توان موارد استفاده از دسته بند درخت تصمیم نسبت به سایر دسته بندی کننده‌های تک مرحله ای رایج را؛ حذف محاسبات غیر ضروری و انعطاف پذیری در انتخاب زیر مجموعه‌های مختلفی از صفات برشمرد. در نهایت از جمله مسائل مناسب برای یادگیری درخت تصمیم، می‌توان به مسائلی که در آنها نمونه‌ها به شکل جفت‌های «صفت-مقدار» بازنمائی می‌شود و همچنین مسائلی که تابع هدف، مقادیر خروجی گسسته دارد اشاره نمود.

1-2- دسته  بندهای مبتنی بر قانون (Rule based methods):
این دسته بندها دانش خروجی خود را به صورت یک مجموعه از قوانین «اگر-آنگاه» نشان می‌دهند. هر قانون یک بخش شرایط (LHS: Left Hand Side) و یک بخش نتیجه (RHS: Right Hand Side) دارد. بدیهی است اگر تمام شرایط مربوط به بخش مقدم یک قانون درباره یک رکورد خاص درست تعبیر شود، آن قانون آن رکورد را پوشش می‌دهد. دو معیار Accuracy و Coverage برای هر قانون قابل محاسبه است که هر چه میزان این دو معیار برای یک قانون بیشتر باشد، آن قانون؛ قانونی با ارزش‌تر محسوب می‌شود.

Coverage یک قانون، برابر با درصد رکوردهایی است که بخش شرایط قانون مورد نظر در مورد آنها صدق می‌کند و درست تعبیر می‌شود. بنابراین هر چه این مقدار بیشتر باشد آن قانون، قانونی کلی‌تر و عمومی‌تر می‌باشد.
Accuracy یک قانون بیان می‌کند که در میان رکوردهایی که بخش شرایط قانون در مورد آنها صدق می‌کند، چند درصد هر دو قسمت قانون مورد نظر در مورد آنها صحیح است.
چنانچه مجموعه همه رکورد‌ها را در نظر بگیریم؛ مطلوب‌ترین حالت این است که همواره یک رکورد توسط یک و تنها یک قانون پوشش داده شود، به بیان دیگر مجموعه قوانین نهایی به صورت جامع (Exhaustive Rules) و دو به دو ناسازگار (Mutually Exclusive Rules) باشند. جامع بودن به معنای این است که هر رکورد حداقل توسط یک قانون پوشش داده شود و معنای قوانین مستقل یا دو به دو ناسازگار بودن بدین معناست که هر رکورد حداکثر توسط یک قانون پوشش داده شود.
مجموعه قوانین و درخت تصمیم عیناً یک مجموعه دانش را نشان می‌دهند و تنها در شکل نمایش متفاوت از هم هستند. البته روش‌های مبتنی بر قانون انعطاف پذیری و تفسیرپذیری بالاتری نسبت به روش‌های مبتنی بر درخت دارند. همچنین اجباری در تعیین وضعیت هایی که در یک درخت تصمیم برای ترکیب مقادیر مختلف ویژگی‌ها رخ می‌دهد ندارند و از این رو دانش خلاصه‌تری ارائه می‌دهند.


1-3- دسته بند‌های مبتنی بر نظریه بیز (Naïve Bayes and Bayesian belief networks):
دسته بند مبتنی بر رابطه نظریه بیز (Naïve Bayes) از یک چهارچوب احتمالی برای حل مسائل دسته بندی استفاده می‌کند. براساس نظریه بیز رابطه I برقرار است:

هدف محاسبه دسته یک رکورد مفروض با مجموعه ویژگی‌های (A1,A2,A3,…,An) می‌باشد. در واقع از بین دسته‌های موجود به دنبال پیدا کردن دسته ای هستیم که مقدار II را بیشینه کند. برای این منظور این احتمال را برای تمامی دسته‌های مذکور محاسبه نموده و دسته ای که مقدار این احتمال به ازای آن بیشینه شود را به عنوان دسته رکورد جدید در نظر می‌گیریم. ذکر این نکته ضروری است که بدانیم نحوه محاسبه برای ویژگی‌های گسسته و پیوسته متفاوت می‌باشد.


2- خوشه بندی:
خوشه را مجموعه ای از داده‌ها که به هم شباهت دارند تعریف می‌کنند و هدف از انجام عملیات خوشه بندی فهم (Understanding) گروه رکوردهای مشابه در مجموعه داده‌ها و همچنین خلاصه سازی (Summarization) یا کاهش اندازه‌ی مجموعه داده‌های بزرگ می‌باشد. خوشه بندی از جمله روش هایی است که در آن هیچ گونه برچسبی برای رکوردها در نظر گرفته نمی‌شود و رکوردها تنها براساس معیار شباهتی که معرفی شده است، به مجموعه ای از خوشه‌ها گروه بندی می‌شوند. عدم استفاده از برچسب موجب می‌شود الگوریتم‌های خوشه بندی جزء روش‌های بدون ناظر محسوب شوند و همانگونه که پیشتر ذکر آن رفت در خوشه بندی تلاش می‌شود تا داده‌ها به خوشه هایی تقسیم شوند که شباهت بین داده ای درون هر خوشه بیشینه و بطور مشابه شباهت بین داده‌ها در خوشه‌های متفاوت کمینه شود.
چنانچه بخواهیم خوشه بندی و دسته بندی را مقایسه کنیم، می‌توان بیان نمود که در دسته بندی هر داده به یک دسته (طبقه) از پیش مشخص شده تخصیص می‌یابد ولی در خوشه بندی هیچ اطلاعی از خوشه‌ها وجود ندارد و به عبارتی خود خوشه‌ها نیز از داده‌ها استخراج می‌شوند. به بیان دیگر در دسته بندی مفهوم دسته در یک حقیقت خارجی نهفته است حال آنکه مفهوم خوشه در نهان فواصل میان رکورد هاست. مشهورترین تقسیم بندی الگوریتم‌های خوشه بندی به شرح زیر است:

2-1- خوشه بندی افرازی (Centroid Based Clustering) :
تقسیم مجموعه داده‌ها به زیرمجموعه‌های بدون همپوشانی، به طریقی که هر داده دقیقاً در یک زیر مجموعه قرار داشته باشد. این الگوریتم‌ها بهترین عملکرد را برای مسائل با خوشه‌های به خوبی جدا شده از خود نشان می‌دهند. از الگوریتم‌های افرازی می‌توان به موارد زیر اشاره نمود:

2-1-1- الگوریتم خوشه بندی K-Means :
در این الگوریتم عملاً مجموعه داده‌ها به تعداد خوشه‌های از پیش تعیین شده تقسیم می‌شوند. در واقع فرض می‌شود که تعداد خوشه‌ها از ابتدا مشخص می‌باشند. ایده اصلی در این الگوریتم تعریف K مرکز برای هر یک از خوشه‌ها است. بهترین انتخاب برای مراکز خوشه‌ها قرار دادن آنها (مراکز) در فاصله هر چه بیشتر از یکدیگر می‌باشد. پس از آن هر رکورد در مجموعه داده به نزدیکترین مرکز خوشه تخصیص می‌یابد. معیار محاسبه فاصله در این مرحله هر معیاری می‌تواند باشد. این معیار با ماهیت مجموعه داده ارتباط تنگاتنگی دارد. مشهورترین معیارهای محاسبه فاصله رکوردها در روش خوشه بندی معیار فاصله اقلیدسی و فاصله همینگ می‌باشد. لازم به ذکر است در وضعیتی که انتخاب مراکز اولیه خوشه‌ها به درستی انجام نشود، خوشه‌های حاصل در پایان اجرای الگوریتم کیفیت مناسبی نخواهند داشت. بدین ترتیب در این الگوریتم جواب نهائی به انتخاب مراکز اولیه خوشه‌ها وابستگی زیادی دارد که این الگوریتم فاقد روالی مشخص برای محاسبه این مراکز می‌باشد. امکان تولید خوشه‌های خالی توسط این الگوریتم از دیگر معایب آن می‌باشد.

2-1-2- الگوریتم خوشه بندی K-Medoids :

این الگوریتم برای حل برخی مشکلات الگوریتم K-Means پیشنهاد شده است، که در آن بجای کمینه نمودن مجموع مجذور اقلیدسی فاصله بین نقاط (که معمولاً به عنوان تابع هدف در الگوریتم K-Means مورد استفاده قرار می‌گیرد)، مجموع تفاوت‌های فواصل جفت نقاط را کمینه می‌کنند. همچنین بجای میانگین گیری برای یافتن مراکز جدید در هر تکرار حلقه یادگیری مدل، از میانه مجموعه اعضای هر خوشه استفاده می‌کنند.

2-1-3- الگوریتم خوشه بندی Bisecting K-Means :
ایده اصلی در این الگوریتم بدین شرح است که برای بدست آوردن K خوشه، ابتدا کل نقاط را به شکل یک خوشه در نظر می‌گیریم و در ادامه مجموعه نقاط تنها خوشه موجود را به دو خوشه تقسیم می‌کنیم. پس از آن یکی از خوشه‌های بدست آمده را برای شکسته شدن انتخاب می‌کنیم و تا زمانی که K خوشه را بدست آوریم این روال را ادامه می‌دهیم. بدین ترتیب مشکل انتخاب نقاط ابتدایی را که در الگوریتم K-Means با آن مواجه بودیم نداشته و بسیار کاراتر از آن می‌باشد.

2-1-4- الگوریتم خوشه بندی Fuzzy C-Means:
کارائی این الگوریتم نسبت به الگوریتم K-Means کاملاً بالاتر می‌باشد و دلیل آن به نوع نگاهی است که این الگوریتم به مفهوم خوشه و اعضای آن دارد. در واقع نقطه قوت الگوریتم Fuzzy C-Means این است که الگوریتمی همواره همگراست. در این الگوریتم تعداد خوشه‌ها برابر با C بوده (مشابه الگوریتم K-Means) ولی برخلاف الگوریتم K-Means که در آن هر رکورد تنها به یکی از خوشه‌های موجود تعلق دارد، در این الگوریتم هر کدام از رکوردهای مجموعه داده به تمامی خوشه‌ها متعلق است. البته این میزان تعلق با توجه به عددی که درجه عضویت تعلق هر رکورد را نشان می‌دهد، مشخص می‌شود. بدین ترتیب عملاً تعلق فازی هر رکورد به تمامی خوشه‌ها سبب خواهد شد که امکان حرکت ملایم عضویت هر رکورد به خوشه‌های مختلف امکان پذیر شود. بنابراین در این الگوریتم امکان تصحیح خطای تخصیص ناصحیح رکوردها به خوشه‌ها ساده‌تر می‌باشد و مهم‌ترین نقطه ضعف این الگوریتم در قیاس با K-Means زمان محاسبات بیشتر آن می‌باشد. می‌توان پذیرفت که از سرعت در عملیات خوشه بندی در برابر رسیدن به دقت بالاتر می‌توان صرفه نظر نمود.

2-2- خوشه بندی سلسله مراتبی (Connectivity Based Clustering (Hierarchical Clustering:
در پایان این عملیات یک مجموعه از خوشه‌های تودرتو به شکل سلسله مراتبی و در قالب ساختار درختی خوشه بندی بدست می‌آید که با استفاده از نمودار Dendrogram چگونگی شکل گیری خوشه‌های تودرتو را می‌توان نمایش داد. این نمودار درخت مانند، ترتیبی از ادغام و تجزیه را برای خوشه‌های تشکیل شده ثبت می‌کند، یکی از نقاط قوت این روش عدم اجبار برای تعیین تعداد خوشه‌ها می‌باشد (بر خلاف خوشه بندی افرازی). الگوریتم‌های مبتنی بر خوشه بندی سلسله مراتبی به دو دسته مهم تقسیم بندی می‌شوند:

2-2-1- روش‌های خوشه بندی تجمیعی (Agglomerative Clustering) :

با نقاطی به عنوان خوشه‌های منحصر به فرد کار را آغاز نموده و در هر مرحله، به ادغام خوشه‌های نزدیک به یکدیگر می‌پردازیم، تا زمانی که تنها یک خوشه باقی بماند.
عملیات کلیدی در این روش، چگونگی محاسبه میزان مجاورت دو خوشه است و روش‌های متفاوت تعریف فاصله بین خوشه‌ها باعث تمایز الگوریتم‌های مختلف مبتنی بر ایده خوشه بندی تجمیعی است. برخی از این الگوریتم‌ها عبارتند از: خوشه بندی تجمیعی – کمینه ای، خوشه بندی تجمیعی – بیشینه ای، خوشه بندی تجمیعی – میانگینی، خوشه بندی تجمیعی – مرکزی.

2-2-2- روش ‌های خوشه بندی تقسیمی (Divisive Clustering) :

با یک خوشه‌ی دربرگیرنده‌ی همه نقاط کار را آغاز نموده و در هر مرحله، خوشه را می‌شکنیم تا زمانی که K خوشه بدست آید و یا در هر خوشه یک نقطه باقی بماند.

2-3- خوشه بندی مبتنی بر چگالی (Density Based Clustering):
تقسیم مجموعه داده به زیرمجموعه هایی که چگالی و چگونگی توزیع رکوردها در آنها لحاظ می‌شود. در این الگوریتم مهمترین فاکتور که جهت تشکیل خوشه‌ها در نظر گرفته می‌شود، تراکم و یا چگالی نقاط می‌باشد. بنابراین برخلاف دیگر روش‌های خوشه بندی که در آنها تراکم نقاط اهمیت نداشت، در این الگوریتم سعی می‌شود تنوع فاصله هایی که نقاط با یکدیگر دارند، در عملیات خوشه بندی مورد توجه قرار گیرد. الگوریتم DBSCAN مشهورترین الگوریتم خوشه بندی مبتنی بر چگالی است.

به طور کلی عملکرد یک الگوریتم خوشه بندی نسبت به الگوریتم‌های دیگر، بستگی کاملی به ماهیت مجموعه داده و معنای آن دارد.

3- کشف قوانین انجمنی :
الگوریتم‌های کاشف قوانین انجمنی نیز همانند الگوریتم‌های خوشه بندی به صورت روش‌های توصیفی یا بدون ناظر طبقه بندی می‌شوند. در این الگوریتم‌ها بدنبال پیدا کردن یک مجموعه از قوانین وابستگی یا انجمنی در میان تراکنش‌ها (برای مثال تراکنشهای خرید در فروشگاه، تراکنشهای خرید و فروش سهام در بورس و ...) هستیم تا براساس قوانین کشف شده بتوان میزان اثرگذاری اشیایی را بر وجود مجموعه اشیاء دیگری بدست آورد. خروجی در این روش کاوش، به صورت مجموعه ای از قوانین «اگر-آنگاه» است، که بیانگر ارتباطات میان رخداد توامان مجموعه ای از اشیاء با یکدیگر می‌باشد. به بیان دیگر این قوانین می‌تواند به پیش بینی وقوع یک مجموعه اشیاء مشخص در یک تراکنش، براساس وقوع اشیاء دیگر موجود در آن تراکنش بپردازد. ذکر این نکته ضروری است که بدانیم قوانین استخراج شده تنها استلزام یک ارتباط میان وقوع توامان مجموعه ای از اشیاء را نشان می‌دهد و در مورد چرایی یا همان علیت این ارتباط سخنی به میان نمی‌آورد. در ادامه به معرفی مجموعه ای از تعاریف اولیه در این مبحث می‌پردازیم (در تمامی تعاریف تراکنش‌های سبد خرید مشتریان در یک فروشگاه را به عنوان مجموعه داده مورد کاوش در نظر بگیرید):
•  مجموعه اشیاء: مجموعه ای از یک یا چند شیء. منظور از مجموعه اشیاء K عضوی، مجموعه ای است که شامل K شیء باشد.
برای مثال:{مسواک، نان، شیر}
•  تعداد پشتیبانی (Support Count) : فراوانی وقوع مجموعه‌ی اشیاء در تراکنش‌های موجود که آنرا با حرف σ نشان می‌دهیم.
برای مثال: 2=({مسواک، نان، شیر})σ
•  مجموعه اشیاء مکرر (Frequent Item Set) : مجموعه ای از اشیاء که تعداد پشتیبانی آنها بزرگتر یا مساوی یک مقدار آستانه (Min Support Threshold) باشد، مجموعه اشیاء مکرر نامیده می‌شود.
•  قوانین انجمنی: بیان کننده ارتباط میان اشیاء در یک مجموعه از اشیاء مکرر. این قوانین معمولاً به شکل X=>Y هستند.
برای مثال:{نوشابه}<={مسواک، شیر}

مهمترین معیارهای ارزیابی قوانین انجمنی عبارتند از:
 Support: کسری از تراکنش‌ها که حاوی همه اشیاء یک مجموعه اشیاء خاص هستند و آنرا با حرف S نشان می‌دهند.
برای مثال: 2.2=({نان، شیر})S
 Confidence: کسری از تراکنش‌های حاوی همه اشیاء بخش شرطی قانون انجمنی که صحت آن قانون را نشان می‌دهد که با آنرا حرف C نشان می‌دهند. برخلاف Support نمی‌توانیم مثالی برای اندازه گیری Confidence یک مجموعه اشیاء بیاوریم زیرا این معیار تنها برای قوانین انجمنی قابل محاسبه است.

با در نظر گرفتن قانون X=>Y می‌توان Support را کسری از تراکنش هایی دانست که شامل هر دو مورد X و Y هستند و Confidence برابر با اینکه چه کسری از تراکنش هایی که Y را شامل می‌شوند در تراکنش هایی که شامل X نیز هستند، ظاهر می‌شوند. هدف از کاوش قوانین انجمنی پیدا کردن تمام قوانین Rx است که از این دستورات تبعیت می‌کند:
 

در این دستورات منظور از SuppMIN و ConfMIN به ترتیب عبارت است از کمترین مقدار برای Support و Confidence که بایست جهت قبول هر پاسخ نهائی به عنوان یک قانون با ارزش مورد توجه قرار گیرد. کلیه قوانینی که از مجموعه اشیاء مکرر یکسان ایجاد می‌شوند دارای مقدار Support مشابه هستند که دقیقاً برابر با تعداد پشتیبانی یا همان σ شیء مکرری است که قوانین انجمنی با توجه به آن تولید شده اند. به همین دلیل فرآیند کشف قوانین انجمنی را می‌توان به دو مرحله مستقل «تولید مجموعه اشیاء مکرر» و «تولید قوانین انجمنی مطمئن» تقسیم نمائیم.
در مرحله نخست، تمام مجموعه اشیاء که دارای مقدار Support  ≥ SuppMIN  می‌باشند را تولید می‌کنیم. رابطه I
در مرحله دوم با توجه به مجموعه اشیاء مکرر تولید شده، قوانین انجمنی با اطمینان بالا بدست می‌آیند که همگی دارای شرط Confidence  ≥ ConfMIN هستند. رابطه II

3-1- الگوریتم های  Apriori ، Brute-Force و FP-Growth:
یک روش تولید اشیاء مکرر روش Brute-Force است که در آن ابتدا تمام قوانین انجمنی ممکن لیست شده، سپس مقادیر Support و Confidence برای هر قانون محاسبه می‌شود. در نهایت قوانینی که از مقادیر آستانه‌ی SuppMIN و ConfMIN تبعیت نکنند، حذف می‌شوند. تولید مجموعه اشیاء مکرر بدین طریق کاری بسیار پرهزینه و پیچیده ای می‌باشد، در واقع روش‌های هوشمندانه دیگری وجود دارد که پیچیدگی بالای روش Brute-Force را ندارند زیرا کل شبکه مجموعه اشیاء را به عنوان کاندید در نظر نمی‌گیرند. همانند تولید مجموعه اشیاء مکرر، تولید مجموعه قوانین انجمنی نیز بسیار پرهزینه و گران است.
چنانچه یک مجموعه اشیاء مکرر مشخص با d شیء را در نظر بگیریم، تعداد کل قوانین انجمنی قابل استخراج از رابطه III محاسبه می‌شود. (برای مثال تعداد قوانین انجمنی قابل استخراج از یک مجموعه شیء 6 عضوی برابر با 602 قانون می‌باشد، که با توجه به رشد d؛ سرعت رشد تعداد قوانین انجمنی بسیار بالا می‌باشد.)
الگوریتم‌های متعددی برای تولید مجموعه اشیاء مکرر وجود دارد برای نمونه الگوریتم‌های Apriori و FP-Growth که در هر دوی این الگوریتم ها، ورودی الگوریتم لیست تراکنش‌ها و پارامتر SuppMIN می‌باشد. الگوریتم Apriori روشی هوشمندانه برای یافتن مجموعه اشیاء تکرار شونده با استفاده از روش تولید کاندید است که از یک روش بازگشتی برای یافتن مجموعه اشیاء مکرر استفاده می‌کند. مهمترین هدف این الگوریتم تعیین مجموعه اشیاء مکرری است که تعداد تکرار آنها حداقل برابر با SuppMIN باشد. ایده اصلی در الگوریتم Apriori این است که اگر مجموعه اشیایی مکرر باشد، آنگاه تمام زیر مجموعه‌های آن مجموعه اشیاء نیز باید مکرر باشند. در واقع این اصل همواره برقرار است زیرا Support یک مجموعه شیء هرگز بیشتر از Support زیرمجموعه‌های آن مجموعه شیء نخواهد بود. مطابق با این ایده تمام ابرمجموعه‌های مربوط به مجموعه شیء نامکرر از شبکه مجموعه اشیاء حذف خواهند شد (هرس می‌شوند). هرس کردن مبتنی بر این ایده را هرس کردن بر پایه Support نیز عنوان می‌کنند که باعث کاهش قابل ملاحظه ای از تعداد مجموعه‌های کاندید جهت بررسی (تعیین مکرر بودن یا نبودن مجموعه اشیاء) می‌شود.
الگوریتم FP-Growth در مقایسه با Apriori روش کارآمدتری برای تولید مجموعه اشیاء مکرر ارائه می‌دهد. این الگوریتم با ساخت یک درخت با نام FP-Tree سرعت فرآیند تولید اشیاء مکرر را به طور چشمگیری افزایش می‌دهد، در واقع با یکبار مراجعه به مجموعه تراکنش‌های مساله این درخت ساخته می‌شود. پس از ساخته شدن درخت با توجه به ترتیب نزولی Support مجموعه اشیاء تک عضوی (یعنی مجموعه اشیاء) مساله تولید مجموعه اشیاء مکرر به چندین زیر مسئله تجزیه می‌شود، که هدف در هر کدام از این زیر مساله ها، یافتن مجموعه اشیاء مکرری است که به یکی از آن اشیاء ختم خواهند شد.
الگوریتم Aprior علاوه بر تولید مجموعه اشیاء مکرر، اقدام به تولید مجموعه قوانین انجمنی نیز می‌نماید. در واقع این الگوریتم با استفاده از مجموعه اشیاء مکرر بدست آمده از مرحله قبل و نیز پارامتر ConfMIN قوانین انجمنی مرتبط را که دارای درجه اطمینان بالائی هستند نیز تولید می‌کند. به طور کلی Confidence دارای خصوصیت هماهنگی (Monotone) نیست ولیکن Confidence قوانینی که از مجموعه اشیاء یکسانی بوجود می‌آیند دارای خصوصیت ناهماهنگی هستند. بنابراین با هرس نمودن کلیه ابرقوانین انجمنی یک قانون انجمنی یا Confidence (Rx) ≥ ConfMIN در شبکه قوانین انجمنی (مشابه با شبکه مجموعه اشیاء) اقدام به تولید قوانین انجمنی می‌نمائیم. پس از آنکه الگوریتم با استفاده از روش ذکر شده، کلیه قوانین انجمنی با اطمینان بالا را در شبکه قوانین انجمنی یافت، اقدام به الحاق نمودن آن دسته از قوانین انجمنی می‌نماید که پیشوند یکسانی را در توالی قانون به اشتراک می‌گذارند و بدین ترتیب قوانین کاندید تولید می‌شوند.
 
جهت آشنائی بیشتر به List of machine learning concepts مراجعه نمائید.
مطالب
حل مشکل ویژوال استودیو در سیستمهایی که از رزولوشن (DPI) بالا و مانیتور های 4K استفاده می کنند
مدتی بود بر روی یک پروژه‌ی اتوماسیون اداری در VB.NET کار می‌کردیم. پروژه‌ی ما بر روی سیستمی با رزولوشن بالا  2160 * 3840 و مانیتور 4K قرار داشت. بعد از اینکه لایه بندی و کد‌های نرم افزار نوشته شد، نوبت به طراحی اینترفیس پروژه رسید. با مشکلی عجیب روبرو شدیم، به این صورت که در قسمت طراحی ویژوال استودیو، منوها، دکمه‌ها و ... بیش از حد معمول کوچک و به هم ریخته بود. ولی زمانیکه پروژه اجرا می‌شد، نسبت به طراحی که در سمت وِیژوال استودیو انجام داده بودیم، دکمه‌ها  بزرگتر و منوها بزرگتر و شکسته شده بودند. در حقیقت، سمت طراحی و سمت اجرای پروژه، هم خوانی نداشتند. در حالیکه ما قبلا بر روی مانیتور‌های HD و رزولوشن‌ها HD، هیچ مشکلی در طراحی و اجرای پروژه نداشتیم و هم خوانی لازم را باهم داشتند. بعد از جستجوهای متعدد، به این مطلب پی بردیم که این مشکل بیشتر برنامه نویسانی هست که از سیستم‌هایی با رزولوشن بالا و مانیتور‌های 4K استفاده می‌کنند و پاسخ مناسبی به کاربران داده نشده است. با تست راه‌های متعدد و جستجوهای پی در پی، به پاسخ قطعی رسیدیم و خواستم این مطلب  را به صورت مقاله‌ای کوتاه، با شما به اشتراک بگذارم.
مشخصات سیستمی که مشکل زیر را دارد : ویندوز 10  نسخه  Enterprise  x64 و ویژوال استودیو 2015 نسخه  Enterprise 
نمونه اسکرین شات گرفته شده که مشکل یکی از کاربران ایرانی بود و برای حل مشکل خود، اسکرین شات صفحه نمایش خود را قرار داده بود و به پاسخ قطعی نرسیده بود:

  اگر ملاحظه کنید، تصویر سمت راست، از پروژه‌ای بر روی VirtualBox با رزولوشن و DPI پایین در دیزاین ویژوال استودیو و تصویر سمت چپ از همان پروژه در دیزاین ویژوال استودیو با رزولوشن بالا و مانیتور 4K تهیه شده‌است و ملاحظه می‌کنید که پروژه به هم ریخته است و این مشکل در خیلی از برنامه‌های دیگر نیز موجود می‌باشد؛ مانند SQL SERVER و ...
 نمونه اسکرین شات گرفته شده از بعضی پنجره‌های SQL server 

حال برای رفع این مشکل چه باید کرد؟ به صورت زیر عمل می‌کنیم  

  1. به مسیر زیر در رجیستری مراجعه می‌کنیم :    
HKEY_LOCAL_MACHINE > SOFTWARE > Microsoft > Windows > CurrentVersion > SideBySide
 و رایت کلیک کرده  NEW > DWORD (32 bit) Value  انتخاب کرده و نام را PreferExternalManifest وارد کرده و Value را بر روی 1 قرار می‌دهیم .

     

2. نرم افزار Resourcehacke را دانلود کرده و آن‌را اجرا کرده و از قسمت File، بر روی Open کلیک کرده و مسیر ویژوال استودیو را به نرم افزار داده و  Ok را انتخاب می‌کنیم . 
C:\Program Files (x86)\Microsoft Visual Studio 14.0\Common7\IDE


بعد از بارگذاری اطلاعات ویژوال استودیو در نرم افزار  Resourcehacke، از سمت چپ بر روی Manifest و 1:1033 کلیک کرده و dpiAware را بر روی False قرار می‌دهیم .
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0"> 
  <application xmlns="urn:schemas-microsoft-com:asm.v3"> 
    <windowsSettings> 
      <dpiAware xmlns="http://schemas.microsoft.com/SMI/2005/WindowsSettings">False</dpiAware> 
    </windowsSettings> 
  </application> 
</assembly>

ودر آخر سیستم را ریستارت کرده و با همان رزولوشن بالا و مانیتور 4K، ویژوال استودیو را اجرا می‌کنیم و ملاحظه میکنیم که مشکل خاصی وجود ندارد و سمت دیزاین با سمت اجرای پروژه همخوانی دارد و همسان می‌باشد.

نظرات مطالب
EF Code First #5
من همین کاری که گفتید کردم سایتو آپلود کردم
ولی این error میده
Exception Details: System.Data.SqlClient.SqlException: Cannot open database "DataLayer.Context.MedicallexiconContext" requested by the login. The login failed.
Login failed for user 'ServerName\medicallexicon_web'.
تو stackoverflow   هم مطرح کرم جوای نگرفتم
نظرات مطالب
نگاهی به Latent Semantic Indexing
سلام دوست عزیز. از اونجایی که این روش سالهای زیادی است معرفی شده و مورد استفاده قرار گرفته (از اواخر دهه 90 میلادی) مقالات و منابع زیادی تو این حوزه منتشر شده تا بحال و بر روی اینترنت هم موجود است. ولی برای شروع می‌تونید سری به این لینک‌ها بزنید :

لینک زیر بطور آکادمیک توضیحاتی را در مورد Latent Semantic Analysis ارائه میده:
این لینک مربوط به دانشگاه استندفورد هستش و واقعا یه مرجع  عالی در مورد روش‌های مختلف بازیابی اطلاعات (Information Retrieval) هستش که اگر علاقه به سایر حوزه‌ها تو این زمینه دارید می‌تونید بعنوان یه مرجع خوب ازش استفاده کنید :
اگر هم شرحی عامیانه‌تر از این مقوله می‌خواهید می‌تونید به این لینک سری بزنید :
مطالب
نگاهی به Latent Semantic Indexing
مقدمه ای بر Latent Semantic Indexing

هنگامیکه برای اولین بار، جستجو بر مبنای کلمات کلیدی (keyword search) بر روی مجموعه‌ای از متون، به دنیای بازیابی اطلاعات معرفی شد شاید فقط یک ذهنیت مطرح می‌شد و آن یافتن لغت در متن بود. به بیان دیگر در آن زمان تنها بدنبال متونی می‌گشتیم که دقیقا شامل کلمه کلیدی مورد جستجوی کاربر باشند. روال کار نیز بدین صورت بود که از دل پرس و جوی کاربر، کلماتی بعنوان کلمات کلیدی استخراج می‌شد. سپس الگوریتم جستجو در میان متون موجود بدنبال متونی می‌گشت که دقیقا یک یا تمامی کلمات کلیدی در آن آمده باشند. اگر متنی شامل این کلمات بود به مجموعه جواب‌ها اضافه می‌گردید و در غیر این صورت حذف می‌گشت. در پایان جستجو با استفاده از الگوریتمی، نتایج حاصل رتبه بندی می‌گشت و به ترتیب رتبه با کاربر نمایش داده می‌شد.
نکته مهمی که در این روش دیده می‌شود اینست که متون به تنهایی و بدون در نظر گرفتن کل مجموعه پردازش می‌شدند و اگر تصمیمی مبنی بر جواب بودن یک متن گرفته می‌شد، آن تصمیم کاملا متکی به همان متن و مستقل از متون دیگر گرفته می‌شد. در آن سال‌ها هیچ توجهی به وابستگی موجود بین متون مختلف و ارتباط بین آنها  نمی‌شد که این مسئله یکی از عوامل پایین بودن دقت جستجو‌ها بشمار می‌رفت.
در ابتدا بر اساس همین دیدگاه  الگوریتم‌ها و روش‌های اندیس گذاری (indexing) پیاده سازی می‌شدند که تنها مشخص می‌کردند یک لغت در یک سند (document) وجود دارد یا خیر. اما با گذشت زمان محققان متوجه ناکارآمدی این دیدگاه در استخراج اطلاعات شدند. به همین دلیل روشی بنام Latent Semantic Indexing که بر پایه Latent Semantic Analysis بنا شده بود به دنیای بازیابی و استخراج اطلاعات معرف شد. کاری که این روش انجام می‌داد این بود که گامی را به مجموعه مراحل موجود در پروسه اندیس گذاری اضافه می‌کرد. این روش بجای آنکه در اندیس گذاری تنها یک متن را در نظر بگیرد و ببیند چه لغاتی در آن آورده شده است، کل مجموعه اسناد را با هم و در کنار یکدیگر در نظر می‌گرفت تا ببیند که چه اسنادی لغات مشابه با لغات موجود در سند مورد بررسی را دارند. به بیان دیگر اسناد مشابه با سند فعلی را به نوعی مشخص می‌نمود.
بر اساس دیدگاه LSI اسناد مشابه با هم، اسنادی هستند که لغات مشابه یا مشترک بیشتری داشته باشند. توجه داشته باشید تنها نمی‌گوییم لغات مشترک بیشتری بلکه از  واژه لغات مشابه نیز استفاده می‌کنیم. چرا که بر اساس LSI دو سند ممکن است هیچ لغت مشترکی نداشته باشند (یعنی لغات یکسان نداشته باشند) اما لغاتی در آنها وجود داشته باشد که به لحاظی معنایی و مفهومی هم معنا و یا مرتبط به هم باشند. بعنوان مثال لغات شش و ریه دو لغت متفاوت اما مرتبط با یکدیگر هستند و اگر دو لغات در دوسند آورده شوند می‌توان حدس زد که ارتباط و شباهتی معنایی بین آنها وجود دارد. به روش هایی که بر اساس این دیدگاه ارائه می‌شوند روش‌های جستجوی معنایی نیز گفته می‌شود. این دیدگاه مشابه دیدگاه انسانی در مواجهه با متون نیز است. انسان هنگامی که دو متن را با یکدیگر مقایسه می‌کند تنها بدنبال لغات یکسان در آن‌ها نمی‌گردد بلکه شباهت‌های معنایی بین لغات را نیز در نظر می‌گیرد این اصل و نگرش پایه و اساس الگوریتم  LSI و همچنین حوزه ای از علم بازیابی اطلاعات بنام مدل سازی موضوعی (Topic Modeling) می‌باشد.
هنگامیکه شما پرس و جویی را بر روی مجموعه ای از اسناد (که بر اساس LSI اندیس گذاری شده‌اند) اجرا می‌کنید، موتور جستجو ابتدا بدنبال لغاتی می‌گردد که بیشترین شباهت را به کلمات موجود در پرس و جوی شما دارند. بعبارتی پرس و جوی شما را بسط می‌دهد (query expansion)، یعنی علاوه بر لغات موجود در پرس و جو، لغات مشابه آنها را نیز به پرس و جوی شما می‌افزاید. پس از بسط دادن پرس و جو، موتور جستجو مطابق روال معمول در سایر روش‌های جستجو، اسنادی که این لغات (پرس و جوی بسط داده شده) در آنها وجود دارند را بعنوان نتیجه به شما باز می‌گرداند. به این ترتیب ممکن است اسنادی به شما بازگردانده شوند که لغات پرس و جوی شما در آنها وجود نداشته باشد اما LSI بدلیل وجود ارتباطات معنایی، آنها را مشابه و مرتبط با جستجو تشخیص داده باشد.  توجه داشته باشید که الگوریتم‌های جستجوی معمولی و ساده، بخشی از اسناد را که مرتبط با پرس و جو هستند، اما شامل لغات مورد نظر شما نمی‌شوند، از دست می‌دهد (یعنی کاهش recall).

برای آنکه با دیدگاه LSI بیشتر آشنا شوید در اینجا مثالی از نحوه عملکرد آن می‌زنیم. فرض کنید می‌خواهیم بر روی مجموعه ای از اسناد در حوزه زیست شناسی اندیس گذاری کنیم. بر مبنای روش LSI چنانچه لغاتی مانند کروموزم، ژن و DNA در اسناد زیادی در کنار یکدیگر آورده شوند (یا بعبارتی اسناد مشترک باهم زیادی داشته باشند)، الگوریتم جستجو چنین برداشت می‌کند که به احتمال زیاد نوعی رابطه معنایی بین آنها وجود دارد. به همین دلیل اگر شما پرس و جویی را با کلمه کلیدی "کروموزوم" اجرا نمایید، الگوریتم علاوه بر مقالاتی که مستقیما واژه کروموزوم در آنها وجود دارد، اسنادی که شامل لغات "DNA" و  "ژن" نیز باشند را بعنوان نتیجه به شما باز خواهد گرداند. در واقع می‌توان گفت الگوریتم جستجو به پرس و جوی شما این دو واژه را نیز اضافه می‌کند که همان بسط دادن پرس و جوی شما است. دقت داشته باشید که الگوریتم جستجو هیچ اطلاع و دانشی از معنای لغات مذکور ندارد و تنها بر اساس تحلیل‌های ریاضی به این نتیجه می‌رسد که در بخش‌های بعدی چگونگی آن را برای شما بازگو خواهیم نمود. یکی از برتری‌های مهم LSI نسبت به روش‌های مبتنی بر کلمات کلیدی (keyword based) این است که در LSI، ما به recall بالاتری دست پیدا می‌کنیم، بدین معنی که از کل جواب‌های موجود برای پرس و جوی شما، جواب‌های بیشتری به کاربر نمایش داده خواهند شد.
یکی از مهمترین نقاط قوت LSI اینست که این روش تنها متکی بر ریاضیات است و هیچ نیازی به دانستن معنای لغات یا پردازش کلمات در متون ندارد. این مسئله باعث می‌شود بتوان این روش را بر روی هر مجموعه متنی و با هر زبانی بکار گرفت. علاوه بر آن می‌توان LSI را بصورت ترکیبی با الگوریتم‌های جستجوی دیگر استفاده نمود و یا تنها متکی بر آن موتور جستجویی را پیاده سازی کرد.
 

نحوه عملکرد Latent Semantic Indexing
در روش LSI مبنا وقوع همزمان لغات در اسناد می‌باشد. در اصطلاح علمی به این مسئله word co-occurrence گفته می‌شود. به بیان دیگر LSI بدنبال لغاتی می‌گردد که در اسناد بیشتری در با هم آورده می‌شوند. پیش از آنکه وارد مباحث ریاضی و محاسباتی LSI شویم بهتر است کمی بیشتر در مورد این مسوله به لحاظ نظری بحث کنیم.
 
لغات زائد
به نحوه صحبت کردن روز مره انسان‌ها دقت کنید. بسیاری از واژگانی که در طول روز و در محاوره‌ها از انها استفاده می‌کنیم، تاثیری در معنای سخن ما ندارند. این مسئله در نحوه نگارش ما نیز صادق است. خیلی از لغات از جمله حروف اضافه، حروف ربط، برخی از افعال پر استفاده و غیره در جملات دیده می‌شوند اما معنای سخن ما در آنها نهفته نمی‌باشد. بعنوان مثال به جمله "جهش در ژن‌ها می‌تواند منجر به بیماری سرطان شود" درقت کنید. در این جمله لغاتی که از اهمیت بالایی بر خوردار هستند و به نوعی بار معنایی جمله بر دوش آنهاست عبارتند از "جهش"، "ژن"، بیماری" و "سرطان". بنابراین می‌توان سایر لغات مانند "در"، "می تواند" و "به" را حذف نمود. به این لغات در اصطلاح علم بازیابی اطلاعات (Information Retrieval) لغات زائد (redundant) گفته می‌شود که در اکثر الگوریتم‌های جستجو یا پردازش زبان طبیعی (natural language processing) برای رسیدن به نتایج قابل قبول باید حذف می‌شوند.روش LSI نیز از این قاعده مستثنی نیست. پیش از اجرای آن بهتر است این لغات زائد حذف گردند. این مسئله علاوه بر آنکه بر روی کیفیت نتایج خروجی تاثیر مثبت دارد، تا حد قابل ملاحظه ای کار پردازش و محاسبات را نیز تسهیل می‌نماید.
 
 
مدل کردن لغات و اسناد
پس از آنکه لغات اضافی از مجموعه متون حذف شد باید بدنبال روشی برای مدل کردن داده‌های موجود در مجموعه اسناد بگردیم تا بتوان کاربر پردازش را با توجه به آن مدل انجام داد. روشی که در LSI برای مدلسازی بکار گرفته می‌شود استفاده از ماتریس لغت – سند (term-document matrix) است. این ماتریس یک گرید بسیار بزرگ است که هر سطر از آن نماینده یک سند و هر ستون از ان نماینده یک لغت در مجموعه متنی ما می‌باشد(البته این امکان وجود دارد که جای سطر و ستون‌ها عوض شود). هر سلول از این ماتریس بزرگ نیز به نوعی نشان دهنده ارتباط بین سند و لغت متناظر با آن سلول خواهد بود. بعنوان مثال در ساده‌ترین حات می‌توان گفت که اگر لغتی در سند یافت نشد خانه متناظر با انها در ماتریس لغت – سند خالی خواهد ماند و در غیر این صورت مقدار یک را خواهد گرفت. در برخی از روش‌ها سلول‌ها را با تعداد دفعات تکرار لغات در اسناد متناظر پر می‌کنند و در برخی دیگر از معیار‌های پیچیده‌تری مانند tf*idf استفاده می‌نمایند. شکل زیر نمونه از این ماتریس‌ها را نشان می‌دهد : 

برای ایجاد چنین ماتریسی باید تک تک اسناد و لغات موجود در مجموعه متنی را پردازش نمود و خانه‌های متناظر را در ماتریس لغت – سند مقدار دهی نمود.خروجی این کار ماتریسی مانند ماتریس شکل بالا خواهد شد (البته در مقیاسی بسیار بزرگتر) که بسیاری از خانه‌های ان صفر خواهند بود (مانند آنچه در شکل نیز مشاهده می‌کنید). به این مسئله تنک بودن (sparseness) ماتریس گفته می‌شود که یکی از مشکلات استفاده از مدل ماتریس لغت – سند محسوب می‌شود. 
این ماتریس، بازتابی از کل مجموعه متنی را به ما می‌دهد. بعنوان مثال اگر بخواهیم ببینیم در سند i چه لغاتی وجود دارد، تنها کافی است به سراغ سطر iام از ماتریس برویم (البته در صورتی که ماتریس ما سند – لغت باشد) وآن را بیرون بکشیم. به این سطر در اصطلاح بردار سند (document vector) گفته می‌شود. همین کار را در مورد لغات نیز می‌توان انجام داد. بعنوان مثال با رفتن به سراغ ستون j ام می‌توان دریافت که لغت j ام  در چه اسنادی آورده شده است. به ستون j ام نیز در ماتریس سند – لغت، بردار لغت (term vector) گفته می‌شود. توجه داشته باشید که این بردار‌ها در مباحث و الگوریتم‌های مربوط به بازیابی اطلاعات و پردازش زبان طبیعی بسیار پر کاربرد می‌باشند.
با داشتن ماتریس لغت – سند می‌توان یک الگوریتم جستجو را پیاده سازی نمود. بسیاری از روش‌های جستجویی که تا کنون پیشنهاد شده اند نیز بر پایه چنین ماتریس هایی بنا شده اند. فرض کنید می‌خواهیم پرس و جویی با کلمات کلیدی "کروموزوم‌های انسان" اجرا کنیم. برای این منظور کافیست ابتدا کلمات کلیدی موجود در پرس و جو را استخراج کرده (در این مثال کروموزوم و انسان دو کلمه کلیدی ما هستند) و سپس به سراغ بردار‌های هر یک برویم. همانطور که گفته شد با مراجعه به سطر یا ستون مربوط به لغات می‌توان بردار لغت مورد نظر را یافت. پس از یافتن بردار مربوط به کروموزوم و انسان می‌توان مشخص کرد که این لغات در چه اسناد و متونی اورده شده اند و آنها را استخراج و به کاربر نشان داد. این ساده‌ترین روش جستجو بر مبنای کلمات کلیدی می‌باشد. اما دقت داشته باشید که هدف نهایی در LSI چیزی فراتر از این است. بنابراین نیاز به انجام عملیاتی دیگر بر روی این ماتریس می‌باشد که بتوانیم بر اساس آن ارتباطات معنایی بین لغات و متون را تشخیص دهیم. برای این منظور LSI ماتری لغت – سند را تجزیه (decompose) می‌کند. برای این منظور نیز از تکنیک Singular Value Decomposition استفاده می‌نماید. پیش از پرداختن به این تکنیک ابتدا بهتر است کمی با فضای برداری چند بعدی (multi-dimensional vector space) آشنا شویم. برای این منظور به مثال زیر توجه کنید.
 
مثالی از فضای چند بعدی
فرض کنید قصد دارید تحقیقی در مورد اینکه مردم چه چیز هایی را معمولا برای صبحانه خود سفارش می‌دهند انجام دهید. برای این منظور در یک روز شلوغ به رستورانی در اطراف محل زندگی خود می‌روید و لیست سفارشات صبحانه را می‌گیرید. فرض کنید از بین اقلام متعدد، تمرکز شما تنها بر روی تخم مرغ (egg)، قهوه (coffee) و بیکن (bacon) است. در واقع قصد دارید ببینید چند نفر در سفارش خود این سه قلم را باهم درخواست کرده اند. برای این منظور سفارشات را تک تک بررسی می‌کنید و تعداد دفعات را ثبت می‌کنید.
پس از آنکه کار ثبت و جمع آوری داده‌ها به پایان رسید می‌توانید نتایج را در قالب نموداری نمایش دهید. یک روش برای اینکار رسم نموداری سه بعدی است که هر بعد آن مربوط به یکی از اقلام مذکور می‌باشد. بعنوان مثال در شکل زیر نموداری سه بعدی را که برای این منظور رسم شده است مشاهده می‌کنید. همانطور که در شکل نشان داده شده است محود x مربوط به "bacon"، محور y مربوط به "egg" و محور z نیز مربوط به "coffee" می‌باشد. از آنجایی که این نمودار سه بعدی است برای مشخص کردن نقاط بر روی آن به سه عدد (x ,y ,z)  نیاز مندیم. حال اطلاعات جمع اوری شده از صورت سفارشات را یکی یکی بررسی می‌کنیم و بر اساس تعداد دفعات سفارش داده شدن این سه قلم نقطه ای  را در این فضای سه بعدی رسم می‌کنیم. بعنوان مثال اگر در سفارشی 2 عدد تخم مرغ و یک قهوه سفارش داده شد بود، این سفارش با (0, 2, 1) در نمودار ما نمایش داده خواهد شد. به این ترتیب می‌توان محل قرار گرفتن این سفارش در فضای سه بعدی سفارشات صبحانه را یافت. این کار را برای تمامی سفارشات انجام می‌دهیم تا سر انجام نموداری مانند نمودار زیر بدست آید. 

دقت داشته باشید که اگر از هریک از نقطه آغازین نمودار (0, 0, 1) خطی را به هر یک از نقاط رسم شده بکشید، بردار هایی در فضای “bacon-eggs-coffee”بدست خواهد آمد. هر کدام از این بردار‌ها به ما نشان می‌دهند که در یک صبحانه خاص بیشتر از کدام یک از این سه قلم درخواست شده است. مجموع بردار‌ها در کنار یکدیگر نیز می‌توانند اطلاعات خوبی راجع به گرایش و علاقه مردم به اقلام مذکور در صبحانه‌های خود به ما دهد. به این نمودار نمودار فضای بردار (vector – space) می‌گویند.
حالا وقت آن است که مجددا به بحث مربوط به بازیابی اطلاعات (information retrieval) باز گردیم. همانطور که گفتیم اسناد در یک مجموعه را می‌توان در قالب بردار هایی بنام Term – vector نمایش داد. این بردار‌ها مشابه بردار مثال قبل ما هستند. با این تفاوت که به جای تعداد دفعات تکرار اقلام موجود در صبحانه افراد، تعداد دفعات تکرار لغات را در یک سند در خود دارند. از نظر اندازه نیز بسیار بزرگتر از مثال ما هستند. در یک مجموعه از اسناد ما هزاران هزار لغت داریم که باید بردار‌های ما به اندازه تعداد کل لغات منحصر به فرد ما باشند. بعنوان مثال اگر در یک مجموعه ما هزار لغات غیر تکراری داریم بردار‌های ما باید هزار بعد داشته باشند. نموداری که اطلاعات را در ان نمایش خواهیم داد نیز بجای سه بعد (در مثال قبل) می‌بایست هزار بعد (یا محور) داشته باشد که البته چنین فضایی قابل نمایش نمی‌باشد.

به مثال صبحانه توجه کنید. همانطور که می‌بینید برخی از نقاط بر روی نمودار نسبت به بقیه به یکدیگر نز دیکتر هستند و ابری از نقاط را در قسمتی از نمودار ایجاد کردند. این نقاط نزدیک به هم باعث می‌شوند که بردار‌های آنها نیز با فاصله نزدیک به هم در فضای برداری مثال ما قرار گیرند. علت نزدیک بودن این بردار‌ها اینست که تعداد دفعات تکرار bacon، eggs و coffee در انها مشابه به هم بوده است. بنابراین می‌توان گفت که این نقاط (یا سفارشات مربوط به انها) به یکدیگر شبیه می‌باشند. در مورد فضای برداری مجموعه از اسناد نیز وضع به همین ترتیب است. اسنادی که لغات مشترک بیشتری با یک دیگر دارند بردار‌های مربوط به انها در فضای برداری در کنار یکدیگر قرار خواهند گرفت. هر چه این مشترکات کمتر باشد منجر به فاصله گرفتن بردار‌ها از یکدیگر می‌گردد. بنابراین می‌بینید که با داشتن فضای برداری و مقایسه بردار‌ها با یکدیگر می‌توان نتیجه گرفت که دو سند چقدر به یکدیگر شباهت دارند.
در بسیاری از روش‌های جستجو از چنین بردار هایی برای یافتن اسناد مرتبط به پرس و جوی کاربران استفاده می‌کنند. برای ان منظور تنها کافی اس پرس و جوی کاربر را بصورت برداری در فضای برداری مورد نظر نگاشت دهیم و سپس بردار حاصل را با بردار‌های مربوط به اسناد مقایسه کنیم و در نهایت آنهایی که بیشترین شباهت را دارند باز به کاربر بازگردانیم. این روش یکی از ساده‌ترین روش‌های مطرح شده در بازیابی اطلاعات است.
خوب حالا بیایید به Latent Semantic Indexing باز گردیم. روش LSI برمبنای همین فضای برداری عمل می‌کند با این تفاوت که فضای برداری را که دارای هزاران هزار بعد می‌باشد به فضای کوچکتری با ابعاد کمتر (مثلا 300 بعد) تبدیل می‌کند. به این کار در اصطلاح عملی کاهش ابعاد (dimensionality reduction) گفته می‌شود. دقت داشته باشید که هنگامیکه این عمل انجام می‌گیرد لغاتی که شباهت و یا ارتباط زیادی به لحاظ معنایی با یکدیگر دارند بجای اینکه هریک در قالب یک بعد نمایش داده شوند، همگی بصورت یک بعد در می‌آیند. بعنوان مثال لغات کروموزم و ژن از نظر معنایی با یکدیگر در ارتباط هستند. در فضای برداری اصلی این دو لغت در قالب دو بعد مجزا نمایش داده می‌شوند اما با اعمال کاهش ابعاد به ازای هر دوی آنها تنها یک بعد خواهیم داشت. مزیت این کار اینست که اسنادی که لغات مشترکی ندارند اما به لحاظ معنایی با یکدیگر ارتباط دارند در فاضی برداری کاهش یافته نزدیکی بیشتری به یکدیگر خواهند داشت.
 
روش‌های مختلفی برای اعمال کاهش ابعاد وجود دارد. در LSI از روش Singular Value Decompistion استفاده می‌شود که در بحث بعدی در مورد آن صحبت خواهیم نمود.
 
 
Singular Value Decomposition
پیشتر گفتیم که در LSI برای مدل کردن مجموعه اسناد موجود از ماتریس بزرگی بنام ماتریس لغت – سند استفاده می‌شود. این ماتریس در واقع نمایشی از مدل فضای برداری است که در بخش قبلی به آن اشاره شد. دقت داشته باشید که ما در دنیای واقعی در یک سیستم بزرگ تقریبا چیزی در حدود یک ملیون سند داریم که در مجموع این اسناد تقریبا صد هزار لغت غیر تکراری و منحصر به فرد یافت می‌شود. بنابراین می‌توان گفت میزان تنک بودن ماتریس ما تقریبا برابر با 0.1 درصد خواهد بود. یعنی از کل ماتریس تنها 0.1 درصد آن دارای اطلاعات است و اکثر سلول‌های ماتریس ما خالی می‌باشد. این مسئله را در شکل زیر می‌توانید مشاهده کنید. 

در Latent Semantic Indexing با استفاده از روش Singular Value Decomposition این ماتریس را کوچک می‌کنند. به بیان بهتر تقریبی از ماتریس اصلی را ایجاد می‌کنند که ابعاد کوچکتری خواهد داشت. این کار مزایایی را بدنبال دارد. اول آنکه سطر‌ها و ستون هایی (لغات و اسناد) که اهمیت کمی در مجموعه اسناد ما دارند را حذف می‌کند. علاوه بر آن این کار باعث می‌شود که ارتباطات معنایی بین لغات هم معنی یا مرتبط کشف شود. یافتن این ارتباطات معنایی بسیار در پاسخ به پرس و جو‌ها مفید خواهد بود. چرا که مردم معمولا در پرس و جو‌های خود از دایره لغات متفاوتی استفاده می‌کنند. بعنوان مثال برای جستجو در مورد مطالب مربوط به ژن‌های انسان برخی از واژه کروموزوم و برخی دیگر از واژه ژنوم و دیگران ممکن است از واژگان دیگری استفاده نمایند. این مسئله مشکلی را در جستجو بنام عدم تطبیق کلمات کلیدی (mismatch problem) بوجود می‌اورده که با اعمال SVD بر روی ماتریس سند – لغت این مشکل برطرف خواهد شد.
توجه داشته باشید که SVD ابعاد بردار‌های لغات و سند را کاهش می‌دهد. بعنوان مثال بجای آنکه یک سند در قالب صد هزار بعد (که هر بعد مربوط به یک لغت می‌باشد) نمایش داده شود، بصورت یک بردار مثلا 150 بعدی نمایش داده خواهد شد. طبیعی است که این کاهش ابعاد منجر به از بین رفتن برخی از اطلاعات خواهد شد چرا که ما بسیاری از ابعاد را با یکدیگر ادغام کرده ایم. این مسئله شاید در ابتدا مسئله ای نا مطلوب به نظر آید اما در اینجا نکته ای در آن نهفته است. دقت داشته باشید که آنچه از دست می‌رود اطلاعات زائد (noise) می‌باشد. از بین رفتن این اطلاعات زائد منجر می‌شود تا ارتباطات پنهان موجود در مجموعه اسناد ما نمایان گردند. با اجرای SVD بر روی ماتریس، اسناد و لغات مشابه، مشابه باقی می‌مانند و انهایی که غیر مشابه هستند نیز غیر مشابه باقی خواهد ماند. پس ما از نظر ارتباطات بین اسناد و لغات چیزی را از دست نخواهیم داد.
 
در مباحث بعدی در مورد چگونگی اعمال SVD و همچنین نحوه پاسخگویی به پرس و جو‌ها مطالب بیشتری را برای شما عزیزان خواهیم نوشت.
 
موفق و پیروز باشید. 
مطالب
آناتومی یک گزارش خطای خوب
به مشکلی در برنامه‌ای برخورده‌اید؟ کتابخانه‌ای کار نمی‌کند؟ خطایی را دریافت کرده‌اید؟ برنامه کامپایل نمی‌شود؟ برنامه آنطور که مدنظر شما است رفتار نمی‌کند؟ برای طرح این مسایل، صرف عنوان کردن «برنامه کار نمی‌کنه» یا «خطا می‌ده» منزلت خودتان را تا حد یک کاربر عادی تازه کار تنزل داده‌اید. در ادامه ساختار یک گزارش خطای خوب را بررسی خواهیم کرد، تا شما را سریعتر به مقصودتان برساند و همچنین کار پیگیری برنامه نویس یا برنامه نویس‌های مسئول را نیز مقداری ساده‌تر کند.


کارهای لازم پیش از طرح سؤال
- سعی کنید انجمن‌های مرتبط را یکبار بررسی و جستجو کنید.
- عین خطای دریافتی را در گوگل جستجو کنید. اگر از برنامه‌ها یا کتابخانه‌های معروف و متداول استفاده می‌کنید، یکی از مزیت‌های مهم کار با آن‌ها، «تنها نبودن» است! یقین داشته باشید خطایی را که دریافت کرده‌اید پیشتر توسط ده‌ها نفر دیگر در سایت‌های مختلف مطرح شده‌اند و بالاخره با بررسی آن‌ها می‌توان به پاسخ رسید.
- شاید راهنمای برنامه در این مورد خاص مطلبی را عنوان کرده است.

و ... به صورت خلاصه باید بتوانید به این سؤال پاسخ دهید: «خودت چکار کردی؟». حداقل نشان دهید که فرد حاضر و آماده طلبی نیستید و پیشتر یک حداقل تقلایی را انجام داده‌اید.


کجا باید سؤال پرسید؟
- اگر به انجمنی برای طرح سؤال خود مراجعه کرده‌اید، حتما زیر شاخه صحیحی را انتخاب کنید تا سؤال شما بسته نشود یا کلا حذف نگردد. برای مثال سؤال ASP.NET را در بخش سی‌شارپ نپرسید یا برعکس یا اگر سایتی مقاله‌ای را منتشر کرده، ذیل آن در مورد نحوه بک آپ گرفتن از اکانت توئیتر خود سؤال نپرسید!
- اگر پاسخی را دریافت کردید، ادامه بحث را ذیل همان مطلب پیگیری کنید و مجددا مطلب جدیدی را ایجاد نکنید.
- اگر تا نیم ساعت بعد جوابی را دریافت نکردید، کل بخش‌های یک سایت را با ارسال پیام خود اسپم نکنید. یکبار ارسال یک سؤال کافی است. اکثر این سایت‌ها حالت یک «چت آفلاین» را دارند. به این معنا که ابتدا پیغام خود را می‌گذارید، اگر مدتی بعد (ممکن است چند ساعت بعد) شخصی آن‌را مشاهده کرد و قادر به پاسخ دهی بود، به شما کمک خواهد کرد. بنابراین اگر سریعا به جواب نرسیدید، نه کل سایت را اسپم کنید و نه ... شروع به رفتارهای ناشایست کنید. اینکار با فریاد کشیدن وسط یک جمع تفاوتی ندارد. اشخاص مرتبط همواره آنلاین نیستند؛ ضمنا ممکن است واقعا پاسخی برای یک سؤال نداشته باشند. منصف باشید.
- از ایمیل‌های خصوصی افراد یا قسمت پیام‌های خصوصی سایت‌ها برای ارسال سؤالات شخصی استفاده نکنید. ایمیل خصوصی، مخصوص کارهای شخصی است. قسمت پیام‌های خصوصی یک سایت عموما مخصوص رسیدگی به مشکلات کاربری است. این تصور را نداشته باشید که اشخاص مشاور شخصی رایگان پروژه‌های تجاری شما هستند.
- بهترین محل برای پرسیدن سؤالات مرتبط با یک پروژه خاص، mailing list یا انجمن گفتگو و یا issue tracker آن پروژه است. وقت خودتان را با ارسال خطاهای یک پروژه خاص، در یک انجمن عمومی و همه منظوره تلف نکنید. کمی جستجو کنید که سایت اصلی پروژه کجا است. بعد دقت کنید آیا جایی برای پرسش و پاسخ دارد یا خیر. اکثر پروژه‌های خوب، مکانی را جهت جمع آوری بازخوردهای پروژه خود، اختصاص می‌دهند.


چطور باید سؤال پرسید؟
سؤال فنی خوب پرسیدن هم یک هنر است؛ که تعدادی از مشخصه‌های مهم آن‌را در ذیل مرور خواهیم کرد:
- عنوان مناسبی را برای سؤال خود انتخاب کنید. «لطفا کمک کنید» یا «من مشکل دارم» یا «مشکل در پروژه»، عموما واکنش‌های تندی را به همراه دارند؛ و تا حد ارسال اسپم در یک سایت بی‌کیفیت تلقی می‌شوند. ضمن اینکه انتخاب عنوان‌های مناسب، جستجوهای بعدی را در سایت ساده می‌کنند و کمک بزرگی خواهند بود به افراد بعدی.
- محیطی را که خطا در آن رخ داده است، توضیح دهید. ذکر IIS تنها کافی نیست. کدام نگارش آن؟ در کدام ویندوز؟
برای مثال شماره نگارش کتابخانه یا نرم افزار مورد استفاده را ذکر کنید. شاید خطایی که گرفته‌اید در نگارش بعدی آن برطرف شده است.
ذکر شماره نگارش VS.NET یا شماره نگارش دات نت مورد استفاده، سیستم عامل و کلا توصیف محیط بروز خطا، عموما بسیار مفید هستند.
- حتما کل خطای دریافت شده را ارسال کنید. اگر در یک برنامه C خطایی حاصل شود، احتمالا شکلی مانند Error 0xABCD را دارد. اما استثناءهای دات نت به همراه stack trace و حتی شماره سطر خطای حاصل نیز هستند. همین مساله می‌تواند به خطایابی نهایی بسیار کمک کند.
- سؤال خود را طوری مطرح کنید که شخص مقابل بتواند آن‌را در کمترین زمان ممکن «باز تولید» کند. برای مثال ذکر خطای دریافتی بسیار خوب است. اگر داده‌ای که سبب بروز این خطا شده است را هم ارسال کنید، مفید‌تر خواهد بود؛ یا اگر دستور پاور شل خاصی در کنسول نیوگت خطا می‌دهد، صرفا عنوان نکنید که جواب نگرفته‌اید. چه دستوری را اجرا کرده‌اید؟ چه خطایی را دریافت کرده‌اید؟ ساختار پروژه شما چیست؟ آیا شخص مقابل می‌تواند بر اساس اطلاعاتی که ارائه دادید یک آزمایش شخصی را تدارک ببیند؟ آیا می‌تواند آن‌را با توضیحات شما مجددا تولید کند؟
زمان باز تولید خطا را هم مدنظر داشته باشید. برای مثال اگر بتوانید قطعه کدی را ارائه دهید که در کمترین زمان ممکن، صرفا با کپی و پیست آن در VS.NET قابل کامپایل باشد، بسیاری علاقمند به پاسخگویی به شما خواهند شد. در غیراینصورت آنچنان انتظار نداشته باشید که شخص پاسخ دهنده وقت زیادی را برای رسیدگی به جزئیات سؤال شما صرف کند؛ یا مدتی مشغول به تهیه یک مثال جدید بر مبنای توضیحات شما شود.
حجم کدهای ارسالی شما نیز در اینجا مهم هستند. کل پروژه خود را ارسال نکنید! سعی کنید یک مثال کوچک را که بتواند سریعا خطای مدنظر شما را بازتولید کند، ارسال کنید و نه بیشتر. همچنین کدهایی که برای اجرا نیاز به GUI نداشته باشند نیز در این حالت اولویت دارند.
و به صورت خلاصه، خودتان را بجای پاسخ دهنده قرار دهید. آیا با چند جمله‌ای که ارائه داده‌اید، می‌توان انتظار پاسخی را داشت یا خیر.
- ایمیل شخصی خود را در انتهای پیام ارسال نکنید. کسی اهمیتی نمی‌دهد! اگر سؤال شما پاسخی داشته باشد، همانجا دریافت خواهید کرد و نه در میل باکس شخصی.
- املاء و انشای متنی را که ارسال می‌کنید، یکبار بررسی کنید. اگر برای شما اهمیتی ندارد که چه کلمات و جمله بندی را باید بکار برد، برای شخص مقابل هم آنچنان اهمیتی نخواهد داشت که زیاد وقت صرف کند.
- از بکار بردن smileyهای بیش از حد یا قرار دادن تعداد علامت تعجب‌های بیش از حد خودداری کنید. این موارد عموما به مسخره کردن شخص مقابل تفسیر می‌شوند.
- در بدو امر فریاد نکشید که «باگ» پیدا کرده‌اید؛ خصوصا اگر به mailing list اختصاصی یک پروژه پیامی را ارسال می‌کنید. چون اگر مشکل شما واقعا باگ نباشد، بیشتر یک توهین تلقی خواهد شد و در دفعات بعدی پاسخ دادن به شما به صورت ضمنی مؤثر خواهند بود؛ یا جواب نمی‌گیرید و یا جدی گرفته نخواهید شد.  
- هدف از کاری را که مشغول به انجام آن بود‌ه‌اید را نیز ذکر کنید. ذکر خطای دریافتی بسیار مفید است اما اگر بتوانید یک دید کلی را نسبت به کاری که مشغول به آن بوده‌اید، ایجاد کنید، شاید پاسخ بهتری را دریافت کنید. برای مثال جهت رسیدن به هدف و مقصود شما بهتر است از روش دیگری استفاده کنید.
- پس از اینکه پیامی را دریافت کردید، یک حداقل واکنشی را ارسال کنید. مثلا خوب بود؛ کمک کرد و یا مفید نبود. همین واکنش‌ها در آینده به کمک نتایج جستجوهای انجام شده خواهند آمد و اشخاص بعدی حداقل خواهند دانست که پاسخ داده شده صحیح بوده است یا خیر.

و همیشه بخاطر داشته باشید: تمام خدماتی که سایت‌های عمومی به شما ارائه می‌دهند «یک لطف» است و حقی را برای شما ایجاد نمی‌کنند. این اشخاص از شما پول نمی‌گیرند تا به سؤالات شما پاسخ دهند یا تبدیل به مشاور خصوصی رایگان شما شوند. می‌توانید محیط را برای این اشخاص، با اندکی احترام، ملایمت و انصاف، دلپذیرتر کنید.