نظرات مطالب
دریافت خلاصه‌ی وبلاگ تا 12 مهرماه 1389
وبلاگ جالب و مفیدی دارید. من هم در زمینه دات نت مطلب می نویسم. خوشحال می شوم سری بزنید: http://arabameri.com
مطالب
آمار بازدیدهای سایت
از روز 21 بهمن تعداد بازدیدکننده‌های این وبلاگ از ایران به صفر رسیده اما از آمریکا (!) بیشتر از همه‌ جای دیگر شده



البته احتمالا علت رو هم می‌تونید حدس بزنید ...



پاسخ به بازخورد‌های پروژه‌ها
ارسال به JsonResult
اقای نصیری من متوجه نشدم convert به base64 تو متد jsonresult انجام بدم و یا تو متدی که از IPdfReportData  پیاده سازی میکنم
اگه ممکنه یک مثال بزنید
پاسخ به بازخورد‌های پروژه‌ها
تگ a در گزارش
سلامی دوباره. آقای نصیری میشه لطف کنید یه مثال از پاس دادن تگ‌های html به متدLoadTagStyle بزنید؟ آخه من  این تگا رو از هر نوعی پاس می‌دم، نمیشه!


نظرات اشتراک‌ها
Google Reader تیرماه سال بعد تعطیل خواهد شد
بحث تعطیلی گوگل ریدر مقارن شد با ارائه گوگل پلاس. اون موقع خیلی‌ها اعتراض کردند و گوگل به ظاهر عقب نشینی کرد. اما بالاخره کار خودش رو قراره انجام بده!
مطالب
آموزش زبان Rust - قسمت 8 - Rust-Based CS Masterclass
مدیریت حافظه، نقش مهمی را در برنامه نویسی ایفا می‌کند و بر عملکرد و کارآیی یک برنامه تاثیر می‌گذارد. این مقاله، مروری را بر سه نوع حافظه‌ی اصلی ارائه می‌کند:  static memory, stack memory, heap . درک تفاوت بین این انواع حافظه‌ها می‌تواند به شما در بهینه سازی کد و جلوگیری از مشکلات احتمالی، کمک کند.


Static Memory

حافظه‌ی static برای ذخیره‌ی باینری‌های برنامه، متغیرهای استاتیک و حروف رشته‌ای (در Rust) استفاده می‌شود. اندازه‌ی حافظه استاتیک ثابت است و در زمان کامپایل مشخص می‌شود. حافظه‌ی استاتیک طول عمری برابر با عمر برنامه دارد و مقادیر آن از شروع، تا پایان برنامه، باقی می‌ماند. پاکسازی حافظه‌ی استاتیک به صورت خودکار انجام می‌شود و با پایان برنامه انجام می‌شود.

مواردی که در حافظه استاتیک قرار میگیرند :
  • Program Binary
  • Static variables
  • String Literals (in Rust)

Size :
  Fixed ( محاسبه در زمان کامپایل )
Lifetime : برابر با طول عمر برنامه
پاکسازی : به صورت خودکار ؛ زمانی که برنامه متوقف میشود .


  Stack Memory

حافظه‌ی پشته، مسئول نگهداری آرگومان‌های تابع و متغیرهای محلی است. پشته، شامل stack frames است که برای هر فراخوانی تابع در زنجیره‌ای از فراخوانی‌های تابع، ایجاد می‌شوند (به عنوان مثال، A B را فرا می‌خواند، B C را فرا می‌خواند). حافظه‌ی پشته به اندازه‌ی مشخصی در زمان کامپایل نیاز دارد؛ به این معنا که آرگومان‌ها و متغیرهای درون  stack frames باید اندازه‌های از پیش تعیین شده‌ای داشته باشند. اندازه‌ی پشته، پویا است؛ اما دارای حد بالایی ثابتی است که در هنگام راه اندازی برنامه تعریف شده‌است. حافظه‌ی پشته، دارای طول عمری برابر با طول عمر عملکرد است و هنگامیکه عملکرد، نتیجه‌ای را بر می‌گرداند، پاکسازی آن خودکار است.  

بیایید نگاهی به یک مثال ساده در Rust بیندازیم تا حافظه‌ی پشته را بهتر درک کنیم:
fn add(x: i32, y: i32) -> i32 {
    let sum = x + y;
    sum
}

fn main() {
    let a = 5;
    let b = 3;
    let result = add(a, b);
    println!("The sum is: {}", result);
}
در این برنامه‌ی Rust، دو عملکرد add و main را داریم. هنگامیکه برنامه شروع به اجرا می‌کند، یک stack frames برای تابع اصلی در حافظه‌ی پشته ایجاد می‌شود. این  stack frames شامل متغیرهای محلی a، b و فراخوانی تابع برای add(a, b) است.
هنگامیکه تابع add فراخوانی می‌شود، یک stack frames دیگر در بالای stack frames main موجود ایجاد می‌شود. این stack frames جدید حاوی متغیرهای محلی x، y و sum است. مقادیر a و b به عنوان آرگومان به تابع add ارسال می‌شوند و به ترتیب در x و y ذخیره می‌شوند. پس از محاسبه‌ی مجموع، تابع add، مقداری را بر می‌گرداند و  stack frames آن به طور خودکار از حافظه‌ی پشته حذف می‌شود.
سپس تابع main، مقدار برگشتی را از تابع add دریافت می‌کند و به نتیجه‌ی متغیر اختصاص می‌یابد. از ماکروی println! برای چاپ نتیجه استفاده می‌شود. پس از اتمام اجرای برنامه و بازگشت تابع اصلی، stack frames آن نیز از حافظه‌ی پشته حذف می‌شود و حافظه به‌طور خودکار پاک می‌شود.
در این مثال، می‌توانید ببینید که چگونه از stack frames برای ذخیره‌ی آرگومان‌های تابع و متغیرهای محلی در Rust استفاده می‌شود. اندازه‌ی این متغیرها در زمان کامپایل مشخص می‌شود و طول عمر حافظه‌ی پشته، برابر با طول عمر تابع است. هنگامیکه تابع برمی‌گردد، فرآیند پاکسازی آن خودکار است و قاب پشته‌ی مربوطه را حذف می‌کند.


Heap Memory

حافظه‌ی Heap، مقادیری را ذخیره می‌کند که باید فراتر از طول عمر یک تابع مانند مقادیر بزرگ و مقادیر قابل دسترسی توسط رشته‌های متعدد، زنده بمانند. از آنجائیکه هر رشته دارای پشته‌ی مخصوص به خود است، همه‌ی آنها یک پشته‌ی مشترک دارند. حافظه‌ی Heap می‌تواند مقادیری با اندازه‌ی ناشناخته را در زمان کامپایل، در خود جای دهد؛ مانند رشته‌های ورودی کاربر. اندازه‌ی پشته نیز پویا است؛ با حد بالایی ثابت که در زمان راه اندازی برنامه تعیین می‌شود. حافظه‌ی Heap طول عمری دارد که توسط برنامه نویس تعیین می‌شود و برنامه نویس تصمیم می‌گیرد که چه زمانی باید حافظه تخصیص داده شود. پاکسازی حافظه‌ی هیپ به صورت دستی است و نیاز به مداخله‌ی برنامه نویس دارد.
در این مثال ساده، روش استفاده از حافظه‌ی پشته نشان داده می‌شود:
use std::rc::Rc;

#[derive(Debug)]
struct LargeData {
    data: Vec<i32>,
}

impl LargeData {
    fn new(size: usize) -> LargeData {
        LargeData {
            data: vec![0; size],
        }
    }
}

fn main() {
    let large_data = Rc::new(LargeData::new(1_000_000));
    let shared_data1 = Rc::clone(&large_data);
    let shared_data2 = Rc::clone(&large_data);

    println!("{:?}", shared_data1);
    println!("{:?}", shared_data2);
}
در این برنامه‌ی Rust، یک ساختار LargeData را تعریف می‌کنیم که حاوی <Vec<i32 است. این روش جدید، یک شیء LargeData را به اندازه‌ی مشخصی مقداردهی اولیه می‌کند. در تابع main، یک شیء LargeData را با اندازه (1,000,000 عنصر) ایجاد می‌کنیم و با استفاده از Rc::new روی پشته ذخیره می‌کنیم. Rc یک اشاره‌گر شمارش مرجع است که به چندین متغیر اجازه می‌دهد تا مالکیت داده‌های تخصیص داده شده را به اشتراک بگذارند (در ادامه‌ی دوره توضیح داده خواهد شد).  
سپس دو متغیر دیگر را به نام‌های shared_data1 و shared_data2 ایجاد می‌کنیم که با استفاده از Rc::clone، یک شیء LargeData تخصیص‌یافته‌ی مشابه را به اشتراک می‌گذارند. این نشان می‌دهد که چگونه حافظه‌ی پشته را می‌توان در بین متغیرهای متعددی به اشتراک گذاشت؛ حتی فراتر از طول عمر تابع اصلی که داده را ایجاد کرده است.
در این مثال، پاکسازی حافظه‌ی پشته به طور خودکار توسط مکانیزم شمارش مرجع Rust مدیریت می‌شود (در ادامه‌ی دوره توضیح داده خواهد شد). هنگامیکه تعداد مرجع نشانگر Rc به صفر می‌رسد (یعنی وقتی همه‌ی متغیرهایی که داده‌ها را به اشتراک می‌گذارند از محدوده خارج می‌شوند)، حافظه‌ی تخصیص داده شده، روی پشته تخصیص داده می‌شود.
این مثال نشان می‌دهد که چگونه می‌توان از حافظه‌ی پشته برای ذخیره‌ی ساختارهای داده یا مقادیر بزرگی استفاده کرد که باید بیشتر از طول عمر یک تابع باشند و چگونه می‌توان حافظه‌ی پشته را بین چندین متغیر به اشتراک گذاشت.
مطالب
آشنایی با Catel MVVM Frameowork
در این مقاله به بررسی اولیه فریمورک Catel و برخی ویژگی‌های آن خواهیم پرداخت.
همانطور که می‌دانید فریمورک‌های متعددی برای MVVM به وجود آمده اند، مانند MVVM Light یا Caliburn و Chinch و ... که هر کدام از آن‌ها دارای ویژگی هایی می‌باشند اما Catel تنها یک فریمورک برای MVVM نیست بلکه دارای قسمت‌های دیگری مانند کنترل‌های اختصاصی و سرویس‌های متعدد و پرکاربرد و Extension‌‌های مفید و ... نیز می‌باشد که کار توسعه یک برنامه MVVM را فوق العاده لذتبخش می‌کند.
برای شروع کار با این فریمورک ابتدا بایستی قالب پروژه را از این آدرس دریافت نمایید. بعد از دریافت و نصب آن یک زیرگروه جدید به نام Catel به قسمت افزودن پروژه جدید اضافه خواهد شد که شامل قالب پروژه برای WPF و Silverlight و Windows Phone و Windows Store می باشد. در این قسمت گزینه WPF Application with Catel را انتخاب نمایید و پروژه را ایجاد کنید. بعد از ایجاد پروژه نوبت به نصب بسته های nuget مورد نیاز Catel می رسد. تنها بسته مورد نیاز Catel.Extensions.Controls می باشد که به صورت خودکار بسته های Catel.MVVM و Catel.Core را نیز نصب خواهد کرد. البته بسته‌های دیگری مانند Catel.Extensions.Prism, Catel.Extensions.FluentValidation و Catel.Extensions.Data و Catel.Fody و ... نیز برای این فریمورک وجود دارد که در این مطلب به آن‌ها نیازی نداریم.
اکنون ساختار اصلی پروژه ما ایجاد شده است. در این ساختار پوشه‌های Models ،Views و ViewModels به صورت پیش فرض وجود دارند. Catel برای برقراری ارتباط بین View و ViewModel از IViewLocator، IViewModelLocator و یکسری قواعد نام گذاری پیروی میکند تا نیاز به رجیستر کردن تک تک ویوها و ویومدل‌ها به صورت دستی نباشد که البته این قواعد قابل تغییر و شخصی سازی هستند. قرارداد پیش فرض برای پروژه‌های کوچک ممکن است مناسب باشد ولی در پروژه‌های بزرگ نیاز به سفارشی سازی دارد که در قسمت‌های بعد به آن خواهیم پرداخت. 
View و ViewModel:

برای ایجاد یک ViewModel جدید، باید از منوی Add New Item قسمت Catel گزینه (ViewModel (Catel را انتخاب نمایید. با توجه به code snippet های تهیه شده برای این فریمورک، کار تهیه ViewModel‌ها فوق العاده سریع انجام می‌شود. به عنوان مثال برای اضافه کردن یک Command در ویومدل، از vmcommand و یا vmcommandwithcanexecute و برای ایجاد پروپرتی هم از vmprop و vmpropchanged میتوان استفاده نمود. همانطور که ملاحظه می‌کنید نام این snippet‌‌ها کاملا واضح می‌باشد و نیاز به توضیح اضافی ندارند.
همینطور برای ایجاد یک View گزینه (DataWindow (WPF with Catel را انتخاب نمایید. ViewModel‌‌‌ها در Catel از کلاس پایه ViewModelBase و View‌‌ها نیز از کلاس DataWindow مشتق می‌شوند.
DataWindow یک Window پیشرفته با قابلیت هایی مانند افزودن خودکار دکمه‌های Ok / Cancel یا Ok / Cancel / Apply یا Close می‌باشد که می‌تواند باعث تسریع روند ایجاد Window‌های تکراری شود. اما اگر به هیچ کدام از این دکمه‌های ذکر شده نیاز نداشتید DataWindowMode.Custom را انتخاب می‌کنید. نشان دادن Validation در بالای پنجره به صورت popup نیز یکی دیگر از قابلیت‌های این Window پیشرفته است. البته DataWindow دارای overload‌‌های مختلفی است که می‌توانید به کمک آن ویژگی‌های ذکر شده را فعال یا غیر فعال کنید.
حال برای درک بهتر command‌ها و نحوه تعریف و بکارگیری آن‌ها یک command جدید در MainWindowViewModel با استفاده از vmcommand ایجاد کنید. مانند قطعه کد زیر:
public class MainWindowViewModel : ViewModelBase
    {
        public MainWindowViewModel()
            : base()
        {
            ShowPleaseWait = new Command(OnShowPleaseWaitExecute);
        }

        public override string Title { get { return "View model title"; } }

        public Command ShowPleaseWait { get; private set; }
        private void OnShowPleaseWaitExecute()
        {
            var pleaseWaitService = GetService<IPleaseWaitService>();
            pleaseWaitService.Show(() =>
            {
                Thread.Sleep(3000);
            });
        }
    }
در داخل بدنه این command از PleaseWaitService استفاده کردیم که در ادامه توضیح داده خواهد شد. در MainView نیز یک button اضافه کنید و پروپرتی Command آن را به صورت زیر تنظیم کنید:
<Button Margin="6"
                Command="{Binding ShowPleaseWait}"
                Content="Show PleaseWait!" />
اکنون با فشردن button کد داخل بدنه command اجرا خواهد شد.

سرویس ها:

کتابخانه Catel.MVVM دارای سرویس‌های مختلف و پرکاربردی می‌باشد که در ادامه به بررسی آن‌ها خواهیم پرداخت:
PleaseWaitService: از این سرویس برای نشان دادن یک loading به کاربر در حین انجام یک کار سنگین استفاده می‌شود و نحوه استفاده از آن به صورت زیر است:
var pleaseWaitService = GetService<IPleaseWaitService>();
pleaseWaitService.Show(() =>
{
        Thread.Sleep(3000);
});
UIVisualizerService: از این سرویس برای باز کردن پنجره‌های برنامه استفاده می‌شود. هر View در برنامه دارای یک ViewModel می باشد. برای باز کردن View ابتدا یک نمونه از ViewModel مربوطه را ایجاد میکنیم و با دادن viewmodel به متد Show یا ShowDialog پنجره مورد نظر را باز میکنیم.
var uiService = GetService<IUIVisualizerService>();
var viewModel = new AnotherWindowViewModel();
uiService.Show(viewModel);
OpenFileService: برای نشان دادن OpenFileDialog جهت باز کردن یک فایل در برنامه.
var openFileService = GetService<IOpenFileService>();
openFileService.Filter = "ZIP files (*.zip)|*.zip";
openFileService.IsMultiSelect = false;
openFileService.Title = "Open file";
if (openFileService.DetermineFile())
{
       // ?
}
SaveFileService: برای نشان دادن SaveFileDialog جهت ذخیره سازی.
var saveFileService = GetService<ISaveFileService>();
saveFileService.Filter = "ZIP files (*.zip)|*.zip";
saveFileService.FileName = "test";
saveFileService.Title = "Save file";
if (saveFileService.DetermineFile())
{
       // ?
}
ProcessService: برای اجرا کردن یک process. به عنوان مثال برای باز کردن ماشین حساب ویندوز به صورت زیر عمل می‌کنیم:
var processService = GetSetvice<IProcessService>();
processService.StartProcess(@"C:\Windows\System32\calc.exe");
SplashScreenService: برای نشان دادن SplashScreen در ابتدای برنامه هایی که سرعت بالا آمدن پایینی دارند.
var splashScreenService = GetService<ISplashScreenService>();
splashScreenService.Enqueue(new ActionTask("Creating the shell", OnCreateShell));
splashScreenService.Enqueue(new ActionTask("Initializing modules", OnInitializeModules));
splashScreenService.Enqueue(new ActionTask("Starting application", OnStartApplication));
MessageService: برای نشان دادن MessageBox به کاربر.
var messageService = GetService<IMessageService>();
if (messageService.Show("Are you sure?", "?", MessageButton.YesNo, MessageImage.Warning) == MessageResult.Yes)
{
       // ?
}
همانطور که ملاحظه کردید اکثر کارهای مورد نیاز یک پروژه با کمک سرویس‌های ارائه شده در این فریمورک به آسانی انجام می‌شود.
دریافت مثال و پروژه کامل این قسمت:
مطالب
MongoDb در سی شارپ (بخش نهم)
سال‌های مدیدی است که به طراحی پایگاه‌های sql پرداخته و تجاربی آموخته‌ایم. کتاب‌ها و مقالات زیادی در اینباره منتشر شده‌اند. از این‌رو در نحوه طراحی دیتابیس‌های رابطه‌ای اطلاعات زیادی کسب و مسائل زیادی را از این راه حل نموده‌ایم؛ ولی با ورود دیتابیس‌های NoSql و تنوع زیاد آن‌ها و روش‌های متنوعی که هر کدام از آن‌ها به طور جداگانه دارند باعث شد تجربه سال‌ها فعالیت و مدل ذهنی که داشتیم به یکباره تغییر کند و گاها بیشتر باعث گیج شدن می‌گردد. از این‌رو در این مقاله سعی داریم تکنیک‌ها مدل سازی اسناد را در دیتابیس مونگو، بررسی کنیم و مزایا و معایب هر یک را برشماریم.
در دیتابیس‌های قدیم، تمرکز بر روی نوشتن بود تا با کمترین افزونگی و تکرار و رعایت اصول ACID، اطلاعات را ذخیره نماییم. ولی در حال حاضر به دلیل دسترسی به فضاهای ذخیره سازی بزرگتر و همچنین افزایش ترافیک شبکه در واکشی دیتاها، قضیه عکس شده و تمرکز دیتابیس‌های NoSql بر روی خواندن میباشد. پس باید فاکتورهای مدل سازی طوری باشد تا خواندن در سریعترین حد امکان قرار بگیرد. البته مواردی چون حذف و به روزرسانی هم باید در این مورد بررسی شوند.
ارتباط اسناد با یکدیگر:
ارتباط اسناد از دو طریق امکان پذیر است:
  • حالت ارجاع  : شماره سند یا Object Id را شامل شده و در صورتیکه به اطلاعاتی نیاز داشتید، باید اطلاعات آن را در یک درخواست جداگانه واکشی نمایید. چون مونگو شامل جوین نبوده و جوین‌ها باید در سطح اپلیکیشن مدیریت شوند.
{
fname:'ali',
lname:'yeganeh',
accounts:[454354353,3455435]
}

  • حالت جاسازی سند (یا اسناد تو در تو) Embed :  در این حالت سند مورد نظر اطلاعات سند دیگری را در درون خود نگه میدارد. در این حالت به هیچ جوینی نیازی نیست و اطلاعات وابسته، به همراه خود سند اصلی واکشی می‌شوند. این نکته باید مورد توجه قرار بگیرد که مونگو یک دیتابیس غیر اتمیک هست و در صورتیکه اصل دیتا تغییر کند، تغییر یا به روزرسانی در سندهای Embed انجام نخواهد شد و در صورت نیاز باید خودتان به طور دستی آن را کنترل نمایید.
{
fname:'ali',
lname:'yeganeh',
accounts:[
{
  username:"ali",
  password:"123"
},
{
  username:"reza",
  password:"456"
}
]
}

مدل هایی با ارتباط یک به یک : 
در این نوع مدل سازی، دو سند داریم که یکی از آن‌ها Principle و دیگری Dependent محسوب می‌شود. برای ذخیره سازی آن‌ها عموما از حالت Embed استفاده میشود. در این حالت چون ارتباط بین دو سند به صورت یک به یک میباشد، در واقع این امکان وجود دارد تا سند مادری به طور جداگانه وجود نداشته باشد و همان سند به صورت Embed ذخیره میشود. در این حالت مشکلی از لحاظ اتمیک نبودن مونگو پیش نمیاید و  ویرایش راحت‌تری خواهد داشت.
مدل‌هایی با ارتباط یک به چند:
این اسناد را می‌توان به دو حالت بالا بر حسب نیازمندی سیستم ذخیره کرد. فرض کنید مثال زیر را که در سایت مونگو هم عنوان شده‌‌است، داریم:
book
{
     name:'Scarlet Letter",
     Language:"English",
     Pages:124,
...
}

publisher
{
   name : "Orielly",
   ...

}
در این حالت هر کتاب باید ارتباطی با ناشر خود داشته باشد. در صورتیکه به صورت Embed داخل سند قرار بگیرد و هر کتابی شامل اطلاعات ناشر خود باشد، نکات زیر مورد بررسی قرار میگیرند:
book
{
     name:'Scarlet Letter",
     Language:"English",
     Pages:124,
...,
publisher:
{
   name : "Orielly",
   ...

}
}

نکات مثبت:
  1. در این حالت در صورتیکه واکشی هر کتاب به همراه اطلاعات ناشر را نیاز داشته باشیم و یا پرس وجوهای ترکیبی نیاز باشد، در سریعترین زمان ممکن واکشی انجام خواهد شد.
  2. درج و مدیریت آن راحت‌تر خواهد بود.
نکات منفی:
  1. در صورتیکه اطلاعات ناشر نیاز به تغییرات اساسی داشته باشد و باید در تمامی سندها اصلاح گردد، باید تمامی اسناد مربوط به اطلاعات کتاب به روزرسانی شوند که هزینه سنگین‌تری را خواهد داشت.
  2. دیتای تکراری زیادی ذخیره خواهد شد و در نتیجه حافظه بیشتری را میطلبد.
  3. در صورتیکه تنها به اطلاعات ناشر نیاز باشد و اطلاعات ناشر در سند دیگری وجود نداشته باشد و فقط در سند کتاب وجود داشته باشد، واکشی آن هزینه سنگین‌تری را خواهد طلبید. به همین جهت توصیه میشود در صورتیکه دیتای شما می‌تواند به صورت یک موجودیت مستقل هم عمل کند، اطلاعات آن در سند دیگری که من به آن سند اصلی میگویم ذخیره شوند تا نمونه‌ها از روی آخرین ویرایش آن ساخته شوند و موقعی‌که تنها به واکشی آن اطلاعات نیاز است، همان‌ها بیرون کشیده شوند.
در روشی دیگری میتوان ارجاعی از ناشر را به شکل زیر در کتاب نگهداری کرد:
book
{
     name:'Scarlet Letter",
     Language:"English",
     Pages:124,
...,
publisher:1212121
}
نکات مثبت:
  1. عدم وجود تکرار اطلاعات
  2. چون تنها یک سند برای ویرایش وجود دارد، نیازی به اصلاح اسناد توکار نیست و ویرایش، هزینه کمتری خواهد داشت.
نکات منفی:
  1. عدم وجود جوین: در صورتیکه نیاز به جوین بزرگی باشد، این نوع جوین باید در سطح برنامه شما انجام شود و هزینه بر خواهد بود.

نگهداری نام کتاب‌ها در ناشر
انعطاف مونگو برای ایجاد مدل، گزینه‌های زیادی را پیش رو میگذارد و واقعا مدلسازی را بیشتر از قبل، چالش برانگیز میکند. در حالت دیگر میتوان اطلاعات کتاب را به صورت ارجاع، در سند ناشر نگهداری کرد. به عنوان مثال زمانیکه نیاز داریم کتب منتشرشده یک ناشر را ببینیم، شاید این گزینه بهتر باشد. البته در این حالت باید بتوان ارجاعات به کتاب را در تعداد محدودی نگهداری کرد؛ در غیر این صورت با تعداد زیادی ارجاع که شاید هیچگاه نیازی هم به آن‌ها نیست، خواهیم رسید و در این حالت شاید ارجاع به ناشر در سند کتاب بسیار بهتر به نظر برسد. البته میتوان در این حالت ناشر تنها به تعداد معدودی از آخرین کتابهایش دسترسی داشته باشد تا کاربر بتواند آخرین کتاب‌های منتشر شده‌ی ناشر را ببیند. 
حال با اطلاعات بالا چگونه مدلسازی کنیم؟
همانطور که گفتیم ابتدا تمرکز شما باید برای خواندن اطلاعات باشد و سپس معیارهایی چون به روزرسانی نیز بررسی گردند. به عنوان نمونه اطلاعات یک پست در وبلاگ را در نظر بگیرید. این سند شامل سندهای توکاری چون دسته بندی، اطلاعات نویسنده، معیارهایی چون امتیازدهی و بخش نظرات میباشد. در این حالت چون همه عناصر قرار است با یکدیگر بیرون کشیده شوند و در واقع تنها با یک سند سروکار داریم، کار بسیار سریعتر و راحت‌تر است. پس این ساختار گزینه مناسبی برای نمایش است:
Post
{
title:"C#",
body:"About C#",
tags:['C#','.Net','microsoft'],
Categories:[{name:'Programming'}],
votes:[{rate:3,user:42342},{rate:5,user:423445},...],
comments:[
{
text:"my comment1",
time:"10/2/1396",...},
...

]
}

حال این تصور را داشته باشید که ما تنها یک پست را نشان نمیدهیم و بلکه پست‌ها به صورت یک لیست قرار است نمایش داده شوند و با گزینه‌ی مشاهده‌ی مطلب می‌توانیم یک پست را به صورت کامل ببینیم. در این صورت همه اطلاعات همانند قبل هستند، بجز بخش نظرات که دیگر در این حالت کاربردی ندارد و دیتای اضافی است که به ناچار باید خوانده شود. پس در این حالت میگوییم این مدل برای خواندن مناسب نیست، چون باید تمام نظرات اسنادی که در لیست قرار دارند هم خوانده شوند. پس باید بخش نظرات را از سند پست وبلاگ جدا کنیم.
{
POST:45453,
count:35,
comments:[...]
}
سپس میگوییم هر سند نهایتا 16 مگابایت اطلاعات را نگهداری میکند و هم اینکه تعداد نظرات ممکن است بسیار زیاد باشند. پس هر سند را به تعدادی نظر محدود میکنیم به این حالت میگویند داریم یک Bucket میسازیم و مثلا هر باکت را به 100 کامنت محدود میکنیم. تا به الان وضعیت طراحی بهتری نسبت به قبل پیدا کردیم:
{
post:345345,
capacity:100,
count:35,
bucket:2,
comments:[...]
}
در این حالت حتی میتوانیم کامنتها را صفحه بندی کرده و در هر صفحه یک باکت را بخوانیم. برای نمایش این دو مورد آخری برای جداسازی دیتا بسیار خوب است. حتی میتوان یک کامنت را به همراه پاسخ‌های آن که به صورت درخت واره قرار گرفته اند نیز در یک سند جداگانه ذخیره کرد.
نکاتی که باید در حین طراحی در نظر بگیرید:
  1. همیشه به این نکته توجه داشته باشید که نباید بگذارید تعداد آرایه‌های یک سند خیلی بزرگ شوند. در غیر اینصورت کارآیی مونگو به خصوص در حین ویرایش سند پایین خواهد آمد. در حین ویرایش، اگر سندی از اندازه‌ی خود بزرگتر نشود، مشکلی پیش نمیاید ولی اگر فضایی بیش از آنچه که  قبلا داشته به آن اضافه شود، سند نیاز به جابجایی و گسترش فضا خواهد داشت. در این حالت باید مونگو سند را به جای دیگری که فضای کافی برای آن وجود دارد، انتقال بدهد و میزان Disk Fragment به طبع بالا خواهد رفت. همچنین اندیس‌های آرایه‌ای هم با جابجا شدن دیتا نیاز به، به روزرسانی خواهند داشت و زمانی هم صرف به روزرسانی اندیس‌ها خواهد شد.
  2. مدیر محصول مونگو اظهار نظر صریحی در این مورد نکرد‌ه‌است، ولی به نظر می‌رسد نوع فرمت BSON از یک اسکن خطی در حافظه استفاده میکند و زمان بیشتری صرف پیدا کردن المان‌های انتهایی در آرایه خواهد شد؛ پس بیشتر عملیات در این نوع سند، با کندی مواجه خواهند شد. با توجه به کامنت‌هایی که در سایت‌ها و شبکه‌های اجتماعی یافت شده‌است، آرایه ای با بیش از صدهزار آیتم ساده میتواند آسیب زا باشد؛ به همین دلیل توصیه میشود که اگر بیش از صدهزار آیتم نیاز است، از همان حالت Bucket استفاده شود.
  3. استفاده از اندیس‌ها هم سابقه‌ی دیرینه‌ای داشته و سعی کنید کوئری هایی بزنید که بر اساس اندیس‌های تعریف شده باشند تا واکشی دیتا سریعتر شود. پس نحوه کوئری نویسی و انتخاب فیلدی که اندیس میشود بسیار مهم است.
  4. استفاده از Projection تاثیری بر خواندن اسناد ندارد و هر سند به طور کامل واکشی می‌شود. projection تنها در بار‌ه‌ی ترافیک یا انتقال حجم کمتری از اطلاعات به سمت کلاینت تاثیرگذار میباشد. پس استفاده از projection بجای جدا سازی اسناد را دنبال نکنید.
اشتراک‌ها
استفاده از Mozilla Location Service

برای این که انحصار اطلاعاتی گوگل را کاهش دهیم باید این قبیل  از پروژه‌ها بیشتر پشتیبانی شوند.

استفاده از Mozilla Location Service