مطالب
کار با Docker بر روی ویندوز - قسمت سوم - نصب Docker بر روی ویندوز سرور
در قسمت قبل، Docker for Windows را بر روی ویندوز 10 نصب کردیم تا بتوانیم از هر دوی Linux Containers و Windows Containers استفاده کنیم. در این قسمت، نحوه‌ی نصب Docker را بر روی ویندوز سرور، صرفا جهت اجرای Windows Containers، بررسی می‌کنیم؛ از این جهت که در دنیای واقعی، عموما Linux Containers را بر روی سرورهای لینوکسی و Windows Containers را بر روی سرورهای ویندوزی اجرا می‌کنند.


Docker for Windows چگونه از هر دوی کانتینرهای ویندوزی و لینوکسی پشتیبانی می‌کند؟

زمانیکه docker for windows را اجرا می‌کنیم، سرویسی را ایجاد می‌کند که سبب اجرای پروسه‌ی ویژه‌ای به نام com.docker.proxy.exe می‌شود:


هنگامیکه برای مثال فرمان docker run nginx را توسط Docker CLI اجرا می‌کنیم، Docker CLI از طریق واسط یاد شده، دستورات را به MobyLinuxVM منتقل می‌کند. به این صورت است که امکان اجرای Linux Containers، بر روی ویندوز میسر می‌شوند:


اکنون اگر به Windows Containers سوئیچ کنیم (از طریق کلیک راست بر روی آیکن Docker در قسمت Tray Icons ویندوز)، پروسه‌ی dockerd.exe یا docker daemon شروع به کار خواهد کرد:


اینبار اگر مجددا از Docker CLI برای اجرای مثلا IIS Container استفاده کنیم، دستور ما از طریق واسط‌های com.docker.proxy و dockerd‌، به کانتینر ویندوزی منتقل و اجرا می‌شود:



نگاهی به معماری Docker بر روی ویندوز سرور

داکر بر روی ویندوز سرور، تنها به همراه موتور مدیریت کننده‌ی Windows Containers است:


در اینجا با صدور فرمان‌های Docker CLI، پیام‌ها مستقیما به dockerd یا موتور داکر بر روی ویندوز سرور ارسال شده و سپس کار اجرا و مدیریت یک Windows Container انجام می‌شود.


نصب Docker بر روی ویندوز سرور

جزئیات مفصل و به روز Windows Containers را همواره می‌توانید در این آدرس در سایت مستندات مجازی سازی مایکروسافت مطالعه کنید (قسمت Container Host Deployment - Windows Server آن). پیشنیاز کار با آن نیز نصب حداقل ویندوز سرور 2016 می‌باشد و بهتر است تمام به روز رسانی‌های آن‌را نیز نصب کرده باشید؛ چون تعدادی از بهبودهای کار با کانتینرهای آن، به همراه به روز رسانی‌ها آن ارائه شده‌اند.
برای شروع به نصب، نیاز است کنسول PowerShell ویندوز را با دسترسی Admin اجرا کنید.
سپس اولین دستوراتی را که نیاز است اجرا کنید، کار نصب موتور Docker و CLI آن‌را به صورت خودکار بر روی ویندوز سرور انجام می‌دهند:
Install-Module -Name DockerMsftProvider -Repository PSGallery -Force
Install-Package -Name docker -ProviderName DockerMsftProvider
Restart-Computer -Force
- که پس از نصب و ری‌استارت سیستم، نتیجه‌ی آن‌را در پوشه‌ی c:\Program Files\Docker می‌توانید ملاحظه کنید.
- به علاوه اگر دستور *get-service *docker را در کنسول PowerShell صادر کنید، مشاهده خواهید کرد که سرویس جدیدی را به نام Docker نیز نصب و راه اندازی کرده‌است که به dockerd.exe اشاره می‌کند.
- و یا اگر در کنسول PowerShell دستور docker را صادر کنید، ملاحظه خواهید کرد که CLI آن، فعال و قابل استفاده‌است. برای مثال، دستور docker version را صادر کنید تا بتوانید نگارش docker نصب شده را ملاحظه نمائید.


اجرای Image مخصوص NET Core. بر روی ویندوز سرور

تگ‌های مختلف Image مخصوص NET Core. را در اینجا ملاحظه می‌کنید. در ادامه قصد داریم tag مرتبط با nanoserver آن‌را نصب کنیم (با حجم 802MB):
docker run microsoft/dotnet:nanoserver
زمانیکه این دستور را اجرا می‌کنیم، پس از اجرای آن، ابتدا یک \:C را نمایش می‌دهد و بعد خاتمه یافته و به command prompt بازگشت داده می‌شویم. برای مشاهده‌ی علت آن، اگر دستور docker ps -a را اجرا کنیم، در ستون command آن، قسمتی از دستوری را که اجرا کرده‌است، می‌توان مشاهده کرد. برای مشاهده‌ی کامل این دستور، نیاز است دستور docker ps -a --no-trunc را اجرا کنیم. در اینجا سوئیچ no-trunc به معنای no truncate است یا عدم حذف قسمت انتهایی یک دستور طولانی. در این حالت مشاهده خواهیم کرد که این دستور، کار اجرای cmd.exe واقع در پوشه‌ی ویندوز را انجام می‌دهد (یا همان command prompt معمولی ویندوز). چون دستور docker run فوق به آن متصل نشده‌است، این پروسه ابتدا \:c را نمایش می‌دهد و سپس خاتمه پیدا می‌کند. برای رفع این مشکل، از interactive command که در قسمت قبل توضیح دادیم، استفاده خواهیم کرد:
docker run -it microsoft/dotnet:nanoserver
اینبار اگر این دستور را اجرا کنیم، به command prompt آغاز شده‌ی توسط آن، متصل خواهیم شد. اکنون اگر در همینجا (داخل container در حال اجرا) دستور dotnet --info را صادر کنید، می‌توان مشخصات NET Core SDK. نصب شده را مشاهده کرد. برای خروج از آن نیز دستور exit را صادر کنید.


چرا حجم Image مخصوص NET Core. نگارش nanoserver آن حدود 800 مگابایت است؟

در مثال قبلی، دسترسی به command prompt مجزایی نسبت به command prompt اصلی سیستم، در داخل یک container، شاید اندکی غیر منتظره بود و اکنون این سؤال مطرح می‌شود که یک image، شامل چه چیزهایی است؟
یک image شاید در ابتدای کار صرفا شامل فایل‌های اجرایی یک برنامه‌ی خاص به نظر برسد؛ اما زمانیکه قرار است تبدیل به یک container قابل اجرا شود، شامل بسیاری از فایل‌های دیگر نیز خواهد شد. برای درک این موضوع نیاز است لایه‌های نرم افزاری که یک سیستم را تشکیل می‌دهند، بررسی کنیم:


در این تصویر از پایین‌ترین لایه‌ای را که با سخت افزار ارتباط برقرار می‌کند تا بالاترین لایه‌ی موجود نرم افزاری را مشاهده می‌کنید. دراینجا هر چیزی را که در ناحیه‌ی کرنل قرار نمی‌گیرد، User Space می‌نامند. برنامه‌های قرار گرفته‌ی در User Space برای کار با سخت افزار نیاز است با کرنل ارتباط برقرار کنند و برای این منظور از System Calls استفاده می‌کنند که عموما کتابخانه‌هایی هستند که جزئی از سیستم عامل می‌باشند؛ مانند API ویندوز. برای مثال MongoDB توسط Win32 API و System Calls، فرامینی را به کرنل منتقل می‌کند.
در روش متداول توزیع و نصب نرم افزار، ما عموما همان بالاترین سطح را توزیع و نصب می‌کنیم؛ برای مثال خود MongoDB را. در اینجا نصاب MongoDB فرض می‌کند که در سیستم جاری، تمام لایه‌های دیگر، موجود و آماده‌ی استفاده هستند و اگر اینگونه نباشد، به مشکل برخواهد خورد و اجرا نمی‌شود. برای اجتناب از یک چنین مشکلاتی مانند عدم حضور وابستگی‌هایی که یک برنامه برای اجرا نیاز دارد، imageهای docker، نحوه‌ی توزیع نرم افزارها را تغییر داده‌اند. اینبار یک image بجای توزیع فقط MongoDB، شامل تمام قسمت‌های مورد نیاز User Space نیز هست:


به این ترتیب دیگر مشکلاتی مانند عدم وجود یک وابستگی یا حتی وجود یک وابستگی غیرسازگار با نرم افزار مدنظر، وجود نخواهند داشت. حتی می‌توان تصویر فوق را به صورت زیر نیز خلاصه کرد:


به همین جهت بود که برای مثال در قسمت قبل موفق شدیم IIS مخصوص ویندوز سرور با تگ nanoserver را بر روی ویندوز 10 که بسیاری از وابستگی‌های مرتبط را به همراه ندارد، با موفقیت اجرا کنیم.
به علاوه چون یک container صرفا به معنای یک running process از یک image است، هر فایل اجرایی داخل آن image را نیز می‌توان به صورت یک container اجرا کرد؛ مانند cmd.exe داخل image مرتبط با NET Core. که آن‌را بررسی کردیم.


کارآیی Docker Containers نسبت به ماشین‌های مجازی بسیار بیشتر است

مزیت دیگر یک چنین توزیعی این است که اگر چندین container در حال اجرا را داشته باشیم:


 در نهایت تمام آن‌ها فقط با یک لایه‌ی کرنل کار می‌کنند و آن هم کرنل اصلی سیستم جاری است. به همین جهت کارآیی docker containers نسبت به ماشین‌های مجازی بیشتر است؛ چون هر ماشین مجازی، کرنل مجازی خاص خودش را نسبت به یک ماشین مجازی در حال اجرای دیگر دارد. در اینجا برای ایجاد یک لایه ایزوله‌ی اجرای برنامه‌ها، تنها کافی است یک container جدید را اجرا کنیم و در این حالت وارد فاز بوت شدن یک سیستم عامل کامل، مانند ماشین‌های مجازی نمی‌شویم.

شاید مطابق تصویر فوق اینطور به نظر برسد که هرچند تمام این containers از یک کرنل استفاده می‌کنند، اما اگر قرار باشد هر کدام OS Apps & Libs خاص خودشان را در حافظه بارگذاری کنند، با کمبود شدید منابع روبرو شویم. دقیقا مانند حالتیکه چند ماشین مجازی را اجرا کرده‌ایم و دیگر سیستم اصلی قادر به پاسخگویی به درخواست‌های رسیده به علت کمبود منابع نیست. اما در واقعیت، یک image داکر، از لایه‌های مختلفی تشکیل می‌شود که فقط خواندنی هستند و غیرقابل تغییر و زمانیکه docker یک لایه‌ی فقط خواندنی را در حافظه بارگذاری کرد، اگر container دیگری، از همان لایه‌ی تعریف شده‌، در image خود نیز استفاده می‌کند، لایه‌ی بارگذاری شده‌ی فقط خواندنی در حال اجرای موجود را با آن به اشتراک می‌گذارد (مانند تصویر زیر). به این ترتیب میزان مصرف منابع docker containers نسبت به ماشین‌های مجازی بسیار کمتر است:



روش کنترل پروسه‌ای که درون یک کانتینر اجرا می‌شود

با اجرای دستور docker run -it microsoft/dotnet:nanoserver ابتدا به command prompt داخلی و مخصوص این container منتقل می‌شویم و سپس می‌توان برای مثال با NET Core CLI. کار کرد. اما امکان اجرای این CLI به صورت زیر نیز وجود دارد:
docker run -it microsoft/dotnet:nanoserver dotnet --info
این دستور، مشخصات SDK نصب شده را نمایش می‌دهد و سپس مجددا به command prompt سیستم اصلی (که به آن میزبان، host و یا container host نیز گفته می‌شود) بازگشت داده خواهیم شد؛ چون کار NET Core CLI. خاتمه یافته‌است، پروسه‌ی متعلق به آن نیز خاتمه می‌یابد.
بدیهی است در این حالت تمام فایل‌های اجرایی داخل این container را نیز می‌توان اجرا کرد. برای مثال می‌توان کنسول پاورشل داخل این container را اجرا کرد:
docker run -it microsoft/dotnet:nanoserver powershell
زمانیکه به این کنسول دسترسی پیدا کردید، برای مثال دستور get-process را اجرا کنید. به این ترتیب می‌توانید لیست تمام پروسه‌هایی ر که هم اکنون داخل این container در حال اجرا هستند، مشاهده کنید.


هر کانتینر دارای یک File System ایزوله‌ی خاص خود است

تا اینجا دریافتیم که هر image، به همراه فایل‌های user space مورد نیاز خود نیز می‌باشد. به عبارتی هر image یک file system را نیز ارائه می‌دهد که تنها درون همان container قابل دسترسی می‌باشد و از مابقی سیستم جاری ایزوله شده‌است.
برای آزمایش آن، کنسول پاورشل را در سیستم میزبان (سیستم عامل اصلی که docker را اجرا می‌کند)، باز کرده و دستور \:ls c را صادر کنید. به این ترتیب می‌توانید لیست پوشه‌ها و فایل‌های موجود در درایو C میزبان را مشاهده نمائید. سپس دستور docker run -it microsoft/dotnet:nanoserver powershell را اجرا کنید تا به powershell داخل کانتینر NET Core. دسترسی پیدا کنیم. اکنون دستور \:ls c را مجددا اجرا کنید. خروجی آن کاملا متفاوت است نسبت به گزارشی که پیشتر بر روی سیستم میزبان تهیه کردیم؛ دقیقا مانند اینکه هارد درایو یک container متفاوت است با هارد درایو سیستم میزبان.


این تصویر زمانی تهیه شده‌است که دستور docker run یاد شده را صادر کرده‌ایم و درون powershell آن قرار داریم. همانطور که مشاهده می‌کنید یک Disk جدید، به ازای این Container در حال اجرا، به سیستم میزبان اضافه شده‌است. این Disk زمانیکه در powershell داخل container، دستور exit را صادر کنیم، بلافاصله محو می‌شود. چون پروسه‌ی container، به این ترتیب خاتمه یافته‌است.
اگر دستور docker run یاد شده را دو بار اجرا کنیم، دو Disk جدید ظاهر خواهند شد:


یک نکته: اگر بر روی این درایوهای مجازی کلیک راست کرده، گزینه‌ی change drive letter or path را انتخاب نموده و یک drive letter را به آن‌ها نسبت دهید، می‌توانید محتویات داخل آن‌ها را توسط Windows Explorer ویندوز میزبان نیز به صورت یک درایو جدید، مشاهده کنید.


خلاصه‌ای از ایزوله سازی‌های کانتینرها تا به اینجا

تا اینجا یک چنین ایزوله سازی‌هایی را بررسی کردیم:
- ایزوله سازی File System و وجود یک disk مجازی مجزا به ازای هر کانتینر در حال اجرا.

- پروسه‌های کانتینرها از پروسه‌های میزبان ایزوله هستند. برای مثال اگر دستور get-process را داخل یک container اجرا کنید، خروجی آن با خروجی اجرای این دستور بر روی سیستم میزبان یکی نیست. یعنی نمی‌توان از داخل کانتینرها، به پروسه‌های میزبان دسترسی داشت و دخل و تصرفی را در آن‌ها انجام داد که از لحاظ امنیتی بسیار مفید است. هر چند اگر به task manager ویندوز میزبان مراجعه کنید، می‌توان پروسه‌های داخل یک container را توسط Job Object ID یکسان آن‌ها تشخیص دهید (مثال آخر قسمت قبل)، اما یک container، قابلیت شمارش پروسه‌های خارج از مرز خود را ندارد.

- ایزوله سازی شبکه مانند کارت شبکه‌ی مجازی کانتینر IIS که در قسمت قبل بررسی کردیم. برای آزمایش آن دستور ipconfig را در داخل container و سپس در سیستم میزبان اجرا کنید. نتیجه‌ای را که مشاهده خواهید کرد، کاملا متفاوت است. یعنی network stack این دو کاملا از هم مجزا است. شبیه به اینکه به یک سیستم، چندین کارت شبکه را متصل کرده باشید. اینکار در اینجا با تعریف virtual network adaptors انجام می‌شود و لیست آن‌ها را در قسمت «All Control Panel Items\Network Connections» سیستم میزبان می‌توانید مشاهده کنید. یکی از مهم‌ترین مزایای آن این است که اگر در یک container، وب سروری را بر روی پورت 80 آن اجرا کنید، مهم نیست که در سیستم میزبان، یک IIS در حال سرویس دهی بر روی پورت 80 هم اکنون موجود است. این دو پورت با هم تداخل نمی‌کنند.

- در حالت کار با Windows Containers، رجیستری کانتینر نیز از میزبان آن مجزا است و یا متغیرهای محیطی این‌ها یکی نیست. برای مثال دستور \:ls env را در کانتینر و سیستم میزبان اجرا کنید تا environment variables را گزارش گیری کنید. خروجی این دو کاملا متفاوت است. برای مثال حداقل computer name، user name‌های قابل مشاهده‌ی در این گزارش‌ها، متفاوت است و یا دستور \:ls hkcu را در هر دو اجرا کنید تا خروجی رجیستری متعلق به کاربر جاری هر کدام را مشاهده کنید که در هر دو متفاوت است.

- در حالت کار با Linux Containers هر چیزی که ذیل عنوان namespace مطرح می‌شود مانند شبکه، PID، User، UTS، Mount و غیره شامل ایزوله سازی می‌شوند.


دو نوع Windows Containers وجود دارند

در ویندوز، Windows Server Containers و Hyper-V Containers وجود دارند. در این قسمت تمام کارهایی را که بر روی ویندوز سرور انجام دادیم، در حقیقت بر روی Windows Server Containers انجام شدند و تمام Containerهای ویندوزی را که در قسمت قبل بر روی ویندوز 10 ایجاد کردیم، از نوع Hyper-V Containers بودند.
تفاوت مهم این‌ها در مورد نحوه‌ی پیاده سازی ایزوله سازی آن‌ها است. در حالت Windows Server Containers، کار ایزوله سازی پروسه‌ها توسط کرنل اشتراکی بین کانتینرها صورت می‌گیرد اما در Hyper-V Containers، این ایزوله سازی توسط hypervisor آن انجام می‌شود؛ هرچند نسبت به ماشین‌های مجازی متداول بسیار سریع‌تر است، اما بحث به اشتراک گذاری کرنل هاست را که پیشتر در این قسمت بررسی کردیم، در این حالت شاهد نخواهیم بود. ویندوز سرور 2016 می‌تواند هر دوی این ایزوله سازی‌ها را پشتیبانی کند، اما ویندوز 10، فقط نوع Hyper-V را پشتیبانی می‌کند.


روش اجرای Hyper-V Containers بر روی ویندوز سرور

در صورت نیاز برای کار با Hyper-V Containers، نیاز است مانند قسمت قبل، ابتدا Hyper-V را بر روی ویندوز سرور، فعالسازی کرد:
Install-WindowsFeature hyper-v
Restart-Computer -Force
اکنون برای اجرای دستور docker run ای که توسط Hyper-V مدیریت می‌شود، می‌توان به صورت زیر، از سوئیچ isolation استفاده کرد:
docker run -it --isolation=hyperv microsoft/dotnet:nanoserver powershell
در این حالت اگر به disk management سیستم میزبان مراجعه کنید، دیگر حالت اضافه شدن disk مجازی را مشاهده نمی‌کنید. همچنین اگر به task manager ویندوز میزبان مراجعه کنید، دیگر لیست پروسه‌های داخل container را نیز در اینجا نمی‌بینید. علت آن روش ایزوله سازی متفاوت آن با Windows Server Containers است و بیشتر شبیه به ماشین‌های مجازی عمل می‌کند. در کل اگر نیاز به حداکثر و شدیدترین حالت ایزوله سازی را دارید، از این روش استفاده کنید.
اشتراک‌ها
NET Containers. در نگارش بعدی دات نت
نوعی مجازی سازی و ایزوله سازی برنامه‌ها از یکدیگر جهت استفاده‌ی همزمان از چندین نگارش مختلف فریم‌ورک‌ها
NET Containers. در نگارش بعدی دات نت
مطالب
کار با Docker بر روی ویندوز - قسمت اول - Container چیست؟
نصب بسیاری از نرم افزارها، کاری مشکل است

فرض کنید می‌خواهید یک فایل ویدیویی با قالب m4v را بر روی تلویزیون خود نمایش دهید؛ اما تلویزیون شما تنها از فایل‌های mp4، پشتیبانی می‌کند. برای رفع این مشکل نیاز به یک نرم افزار تبدیل کننده‌ی فرمت‌های ویدیویی را داریم و یکی از قوی‌ترین‌های آن‌ها، FFmpeg است. اگر به سایت آن مراجعه کنید، لینک دانلود آن به یک فایل tar.bz2 ختم می‌شود که حاوی سورس آن است! هرچند در قسمتی از آن، فایل‌های نهایی کامپایل شده‌ی مخصوص سیستم عامل‌های مختلف را نیز می‌توانید پیدا کنید، اما باز هم با انبوهی از لینک‌ها مواجه خواهید شد که دقیقا مشخص نیست کدام را باید دریافت کرد و آیا نگارش دریافت شده، با سیستم عامل فعلی سازگار است یا خیر.
همانطور که مشاهده می‌کنید، هنوز هم شروع به کار با نرم افزارهای مختلف برای بسیاری از کاربران، کاری مشکل و طاقت‌فرسا است. در اینجا شاید این سؤال مطرح شود که این موضوع چه ربطی به Docker (Docker) و کانتینرها (Containers) دارد؟ تمام هیاهویی که پیرامون Docker ایجاد شده‌است، در اصل جهت ساده سازی نصب، راه اندازی و تعامل با نرم افزارهای مختلف است.


چالش‌های پیش روی یافتن نرم افزارهای مناسب


این روزها بیشتر نرم افزارهای مورد نیاز خود را از اینترنت تهیه می‌کنیم. اولین مرحله‌ی آن و اولین چالشی که در اینجا وجود دارد، یافتن نرم افزاری با مشخصات مدنظر است. برای نمونه حتی اگر با FFmpeg آشنا نیز باشید، به سادگی مشخص نیست که برای سیستم عامل و معماری خاص پردازنده‌ی آن، دقیقا کدام نگارش آن‌را از چه آدرسی می‌توان دریافت کرد. پس از یافتن نرم افزار و نگارش مدنظر، مرحله‌ی بعد، استخراج محتویات آن از یک فایل zip و یا اجرای برنامه‌ی نصاب آن است و مرحله‌ی آخر، اجرای این برنامه می‌باشد.
بنابراین اولین چالش، یافتن محلی برای دریافت نرم افزار است:
-  این روزها برای بعضی از سکوهای کاری، App Storeهایی وجود دارند که می‌توان از آنجا شروع کرد؛ اما چنین قابلیتی برای تمام سکوهای کاری پیش بینی نشده‌است.
- در لینوکس قابلیت دیگری به نام Package manager وجود دارد که کار یافتن و نصب نرم افزارها را ساده می‌کند؛ اما گاهی از اوقات اطلاعات آن، آنچنان به روز نیست. همچنین اگر بسته‌ای برای توزیع خاصی از لینوکس وجود داشته باشد، الزاما به این معنا نیست که این بسته، قابلیت استفاده‌ی در سایر توزیع‌های لینوکس را نیز به همراه دارد. در ویندوز نیز وضعیت مشخص است! فاقد یک Package manager توکار و استاندارد است. هرچند یک App Store برای آن از طرف مایکروسافت ارائه شده‌است، اما آنچنان محبوبیتی پیدا نکرده‌است.
- و روش متداول دیگری که وجود دارد، مراجعه‌ی مستقیم به سایت اصلی سازنده‌ی نرم افزار است.

- علاوه بر این‌ها داشتن یک سری متادیتا و آمار نیز در مورد نرم افزارها بسیار مفید هستند تا بتوانند در مورد تصمیم به استفاده‌، یا عدم استفاده‌ی از نرم افزار، راهنمای کاربران باشند؛ مانند میزان محبوبیت، تعداد بار دریافت، تعداد مشکلاتی که کاربران با آن داشته‌اند و آخرین باری که نرم افزار به روز شده‌است. اما با توجه به پراکندگی روش‌های دریافت نرم افزار که ذکر شدند، عموما یک چنین آمارهایی را مشاهده نمی‌کنیم.
- چالش دیگر، مشکل سخت اطمینان کردن به روش‌های مختلف توزیع نرم افزارها است. آیا سایتی که این نرم افزار را ارائه می‌دهد، واقعا مرتبط با نویسنده‌ی اصلی آن است؟ همچنین آیا خود نرم افزار مشکلات امنیتی را به همراه ندارد؟ چه کاری را انجام می‌دهد؟
- مشکل بعدی، در دسترس بودن سایت توزیع کننده‌ی نرم افزار است. آیا زمانیکه به برنامه‌ای نیاز داریم، پهنای باند سایت توزیع کننده‌ی آن تمام نشده‌است و می‌توان به آن دسترسی داشت؟
- چالش دیگر، چگونگی پرداخت مبلغی برای دسترسی به نرم افزار است. به نظر تا به اینجا تنها App Storeها موفق شده‌اند روشی یک دست را برای خرید برنامه‌ها و همچنین ارائه‌ی مجوزی برای استفاده‌ی از آن‌ها، ارائه دهند.


چالش‌های پیش روی نصب نرم افزارها

زمانیکه به مرحله‌ی نصب نرم افزار می‌رسیم، هر نرم افزار، روش نصب و تنظیمات آغازین خاص خودش را دارد.
- اولین چالش پس از دریافت نرم افزار، بررسی سازگاری آن با سیستم عامل و پردازنده‌ی فعلی است. شاید این مسایل برای توسعه دهندگان نرم افزارها پیش‌پا افتاده به نظر برسند، اما برای عموم کاربران، چالشی جدی به شما می‌روند.
- پس از مشخص شدن سازگاری یک نرم افزار با سیستم فعلی، قالب ارائه‌ی آن نرم افزار نیز می‌توان مشکل‌زا باشد. بعضی از برنامه‌ها صرفا از طریق سورس کد منتشر می‌شوند. بعضی از آن‌ها توسط یک فایل exe متکی به خود ارائه می‌شوند و بعضی دیگر به همراه یک فایل exe و تعدادی dll به همراه آن‌ها. گاهی از اوقات این برنامه‌ها نیاز به نصب جداگانه‌ی NET Runtime. و یا Java Runtime را برای اجرا دارند و یا وابستگی آن‌ها صرفا به نگارش خاصی از این کتابخانه‌ها و فریم ورک‌های ثالث است. هرچند اگر برنامه‌ای به همراه بسته‌ی نصاب آن باشد، به احتمال زیاد این وابستگی‌ها را نیز نصب می‌کند؛ اما تمام برنامه‌ها اینگونه ارائه نمی‌شوند. به علاوه خیلی‌ها علاقه‌ای به کار با برنامه‌های نصاب ندارند و از ایجاد تغییرات بسیاری که آن‌ها در سیستم ایجاد می‌کنند، خشنود نیستند.
- پس از نصب نرم افزار، مشکل بعدی، نحوه‌ی به روز رسانی آن‌ها است. چگونه باید اینکار انجام شود؟ (تمام مراحل و چالش‌هایی را که تاکنون بررسی کردیم، یکبار دیگر از ابتدا مرور کنید!)

بنابراین همانطور که مشاهده می‌کنید، نصب، راه اندازی و به روز رسانی نرم افزارها این روزها بسیار پیچیده شده‌اند و بسیاری از کاربران به سادگی از عهده‌ی آن‌ها بر نمی‌آیند.


چالش‌های پیش روی کار با نرم افزارها

مرحله‌ی بعد، نیاز به مستندات کافی برای کار با برنامه است. این مستندات را از کجا می‌توان تهیه کرد؟ آخرین باری که به روز شده، چه زمانی بوده‌است؟ بسیاری از اوقات بین مستندات تهیه شده و آخرین نگارش نرم افزار، ناسازگاری وجود دارد و به سختی قابل استفاده‌است. آیا نیاز است برنامه را به PATH اضافه کرد؟ آیا نیاز است به صورت سرویس نصب شود؟ اگر بله، چگونه باید این مراحل را انجام داد؟ مجوز کار کردن با آن‌ها چگونه است؟
مشکل مهم دیگری که حین کار با نرم افزارها، در حالت متداول آن‌ها وجود دارد، دسترسی کامل آن‌ها به تمام اجزای سیستم و شبکه است و درون یک sandbox (قرنطینه) امنیتی اجرا نمی‌شوند.
مشکل بعدی، به روز رسانی اجزای ثالث سیستم و یا حتی خود سیستم عامل، مانند به روز رسانی OpenSSL نصب شده و پس از آن، از کار افتادن برنامه‌ای خاص است که وابستگی به نگارشی خاص از این کتابخانه را دارد.


کانتینرها در مورد برنامه‌ها هستند و نه مجازی سازی

خوب، تا اینجا دریافتیم که مدیریت توزیع، نصب و استفاده‌ی از برنامه‌ها، کار ساده‌ای نیست. اما این‌ها چه ارتباطی با Docker دارند؟ در بسیاری از اوقات، زمانیکه صحبت از Docker می‌شود، تصور بسیاری از آن، ارائه‌ی جایگزینی برای ماشین‌های مجازی است. اما ... اینگونه نیست. کانتینرها در مورد نرم افزارها هستند. برای مثال در آینده در مورد ایمیج‌های (Images) کانتینرها بیشتر بحث خواهیم کرد. این ایمیج‌ها در اصل یک بسته‌ی حاوی برنامه‌ها هستند. بنابراین بیشتر شبیه به فایل zip ای است که از یک وب سایت دریافت می‌کنیم (در قسمت یافتن نرم افزار).


یک کانتینر (Container) چیست؟

برای درک بهتر مواردی که تاکنون بحث شدند و همچنین بررسی مفهوم Containers، ابتدا MonogoDB را به صورت معمول نصب می‌کنیم. سپس نحوه‌ی نصب آن‌را درون یک Container بررسی خواهیم کرد. البته هدف اصلی در اینجا، بررسی مفهومی این مراحل و مقایسه‌ی آن‌ها با هم هستند و در قسمت‌های بعدی کار نصب و استفاده‌ی از Docker را قدم به قدم بررسی خواهیم کرد.
 
مراحل نصب محلی MongoDB به صورت متداول:
- ابتدا برای مثال به سایت گوگل مراجعه کرده و mongodb را جستجو می‌کنیم تا بتوانیم به سایت اصلی و محل دریافت بسته‌ی آن، هدایت شویم.
- پس از ورود به سایت mongodb، در بالای صفحه اصلی آن، لینک به صفحه‌ی دریافت بسته‌ی mongodb را می‌توان مشاهده کرد.
- با انتخاب آن، به صفحه‌ی دریافت بسته‌ی mongodb بر اساس سیستم عامل‌های مختلفی هدایت می‌شویم. برای مثال در ویندوز، بسته‌ی msi آن‌را دریافت می‌کنیم.
- به نظر می‌رسد که بسته‌ی نصاب msi آن تمام کارهای لازم برای راه اندازی اولیه‌ی mongodb را انجام می‌دهد. به همین جهت آن‌را اجرا کرده و پس از چندبار انتخاب گزینه‌ی next، نصب آن به پایان می‌رسد.
- پس از پایان نصب، ابتدا به کنسول service.msc ویندوز مراجعه می‌کنیم تا مطمئن شویم که سرویس آن، توسط نصاب msi نصب شده‌است یا خیر؟ و ... خیر! این نصاب، سرویس آن‌را نصب نکرده‌است.
- به همین جهت به مستندات نصب آن در سایت mongodb مراجعه می‌کنیم (لینک Installation instructions در همان صفحه‌ی دریافت بسته‌ی msi وجود دارد). پس از پایان مراحل نصب، عنوان کرده‌است که باید دستور md \data\db را اجرا کنید تا مسیر پیش فرض اطلاعات آن به صورت دستی ایجاد شود. اما ... این مسیر دقیقا به کجا اشاره می‌کند؟ چون شبیه به مسیرهای ویندوزی نیست.
- در ادامه برای آزمایش، به پوشه‌ی program files ویندوز رفته، monogodb نصب شده را یافته و سپس فایل mongod.exe را از طریق خط فرمان اجرا می‌کنیم (برنامه‌ی سرور). اگر این کار را انجام دهیم، این پروسه با نمایش خطای یافت نشدن مسیر c:\data\db، بلافاصله خاتمه پیدا می‌کند. به همین جهت در همین مسیری که در خط فرمان قرار داریم (جائیکه فایل mongod.exe قرار دارد)، دستور md \data\db را اجرا می‌کنیم. اجرای این دستور در این حالت، همان پوشه‌ی c:\data\db را ایجاد می‌کند. نکته‌ای که شاید خیلی‌ها با آن آشنایی نداشته باشند.
- اکنون اگر مجددا فایل mongod.exe را اجرا کنیم، اجرای آن موفقیت آمیز خواهد بود و پیام منتظر دریافت اتصالات بودن از طریق پورت 27017 را نمایش می‌دهد.
- مرحله‌ی بعد، اجرای فایل mongo.exe است تا به این دیتابیس سرور در حال اجرا متصل شویم (برنامه‌ی کلاینت). در اینجا برای مثال می‌توان دستور show dbs را اجرا کرد تا لیست بانک‌های اطلاعاتی آن‌را نمایش دهد.
 

مراحل نصب MongoDB به صورت Container توسط Docker:
- ابتدا برای مثال به سایت گوگل مراجعه کرده و اینبار mongodb docker را جستجو می‌کنیم تا بتوانیم به محل دریافت image آن هدایت شویم. با ورود به آن، در بالای صفحه عنوان شده‌است که official repository است که سبب اطمینان از بسته‌ی ارائه شده‌ی توسط آن می‌شود. بنابراین در اینجا بجای مراجعه به سایت متکی به خود mongodb، به docker hub برای دریافت آن مراجعه کرده‌ایم. در اینجا با جستجوی یک برنامه، متادیتا و اطلاعات آماری بسیاری را نیز می‌توان در مورد برنامه‌های مختلف، مشاهده کرد که در سایت متکی به خود نرم افزارهای مختلف، در دسترس نیستند. همچنین در اینجا اگر بر روی برگه‌ی Tags یک مخزن کلیک کنید، مشاهده می‌کنید که تمام فایل‌های موجود در آن توسط docker hub از لحاظ مشکلات امنیتی پیشتر اسکن شده‌اند و گزارش آن‌ها قابل مشاهده‌است. علاوه بر این‌ها docker hub به همراه یک docker store برای برنامه‌های غیر رایگان نیز هست و این مورد فرآیند کار با نرم افزارهای تجاری را یک دست می‌کند.
- مرحله‌ی بعد، دریافت یک کپی از mongodb از docker hub است. اینبار بجای دریافت مستقیم یک فایل zip یا msi، از دستور docker pull mongo استفاده می‌شود که یک image را در نهایت دریافت می‌کند. این image، حاوی برنامه‌ی مدنظر و تمام وابستگی‌های آن است.
- پس از دریافت image، مرحله‌ی بعد، اجرای mongodb به همراه آن است. در حالت متداول، ابتدا نرم افزار داخل فایل zip یا msi استخراج شده و سپس بر روی سیستم اجرا می‌شوند، اما در اینجا مفهوم معادل نصب نرم افزار دریافت شده‌ی از بسته‌ی zip همراه آن، یک container است. یک container دقیقا مانند یک نرم افزار از پیش نصب شده، عمل می‌کند و معادل اجرای فایل exe مانگو دی بی در اینجا، اجرای container آن است. بنابراین docker، از image دریافت شده، یک container را ایجاد می‌کند که دقیقا معادل یک نرم افزار از پیش نصب شده، رفتار خواهد کرد.
- پس از دریافت image، جهت اجرای آن به عنوان یک container، برای استفاده از نرم افزاری که دریافت کرده‌ایم، تنها یک دستور است که باید با آن آشنا باشیم: docker run mongo. این دستور را در همان صفحه‌ی docker hub مربوطه نیز می‌توانید مشاهده کنید. پس از اجرای این دستور، دقیقا همان خروجی و پیام منتظر دریافت اتصالات بودن از طریق پورت 27017 را مشاهده خواهیم کرد. برای اجرای کلاینت آن نیز دستور docker exec -it 27 mongo را می‌توان اجرا کرد. docker exec کار اجرای چندباره‌ی یک نرم افزار نصب شده را انجام می‌دهد.
این فرآیند در مورد تمام containerها یکی است و به این ترتیب به ازای هر نرم افزار مختلف، شاهد روش نصب متفاوتی نخواهیم بود.
- اجرای دستور docker stop نیز سبب خاتمه‌ی تمام این‌ها می‌شود.


در این تصویر مقایسه‌ای را بین مراحل متداول یافتن، دریافت، نصب و اجرای برنامه‌ها را در دو حالت متداول و همچنین استفاده‌ی از docker، مشاهده می‌کنید.

همچنین نکته‌ی جالبی که در مورد docker وجود دارد این است که اگر به task manager ویندوز مراجعه کنیم:


تمام پروسه‌هایی که با job id مساوی 172 در اینجا اجرا شده‌اند، متعلق به docker بوده و آن‌ها دقیقا مانند یک پروسه‌ی معمولی سیستم عامل جاری، در کنار سایر پروسه‌های موجود، اجرا می‌شوند. بنابراین برنامه‌ای که از طریق docker اجرا می‌شود، هیچ تفاوتی با اجرای متداول آن بر روی سیستم عامل، از طریق روش مراجعه‌ی مستقیم به فایل exe مرتبط و اجرای مستقیم آن ندارد. همانطور که پیش‌تر نیز عنوان شد، containerها در مورد نرم افزارها هستند و نه مجازی سازی و یک container در حال اجرا، حاوی تعدادی برنامه‌ی در حال اجرای بر روی سیستم عامل جاری، در کنار سایر برنامه‌های آن می‌باشد.
البته containers به همراه ایزوله سازی‌های بسیاری اجرا می‌شوند. برای مثال به روز رسانی یک کتابخانه‌ی ثالث بر روی سیستم عامل، سبب از کار افتادن برنامه‌ی اجرای شده‌ی توسط یک container نمی‌شود.


در قسمت بعد، نحوه‌ی نصب Docker را بر روی ویندوز، بررسی می‌کنیم.
مطالب
کار با Docker بر روی ویندوز - قسمت پنجم - ایجاد Imageهای سفارشی
تا اینجا با نحوه‌ی اجرای برنامه‌های مختلف توسط داکر مانند وب سرور لینوکسی nginx و یا IIS ویندوزی آشنا شدیم؛ اما هنوز محتوایی را در آن‌ها هاست نکرده‌ایم. در این قسمت این موضوع را بررسی خواهیم کرد و در طی این فرآیند، با نحوه‌ی ساخت Imageهای سفارشی نیز آشنا خواهیم شد.


روش نگاشت محتوای یک سایت استاتیک در یک Container که وب سرور است

فرض کنید یک سایت استاتیک بوت استرپی را تهیه کرده‌اید و قصد دارید آن‌را توسط وب سرور nginx، هاست کنید. برای این‌کار، چندین گزینه پیش روی ما هستند:
گزینه‌ی اول: دریافت image مربوط به nginx، سپس ایجاد یک container از آن و در آخر با استفاده از «روش به اشتراک گذاری فایل سیستم میزبان با کانتینرها» که در قسمت قبل بررسی کردیم، این وب سایت را آماده‌ی اجرا و دسترسی می‌کنیم.
گزینه‌ی دوم: کپی کردن فایل‌های وب سایت از سیستم میزبان، به درون فایل سیستم خود container.
گزینه‌ی سوم: ایجاد یک image سفارشی که از ابتدا به همراه فایل‌های وب سایت استاتیک ما است و در این حالت تنها کافی است این image را تبدیل به container اجرایی کنیم.


روش اول: به اشتراک گذاری فایل سیستم میزبان با کانتینر وب سرور جهت هاست آن

در قسمت قبل، یک فایل tar ایجاد شده‌ی در سیستم میزبان ویندوزی را با یک کانتینر لینوکسی به اشتراک گذاشتیم تا بتوانیم محتویات آن‌را استخراج کنیم. در اینجا قصد داریم پوشه‌ی وب سایت استاتیک خود را که در سیستم میزبان ویندوزی قرار دارد، با وب سرور nginx که توسط یک container در حال اجرا است، به اشتراک بگذاریم تا آن‌را هاست کند.
فرض کنید وب سایت استاتیک ما در مسیر c:\users\vahid\mysite سیستم میزبان قرار دارد که داخل آن یک فایل index.html و تعدادی فایل css و js آماده‌ی برای هاست شدن، وجود دارند. برای هاست آن توسط nginx، از دستور زیر استفاده خواهیم کرد:
 docker run --rm -it -p 8080:80 -v c:\users\vahid\mysite:/usr/share/nginx/html nginx
در این دستور:
- سوئیچ rm سبب می‌شود تا پس از خاتمه‌ی کار nginx، این container نیز حذف شود.
- از سوئیچ it استفاده شده‌است تا با فشردن ctrl+c، بتوانیم پروسه‌ی container را خاتمه دهیم و پس از آن، برنامه‌ی nginx دیگر در background در حال اجرا نباشد (اجرای آن در foreground).
- سپس پورت 8080 سیستم میزبان، به پورت 80 وب سرور nginx نگاشت شده‌است. چون containerها دارای network stack خاص خودشان هستند (که آن‌را در قسمت سوم بررسی کردیم)، پورت 80 آن‌ها با پورت 80 سیستم میزبان تداخل نمی‌کند و اگر برای مثال بر روی پورت 80 سیستم جاری، IIS در حال اجرا باشد، سبب عدم اجرا شدن وب سرور nginx به دلیل تداخل پورت‌ها نمی‌شود.
- در ادامه روش volume mount را مشاهده می‌کنید که در قسمت قبل بررسی کردیم. مسیر c:\users\vahid\mysite سیستم میزبان، به مسیر ویژه‌ی /usr/share/nginx/html داخل container نگاشت شده‌است. این مسیر، یک مسیر استاندارد بوده و در مستندات docker hub این وب سرور، ذکر شده‌است.
- در آخر هم نام image این وب سرور را ذکر کرده‌ایم.

پس از اجرای این دستور، اگر nginx پیش‌تر دریافت نشده باشد، image آن دریافت شده، یک container بر اساس آن ساخته می‌شود و سپس با پارامترهایی که توضیح دادیم، اجرا خواهد شد. اکنون اگر در سیستم میزبان، مسیر http://localhost:8080 را در مرورگر باز کنید، وب سایت استاتیک خود را مشاهده خواهید کرد.


روش دوم: کپی کردن فایل‌های وب سایت از سیستم میزبان، به درون فایل سیستم خود container

همانطور که در قسمت سوم نیز بررسی کردیم، فایل سیستم مربوط به هاست، به طور کامل از فایل سیستم container، جدا و ایزوله است و بدون volume mount، یک container نمی‌تواند به فایل‌های میزبان خود دسترسی پیدا کند. بنابراین گزینه‌ی دیگری که در اینجا وجود خواهد داشت، کپی کردن فایل‌های میزبان و انتقال آن‌ها به container می‌باشد؛ شبیه به کپی کردن فایل‌ها از یک کامپیوتر موجود در شبکه به کامپیوتر دیگری در آن.
برای این منظور ابتدا nginx را در پس‌زمینه اجرا می‌کنیم:
 docker run -d -p 8080:80 --name nginx nginx
در این دستور، سوئیچ‌های rm و it حذف شده‌اند. علت اینجا است که سوئیچ d، سبب اجرای این دستور در پس‌زمینه می‌شود؛ یعنی بلافاصله سبب بازگشت ما به خط فرمان خواهد شد و در این حالت نمی‌خواهیم که این container حذف شود. همچنین یک نام نیز به آن انتساب داده شده‌است تا بتوان ساده‌تر با آن کار کرد.
پس از اجرای این دستور و بازگشت به command prompt، جهت اطمینان حاصل کردن از اجرای آن در پس زمینه، دستور docker ps را صادر می‌کنیم که لیست آن، حاوی گزارشی از container‌های در حال اجرا است.
اکنون توسط دستور ویژه‌ی docker exec، می‌خواهیم درون یک container در حال اجرا، پروسه‌ای را اجرا کنیم. یعنی با اینکه پروسه‌ی nginx داخل این container در حال اجرا است، برای مثال می‌خواهیم یک shell را نیز داخل آن اجرا کنیم:
 docker exec -it nginx bash
در اینجا دستور docker exec، سبب اجرای bash shell داخل کانتینری با نام nginx می‌شود (همان سوئیچ name در دستور قبلی و نه نام image آن) و چون می‌خواهیم به این shell در foreground دسترسی داشته باشیم، از سوئیچ it نیز استفاده شده‌است. پس از اجرا شدن bash shell، اکنون به فایل سیستم این container دسترسی یافته‌ایم. برای مثال دستور ls را صادر کنید تا لیستی از آن‌را مشاهده نمائید. سپس به کمک آن، به پوشه‌ی ویژه‌ی html این وب سرور وارد می‌شویم:
 cd /usr/share/nginx/html
و برای مثال می‌توان در آن تغییر ایجاد کرد:
ls
mv index.html index2.html
exit
این دستورات سبب می‌شوند تا فایل پیش‌فرض index.html آن، به index2.html تغییر نام یابد و سپس از این shell خارج می‌شویم و به shell سیستم میزبان باز خواهیم گشت. در اینجا دستور docker cp (که در PowerShell سیستم میزبان اجرا می‌شود)، امکان کپی کردن فایل‌ها را از سیستم میزبان به یک container میسر می‌کند.
 docker cp c:\users\vahid\mysite nginx:/usr/share/nginx/html
پس از دستور docker cp ابتدا مسیر مبداء مشخص می‌شود و سپس ابتدا نام container مقصد به همراه یک : و در ادامه مسیر مقصد نهایی کپی در آن container ذکر خواهند شد. به این ترتیب فایل‌های وب سایت استاتیک ما در سیستم میزبان به پوشه‌ی html مخصوص nginx، در کانیتنری که در حال اجرای آن است کپی می‌شوند. برای آزمایش صحت این کپی می‌توان دستور زیر را صادر کرد که لیست فایل‌های این پوشه‌ی html را نمایش می‌دهد:
 docker exec nginx ls /usr/share/nginx/html
اینبار نیز اگر در سیستم میزبان، مسیر http://localhost:8080 را در مرورگر باز کنید، وب سایت استاتیک خود را مشاهده خواهید کرد که فایل‌های آن از داخل خود container تامین می‌شوند و وابستگی به سیستم میزبان ندارند.


روش سوم: ایجاد یک image سفارشی که از ابتدا به همراه فایل‌های وب سایت استاتیک ما است

در روش دوم، موفق شدیم که فایل‌های مدنظر خود را به درون container در حال اجرا کپی کنیم. اکنون می‌خواهیم یک snapshot را از آن تهیه کنیم؛ شبیه به کاری که با ماشین‌های مجازی نیز انجام می‌شود و این روشی است که از آن برای ساخت یک image سفارشی استفاده می‌شود. برای این منظور از دستور docker commit استفاده می‌شود تا تصویری را از وضعیت یک container در حال اجرا، در آن لحظه تهیه کنیم:
 docker commit nginx mysite:nginx
پس از دستور docker commit، نام container ای که می‌خواهیم تصویر وضعیت جاری آن‌را ذخیره کنیم، ذکر می‌شود. پس از آن به صورت اختیاری می‌توان یک نام جدید و همچنین tag ای را برای آن ذکر کرد.
اکنون پس از اجرای این دستور، با استفاده از فرمان docker images می‌توان مشاهده کرد که image جدید mysite، با tag ای معادل nginx، ایجاد شده‌است.
در ادامه برای اجرای این image جدید، می‌توان از دستور زیر استفاده کرد:
 docker run -d -p 8090:80 --name mysite mysite:nginx
روش اجرای آن همانند سایر imageهای موجود است و در اینجا از نام image به همراه tag آن استفاده شده‌است. همچنین پورت نگاشت شده‌ی آن‌را به سیستم میزبان نیز 8090 انتخاب کرده‌ایم. نامی را نیز به آن نسبت داده‌ایم تا بتوان از آن در دستور docker exec استفاده کرد.
اکنون اگر در سیستم میزبان، مسیر http://localhost:8090 را در مرورگر باز کنید، وب سایت استاتیک خود را مشاهده خواهید کرد و یا توسط دستور زیر می‌توانید فایل‌های موجود در پوشه‌ی html وب سرور nginx این container جدید در حال اجرا را ملاحظه نمائید:
 docker exec mysite ls /usr/share/nginx/html
که این فایل‌ها نه از طریق نگاشت فایل سیستم میزبان، به مسیری در container جاری تامین شده‌اند و نه از جائی به داخل آن کپی شده‌اند. بلکه دقیقا از image از پیش آماده شده‌ی آن خوانده شده‌اند.


نگاهی به لایه‌های یک Image در مقایسه با یک Container

زمانیکه خواستیم image جدید و سفارشی خاص خود را ایجاد کنیم، با image اصلی nginx شروع کردیم. اولین لایه‌ی موجود در این image، سیستم عاملی است که می‌تواند آن‌را اجرا کند. برفراز این لایه، لایه‌ی خود nginx قرار گرفته‌است. اگر خواستید تاریخچه‌ی ایجاد یک image را مشاهده کنید، از دستور docker history nginx استفاده نمائید. خروجی آن لیست دستوراتی را نمایش می‌دهد که برای ساخت این image مورد استفاده قرار گرفته‌اند. البته دستور docker history nginx --no-trunc، اطلاعات بیشتری را با نمایش لیست کامل و خلاصه نشده‌ی دستورات، ارائه می‌دهد. این دستورات را در صفحه‌ی docker hub هر image نیز می‌توان مشاهده کرد. در قسمت full description هر image، در ابتدای توضیحات، قسمتی است به نام supported tags and respective dockerfile links. در اینجا هر tag نامبرده شده، در حقیقت لینکی است به یک فایل که دقیقا همین دستورات را لیست کرده‌است. به این فایل، docker file گفته می‌شود که روش ساخت یک image را توضیح می‌دهد. هدف آن، خودکار سازی اجرای دستوراتی است که سبب ساخت یک image می‌شوند.

در ادامه اگر از این image، یک container را ایجاد کنیم، این container هر دو لایه‌ی OS و Framework را به همراه خواهد داشت؛ به علاوه‌ی لایه‌ی دیگری به نام Container/Run که می‌توان فایل‌های آن‌را خواند و یا در آن نوشت. بنابراین لایه‌ای که فایل‌های وب سایت استاتیک ما در آن کپی شدند، دقیقا همین لایه‌است.


و زمانیکه از یک container تصویری تهیه می‌شود، تغییراتی را که به فایل سیستم آن ایجاد کرده‌ایم، به صورت یک لایه‌ی جدید بر روی لایه‌های قبلی آن image، ظاهر و ثبت می‌شود. برای اثبات این موضوع، می‌توان از دستور docker diff nginx استفاده کرد. در اینجا nginx نام container ای است که می‌خواهیم تغییرات آن‌را با image قبلی که بر پایه‌ی آن ایجاد شده‌است، مشاهده کنیم.


تبدیل دستورات docker به یک docker file

تا اینجا یک چنین دستوراتی را برای اجرای کانتینر nginx، کپی فایل‌ها به آن و سپس تهیه‌ی یک تصویر از آن، اجرا کردیم:
docker run -d -p 8080:80 --name nginx nginx
docker cp c:\users\vahid\mysite nginx:/usr/share/nginx/html
docker commit nginx mysite:nginx
برای خودکار سازی آن‌ها هرچند می‌توان این دستورات را در یک اسکریپت نیز قرار داد، اما docker، قابلیت پردازش اسکریپت‌های خاص خود را نیز دارد که به آن Dockerfile گفته می‌شود. برای این منظور سطرهای فوق به صورت زیر تغییر می‌کنند:
بجای سطر اول، تنها نام image ای را که می‌خواهیم کار را بر مبنای آن انجام دهیم، ذکر می‌کنیم:
 FROM nginx
دستور دوم نیز تبدیل به دستور کپی Docker می‌شود:
 COPY mysite /usr/share/nginx/html
این دو سطر را به صورت یک فایل متنی، با نام ویژه‌ی Dockerfile ذخیره می‌کنیم (بدون پسوند) و این Dockerfile را دقیقا در کنار پوشه‌ی mysite قرار می‌دهیم (داخل پوشه‌ی c:\users\vahid) تا کار کپی را از همینجا شروع کند.
سپس برای اجرای این فایل، بجای دستور docker commit آخر، از دستور زیر استفاده می‌کنیم:
 docker build -f Dockerfile -t mysite:nginx-df .
البته می‌توان f Dockerfile- را نیز از این دستور حذف کرد؛ چون مقدار پیش‌فرض آن است (مگر آنکه بخواهیم مسیر خاصی را دقیقا مشخص کنیم):
 docker build -t mysite:nginx-df .
در هر دو دستور آخری که ذکر شدند، در انتهای دستور، یک نقطه نیز قرار دارد که به آن build context گفته می‌شود؛ یا دقیقا همین پوشه‌ای که در آن قرار داریم (c:\users\vahid).
تگ این image را نیز متفاوت با قبلی‌ها انتخاب کرده‌ایم؛ nginx-df بجای مقدار قبلی.
در این حالت اگر دستور آخر را اجرا کنیم، دستور docker images گزارش اضافه شدن این image جدید را ارائه خواهد داد.

مرجع کامل ساخت Dockerfileها را در اینجا می‌توانید مطالعه کنید.


ساخت یک image سفارشی برای هاست یک وب سایت استاتیک در IIS

تا اینجا از وب سرور لینوکسی nginx برای هاست وب سایت استاتیک خود استفاده کردیم. در ادامه می‌خواهیم از وب سرور IIS برای اینکار استفاده نمائیم. بنابراین ابتدا نیاز است یا از ویندوز سرور استفاده کنیم و یا می‌توان با کلیک راست بر روی آیکن Docker در قسمت Tray Icons ویندوز، به Windows Containers سوئیچ کرد و سپس به صورت زیر عمل نمود.
اینبار محتوای Dockerfile ای که کنار پوشه‌ی mysite قرار می‌گیرد، به صورت زیر خواهد بود:
FROM microsoft/iis:nanoserver

COPY mysite c:/inetpub/wwwroot
کار با image اصلی iis با tag مخصوص nanoserver که کم حجم‌تر است، شروع می‌شود. سپس فایل‌های mysite به پوشه‌ی wwwroot این وب سرور کپی خواهد شد.
در ادامه با استفاده از دستور زیر و اجرای فایل Dockerfile، این image جدید را با tag ای به نام iis ایجاد می‌کنیم:
 docker build -t mysite:iis .
پس از آن دستورات docker images و docker ps را جهت مشاهده‌ی وضعیت این image جدید اجرا کنید.


به اشتراک گذاری imageهای سفارشی در Docker Hub

برای به اشتراک گذاری imageهای سفارشی خود در Docker Hub، نیاز است tag آن‌ها را توسط دستور docker tag مطابق فرمت ویژه‌ی docker hub ویرایش کرد:
 docker tag mysite:nginx-df my_user_name/some_name:new_tag_name
در این دستور، Tag فعلی، با ذکر نام کاربری، نام مخزنی جدید در docker hub و سپس یک tag دلخواه، ویرایش می‌شود.
و در آخر برای انتشار آن می‌توان از دستور docker push استفاده کرد:
 docker push my_user_name/some_name:new_tag_name
اگر در اینجا پیام خطای unauthorized را مشاهده کردید، ابتدا دستور docker login را اجرا کنید تا بتوانید به سایت docker hub لاگین کنید (بر اساس مشخصات اکانت خود در داکر هاب) و سپس دستور فوق را اجرا نمائید.
پس از پایان کار اگر به سایت docker hub و مخازن خود مراجعه کنید، این image جدید قابل مشاهده خواهد بود.
مطالب
مقدمه‌ای بر Docker
Docker به صورت ساده، پلتفرمی است که به سادگی قابلیت ساخت، انتقال و اجرا کردن Image‌ها را در اختیار دارد و همچنین به صورت native درون سرور‌های لینوکسی و ویندوزی اجرا میشود؛ به علاوه اینکه در محیط محلی، برای تست نیز بر روی ماشین‌های ویندوزی و مک از طریق virtual machine قابل اجراست.

دو مفهوم اساسی در محیط Docker وجود دارند که دانستن آن‌ها ضروری است: Image و Container
image عملا چیزی است که از آن برای Build یک Container استفاده می‌شود. image دارای یک سری فایل‌های لازم و اساسی است که باعث می‌شود بر روی یک Operation System اجرا شود؛ مثل Ubuntu یا Windows. بنابراین شما Application Framework خود را خواهید داشت و همچنین Databaseی که با آن کار میکند. بنابراین قابلیت استفاده از زبان‌ها و فریم ورک‌های مختلف چون Asp.net Core, Nodejs, Python و غیره را خواهد داشت. یک image به خودی خود غیر قابل استفاده است تا زمانیکه بر روی یک Container توزیع شده باشد، تا قابلیت اجرا پیدا کند. بنابراین نقطه‌ی شروع اصلی اجرایی یک برنامه با Container مربوط به آن میباشد.
به صورت خلاصه Image یک template از نوع Readonly است که ترکیبی از لایه‌های File System می‌باشد، به همراه فایل‌های share شده‌ی دیگر (از قبیل فریم ورک‌ها و ...) که میتوانند یک Docker Container Instance را تولید نمایند.
Container یک محیط امن و ایزوله است که به وسیله‌ی image ساخته شده است و میتواند اجرا، متوقف، منتقل و یا حذف شود (بطور قابل ملاحظه‌ای اجرا کردن و متوقف کردن آن سریع میباشد).


تفاوت Docker Containers و Virtual Machines

Virtual Machines همیشه بر روی Host Operation System اجرا میشوند (که می‌تواند بر روی ویندوز یا لینوکس باشد) و بعد از آن اجرای Guest OS بر روی سطحی به نام Hypervisor. پس میتوان گفت یک کپی کامل از سیستم عامل است که که بر روی hypervisor اجرا میشود و خودش نیز بر روی سخت افزار اجرا میشود. بنابراین میتوان مثل شکل زیر، یک App داشت که عملا یک سری باینری و کتابخانه است و اگر قرار باشد بر روی سیستم عامل‌های مختلفی کار کند، احتیاج به کپی کردن کل آن می‌باشد و بطور واضحی زمان و هزینه‌ی بیشتری برای بالا آوردن آن لازم است.
اما بر خلاف آن، داکر با استفاده از ابزاری به نام Docker Engine کار میکند که میتواند Container‌های مختلفی از OS‌های مختلف را اجرا نماید و نیازی به کپی گرفتن از کل سیستم عامل برای اجرای هر container نخواهد بود.


بنابراین با استفاده از ابزار‌های مجازی سازی چون Vmware، نسخه‌ی کاملی را از سیستم عامل مطبوع خود میتوان نصب و اجرا نمود؛ اما برخلاف آن با استفاده از داکر، یک نسخه‌ی کوچک از سیستم عامل، بدون وابستگی‌ها و پیچیدگی‌های نسخه‌ی اصلی در اختیار خواهد بود.
با این وجود، بوسیله داکر به راحتی میتوان تعداد زیادی از Container‌ها را به راحتی و با سرعت بالا اجرا نموده و مورد تست و ارزیابی قرار داد.


چطور Docker میتواند سریعتر از Virtual Machine‌ها عمل کند ؟

داکر از چیزی به نام Copy On Write استفاده میکند؛ به معنای کپی کردن همزمان با نوشتن. همانطور که گفته شد هر Container از یک Image ساخته میشود و عملا Imageها همان FileSystem‌های از قبل تولید شده هستند و هر کدام از لایه‌ای از کتابخانه‌ها استفاده میکنند که برای اجرای برنامه‌های کاربردی مورد استفاده قرار می‌گیرند. سرور آپاچی را در نظر بگیرید، به عنوان یک فایل image که FileSystem بر روی آن ذخیره شده‌است. با نصب Php یک لایه بر روی لایه دیگر ایجاد شده و فقط تغییرات جدید به آن اضافه خواهند شد و حال اگر بخواهید تغییری را بر روی source code خود بدهید، عملا فقط آن تغییر به Image و FileSystem اضافه خواهد شد. این معماری لایه لایه باعث تولید یک FileSystem بصورت read-only میشود که شامل لایه‌های متفاوتی است و سبب کم حجم شدن آن، بالا رفتن سرعت آن می‌شود و همچنین با استفاده از Caching، قدرت زیادی را بدان می‌بخشد.


پس همانطور که در شکل فوق مشاهده میکنید، هر image از لایه‌های مختلفی تشکیل شده است و توانایی به اشتراک گذاشتن این لایه‌های متمایز از یکدیگر در Container‌ها وجود دارد.


بنابراین طبق شکل فوق، بحث را اینگونه خلاصه میکنیم که هر Image از ترکیبی از لایه‌هایی از نوع read-only تشکیل شده است و با اضافه شدن Container، عملا یک لایه‌ی دیگری که قابلیت read/write را دارد بر روی آن اضافه میشود و درون آن source code میتواند قرار گیرد و اینکه بر مبنای شکل زیر میبینید که قابلیت به اشتراک گذاری Image layer‌ها به Container‌های مختلف تعبیه شده است که باعث میشود لایه‌ی نصب شده بر روی سیستم، بصورت اشتراکی قابل استفاده‌ی مجدد باشد و فضای دیسک کمتری، به علاوه سرعت اجرای بالاتری را داشته باشد. هر لایه یک مقدار هش شده‌ی یکتایی را در اختیار دارد تا از لایه‌های دیگر تمیز داده شود و قابل شناسایی باشد.




داکر در شبکه چگونه کار میکند؟

ضمنا نکته‌ی قابل توجه که در مقاله‌های بعدی به صورت عملی به آن میپردازیم این است که با استفاده از داکر میتوانیم وب سرورهایی را بر روی Container‌های مختلفی داشته باشیم که همگی بر روی پورت بطور مثال 80 هستند؛ طوری که درون هر Container بدلیل ایزوله بودن پروسس‌های مخصوص Container مربوط به خود، به پورت‌های باز داخل آن شبکه دسترسی دارند و میتوانند پورت در نظر گرفته شده‌ی درون Container را با پورت دیگری بیرون Container به اصطلاح Expose نمایند.
ضمن اینکه نکته‌ی دیگری که وجود دارد، ارتباط Container‌ها با یکدیگر است. برای مثال یک Container برای Database و دیگری برای WebApp میباشد که باید به همدیگر link شده تا قابل استفاده گردند و عملا نیازی به نوشتن ip یکدیگر در این حالت وجود ندارد. البته راه‌های دیگری از قبیل Compose کردن نیز وجود دارد که در ادامه بیشتر با آن‌ها آشنا خواهیم شد.


Docker Volume چیست؟

بحث دیگری که وجود دارد، Volumeها هستند که قسمتی از FileSystem‌ها میباشند و بصورت ساده، مثال کاربردی‌اش میتواند قسمتی از یک سیستم و دایرکتوری خاصی را بر روی Container خاصی Map کردن باشد و عملا داخل آن دایرکتوری میتواند source code بوده باشد (یکی از راه‌های ممکن برای map کردن source code به container) و بر روی Container ایجاد شود.
فوایدی که با استفاده از Volume‌ها میتوان به آن رسید از قبیل موارد زیر میباشند:
قابلیت به اشتراک گذاری یک Volume بین Container‌های مختلف که به شدت میتواند قابل استفاده باشد.
Data Volume‌ها ماندگار هستند. یعنی حتی بعد از اینکه Container مربوطه را حذف نمایید، volume مربوط به آن بطور اتوماتیک حذف نمیشود (مگر اینکه خودتان دستور حذف کردن آن را وارد نمایید). پس عملا قابلیت استفاده‌ی مجدد را نیز خواهد داشت.

طبق شکل فوق ما میتوانیم درون یک container یک volume داشته باشیم. وقتی ما چیزی را درون آن مینویسیم عملا داریم در قسمت خاصی به نام Docker Host عمل write کردن را انجام میدهیم که باعث میشود داکر متوجه آن شود. وقتی اسمی را به یک Volume انتساب میدهیم همانند /var/www، در واقع یک اسم مستعار (alias) میباشد که اشاره میکند به این Docker host موجود. در ادامه بیشتر با Volume‌ها آشنا خواهیم شد. 


DockerFile و ساخت image‌ها چگونه است؟

روش دیگر برای اجرای source code در داکر، ساخت یک image اختصاصی از آن و اجرا کردن آن بر روی یک container مجزا است.  با استفاده از DockerFile میتوانید image‌های خود را build کرده که عملا هر image در آخر باید به یک سیستم عامل برسد و همانطور که گفته شد به صورت لایه‌ای کار میکنند و مراتب اجرای آن از قبیل working directory و expose کردن بر روی پورتی خاص، همچنین استفاده از Environment Variable‌ها میباشد و همچنین با استفاده از DockerHub (که نسخه‌ی enterprise نیز دارد) میتوان image‌های ساخته شده را بر روی cloud نگه داشت و همه‌ی اعضای تیم از یک image بخصوص استفاده کنند؛ برای مثال همه‌ی اعضای تیم از یک نسخه‌ی Nodejs استفاده کنند و اشتباها بر روی ماشین‌های توسعه‌ی مختلف برنامه نویسان، از نسخه‌های مختلفی استفاده نشود و همچنین روند به‌روز رسانی به سادگی انجام گیرد.


مزایای Docker برای برنامه نویسان

فرض کنید که یک App Service از Azure تهیه کرده باشید. تست‌های unit, integration, acceptance را انجام داده و با خیال راحت Container خود را از طریق برای مثال Visual studio team service بر روی App service به صورت انتشار از طریق مدل Continuous Integration و  Continuous Deployment داشته باشید. پس عملا داکر به Devops بودن محیط و چابک بودن تیم توسعه کمک شایانی کرده و فرآیند‌های سخت و زمانبر انتقال Codeها از محیط توسعه به محیط انتشار را تسریع میبخشد.
بنابراین از داکر به راحتی میتوان در محیط Production نیز استفاده کرد و مزایای فوق العاده ای را برای برنامه نویسان ارائه کرده است. بطور مثال فرض کنید در تولید نرم‌افزار یک Web server ، تعدادی Database و یک Caching server که کانفیگ کردن، اجرا و ... به صورت عادی بسیار صعب و مشکل ساز بوده را به راحتی میتوان اجرا نمود. ضمن اینکه ممکن است هر کدام از ابزارهایی که استفاده شده، فقط مخصوص سیستم عاملی خاص باشد که قاعدتا احتیاج به بالا آوردن Virtual Machine خواهید بود و در سناریو‌های خاصی مثل سیستم هایی با معماری Microservice که هر کدام از این ریز سرویس‌ها ممکن است زبان، فریم ورک، دیتابیس و ... مخصوص به خود را داشته باشند، عملا کار بسیار سخت و پر هزینه خواهد بود (ضمن اینکه استفاده‌ی همزمان از چند Virtual Machine در کنار هم در محیط توسعه، حجم زیادی از memory و disk سیستم شما را خواهد گرفت و شما را مجبور به ارتقای سیستم خود خواهد کرد!).

مشکل دیگری که Docker آن را حل کرده، Conflict‌های ورژن‌های مختلف ابزار‌های مورد استفاده است. به راحتی میتوان Containerی از Image‌ها را به صورت ایزوله با ورژن‌های مختلفی ایجاد کرد تا بطور کامل برنامه نویسان را از مشکل همیشگی به‌روزرسانی‌ها و Role-back کردن‌ها آسوده خاطر نماید. 

از آنجایی که داکر قابلیت اجرای در محیط production را نیز دارد، عملا محیط Development با محیط Production تفاوتی ندارد و این جمله‌ی معروف که «در سیستم من کار میکند اما در نسخه‌ی انتشار داده شده خیر» دیگر اتفاق نخواهد افتاد.

به راحتی میتوانید از یک Image خاص، Containerهای ایزوله‌ی متفاوتی را ساخته و همگی آنها را در کنار هم اجرا نمود و مورد تست و ارزیابی قرار داد.


Dokcer hub

مخرنی است از هزاران Image آماده از قبیل سیستم عامل، فریم ورک و... که قابلیت استفاده‌ی مجدد خواهد داشت. همچنین شما میتوانید Image‌های خود را نیز بدان اضافه نموده تا دیگران از آن استفاده نمایند. استفاده از مخزن‌های public آن رایگان میباشد. از آنجایی که Docker یک محصول متن باز و رایگان است، یک بخش از درآمد‌های آن از فروش اختصاصی مخزن‌ها در DokcerHub میباشد (چیزی شبیه به Private Repository در Github).
بیشتر از این به مفاهیم نمیپردازیم. برای مطالعه‌ی بیشتر، کتاب فوق العاده‌ی Mastering Docker را پیشنهاد میکنم. 


شروع به کار با Docker

بعد از نصب کردن نسخه‌ی رسمی Docker و باز کردن ترمینال مربوطه، اولین دستوراتی را که باید با آن آشنا باشیم، شامل موارد زیر میباشد:

لیست Image‌های کش شده‌ی بر روی سیستم:
 docker images
لیست container‌های در حال اجرای بر روی ماشین محلی:
 docker ps
بعد از تست کردن دو دستور فوق مشاهده میکنید که هیچ image و containerی بر روی سیستم شما وجود ندارد.

برای آزمایش کردن و نصب اولین image، دستور زیر را وارد میکنیم (میتوانید اطلاعات بیشتری از imageها را در dockerHub پیدا کنید). من در اینجا  kitematic/hello-world-nginx را به عنوان image از مخزن dokcerhub، بر روی سیستم خود pull کرده‌ام (این یک نسخه‌ی بسیار سبک از کانتینر nginx میباشد).
 docker pull kitematic/hello-world-nginx
بعد از اجرای دوباره‌ی دستور docker images مشاهده میکنید که image مربوطه بر روی سیستم شما نصب شده است.
حال وقت اجرای این image و توزیع آن بر روی container میباشد که با استفاده از دستور زیر است:
 docker run -p 80:80 kitematic/hello-world-nginx
پرچم p- برای مقدار دهی پورت خارجی و داخلی میباشد و بعد از آن هم که نام image مربوطه برای اجرای container میباشد (فلگ‌های خیلی بیشتر و تخصصی‌تری در رابطه با اجرا وجود دارند که در ادامه بیشتر مورد بحث قرار می‌گیرند) .

بعد از اجرای این دستور میتوانید با وارد کردن ip مربوط به virtual machine ساخته شده بر روی سیستم خود (اگر از مک یا ویندوز استفاده میکنید احتمالا 192.168.99.100 خواهد بود) که البته با دستور docker-machine ip میتوانید آن را پیدا کنید و وارد کردن آن بر روی مرورگر خود، تصویری مثل زیر را مشاهده کنید:

بدین معناست که container شما اجرا شده و قابلیت مورد استفاده قرار گرفتن را خواهد داشت. حال اگر دستور docker ps را مجددا وارد نمایید، اطلاعات این container را از نوع id, status port و غیره، مشاهده خواهید کرد.
مطالب
کار با Docker بر روی ویندوز - قسمت دوم - نصب Docker
پس از آشنایی با مفهوم Containers، در این قسمت قصد داریم برنامه‌ی تقریبا 500 مگابایتی Docker for Windows Installer.exe را نصب کنیم.
 
پیش‌نیازهای نصب Docker بر روی ویندوز

مطابق مستندات آن، برای نصب داکر بر روی ویندوز به حداقل‌های زیر نیاز است:
- استفاده از ویندوز 10 نگارش enterprise، که شماره نگارش آن حداقل 1607 باشد (حداقل Anniversary Update باشد).
- مجازی سازی در BIOS فعال شده باشد.
البته مجازی سازی عموما به صورت پیش‌فرض فعال است. برای بررسی آن، taskmanager ویندوز را اجرا کرده و در برگه‌ی Performance آن، جائیکه مشخصات CPU را نمایش می‌دهد، یک سطر به Virtualization اختصاص دارد که مقدار آن باید enabled باشد (تصویر زیر) و اگر نیست، برای فعال کردن آن باید به تنظیمات BIOS سیستم خود مراجعه کنید:


روش دیگر دریافت این اطلاعات، اجرای دستور systeminfo در خط فرمان، با دسترسی مدیریتی است. در خروجی آن، عبارت «Virtualization Enabled In Firmware» را جستجو کنید که باید مقدار آن yes باشد.

- داشتن CPU با قابلیت SLAT یا Second Level Address Translation.
برای یافتن این موضوع، برنامه‌ی coreinfo را دریافت کرده و آن‌را به صورت coreinfo -v اجرا کنید. خروجی آن سه سطر مرتبط با مجازی سازی را به همراه دارد. اگر قابلیتی موجود نباشد، جلوی آن یک خط تیره و اگر قابلیتی موجود باشد، روبروی آن یک ستاره را مشاهده خواهید کرد.

روش دیگر بررسی آن، اجرای دستور msinfo32 در قسمت run ویندوز و سپس enter است. در قسمت system summary، اطلاعات Second Level Address Translation قابل مشاهده هستند (اگر No باشد، امکان اجرای containerهای لینوکسی را بر روی ویندوز نخواهید داشت):


- داشتن حداقل 4 گیگابایت RAM.
- فعال بودن Hyper-V نیز برای اجرای Linux Containers بر روی ویندوز، ضروری است (نصاب Docker، این‌کار را به صورت خودکار انجام می‌دهد).


دریافت نصاب Docker for Windows

برای دریافت نصاب داکر مخصوص ویندوز، به آدرس زیر مراجعه کنید:
https://store.docker.com/editions/community/docker-ce-desktop-windows
که بلافاصله با تصویر کریه زیر مواجه خواهید شد:


برای رفع این مشکل، می‌توان از روش مطرح شده‌ی در مطلب «یک روش ساده برای دور زدن تحریم‌ها!» استفاده کرد؛ یعنی تنظیم DNS به 178.22.122.100 به صورت زیر:


پس از این تغییر، چون IP قابل مشاهده‌ی سیستم شما توسط سایت داکر تغییر می‌کند، اینبار صفحه‌ی دریافت Docker Community Edition for Windows به صورت زیر ظاهر می‌شود:


همانطور که مشاهده می‌کنید، عنوان کرده‌است که لطفا لاگین کنید تا بتوانید این برنامه را دریافت کنید. به همین جهت بر روی لینک آن کلیک کرده، یک اکانت جدید را در سایت docker ایجاد کنید (با یک ایمیل واقعی که تائیدیه آن‌را دریافت خواهید کرد). پس از آن، با این اکانت جدید به سایت داکر وارد شوید تا لینک دریافت فایل exe نصاب آن‌را دریافت کنید.
در این حالت مرورگر و یا حتی دانلودمنیجر شما بدون مشکل می‌توانند این فایل را دریافت کنند و همان تنظیم DNS فوق، مشکل عدم دسترسی را برطرف می‌کند.


نصب Docker for Windows

پس از اجرای نصاب آن و پایان عملیات نصب (که تنها کافی است در صفحه‌ی ابتدایی آن تیک مربوط به Windows Containers را نیز قرار دهید)، نیاز دارد تا شما را یکبار از سیستم Logout و login کند. پس از ورود به سیستم، تنظیمات ابتدایی آن به صورت خودکار صورت گرفته و در صورت فعال نبودن Hyper-V، پیام زیر را مشاهده خواهید کرد:


بر روی OK کلیک کنید تا اینکار با موفقیت به پایان برسد. البته پس از آن، منتظر حداقل یکبار ری‌استارت شدن خودکار سیستم، بدون اطلاع قبلی نیز باشید.

یک نکته: کاری که در قسمت فعالسازی Hyper-V به صورت خودکار انجام می‌شود، شامل اجرای سه دستور زیر، در کنسول پاور شل، با دسترسی مدیریتی و سپس ری استارت سیستم است:
Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Hyper-V -All -Verbose
Enable-WindowsOptionalFeature -Online -FeatureName Containers -All -Verbose
bcdedit /set hypervisorlaunchtype Auto
پس از آن، خط فرمان را باز کرده و با ستفاده از docker CLI نصب شده، دستور docker info را صادر کنید، تا بتوانید مشخصات نگارش نصب شده را مشاهده نمائید.
C:\Users\Vahid>docker info
Containers: 0
 Running: 0
 Paused: 0
 Stopped: 0
Images: 0
Server Version: 18.06.1-ce
OSType: windows
OSType را در صورتیکه سیستم شما توانمندی‌های سخت افزاری لازم را داشته باشد، می‌توان به Linux نیز تغییر داد.


بررسی تنظیمات سوئیچ کردن بین Linux Containers و Windows Containers

پس از اتمام ری‌استارت‌ها، برای آزمایش فعال بودن Hyper-V، در قسمت Run ویندوز، عبارت Virtmgmt.msc را نوشته و enter کنید. اگر تصویر زیر را مشاهده نمی‌کنید:


یکبار بر روی آیکن Docker در قسمت Tray Icons ویندوز کلیک راست کرده و گزینه‌ی switch to Linux containers را انتخاب کنید تا پس از مدتی، آیکن MobyLinuxVM در قسمت virtual machines (تصویر فوق) ظاهر شود.


اگر پس از انتخاب این گزینه، پیام زیر را دریافت کردید:


و یا اگر بر روی این ماشین مجازی کلیک راست کردید و گزینه‌ی Start آن‌را انتخاب کردید و پیام زیر ظاهر شد:


قسمت «پیش‌نیازهای نصب Docker بر روی ویندوز» را با دقت بررسی کنید (خصوصا قسمت BIOS و SLAT). نبود یکی از موارد ذکر شده، سبب بروز این مشکل می‌شود.
برای مثال اجرای دستور coreinfo -v بر روی سیستم من چنین خروجی را به همراه دارد:
E:\>coreinfo -v

AuthenticAMD
Microcode signature: 00000000
HYPERVISOR      -       Hypervisor is present
SVM             *       Supports AMD hardware-assisted virtualization
NP              -       Supports AMD nested page tables (SLAT)
روبروی HYPERVISOR و همچنین SLAT یک - را قرار داده‌است. یعنی این موارد یا پشتیبانی نمی‌شوند و یا در BIOS فعال نشده‌اند.
همانطور که مشاهده می‌کنید، قابلیت SLAT در CPU این سیستم وجود ندارد. به همین جهت نمی‌توان به Linux containers سوئیچ کرد. هرچند windows containers آن کار می‌کند.

روش دیگر مشاهده‌ی این خطا، مراجعه‌ی به event viewer ویندوز است. در قسمت خطاهای سیستم، ممکن است خطای زیر را مشاهده کنید:
Hypervisor launch failed; Second Level Address Translation is required to launch the hypervisor.


آزمایش Docker نصب شده

پس از نصب docker، خط فرمان ویندوز را گشوده و دستور زیر را صادر کنید:
docker run hello-world
اگر از قسمت قبل به‌خاطر داشته باشید، hello-world در اینجا نام یک image است. البته چون این image بر روی سیستم ما موجود نیست، این دستور، ابتدا آن‌را از docker hub دریافت کرده و سپس اجرا می‌کند. بنابراین می‌شد ابتدا دستور pull را صادر کرد و سپس run. اما دستور run قادر است هر دو عمل را با هم انجام دهد.

یک نکته: این image، یک image لینوکسی است. به همین جهت پیش از اجرای این دستور، همانطور که پیشتر نیز عنوان شد، یکبار بر روی آیکن Docker در قسمت Tray Icons ویندوز کلیک راست کرده و گزینه‌ی switch to Linux containers را انتخاب کنید. سپس دستور docker run hello-world را اجرا نمائید.

و یا در همین حال دستور docker run -p 80:80 nginx را صادر کنید تا وب سرور لینوکسی nginx را بتوانید تحت ویندوز اجرا کنید. پس از خاتمه‌ی عملیات دریافت و اجرای وب سرور، با توجه به تنظیم  p 80:80-، پورت 80 میزبان (اولین عدد)، به پورت 80 کانتینر نگاشت شده‌است. به همین جهت تنها با اجرای دستور http://localhost، خروجی این وب سرور را می‌توانید در مرورگر سیستم خود مشاهده کنید.
همانطور که مشاهده می‌کنید، با استفاده از داکر، پیش از آنکه بدانیم چگونه باید یک نرم افزار را نصب کرد، می‌توان از آن استفاده کرد!


روش متوقف کردن Containers در حال اجرا

اگر دستور docker ps را در خط فرمان ویندوز اجرا کنید، لیست پروسه‌های اجرا شده‌ی توسط آن قابل مشاهده هستند. در این لیست container id در حال اجرا نیز مشخص است. برای خاتمه‌ی کار آن، تنها کافی است دستور docker stop id را اجرا کنید.
یک نکته: ضرورتی به ذکر کامل id نیست. برای مثال ذکر سه حرف اول آن نیز کفایت می‌کند.


روش اجرای مجدد یک Container

فرض کنید می‌خواهیم سرور nginx را مجددا اجرا کنیم. یک روش آن، اجرای مجدد دستور docker run -p 80:80 nginx است که پیشتر آن‌را انجام دادیم. در این حالت این image تبدیل به container شده و همانند روش‌های متداول نصب نرم افزار، اکنون به عنوان یک نرم افزار نصب شده در دسترس است. برای مشاهده‌ی لیست آن‌ها، دستور docker ps -a را اجرا کنید. این لیست تا این لحظه باید شامل containerهای nginx و hello-world باشد. متوقف کردن یک container، سبب تخریب یا حذف آن نمی‌شود. در این حالت در لیستی که توسط دستور docker ps -a نمایش داده شده‌است، باز هم container idها قابل مشاهده هستند. فقط کافی است برای اجرای یکی از آن‌ها، دستور docker start id را اجرا کرد. به این صورت دیگر نیازی به ذکر دستور کامل docker run با تمام پارامترهای آن نیست. این id نیز همانطور که ذکر شد، می‌تواند سه حرف ابتدایی این id باشد تا حدی که نسبت به سایر idهای موجود، منحصربفرد شناخته شود. یا بجای container id می‌توان container name نمایش داده شده‌ی در این لیست را استفاده کرد.
پس از اجرای nginx توسط دستور docker start id، دو روش برای بررسی در حال اجرا بودن آن وجود دارد:
الف) مرورگر را باز کنیم و آدرس http://localhost را بررسی کنیم.
ب) دستور docker ps را در خط فرمان اجرا کنیم، تا مشخص شود که آیا پروسه‌ی nginx در حال اجرا است یا خیر؟

بنابراین دستور docker ps -a لیست تمام containers در حال اجرا و همچنین متوقف شده را نمایش می‌دهد. اما دستور docker ps تنها لیست containers در حال اجرا را نمایش خواهد داد.


روش حذف Containers از Docker

همانطور که در قسمت قبل نیز بحث شد، معادل نصب نرم افزار در اینجا، ایجاد یک container از یک image دریافتی از docker hub است. روش عکس آن، یعنی تخریب یک container، دقیقا معادل عزل نرم افزار از سیستم، در حالت‌های متداول است. برای اینکار مجددا دستور docker ps -a را اجرا می‌کنیم تا لیست تمام containerهای در حال اجرا و همچنین متوقف شده نمایش داده شوند. لیستی که در اینجا نمایش داده می‌شود، شبیه به لیستی است که در قسمت add/remove programs ویندوز مشاهده می‌کنید. این لیست معادل لیست نرم افزارهای نصب شده‌ی بر روی سیستم است و یا برای مشاهده‌ی لیست imageهای دریافتی از docker hub می‌توان دستور docker images را صادر کرد.
قبل از حذف یک container نیاز است آن‌را متوقف کنیم. برای این منظور از دستور docker stop id استفاده می‌شود. سپس اجرای دستور docker rm id، سبب حذف کامل این container خواهد شد. برای آزمایش آن، مجددا دستور docker ps -a را اجرا کنید.
دستور docker rm چندین id را نیز می‌پذیرد. می‌توان این idها و یا حتی سه حرف ابتدایی آن‌ها را با فاصله در اینجا ذکر کرد. علاوه بر id، ذکر نام containers نیز مجاز است.


روش حذف Imageهای دریافتی از Docker Hub

دستور docker rm، فقط containers را از سیستم حذف می‌کند (نرم افزارهای نصب شده). اما خود imageهای اصلی دریافت شده‌ی از docker hub را حذف نمی‌کند (معادل همان فایل‌های zip دریافت نرم افزار یا برنامه‌های نصاب، در حالت متداول و سنتی نصب نرم افزار). برای آزمایش آن دستور docker images را اجرا کنید. هنوز هم در لیست آن، تمام موارد دریافتی موجود هستند.
برای حذف یک image می‌توان از دستور docker rmi id استفاده کرد (rmi بجای rm). این id نیز در لیست docker images ظاهر می‌شود و ذکر قسمتی از آن، تا حدی که نسبت به سایر idهای لیست شده منحصربفرد باشد، کافی است. در اینجا بجای id، از نام image نیز می‌توان استفاده کرد. همچنین ذکر چندین id و یا نام نیز پس از دستور docker rmi، میسر است.


روش جستجوی imageها در Docker Hub توسط Docker CLI

فرض کنید می‌خواهیم image مربوط به راهنمای Docker را از Docker Hub دریافت کنیم. یک روش آن مراجعه‌ی مستقیم به سایت آن است و استفاده از امکانات جستجوی فراهم شده‌ی در آن سایت. روش دیگر، استفاده از Docker CLI است. اگر دستور docker search docs را در خط فرمان اجرا کنیم، لیست تمام مخازن کدی که در آن‌ها واژه‌ی docs قرار دارد، نمایش داده می‌شود. البته پیش از نصب image آن بهتر است به برگه‌ی tags مخزن کد آن نیز مراجعه کنید تا بتوانید حجم آن‌را نیز مشاهده نمائید که حدود یک گیگابایت است. مخازن docker hub، حاوی imageهای نصاب containerهای متناظر هستند. برای دریافت و اجرای آن می‌توان دستور docker run -p 4000:4000 docs/docker.github.io را اجرا کرد.
پس از دریافت یک گیگابایت مستندات، container آن بر روی پورت 4000 در سیستم ما (http://localhost:4000)، به صورت یک وب سایت استاتیک، قابل دسترسی خواهد بود. به این صورت می‌توان به مستندات کامل داکر به صورت آفلاین دسترسی داشت.


مفهوم Interactive Terminal در Docker

زمانیکه دستور اجرای مستندات آفلاین را صادر می‌کنید، در انتهای آن عنوان می‌کند که وب سایت محلی آن بر روی پورت 4000 قابل دسترسی است. سپس در ذیل آن ذکر شده‌است که اگر ctrl+c را فشار دهید، اجرای آن به پایان می‌رسد. اما عملا اینطور نیست و اگر دستور docker ps را صادر کنید، هنوز container در حال اجرای آن را می‌توان مشاهده کرد.
اما اگر اینبار دستور اجرای docker run را به همراه یک interactive terminal با سوئیچ it و نام docs صادر کنیم:
 docker run -p 4000:4000 -it --name docs docs/docker.github.io
اکنون اگر ctrl+c را فشار دهیم و پس از آن دستور docker ps را صادر کنیم، دیگر در لیست آن، container در حال اجرای docs مشاهده نمی‌شود.
سوئیچ it یا interactive terminal سبب می‌شود تا یک container در foreground، بجای background اجرا شود. به این ترتیب دستور ctrl+c، سبب خاتمه‌ی واقعی پروسه‌ی درحال اجرای در container می‌شود.
روش دیگر خاتمه‌ی این container، استفاده از نام ذکر شده‌است؛ یعنی اجرای دستور docker stop docs.

یک نکته: اگر می‌خواهید از terminal باز شده قطع شوید (مجددا به command prompt باز گردید) اما سبب خاتمه‌ی container آن نشوید، از ترکیب ctrl+p+q استفاده کنید.


اجرای containerهای ویندوزی

در مورد نحوه‌ی سوئیچ بین نوع‌های مختلف containerهای ویندوزی و لینوکسی پیشتر توضیح دادیم. برای این منظور می‌توان بر روی آیکن Docker در قسمت Tray Icons ویندوز کلیک راست کرده و گزینه‌ی switch to Windows/Linux containers را انتخاب کرد. باید دقت داشت که پشتیبانی از containerهای ویندوزی، از ویندوز 10، نگارش  1607، یا همان Anniversary Update آن به بعد، به ویژگی‌های ویندوز اضافه شده‌اند که به صورت خودکار توسط docker فعالسازی می‌شوند:



اجرای IIS به عنوان یک Windows Container

تا اینجا imageهای دریافتی، لینوکسی بودند. اگر گزینه‌ی Windows Containers را به روشی که گفته شد، فعال کنید، اینبار با اجرای دستورات docker ps و یا docker images، هیچ خروجی را دریافت نخواهید کرد. از این جهت که کانتینرهای ویندوزی و لینوکسی، به صورت کاملا ایزوله‌ای از هم اجرا و مدیریت می‌شوند. علت آن‌را هم در MobyLinuxVM که پیشتر با اجرای دستور Virtmgmt.msc بررسی کردیم، می‌توان یافت. Containerهای لینوکسی، در داخل MobyLinuxVM اجرا می‌شوند.
در اینجا به عنوان مثال می‌توان image رسمی مربوط به IIS را از docker hub دریافت و به صورت یک کانتینر ویندوزی اجرا کرد. البته پیش از اجرای دستورات آن بهتر است به برگه‌ی tags آن مراجعه کرده و حجم‌های نگارش‌های مختلف آن‌را بررسی کرد. اجرای دستور docker pull microsoft/iis به معنای دریافت tag ای به نام latest است (به حجم 6 گیگابایت!)؛ یعنی با دستور docker pull microsoft/iis:latest یکی است. بنابراین در اینجا بر اساس tagهای مختلف، می‌توان دستور pull متفاوتی را صادر کرد. برای مثال اگر دستور docker pull microsoft/iis:nanoserver را صادر کردید، نگارش مخصوص nano server آن‌را که فقط 449 مگابایت است، دریافت می‌کند. بنابراین از این پس به tagهای هر مخزن docker hub خوب دقت کنید و نگارش مختص به سیستم عامل خود را دریافت نمائید. عدم ذکر tag ای، همواره tag ویژه‌ای را به نام latest، دریافت می‌کند.
با اجرای دستور زیر
 docker run -p 81:80 -d --name iis microsoft/iis:nanoserver
داکر، ابتدا image مخصوص nanoserver آن‌را دریافت و سپس اجرا می‌کند. چون وب سرور است، نیاز به تنظیمات پورت آن‌را داریم. p 81:80- به این معنا است که پورت 80 کانتینر را (پورتی که IIS درون آن بر روی آن اجرا می‌شود)، به پورت 81 بر روی سیستم میزبان (یا همین ویندوز فعلی که داکر را اجرا می‌کند)، نگاشت کن. پارامتر d در اینجا به معنای detach است. یعنی به محض اجرای این دستور، کار اجرای این کانتینر در background انجام شده و سپس به خط فرمان، بازگشت داده می‌شویم. همچنین نامی نیز به این container انتساب داده شده‌است تا ساده‌تر بتوان با آن کار کرد.

یک نکته: مشکلی با اجرای IIS مخصوص نانوسرور بر روی ویندوز 10 به این صورت و توسط داکر نیست. بنابراین پس از اجرای دستور فوق، کار دریافت image و ساخت container و سپس اجرای آن به صورت خودکار انجام شده و بلافاصله به command prompt بازگشت داده می‌شویم (به علت استفاده‌ی از پارامتر d). اکنون اگر دستور docker ps را صادر کنیم، مشاهده می‌کنیم که کانتینر IIS مخصوص نانوسرور، هم اکنون بر روی ویندوز 10 در حال اجرا است و در آدرس http://localhost:81 قابل دسترسی است.

جهت تکمیل این بحث، بهتر است image مخصوص nanoserver را نیز از docker hub دریافت و اجرا کنیم:
 docker run microsoft/windowsservercore
حجم image آن 6GB است.


تنظیمات کارت شبکه‌ی Containers

هنگامیکه پروسه‌ای درون یک container اجرا می‌شود، ایزوله سازی‌های بسیاری نیز در مورد آن اعمال خواهد شد؛ به همین جهت گاهی از اوقات عده‌ای containerها را با ماشین‌های مجازی نیز مقایسه می‌کنند. برای مثال کانتینرها به همراه network adapter خاص خود نیز هستند؛ درست مانند اینکه یک کامپیوتر مجزای از سیستم جاری می‌باشند و اگر این network adapter را ping کنیم، می‌توان به این صورت نیز به آن کانتینر، دسترسی داشته باشیم.
برای یافتن آن، دستور docker inspect iis را صادر می‌کنیم. خروجی آن به همراه یک قسمت network نیز هست که داخل آن یک IP Address قابل مشاهده است. این IP است که مختص و منحصربفرد این container است. در ابتدا برای آزمایش آن، می‌توان آن‌را ping کرد؛ مانند ping 172.27.49.47. همچنین به تمام برنامه‌های داخل این container توسط این IP نیز می‌توان دسترسی یافت. برای مثال فراخوانی http://172.27.49.47:81 در مرورگر، سبب نمایش صفحه‌ی اول IIS می‌شود. البته اگر اینکار را انجام دهیم، کار نمی‌کند. علت اینجا است، نگاشت پورتی را که تعریف کرده‌ایم (پورت 81)، به پورتی در کامپیوتر میزبان است و نه این IP ویژه. برنامه‌ی اصلی IIS در داخل container، به پورت 80 بر روی این آدرس IP گوش فرا می‌دهد. اکنون اگر آدرس http://172.27.49.47:80 را در کامپیوتر میزبان فراخوانی کنیم، کار می‌کند.
بنابراین هرچند containerها به معنای نرم افزارهای از پیش نصب شده‌ی در حال اجرا هستند، اما ... به همراه ایزوله سازی‌های قابل توجهی بر روی کامپیوتر میزبان اجرا می‌شوند؛ درست مانند یک کامپیوتر مجزای از آن.