نظرات مطالب
EF Code First #12
با سلام و تشکر از پاسختون
من با ViewModel آشنایی دارم و مطالب Mvc شما رو کامل خوندم آیا درست متوجه شدم جهت اعتبار سنجی باید یک کلاس در ViewModel بسازم و اعتبارسنجی رو انجام بدیم و بعد کلاس ViewModel رو تبدیل به کلاس اصلی کرده و برای انجام عملیات مربوطه به Service بفرستیم؟ یا نه باید یک کلاس مشابه کلاس موجود در DomainClasses در Model بسازم و اعتبارسنجی رو اونجا انجام بدم و بعد ارسال به Service
یا باید  به صورت زیر توی همون domainClasses انجام بدم
[MetadataType(typeof(CustomerMetadata))]
public partial class Customer
{
    class CustomerMetadata
     {
     }
}
public partial class Customer : IValidatableObject
{

مطالب
روش یافتن لیست تمام کنترلرها و اکشن‌ متدهای یک برنامه‌ی ASP.NET Core
یک نمونه روش یافتن لیست تمام کنترلرها و اکشن متدهای یک برنامه‌ی ASP.NET MVC 5.x را در مطلب «نحوه ایجاد یک نقشه‌ی سایت پویا با استفاده از قابلیت Reflection» می‌توانید ملاحظه کنید. استفاده‌ی از این روش با ASP.NET Core الزاما به پاسخ مناسبی نخواهد رسید؛ چون در اینجا POCO controllers هم اضافه شده‌اند. به علاوه می‌توان اسمبلی‌های دیگری را در زمان آغاز برنامه به تنظیمات AddMvc اضافه کرد و تمام آن‌ها هم می‌توانند حاوی کنترلرها و ویووها خاص خودشان باشند. روش بهتر این است که از خود ASP.NET Core سؤال کنیم چه مواردی را به عنوان کنترلر تشخیص داده‌ای؟ در ادامه این نکته را بیشتر بررسی خواهیم کرد.


معرفی سرویس IActionDescriptorCollectionProvider در ASP.NET Core

فرض کنید می‌خواهیم لیست تمام کنترلرهای یک برنامه‌ی ASP.NET Core را با ساختار ذیل تهیه کنیم که شامل نام کنترلر، نام اکشن متد و نام ناحیه‌ی متناظر با آن (در صورت تنظیم) می‌باشد:
public class MvcActionViewModel
{
    public string ControllerName { get; set; }
 
    public string ActionName { get; set; }
 
    public string AreaName { get; set; } 
}
یکی از سرویس‌های از پیش ثبت شده‌ی ASP.NET Core که لیست تمام کنترلرها و اکشن متدهای تشخیص داده شده‌ی توسط آن را به همراه دارد، سرویس IActionDescriptorCollectionProvider می‌باشد. برای شروع به کار با آن، ابتدا این سرویس را به سازنده‌ی یک کلاس دلخواه تزریق می‌کنیم:
public interface IMvcActionsDiscoveryService
{
    ICollection<MvcActionViewModel> MvcActions { get; }
}
 
public class MvcActionsDiscoveryService : IMvcActionsDiscoveryService
{
    public MvcActionsDiscoveryService(IActionDescriptorCollectionProvider actionDescriptorCollectionProvider)
    {
        var actionDescriptors = actionDescriptorCollectionProvider.ActionDescriptors.Items;
        foreach (var actionDescriptor in actionDescriptors)
        {
            var descriptor = actionDescriptor as ControllerActionDescriptor;
            if (descriptor == null)
            {
                continue;
            }
 
            var controllerTypeInfo = descriptor.ControllerTypeInfo;
            var actionMethodInfo = descriptor.MethodInfo;
            MvcActions.Add(new MvcActionViewModel
            {
                ControllerName = descriptor.ControllerName,
                ActionName = descriptor.ActionName,
                AreaName = controllerTypeInfo.GetCustomAttribute<AreaAttribute>()?.RouteValue
            });
        }
    }
 
    public ICollection<MvcActionViewModel> MvcActions { get; } = new HashSet<MvcActionViewModel>(); 
}
توضیحات:
- در کلاس آغازین برنامه نیازی به ثبت سرویس IActionDescriptorCollectionProvider نیست و اینکار پیشتر توسط خود ASP.NET Core انجام شده‌است.
- این provider حاوی لیست اطلاعات تمام اکشن متدهای ثبت شده‌ی توسط ASP.NET Core است. در اینجا تنها کافی است حلقه‌ای را بر روی لیست آیتم‌های آن تشکیل داده و سپس مقادیر ControllerName و یا ActionName را بدست بیاوریم.
- اگر نیاز به اطلاعات بیشتری از کنترلر و اکشن متد جاری در حال بررسی توسط حلقه‌ی تهیه شده بود، می‌توان از ControllerTypeInfo و MethodInfo آن استفاده کرد. این TypeInfoها با استفاده از Reflection، امکان دسترسی به اطلاعاتی مانند ویژگی‌های اعمال شده‌ی به کنترلر یا اکشنی خاص را میسر می‌کنند. برای مثال در اینجا توسط اطلاعات نوع یک کنترلر در حال بررسی توانسته‌ایم متد GetCustomAttribute را فراخوانی کرده و سپس بررسی کنیم که آیا دارای ویژگی جدید Area هست یا خیر؟ و اگر بله، مقدار RouteValue آن را که در حقیقت مقدار یا نام Area آن کنترلر است، بازگشت می‌دهیم.


نحوه‌ی استفاده از سرویس IMvcActionsDiscoveryService تهیه شده

اگر دقت کرده باشید اطلاعات لیست MvcActions، در سازنده‌ی این کلاس مقدار دهی شده‌اند. علت اینجا است که اگر این کلاس را به صورت singleton ثبت کنیم، تنها یکبار در طول عمر برنامه و در همان آغاز کار، این لیست پر شده و سپس کش خواهد شد. بنابراین دسترسی‌های بعدی به MvcActions، شامل فراخوانی سازنده‌ی این کلاس نخواهند بود:
public static class MvcActionsDiscoveryServiceExtensions
{
    public static IServiceCollection AddMvcActionsDiscoveryService(this IServiceCollection services)
    {
        services.AddSingleton<IMvcActionsDiscoveryService, MvcActionsDiscoveryService>();
        return services;
    }
}
پس از تعریف متد الحاقی کمکی فوق برای افزودن سرویس تهیه شده به صورت singleton، برای ثبت آن در برنامه و در کلاس آغازین آن، خواهیم داشت:
public void ConfigureServices(IServiceCollection services)
{
    services.AddMvcActionsDiscoveryService();
}
در ادامه هر کنترلری و یا سرویس دیگری که نیاز به اطلاعات تمامی اکشن متدهای برنامه داشت، می‌تواند سرویس IMvcActionsDiscoveryService را به سازنده‌ی خود تزریق کرده و سپس از اطلاعات لیست MvcActions استفاده کند. این کاملترین لیستی که می‌توان تهیه کرد؛ زیرا زیرساخت ASP.NET Core نیز از همین سرویس IActionDescriptorCollectionProvider استفاده می‌کند.
مطالب
RavenDB؛ تجربه متفاوت از پایگاه داده
" به شما خواننده گرامی پیشنهاد می‌کنم مطلب قبلی را مطالعه کنید تا پیش زمینه مناسبی در باره این مطلب کسب کنید. "

ماهیت این پایگاه داده وب سرویسی مبتنی بر REST است و فرمت اطلاعاتی که از سرور دریافت می‌شود، JSON است.

گام اول: باید آخرین نسخه RavenDB  را دریافت کنید. همان طور که مشاهده می‌کنید، ویرایش‌های مختلف کتابخانه هایی که برای نسخه Client و همچنین Server طراحی شده است، دراین فایل قرار گرفته است.

برای راه اندازی Server باید فایل Start را اجرا کنید، چند ثانیه بعد محیط مدیریتی آن را در مرورگر خود مشاهده می‌کنید. در بالای صفحه روی لینک Databases کلیک کنید و در صفحه باز شده گزینه New Database را انتخاب کنید. با دادن یک نام دلخواه حالا شما یک پایگاه داده ایجاد کرده اید. تا همین جا دست نگه دارید و اجازه دهید با این محیط دوست داشتنی و قابلیت‌های آن بعدا آشنا شویم.
در گام دوم به Visual Studio می‌رویم و نحوه ارتباط با پایگاه داده و استفاده از دستورات آن را فرا می‌گیریم.
 

گام دوم:

با یک پروژه Test شروع می‌کنیم که در هر گام تکمیل می‌شود و می‌توانید پروژه کامل را در پایان این پست دانلود کنید.

برای استفاده از کتابخانه‌های مورد نیاز دو راه وجود دارد:

  • استفاده از NuGet : با استفاده از دستور زیر Package مورد نیاز به پروژه شما افزوده می‌شود.

PM> Install-Package RavenDB -Version 1.0.919 

  • اضافه کردن کتابخانه‌ها به صورت دستی : کتابخانه‌های مورد نیاز شما در همان فایلی که دانلود شده بود و در پوشه Client قرار دارند.

کتابخانه هایی را که NuGet به پروژه من اضافه کرد، در تصویر زیر مشاهده می‌کنید :

با Newtonsoft.Json در اولین بخش بحث آشنا شدید. NLog هم یک کتابخانه قوی و مستقل برای مدیریت Log است که این پایگاه داده از آن بهره برده است.

" دلیل اینکه از پروژه تست استفاده کردم ؛ تمرکز روی کدها و مشاهده تاثیر آن‌ها ، مستقل از UI و لایه‌های دیگر نرم افزار است. بدیهی است که استفاده از آن‌ها در هر پروژه امکان پذیر است. "

برای شروع نیاز به آدرس Server و نام پایگاه داده داریم که می‌توانید در App.config به عنوان تنظیمات نرم افزار شما ذخیره شود و هنگام اجرای نرم افزار مقدار آن‌ها را خوانده و در متغییر‌های readonly ذخیره شوند.

<appSettings>
    <add key="ServerName" value="http://SorousH-HP:8080/"/>
    <add key="DatabaseName" value="TestDatabase" />
</appSettings>

هنگامی که صفحه Management Studio در مرورگر باز است، می‌توانید از نوار آدرس مرورگر خود آدرس سرور را به دست آورید.  

    [TestClass]
    public class BeginnerTest
    {
        private readonly string serverName;
        private readonly string databaseName;

        public BeginnerTest()
        {
            serverName = ConfigurationManager.AppSettings["ServerName"];
            databaseName = ConfigurationManager.AppSettings["DatabaseName"];
        }
    }

برای برقراری ارتباط با پایگاه داده نیاز به یک شئ از جنس DocumentStore و جهت انجام عملیات مختلف ( ذخیره، حذف و ... ) نیاز به یک شئ از جنس IDocumentSession است. کد زیر، نحوه کار با آن‌ها را به شما نشان می‌دهد :

[TestClass]
    public class BeginnerTest
    {
        private readonly string serverName;
        private readonly string databaseName;

        private DocumentStore documentStore;
        private IDocumentSession session;

        public BeginnerTest()
        {
            serverName = ConfigurationManager.AppSettings["ServerName"];
            databaseName = ConfigurationManager.AppSettings["DatabaseName"];
        }

        [TestInitialize]
        public void TestStart()
        {
            documentStore = new DocumentStore { Url = serverName };
            documentStore.Initialize();
            session = documentStore.OpenSession(databaseName);

        }
        
        [TestCleanup]
        public void TestEnd()
        {
             session.SaveChanges(); 
             documentStore.Dispose();
             session.Dispose();
        }
    }

در طراحی این پایگاه داده از اگوی Unit Of Work استفاده شده است. به این معنی که تمام تغییرات در حافظه ذخیره می‌شوند و به محض اجرای دستور ;()session.SaveChanges ارتباط برقرار شده و تمام تغییرات ذخیره خواهند شد.

هنگام شروع ( تابع : TestStart ) متغییر session مقدار دهی می‌شود و در پایان کار ( تابع : TestEnd ) تغییرات ذخیره شده و منابعی که توسط این دو شئ در حافظه استفاده شده است، رها می‌شود.

البته بر مبنای طراحی شما، دستور ;()session.SaveChanges می‌تواند پس از انجام هر عملیات اجرا شود.

برای آشنا شدن با نحوه ذخیره کردن اطلاعات، به کد زیر دقت کنید:
class User
    {
        public int Id { get; set; }
        public string Name { get; set; }
        public string Address { get; set; }
        public int Zip { get; set; }اهی 
    }
        [TestMethod]
        public void Insert()
        {
            var user = new User
                           {
                               Id = 1,
                               Name = "John Doe",
                               Address = "no-address",
                               Zip = 65826
                           };
            session.Store(user);
        }
اگر همه چیز درست پیش رفته باشد، وقتی به محیط RavenDB Studio که هنوز در مرورگر شما باز است، نگاهی می‌اندازید، یک سند جدید ایجاد شده است که با کلیک روی آن، اطلاعات آن قابل مشاهده است.
لحظه‌ی لذت بخشی است...
یکی  از روش‌های خواندن اطلاعات هم به صورت زیر است:
        [TestMethod]
        public void Select()
        {
            var user = session.Load<User>(1);
        }
نتیجه خروجی این دستور هم یک شئ از جنس کلاس User است.

تا این جا، ساده‌ترین مثال‌های ممکن را مشاهده کردید و حتما در بحث بعد مثال‌های جالب‌تر و دقیق‌تری را بررسی می‌کنیم و همچنین نگاهی به جزئیات طراحی و قرارداد‌های از پیش تعیین شده می‌اندازیم.

" به شما پیشنهاد می‌کنم که منتظر بحث بعدی نباشید! همین حالا دست به کار شوید... "


مطالب
فرم‌های مبتنی بر قالب‌ها در Angular - قسمت پنجم - ارسال اطلاعات به سرور
تا اینجا تنظیمات اصلی فرم ثبت اطلاعات کارمندان را انجام دادیم. اکنون نوبت به ارسال این اطلاعات به سمت سرور است. پیشنیاز آن نیز تدارک مواردی است که در مطلب «یکپارچه سازی Angular CLI و ASP.NET Core در VS 2017» پیشتر بحث شدند. از این مطلب تنها تنظیمات موارد ذیل را نیاز خواهیم داشت و از تکرار آن‌ها در اینجا صرفنظر می‌شود تا هم مطلب کوتاه‌تر شود و هم بتوان بر روی اصل موضوع جاری، تمرکز کرد:
- ایجاد یک پروژه‌ی جدید ASP.NET Core در VS 2017
- تنظیمات یک برنامه‌ی ASP.NET Core خالی برای اجرای یک برنامه‌ی Angular CLI
- تنظیمات فایل آغازین یک برنامه‌ی ASP.NET Core جهت ارائه‌ی برنامه‌های Angular
- ایجاد ساختار اولیه‌ی برنامه‌ی Angular CLI در داخل پروژه‌ی جاری: این مورد را تاکنون انجام داده‌ایم و تکمیل کرده‌ایم. بنابراین تنها کاری که نیاز است انجام شود، cut و paste محتوای پوشه‌ی angular-template-driven-forms-lab (پروژه‌ی این سری) به ریشه‌ی پروژه‌ی ASP.NET Core است.
- تنظیم محل خروجی نهایی Angular CLI به پوشه‌ی wwwroot
- روش اول و یا دوم اجرای برنامه‌های مبتنی بر ASP.NET Core و Angular CLI

البته سورس کامل تمام این تنظیمات را از انتهای بحث نیز می‌توانید دریافت کنید.
ضمن اینکه هیچ نیازی هم به استفاده از VS 2017 نیست و هر دوی برنامه‌ی Angular و ASP.NET Core را می‌توان توسط VSCode به خوبی مدیریت و اجرا کرد.


ایجاد ساختار مقدماتی سرویس ارسال اطلاعات به سرور

در برنامه‌های Angular مرسوم است جهت کاهش مسئولیت‌های یک کلاس و امکان استفاده‌ی مجدد از کدها، منطق ارسال اطلاعات به سرور، به درون کلاس یک سرویس منتقل شود و سپس این سرویس به کلاس‌های کامپوننت‌ها، برای مثال یک فرم ثبت اطلاعات، برای ارسال و یا دریافت اطلاعات، تزریق گردد. به همین جهت، ابتدا ساختار ابتدایی این سرویس و تنظیمات مرتبط با آن‌را انجام می‌دهیم.
ابتدا از طریق خط فرمان به پوشه‌ی ریشه‌ی برنامه وارد شده (جائیکه فایل Startup.cs قرار دارد) و سپس دستور ذیل را اجرا می‌کنیم:
 >ng g s employee/FormPoster -m employee.module
با این خروجی
 installing service
  create src\app\employee\form-poster.service.spec.ts
  create src\app\employee\form-poster.service.ts
  update src\app\employee\employee.module.ts
همانطور که در سطر آخر نیز ملاحظه می‌کنید، فایل employee.module.ts را جهت درج کلاس جدید FormPosterService در قسمت providers ماژول آن به روز رسانی می‌کند؛ تا بتوانیم این سرویس را در کامپوننت‌های این ماژول تزریق کرده و استفاده کنیم.
ساختار ابتدایی این سرویس را نیز به نحو ذیل تغییر می‌دهیم:
import { Injectable } from '@angular/core';
import { Http } from '@angular/http';

import { Employee } from './employee';

@Injectable()
export class FormPosterService {

    constructor(private http:Http) {
    }

    postEmployeeForm(employee: Employee) {
    }
}
در اینجا سرویس Http انگیولار به سازنده‌ی کلاس تزریق شده‌است و این نحوه‌ی تعریف سبب می‌شود تا بتوان به پارامتر http، به صورت یک فیلد خصوصی تعریف شده‌ی در سطح کلاس نیز دسترسی پیدا کنیم.
چون این کلاس از ماژول توکار Http استفاده می‌کند، نیاز است این ماژول را نیز به قسمت imports فایل src\app\app.module.ts اضافه کنیم:
import { HttpModule } from "@angular/http";

@NgModule({
  imports: [
    BrowserModule,
    FormsModule,
    HttpModule,
    EmployeeModule,
    AppRoutingModule
  ]
اکنون می‌توانیم این سرویس جدید FormPosterService را به سازنده‌ی کامپوننت EmployeeRegisterComponent در فایل src\app\employee\employee-register\employee-register.component.ts تزریق کنیم:
import { FormPosterService } from "../form-poster.service";

export class EmployeeRegisterComponent implements OnInit {

  constructor(private formPoster: FormPosterService) {}

}

در ادامه برای آزمایش برنامه، به ریشه‌ی پروژه وارد شده و دو پنجره‌ی کنسول مجزا را باز کنید. در اولی، دستورات:
>npm install
>ng build --watch
و در دومی، دستورات ذیل را اجرا کنید:
>dotnet restore
>dotnet watch run
دستورات اول کار بازیابی وابستگی‌های سمت کلاینت و سپس ساخت تدریجی برنامه‌ی Angular را دنبال می‌کند. دستورات دوم، وابستگی‌های برنامه‌ی ASP.NET Core را دریافت و نصب کرده و سپس برنامه را در حالت watch ساخته و بر روی پورت 5000 ارائه می‌کند (بدون نیاز به اجرای VS 2017؛ این دستور عمومی است).
به همین جهت برای آزمایش ابتدایی آن، آدرس http://localhost:5000 را در مرورگر باز کنید. برگه‌ی developer tools مرورگر را نیز بررسی کنید تا خطایی در آن ظاهر نشده باشد. برای مثال اگر فراموش کرده باشید تا HttpModule را به app.module اضافه کنید، خطای no provider for HttpModule را مشاهده خواهید کرد.


مدیریت رخداد submit فرم در Angular

تا اینجا کار برپایی تنظیمات اولیه‌ی کار با سرویس Http را انجام دادیم. مرحله‌ی بعد مدیریت رخداد submit فرم است. به همین جهت فایل src\app\employee\employee-register\employee-register.component.html را گشوده و سپس رخدادگردان submit را به فرم آن اضافه کنید:
<form #form="ngForm" (submit)="submitForm(form)" novalidate>
در حین رخدادگردانی submit می‌توان به template reference variable تعریف شده‌ی form# برای دسترسی به وهله‌ای از ngForm نیز کمک گرفت.
export class EmployeeRegisterComponent implements OnInit {
  submitForm(form: NgForm) {
    console.log(this.model);
    console.log(form.value);
  }
}
امضای متد submitForm را در اینجا مشاهده می‌کنید. form دریافتی آن از نوع NgForm است که در ابتدای فایل import شده‌است.
در همین حال اگر بر روی دکمه‌ی ok کلیک کنیم، چنین خروجی را در کنسول developer مروگر می‌توان مشاهده کرد:


اولین مورد، محتوای this.model است و دومی محتوای form.value را گزارش کرده‌است. همانطور که مشاهده می‌کنید، مقدار form.value بسیار شبیه است به وهله‌ای از مدلی که در سطح کلاس تعریف کرده‌ایم و این مقدار همواره توسط Angular نگهداری و مدیریت می‌شود. بنابراین حتما الزامی نیست تا مدلی را جهت کار با فرم‌های مبتنی بر قالب‌ها به صورت جداگانه‌ای تهیه کرد. توسط شیء form نیز می‌توان به تمام اطلاعات فیلدها دسترسی یافت.


تکمیل سرویس ارسال اطلاعات به سرور

در ادامه می‌خواهیم اطلاعات مدل فرم را به سرور ارسال کنیم. برای این منظور سرویس FormPoster را به صورت ذیل تکمیل می‌کنیم:
import { Injectable } from "@angular/core";
import { Http, Response, Headers, RequestOptions } from "@angular/http";

import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/do";
import "rxjs/add/operator/catch";
import "rxjs/add/observable/throw";
import "rxjs/add/operator/map";
import "rxjs/add/observable/of";

import { Employee } from "./employee";

@Injectable()
export class FormPosterService {
  private baseUrl = "api/employee";

  constructor(private http: Http) {}

  private extractData(res: Response) {
    const body = res.json();
    return body.fields || {};
  }

  private handleError(error: Response): Observable<any> {
    console.error("observable error: ", error);
    return Observable.throw(error.statusText);
  }

  postEmployeeForm(employee: Employee): Observable<Employee> {
    const body = JSON.stringify(employee);
    const headers = new Headers({ "Content-Type": "application/json" });
    const options = new RequestOptions({ headers: headers });

    return this.http
      .post(this.baseUrl, body, options)
      .map(this.extractData)
      .catch(this.handleError);
  }
}
برای کار با Observables یا می‌توان نوشت 'import 'rxjs/Rx که تمام بسته‌ی RxJS را import می‌کند، یا همانند این مثال بهتر است تنها اپراتورهایی را که به آن‌ها نیاز پیدا می‌کنیم، import نمائیم. به این ترتیب حجم نهایی ارائه‌ی برنامه نیز کاهش خواهد یافت.
در متد postEmployeeForm، ابتدا توسط JSON.stringify محتوای شیء کارمند encode می‌شود. البته متد post اینکار را به صورت توکار نیز می‌تواند مدیریت کند. سپس ذکر هدر مناسب در اینجا الزامی است تا در سمت سرور بتوانیم اطلاعات دریافتی را به شیء متناظری نگاشت کنیم. در غیراینصورت model binder سمت سرور نمی‌داند که چه نوع فرمتی را دریافت کرده‌است و چه نوع decoding را باید انجام دهد.
در قسمت map، کار بررسی اطلاعات دریافتی از سرور را انجام خواهیم داد و اگر در این بین خطایی وجود داشت، توسط متد handleError در کنسول developer مرورگر نمایش داده می‌شود.
خروجی متد postEmployeeForm یک Observable است. بنابراین تا زمانیکه یک subscriber نداشته باشد، اجرا نخواهد شد. به همین جهت به کلاس EmployeeRegisterComponent مراجعه کرده و متد submitForm را به نحو ذیل تکمیل می‌کنیم:
  submitForm(form: NgForm) {
    console.log(this.model);
    console.log(form.value);

    // validate form
    this.validatePrimaryLanguage(this.model.primaryLanguage);
    if (this.hasPrimaryLanguageError) {
      return;
    }

    this.formPoster
      .postEmployeeForm(this.model)
      .subscribe(
        data => console.log("success: ", data),
        err => console.log("error: ", err)
      );
  }
در اینجا ابتدا اعتبارسنجی سفارشی drop down را که در قسمت قبل بررسی کردیم، قرار داده‌ایم. پس از آن متد postEmployeeForm سرویس formPoster فراخوانی شده‌است و در اینجا کار subscribe به نتیجه‌ی عملیات صورت گرفته‌است که می‌تواند حاوی اطلاعاتی از سمت سرور و یا خطایی در این بین باشد.

یک نکته: اگر علاقمند باشید تا ساختار واقعی شیء NgForm را مشاهده کنید، در ابتدای متد فوق، console.log(form.form) را فراخوانی کنید و سپس شیء حاصل را در کنسول developer مرورگر بررسی نمائید.


تکمیل Web API برنامه‌ی ASP.NET Core جهت دریافت اطلاعات از کلاینت‌ها

در ابتدای سرویس formPoster، یک چنین تعریفی را داریم:
export class FormPosterService {
  private baseUrl = "api/employee";
به همین جهت نیاز است سرویس Web API سمت سرور خود را بر این مبنا تکمیل کنیم.
ابتدا مدل زیر را به پروژه‌ی ASP.NET Core جاری، معادل نمونه‌ی تایپ‌اسکریپتی سمت کلاینت آن اضافه می‌کنیم. البته در اینجا یک Id نیز اضافه شده‌است:
namespace AngularTemplateDrivenFormsLab.Models
{
    public class Employee
    {
        public int Id { set; get; }
        public string FirstName { get; set; }
        public string LastName { get; set; }
        public bool IsFullTime { get; set; }
        public string PaymentType { get; set; }
        public string PrimaryLanguage { get; set; }
    }
}

سپس کنترلر جدید EmployeeController را با محتوای ذیل اضافه خواهیم کرد:
using Microsoft.AspNetCore.Mvc;
using AngularTemplateDrivenFormsLab.Models;

namespace AngularTemplateDrivenFormsLab.Controllers
{
    [Route("api/[controller]")]
    public class EmployeeController : Controller
    {
        public IActionResult Post([FromBody] Employee model)
        {
            //todo: save model

            model.Id = 100;
            return Created("", new { fields = model });
        }
    }
}
این کنترلر با شیوه‌ی Web API تعریف شده‌است. مسیریابی آن با api شروع می‌شود تا با مسیر baseUrl سرویس formPoster تطابق پیدا کند.
در اینجا پس از ثبت فرضی مدل، Id آن به همراه اطلاعات مدل، به نحوی که ملاحظه می‌کنید، بازگشت داده شده‌است. این نوع خروجی، یک چنین JSON ایی را تولید می‌کند:
{"fields":{"id":100,"firstName":"Vahid","lastName":"N","isFullTime":true,"paymentType":"FullTime","primaryLanguage":"Persian"}}
به همین جهت است که در متد extractData، دسترسی به body.fields را مشاهده می‌کنید. این fields در اینجا دربرگیرنده‌ی اطلاعات بازگشتی از سرور است (نام آن دلخواه است و درصورت تغییر آن در سمت سرو، باید این نام را در متد extractData نیز اصلاح کنید).
  private extractData(res: Response) {
    const body = res.json();
    return body.fields || {};
  }
اکنون اگر برنامه را با دستورات dotnet watch build و ng build --watch اجرا کنیم، بر روی پورت 5000 قابل دسترسی خواهد بود و پس از ارسال فرم به سرور، چنین خروجی را می‌توان در کنسول developer مرورگر مشاهده کرد:


نمایش success به همراه شیءایی که از سمت سرور دریافت شده‌است؛ که حاصل اجرای سطر ذیل در متد submitForm است:
 data => console.log("success: ", data)
همانطور که مشاهده می‌کنید، این شیء به همراه Id نیز هست. بنابراین درصورت نیاز به آن در سمت کلاینت، خاصیت معادل آن‌را به کلاس کارمند اضافه کرده و در همین سطر فوق می‌توان به آن دسترسی یافت.


بارگذاری اطلاعات drop down از سرور

تا اینجا اطلاعات drop down نمایش داده شده از یک آرایه‌ی مشخص سمت کلاینت تامین شدند. در ادامه قصد داریم تا آن‌ها را از سرور دریافت کنیم. به همین جهت اکشن متد ذیل را به کنترلر سمت سرور برنامه اضافه کنید:
[HttpGet("/api/[controller]/[action]")]
public IActionResult Languages()
{
    string[] languages = { "Persian", "English", "Spanish", "Other" };
    return Ok(languages);
}
که برای آزمایش آن می‌توانید مسیر http://localhost:5000/api/employee/languages را جداگانه در مرورگر درخواست کنید.
پس از آن در سمت کلاینت این تغییرات نیاز هستند:
ابتدا به سرویس FormPosterService دو متد ذیل را اضافه می‌کنیم که کار آن‌ها دریافت و پردازش اطلاعات از api/employee/languages سمت سرور هستند:
  private extractLanguages(res: Response) {
    const body = res.json();
    return body || {};
  }

  getLanguages(): Observable<any> {
    return this.http
      .get(`${this.baseUrl}/languages`)
      .map(this.extractLanguages)
      .catch(this.handleError);
  }
اینبار چون خروجی سمت سرور را مانند قبل (متد extractData) داخل فیلدی مانند fields محصور نکردیم، همان body دریافتی بازگشت داده شده‌است.
پس از آن دو تغییر ذیل را نیاز است به EmployeeRegisterComponent اعمال کنیم:
  languages = [];

  ngOnInit() {
    this.formPoster
      .getLanguages()
      .subscribe(
        data => this.languages = data,
        err => console.log("get error: ", err)
      );
  }
ابتدا آرایه‌ی زبان‌ها با یک آرایه‌ی خالی مقدار دهی شده‌است و سپس در متد ngOnInit، کار دریافت اطلاعات آن از سرور، صورت گرفته‌است.

مشکل! ممکن است مدت زمانی طول بکشد تا این اطلاعات از سمت سرور دریافت شوند. در این حالت می‌توان به شکل زیر در فایل employee-register.component.html فرم را تا زمان پر شدن دراپ داون آن مخفی کرد:
<h3 *ngIf="languages.length == 0">Loading...</h3>
<div class="container" *ngIf="languages.length > 0">
در این حالت هر زمانیکه آرایه‌ی زبان‌ها پر شد، loading حذف شده و div نمایان می‌گردد.

کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: angular-template-driven-forms-lab-05.zip
برای اجرای آن فرض بر این است که پیشتر Angular CLI را نصب کرده‌اید. سپس به ریشه‌ی پروژه وارد شده و دو پنجره‌ی کنسول مجزا را باز کنید. در اولی دستورات:
>npm install
>ng build --watch
و در دومی دستورات ذیل را اجرا کنید:
>dotnet restore
>dotnet watch run
اکنون می‌توانید برنامه را در آدرس http://localhost:5000 مشاهده و اجرا کنید.
مطالب
Functional Programming - قسمت پنجم - وسواس استفاده از نوع های اولیه
در ادامه سری مقالات مرتبط با برنامه نویسی تابعی ، قصد دارم به استفاده کردن یا نکردن از نوع‌های داده اولیه (Primitive Types) را بررسی کنیم. پیشنهاد میکنم در صورتی که قسمت‌های قبلی را مطالعه نکرده اید ابتدا قسمت‌های قبل را بخوانید.

در طراحی مدل دامین، بیشتر مواقع از نوع‌های اولیه مانند int , string,… استفاده میکنیم و به عبارتی میتوانیم بگوییم در استفاده از این نوع داده وسواس داریم. قطعه کد زیر را در نظر بگیرید:
public class UserFactory
{
    public User CreateUser(string email) {
        return new User(email);
    }
}
کلاس UserFactory، یک متد به نام CreateUser دارد که یک رشته را به عنوان ورودی میگیرد و یک شیء از کلاس User را بر می‌گرداند. خوب مشکل این متد کجاست؟
اگر به خاطر داشته باشید، در قسمت‌های قبلی در مورد مفهومی به نام Honesty صحبت کردیم. به طور ساده باید بتوانیم از روی امضای تابع، کاری را که تابع انجام میدهد و خروجی آن را ببینیم. این تابع Honest نیست؛ شرایطی که string می‌تواند درست نباشد، خالی باشد، طول غیر مجاز داشته باشد و ... را نمیتوانیم از امضای تابع حدس بزنیم.

برای روشن‌تر شدن بحث، مثال بالا را همیشه در ذهن خود داشته باشید. در این مثال، در تابع Divide که عمل تقسیم را انجام می‌دهد، پارامتر y که یک عدد از نوع int است، میتواند مقدار صفر را داشته باشد و باعث یک exception شود.و از آنجائیکه نوع خروجی این متد هم int است، انتظار دریافت یک exception را نداریم. در مورد exception‌ها به طول مفصل در قسمت قبلی صحبت کردیم. در مثال بالا تصور کنید که بجای یک ایمیل، از چند ایمیل به عنوان ورودی می‌خواهید استفاده کنید. آیا منطق Validation را به ازای هر پارامتر ورودی باید تکرار کنید؟

به طور کلی استفاده‌ی نابجا و بیش از حد از نوع‌های داده‌ی اولیه، باعث می‌شود تا Honesty متد‌ها را از دست بدهیم و قاعده‌ی DRY را نقض کنیم.

صحبت در مورد استفاده کردن یا نکردن، جنبه‌های زیادی دارد و یکی از مواردی است که در معماری DDD تحت عنوان Value Object به آن پرداخته شده. هدف ما در این قسمت از مقاله، صرفا پرداختن به گوشه‌ای از این مورد هست. ولی شما میتوانید برای مطالعه بیشتر و اطلاعات تکمیلی کتاب Domain-Driven Design: Tackling Complexity in the Heart of Software نوشته Eric Evans را مطالعه کنید.


به جای نوع‌های اولیه از چی استفاده کنیم؟

جواب خیلی ساده‌است؛ شما نیاز دارید تا یک Type اختصاصی را ایجاد کنید. برای مثال بجای استفاده از نوع string برای یک ایمیل، می‌توانید یک کلاس را به عنوان Email ایجاد کنید که مشخصه‌ای به نام Value دارد. این کار به روش‌های مختلفی قابل انجام است؛ اما پیشنهاد من استفاده از این روش هست:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.Reflection;

namespace ValueOf
{
    public class ValueOf<TValue, TThis> where TThis : ValueOf<TValue, TThis>, new()
    {
        private static readonly Func<TThis> Factory;

        /// <summary>
        /// WARNING - THIS FEATURE IS EXPERIMENTAL. I may change it to do
        /// validation in a different way.
        /// Right now, override this method, and throw any exceptions you need to.
        /// Access this.Value to check the value
        /// </summary>
        protected virtual void Validate()
        {
        }

        static ValueOf()
        {
            ConstructorInfo ctor = typeof(TThis)
                .GetTypeInfo()
                .DeclaredConstructors
                .First();

            var argsExp = new Expression[0];
            NewExpression newExp = Expression.New(ctor, argsExp);
            LambdaExpression lambda = Expression.Lambda(typeof(Func<TThis>), newExp);

            Factory = (Func<TThis>)lambda.Compile();
        }

        public TValue Value { get; protected set; }

        public static TThis From(TValue item)
        {
            TThis x = Factory();
            x.Value = item;
            x.Validate();

            return x;
        }

        protected virtual bool Equals(ValueOf<TValue, TThis> other)
        {
            return EqualityComparer<TValue>.Default.Equals(Value, other.Value);
        }

        public override bool Equals(object obj)
        {
            if (obj is null)
                return false;

            if (ReferenceEquals(this, obj))
                return true;

            return obj.GetType() == GetType() && Equals((ValueOf<TValue, TThis>)obj);
        }

        public override int GetHashCode()
        {
            return EqualityComparer<TValue>.Default.GetHashCode(Value);
        }

        public static bool operator ==(ValueOf<TValue, TThis> a, ValueOf<TValue, TThis> b)
        {
            if (a is null && b is null)
                return true;

            if (a is null || b is null)
                return false;

            return a.Equals(b);
        }

        public static bool operator !=(ValueOf<TValue, TThis> a, ValueOf<TValue, TThis> b)
        {
            return !(a == b);
        }

        public override string ToString()
        {
            return Value.ToString();
        }
    }
}
در این روش، یک کلاس را به عنوان Value Object ایجاد کرده‌ایم. این کلاس، نوع اولیه‌ای را که با آن سر و کار داریم، در بر خواهد گرفت و منطق مربوط به مقایسه، همچنین عملگرهای == و != را هم از طریق Equals و GetHashCode، پیاده سازی کرده. برای مثال جهت کلاس ایمیل می‌توانیم به صورت زیر عمل کنیم:
public class EmailAddress : ValueOf<string, EmailAddress> { }
همچنین برای مقدار دهی این کلاس میتوانید به صورت زیر عمل کنید:
EmailAddress emailAddress = EmailAddress.From("foo@bar.com");
برای مثال‌های پیچیده‌تر مانند آدرس، که شامل آدرس، کد پستی و … می‌باشد، میتوانید با استفاده از امکان Tuple‌ها که از سی شارپ 7 به بعد معرفی شده، مانند مثال زیر عمل کنید:
public class Address : ValueOf<(string firstLine, string secondLine, Postcode postcode), Address> { }
و در نهایت برای نوشتن منطق مربوط به validation می‌توانید متد Validate را Override کنید و قاعده‌ی DRY را هم نقض نکنید.

روش معرفی شده‌ی در این مقاله، صرفا جهت آشنایی بیشتر شما و داشتن کدی تمیز‌تر از طریق مفاهیم برنامه نویسی تابعی خواهد بود. در دنیای واقعی، احتمالا مسائلی را برای ذخیره سازی این آبجکت‌ها و یا کار با کتابخانه‌هایی مانند Entity Framework خواهید داشت که به سادگی قابل حل است.

در صورتیکه مشکلی در پیاده سازی داشتید، می‌توانید مشکل خود را زیر همین مطلب و یا بر روی gist آن کامنت کنید.
مطالب
نگاشت خودکار اشیاء توسط AutoMapper و Reflection - ایده شماره 1
آموزش کامل AutoMapper قبلا در سایت ارائه شده است. در این مقاله می‌خواهیم Mapping نوع‌های مختلف بین Dto و Entity‌های پروژه را توسط Reflection به صورت خودکار انجام دهیم. سورس کامل مثال را می‌توانید در این ریپازیتوری مشاهده کنید.
در این روش ما یک کلاس جنریک را به نام BaseDto داریم که تمام Dto‌های ما برای نگاشت خودکار باید از آن ارث بری کنند. در مثال زیر کلاس PostDto لازم است به کلاس Post نگاشت شود. پس خواهیم داشت :
public class PostDto : BaseDto<PostDto, Post, long>
{
    public string Title { get; set; }
    public string Text { get; set; }
    public int CategoryId { get; set; }

    public string CategoryName { get; set; } //=> Category.Name
}
  • کلاس PostDto خودش را به عنوان اولین پارامتر جنریک BaseDto معرفی می‌کند.
  • به عنوان پارامتر دوم، باید کلاس Entity ایی که قرار است به آن نگاشت شود (Post) را معرفی کنیم.
  • پارامتر سوم، نوع فیلد Id است که در اینجا خاصیت Id کلاس‌های Post و PostDto ما، از نوع long است.
  • نهایتا خواصی را که برای نگاشت لازم داریم، تعریف میکنیم مثل Title و...
  • همچنین می‌توانیم خواصی برای نگاشت با خواص Navigation Property‌های Post هم تعریف کنیم؛ مانند CategoryName که به خاصیت Name از Category پست مربوطه اشاره میکند و AutoMapper به صورت هوشمندانه آن‌ها را به هم نگاشت می‌کند.
تعریف کلاس جنریک BaseDto هم به نحو زیر است.
public abstract class BaseDto<TDto, TEntity, TKey>
        where TDto : class, new()
        where TEntity : BaseEntity<TKey>, new()
{
    [Display(Name = "ردیف")]
    public TKey Id { get; set; }

    public TEntity ToEntity()
    {
        return Mapper.Map<TEntity>(CastToDerivedClass(this));
    }

    public TEntity ToEntity(TEntity entity)
    {
        return Mapper.Map(CastToDerivedClass(this), entity);
    }

    public static TDto FromEntity(TEntity model)
    {
        return Mapper.Map<TDto>(model);
    }

    protected TDto CastToDerivedClass(BaseDto<TDto, TEntity, TKey> baseInstance)
    {
        return Mapper.Map<TDto>(baseInstance);
    }
}
  • نوع TDto به کلاس Dto ما اشاره میکند؛ مثلا PostDto
  • نوع TEntity به کلاس Entity ما اشاره میکند؛ مثلا Post
  • نوع TKey به نوع خاصیت Id اشاره میکند.
  • شرط لازم برای نوع TEntity این است که از <BaseEntity<TKey ارث بری کرده باشد (نوع پایه‌ای که تمام Entity‌های ما از آن ارث بری می‌کنند).
  • متد‌های کمکی ToEntity و FromEntity، کار نگاشت اشیاء را برای ما راحت‌تر می‌کنند.
پیاده سازی کلاس BaseEntity و Post نیز به شرح زیر است.
public abstract class BaseEntity<TKey>
{
    public TKey Id { get; set; }
}

public class Post : BaseEntity<long>
{
    public string Title { get; set; }
    public string Text { get; set; }
    public int CatgeoryId { get; set; }

    public Category Category { get; set; }
}

توضیح متد های ToEntity  و  FromEntity 
متد ToEntity شی Dto جاری را به Entity مربوطه نگاشت کرده و یک وهله از آن را باز میگرداند. پس بجای استفاده دستی از Api‌های AutoMapper مانند Mapper.Map<Post>(postDto)  کافی است متد ToEntity را فراخوانی کنیم؛ مثال:
var postDto = new PostDto();
var post = postDto.ToEntity();
متد بالا برای اکشن Create مناسب است؛ ولی برای اکشن Update خیر. چرا که برای Update نباید نگاشت بر روی وهله جدیدی از Post انجام شود؛ بلکه باید بر روی وهله‌ای از قبل موجود (همان post ایی که بر اساس id واکشی کرده‌ایم) نگاشت انجام شود، تا تغییرات لازم، بر روی همان وهله تاثیر کند. در غیر این صورت اگر وهله جدیدی از post ایجاد شود، چون توسط EF ChangeTracker ردیابی نمی‌شود، به‌روز رسانی هم انجام نخواهد شد.
بنابراین برای نگاشت postDto به یک شیء Post از پیش موجود (post یافت شده توسط id) خواهیم داشت:
var post = // finded by id
var updatePost = postDto.ToEntity(post);
همچنین برای نگاشت از یک Entity به Dto (عکس قضیه بالا: مثلا نگاشت یک postDto به post) کافی است متد ایستای FromEntity را خوانی کنیم. مثال :
var postDto = PostDto.FromEntity(post);

کانفیگ خودکار Mapping توسط Reflection
در ادامه می‌خواهیم کانفیگ Mapping بین Dto‌های پروژه به Entity‌های مربوطه (مثلا PostDto به Dto و برعکس) را به صورت خودکار توسط Reflection پیاده سازی و اعمال کنیم. این کار توسط کلاس AutoMapperConfiguration به نحو زیر انجام می‌شود.
public static class AutoMapperConfiguration
{
    public static void InitializeAutoMapper()
    {
        Mapper.Initialize(configuration =>
        {
            configuration.ConfigureAutoMapperForDto();
        });

        //Compile mapping after configuration to boost map speed
        Mapper.Configuration.CompileMappings();
    }

    public static void ConfigureAutoMapperForDto(this IMapperConfigurationExpression config)
    {
        config.ConfigureAutoMapperForDto(Assembly.GetEntryAssembly());
    }

    public static void ConfigureAutoMapperForDto(this IMapperConfigurationExpression config, params Assembly[] assemblies)
    {
        var dtoTypes = GetDtoTypes(assemblies);

        var mappingTypes = dtoTypes
            .Select(type =>
            {
                var arguments = type.BaseType.GetGenericArguments();
                return new
                {
                    DtoType = arguments[0],
                    EntityType = arguments[1]
                };
            }).ToList();

        foreach (var mappingType in mappingTypes)
            config.CreateMappingAndIgnoreUnmappedProperties(mappingType.EntityType, mappingType.DtoType);
    }

    public static void CreateMappingAndIgnoreUnmappedProperties(this IMapperConfigurationExpression config, Type entityType, Type dtoType)
    {
        var mappingExpression = config.CreateMap(entityType, dtoType).ReverseMap();

        //Ignore mapping to any property of source (like Post.Categroy) that dose not contains in destination (like PostDto)
        //To prevent from wrong mapping. for example in mapping of "PostDto -> Post", automapper create a new instance for Category (with null catgeoryName) because we have CategoryName property that has null value
        foreach (var property in entityType.GetProperties())
        {
            if (dtoType.GetProperty(property.Name) == null)
                mappingExpression.ForMember(property.Name, opt => opt.Ignore());
        }
    }

    public static IEnumerable<Type> GetDtoTypes(params Assembly[] assemblies)
    {
        var allTypes = assemblies.SelectMany(a => a.ExportedTypes);

        var dtoTypes = allTypes.Where(type =>
                type.IsClass && !type.IsAbstract && type.BaseType != null && type.BaseType.IsGenericType &&
                (type.BaseType.GetGenericTypeDefinition() == typeof(BaseDto<,>) ||
                type.BaseType.GetGenericTypeDefinition() == typeof(BaseDto<,,>)));

        return dtoTypes;
    }
}
عملیات با فراخوانی متد ایستا InitializeAutoMapper شروع می‌شود و باید این متد فقط یکبار در اجرای پروژه فراخوانی شود. (مثلا در سازنده کلاس Startup.cs)
public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
        AutoMapperConfiguration.InitializeAutoMapper();
    }
- درون این متد کانفیگ، Mapping نوع‌های مختلف قابل نگاشت برای AutoMapper توسط Mapper.Initialize انجام می‌شود.
- متد ConfigureAutoMapperForDto متد دیگری را به همین نام، فراخوانی می‌کند؛ با این تفاوت که Assembly ورودی پروژه را توسط متد ()Assembly.GetEntryAssembly، یافته و به آن پاس میدهد.
- EntryAssembly به اسمبلی ای که به عنوان نقطه ورود برنامه است، اشاره می‌کند. در این سورس کد چون پروژه ما از نوع ASP.NET Core است، اسمبلی این پروژه به عنوان EntryAssmebly شناخته می‌شود؛ یعنی همان لایه‌ای که کلاس‌های Dto ما (مانند PostDto) داخل آن تعریف شده‌است. ما به این اسمبلی از این جهت نیاز داریم که می‌خواهیم توسط Reflection، تمام نوع‌هایی که از BaseDto ارث بری می‌کنند (مانند PostDto) را یافته و Mapping آنها را به AutoMapper معرفی و اعمال کنیم.
نکته : اگر در پروژه شما Dto‌ها در لایه/لایه‌های دیگری تعریف شده‌اند باید اسمبلی آن لایه‌ها را به آن پاس دهید.
در این مرحله توسط متد GetDtoTypes کار یافتن نوع‌های Dto موجود در اسمبلی/اسمبلی‌های مشخص شده انجام می‌شود.
public static IEnumerable<Type> GetDtoTypes(params Assembly[] assemblies)
{
    var allTypes = assemblies.SelectMany(a => a.ExportedTypes);

    var dtoTypes = allTypes.Where(type =>
            type.IsClass && !type.IsAbstract && type.BaseType != null && type.BaseType.IsGenericType &&
            (type.BaseType.GetGenericTypeDefinition() == typeof(BaseDto<,>) ||
            type.BaseType.GetGenericTypeDefinition() == typeof(BaseDto<,,>)));

    return dtoTypes;
}
  • در خط اول ابتدا تمامی نوع‌های قابل دسترس از بیرون (ExportedTypes) از assembly‌های دریافتی واکشی می‌شود.
  • سپس توسط Where، نوع‌هایی که کلاس بوده، abstract نیستند و از BaseDto ارث بری کرده‌اند، فیلتر شده و بازگردانده می‌شوند.
در ادامه، از لیست نوع‌های Dto یافت شده، پارامتر‌های جنریک TDto و TEntity به ازای هر نوع استخراج می‌شوند.
public static void ConfigureAutoMapperForDto(this IMapperConfigurationExpression config, params Assembly[] assemblies)
{
var dtoTypes = GetDtoTypes(assemblies);

var mappingTypes = dtoTypes
.Select(type =>
{
var arguments = type.BaseType.GetGenericArguments();
return new
{
DtoType = arguments[0],
EntityType = arguments[1]
};
}).ToList();

foreach (var mappingType in mappingTypes)
config.CreateMappingAndIgnoreUnmappedProperties(mappingType.EntityType, mappingType.DtoType);
}

در آخر بر روی لیست یافت شده، گردش می‌کنیم (foreach) و دو نوع DtoType و EntityType (مانند postDto و post) را که باید به یکدیگر نگاشت شوند، به متد CreateMappingAndIgnoreUnmappedProperties ارسال می‌کنیم. کار این متد، معرفی/اعمال Mapping بین نوع‌ها به کانفیگ AutoMapper می‌باشد. همچنین خواصی را که نباید نگاشت شوند، به طور خودکار یافته و Ignore می‌کند.
در مثال جاری، خاصیت CategoryName کلاس PostDto برای خواندن و select از دیتابیس لازم است زیرا می‌خواهیم هر postDto، شامل نام دسته بندی هر پست نیز باشد، ولی این ویژگی برای افزودن یا به‌روزرسانی مدنظر ما نیست؛ چرا که کلاینت ما به هنگام فراخوانی اکشن Create، فقط مقادیر خواص Post (مانند Title, Text و CategoryId) را ارسال می‌کند و نه CategoryName را. در نتیجه CatgoryName همیشه null است. اما مشکلی که ایجاد می‌کند این است که AutoMapper به هنگام نگاشت یک PostDto به Post، چون خاصیت CategoryName با (مقدار null)  وجود دارد، یک وهله جدید (با مقادیر پیشفرض) را برای Category ایجاد می‌کند که خاصیت Name آن برابر با null است و قطعا این مدنظر ما نیست. پس جهت جلوگیری از این مشکل لازم است خواصی از Entity که در Dto موجود نیستند (مانند Category) را Ignore کنیم و این دقیقا همان کاری است که متد CreateMappingAndIgnoreUnmappedProperties انجام می‌دهد. 
public static void CreateMappingAndIgnoreUnmappedProperties(this IMapperConfigurationExpression config, Type entityType, Type dtoType)
{
    var mappingExpression = config.CreateMap(entityType, dtoType).ReverseMap();

    //Ignore mapping to any property of entity (like Post.Categroy) that dose not contains in dto (like PostDto.CategoryName)
    //To prevent from wrong mapping. for example in mapping of "PostDto -> Post", automapper create a new instance for Category (with null catgeoryName) because we have CategoryName property that has null value
    foreach (var property in entityType.GetProperties())
    {
        if (dtoType.GetProperty(property.Name) == null)
            mappingExpression.ForMember(property.Name, opt => opt.Ignore());
    }
}
البته اساسا استفاده از یک Dto هم برای Create/Update و هم برای Select اصولی نیست و بهتر است دو Dto جداگانه که صرفا خواص مورد نیاز را دارند، داشته باشیم که در این صورت مشکل بالا نیز اصلا رخ نخواهد داد. راه حل مورد استفاده کنونی صرفا مرهمی برای یک استفاده غیر اصولی است!
در آخر می‌توان گفت تنها ایراد کوچک ایده‌ی فوق، استفاده از Api‌های استاتیک AutoMapper در کلاس BaseDto است (متد Mapper.Map)  که باعث می‌شود نتوانیم به هنگام تست نویسی، سرویس AutoMapper را با پیاده سازی دیگری (Fake) جایگزین و آن را Mock کنیم. البته این کار برای AutoMapper زیاد معمول هم نبوده و در مقابل مزایای این ایده، به نظرم ارزش استفاده را خواهد داشت.
در قسمت بعدی همین ایده را توسعه خواهیم داد و قابلیت سفارشی سازی Mapping را برای آن فراهم خواهیم کرد.
مطالب
تغییر فضای نام کلاس poco استفاده شده در wcf و از کار افتادن برنامه‌ی مشتری بدون دریافت پیام خطا
چند وقت پیش در پروژه‌ای یک سرویس WCF داشتم که اطلاعاتی را در قالب یک کلاس poco برگشت می‌داد. اخیرا بعد از اصلاحاتی در پروژه متوجه شدم که سرویس کار نمی‌کند. هیچ خطایی هم وجود نداشت. شروع به دیباگ کردم و متوجه شدم که سرویس برنامه اطلاعات را برگشت می‌دهد، اما برنامه‌ی مشتری تعداد اطلاعات دریافتی را صفر اعلام میکند و هیچ خطایی هم گزارش نمی‌شود.
چون اطلاعات در قالب باینری در قسمتی از کلاس poco برگشت می‌شد، ابتدا حدسم حجم فایل بود.
اطلاعات کلاس  poco:
public class OutgoingJob
    {
        public int Id;
        public string JobId;
        public string Subject;
        public string Reciver;
        public byte[][] Attachments;
    }
 تنظیمات سایز ارسال و دریافت رو به حداکثر رسوندم. هیچ فایده ای نداشت. برنامه‌ی مشتری به راحتی به سرویس وصل می‌شد و با سایر متدهایی که خروجی‌های تایپ‌های اصلی مثل bool و string را برمی گرداند کار می‌کرد. فقط با متدی که لیست poco داشت، تعداد لیست اطلاعات دریافتی 0 اعلام می‌شد.
متد WCF برای برگشت اطلاعات و لاگ کردن وقایع:
        public List<OutgoingJob> GetJobsList(int Count)
        {
            LogEvent("GetFaxsList Start...");

            List<OutgoingJob> OutgoingJobs = new List<OutgoingJob>();
           
           // business for fill list

            LogEvent("return job Count = " + OutgoingJobs.Count);
            return OutgoingJobs;
        }
 [TestMethod]
        public void TestMethod1()
        {
            jobService ser = new jobService();
            var listjob = ser.GetJobsList(5);
            Assert.AreNotEqual(0, listjob.Count);
        }
لاگ‌های متد WCF، تعداد را 1 اعلام می‌کند، اما تست، نتیجه را صفر برمی‌گرداند.
بعد از کلی کلنجار با تنظیمات binding و serviceBehaviors  متوجه شدم که اشکال کار یه نکته‌ی کوچک خیلی خیلی ساده است. 
من هیچ تغییری در کلاس‌ها نداده بودم، اما برای مدیریت بهتر پروژه، فضای نام کلاس‌ها را تغییر داده بودم و مسبب همه‌ی مشکلات و وقت کشی‌ها همین بود.
راه حل هم که ساده ست. هنگامی که فضای نام کلاس‌های برگشتی را تغییر می‌دهید، حتما باید update service reference  را در برنامه‌ی مشتری اجرا کنید تا اطلاعات سرویس بروز شود.

مشکل و راه حل خیلی ساده بود، ولی از من که خیلی وقت گرفت. امیدوارم وقت دوستان مثل من هدر نره
موفق باشید
نظرات مطالب
پیاده سازی UnitOfWork به وسیله MEF
در مورد سوال اول که چرا CategoryMap رو به متد AddFromAssembly پاس دادم.
متد AddFromAssembly نیاز به یک Assembly دارد تا بتونه تمام کلاس هایی رو که از کلاس EntityTypeConfiguration ارث برده اند رو پیدا کنه و اونها رو به صورت خودکار به ModelBuilder اضافه کنه. به همین دلیل من Assembly کلاس CategoryMap رو به اون پاس دادم. دقت کنید که اگر من n تا کلاس Map دیگه هم توی این ClassLibrary داشتم باز توسط همین دستور این کار به صورت خودکار انجام می‌شد. (پیشنهاد می‌کنم تست کنید)
نکته: این متد برگرفته شده از متد AddFromAssembly در NHibernate Session Configuration   است.
البته بهتر است که یک کلاس پایه برای این کار بسازید و اون کلاس رو به AddFromAssembly پاس بدید.

در مورد سوال دوست عزیز مبنی بر اینکه متد Save رو در خود توابع Repository قرار دادم.
اگر به کد‌های نوشته شده دقت کنید من اصلا مفهومی به نام Repository رو پیاده سازی نکردم. به این دلیل که خود DbContext ترکیبی از Repository Pattern , UnitOfWork است. متد SaveChange صدا زده شده همان متد SaveChange در DbContext است.
فرض کنید من یک کلاس Business دیگر به صورت زیر داشتم.

public class MyBusiness : BusinessBase<Entity.MyEntity>
    {
        [ImportingConstructor]
        public MyBusiness  ( [Import( typeof( IUnitOfWork ) )] IUnitOfWork unitOfWork )
            : base( unitOfWork )
        {
        }
        public void Add(Entity.MyEntity entity)
        {
            UnitOfWork.Set<MyEntity>().Add(entity);
        }
    }
حالا کد کلاس Business Category به صورت زیر تغییر می‌کنه.
public class Category : BusinessBase<Entity.Category>
    {      
        [ImportingConstructor]
        public Category( [Import( typeof( IUnitOfWork ) )] IUnitOfWork unitOfWork )
            : base( unitOfWork )
        {
        }

        public override void Add( Entity.Category entity )
        {
            new MyBusiness().Add( new Entity.MyEntity() );
            UnitOfWork.Set<Entity.Category>().Add( entity );
            UnitOfWork.SaveChanges();
        }
    }
همان طور که می‌بینید فقط یک بار متد SaveChange فراخوانی شده است. Virtual کردن متد BusinessBase دقیقا به همین دلیل است.

مطالب
React 16x - قسمت 33 - React Hooks - بخش 4 - useContext Hook
در سری بررسی اعتبارسنجی و احراز هویت کاربران در React، برای انتقال داده‌های کاربر وارد شده‌ی به سیستم، از روش انتقال props، از بالاترین کامپوننت موجود در component tree، به پایین‌ترین کامپوننت آن، به این نحو فرضی استفاده کردیم:
ابتدا شیء user، در بالاترین سطح، دریافت شده و به صفحه‌ای خاص از طریق ویژگی‌های props ارسال می‌شود:
<Page user={user}  />
سپس این کامپوننت Page، کامپوننت PageLayout را رندر می‌کند که آن نیز باید به اطلاعات کاربر دسترسی داشته باشد. بنابراین شیء user را مجددا به این کامپوننت از طریق props ارسال می‌کنیم:
<PageLayout user={user} />
بعد همین کامپوننت PageLayout، کامپوننت NavBar را رندر می‌کند که آن نیز باید بداند کاربر وارد شده‌ی به سیستم کیست؟ به همین جهت یکبار دیگر از طریق props، اطلاعات کاربر را به کامپوننت بعدی موجود در درخت کامپوننت‌ها انتقال می‌دهیم:
<NavigationBar user={user}  />
و همینطور الی آخر. به این روش props drilling گفته می‌شود و ... الگوی مذمومی است. در دنیای واقعی، اطلاعات کاربر و یا خصوصا تنظیمات برنامه مانند آدرس REST API endpoints استفاده شده‌ی در آن، باید بین بسیاری از کامپوننت‌ها به اشتراک گذاشته شود و عموما سطوح به اشتراک گذاری آن، بسیار عمیق‌تر است از سطوحی که در این مثال ساده عنوان شدند. از زمان ارائه‌ی React 16.3.0، راه حل بهتری برای مدیریت اینگونه مسایل با ارائه‌ی React Context ارائه شده‌است که آن‌را در ادامه در دو حالت کامپوننت‌های کلاسی و همچنین تابعی، بررسی خواهیم کرد.


ایجاد شیء Context در برنامه‌های React

React Context، راه حلی است جهت به اشتراک گذاری داده‌ها، در بین انواع و اقسام کامپوننت‌های یک برنامه، بدون اینکه نیازی باشد این اطلاعات را توسط props، از یک سطح، به سطحی دیگر، به صورت دستی انتقال داد. برای ایجاد یک نمونه‌ی از آن، ابتدا پوشه‌ی جدید src\contexts را افزوده و سپس فایل src\contexts\userContext.js را درون آن، با محتوای زیر ایجاد می‌کنیم:
import React from "react";

export const UserContext = React.createContext({ user: {} });

export const UserProvider = UserContext.Provider;
export const UserConsumer = UserContext.Consumer;
متد React.createContext، یک شیء Context را بازگشت می‌دهد. این شیء، دو کامپوننت مهم Provider و Consumer را به همراه دارد که امکان اشتراک به داده‌های مرتبط با آن‌را میسر می‌کنند. زمانیکه React کامپوننتی را رندر می‌کند که مشترک یک شیء Context است، این کامپوننت، امکان خواندن اطلاعات شیء Context را از نزدیک‌ترین کامپوننتی در درخت کامپوننت‌ها که یک Provider را برای آن ارائه داده‌است، خواهد داشت.


تامین یک شیء Context در برنامه، در یک کامپوننت کلاسی و یا تابعی

تا اینجا یک شیء Context را به همراه اجزای export شده‌ی Provider و Consumer آن ایجاد کردیم. اکنون نوبت به پیاده سازی قسمت Provider آن است:
import "../../App.css";

import React, { Component } from "react";

import { UserProvider } from "../../contexts/userContext";
import Main from "./Main";

class App extends Component {
  state = {
    user: { name: "User 1" }
  };

  componentDidMount() {
    // get user from the server or local storage and then set the currently logged in user to the this.state
  }

  render() {
    return (
      <>
        <h1>App Class</h1>
        <UserProvider value={this.state.user}>
          <Main />
        </UserProvider>
      </>
    );
  }
}

export default App;
در این کامپوننت کلاسی (و یا تابعی، نحوه‌ی تعریف UserProvider در هر دو یکی است)، خاصیت user، به state کامپوننت اضافه شده‌است. سپس برای مثال می‌توان این خاصیت را در رویداد componentDidMount از سرور و یا محل ذخیره سازی دیگری دریافت و آنگاه state را بر این اساس به روز رسانی کرد.
در ادامه قصد داریم اطلاعات این شیء user موجود در state را با تمام کامپوننت‌هایی که در درخت رندر کامپوننت جاری قرار می‌گیرند و با کامپوننت Main شروع می‌شوند، به اشتراک بگذاریم. این به اشتراک گذاری با import شیء UserProvider از ماژول contexts/userContext به نحوی که مشاهده می‌کنید، انجام می‌شود. شیء UserProvider، کار محصور سازی کامپوننت Main را انجام می‌دهد. سپس این Provider می‌تواند مقداری را توسط ویژگی value خود دریافت کند که برای مثال در اینجا شیء user است. اکنون این value تا n سطح بعدی که از کامپوننت Main مشتق می‌شوند نیز در دسترس خواهد بود.

یک نکته: متد React.createContext به همراه یک آرگومان defaultValue اختیاری است که در اختیار Consumerهای آن قرار داده می‌شود؛ اگر Provider متناظر با آن‌، در درخت کامپوننت‌های برنامه، یافت نشود. یعنی تعریف Provider الزامی نیست. اگر نیاز است مقدار ثابتی را بین چندین کامپوننت به اشتراک بگذارید، فقط کافی است آن‌ها را توسط React.createContext مقدار دهی اولیه کرده و ... استفاده کنید:
export const DefaultRouteContext = React.createContext({ path: '/welcome' });


خواندن شیء Context در کامپوننتی دیگر

اکنون که یک تامین کننده‌ی Context را ایجاد کردیم، برای خواندن اطلاعات آن در درخت کامپوننت‌های محصور شده‌ی توسط UserProvider، می‌توان به صورت زیر عمل کرد:
import React from "react";

import { UserConsumer } from "../../contexts/userContext";

export default function Main(props) {
  return (
    <>
      <UserConsumer>
        {value => <div>User name: {value.name}.</div>}
      </UserConsumer>
    </>
  );
}
ابتدا UserConsumer را از ماژول contexts/userContext دریافت می‌کنیم. سپس برای دسترسی به خاصیت name شیء ارائه شده‌ی توسط UserProvider، باید قسمتی از متد رندر کامپوننت را توسط شیء UserConsumer، محصور کرد و سپس value آن‌را به نحوی که مشاهده می‌کنید، خواند. Consumer، یک تابع را به عنوان فرزند دریافت می‌کند. این تابع مقدار شیء تامین شده‌ی توسط Context را دریافت کرده (همان value={this.state.user} نزدیک‌ترین کامپوننتی که به همراه یک Provider است) و سپس یک المان React را بازگشت می‌دهد که در این محل رندر خواهد شد.

خروجی برنامه پس از این تغییرات به صورت زیر است:



ساده سازی دسترسی به UserConsumer توسط useContext Hook

نحوه‌ی تعریف یک Provider و محصور سازی فرزندانی که باید از آن ارث‌بری کنند، در بین کامپوننت‌های کلاسی و تابعی، یکی است. اما در کامپوننت‌های تابعی حداقل می‌توان نحوه‌ی دسترسی به UserConsumer را به نحو زیر توسط useContext Hook ساده کرد:
import React, { useContext } from "react";

import { UserContext } from "../../contexts/userContext";

export default function Main() {
  const value = useContext(UserContext);
  return (
    <>
      <div>User name: {value.name}.</div>
    </>
  );
}
متد useContext ابتدا شیء UserContext مهیا شده‌ی توسط ماژول contexts/userContext را دریافت می‌کند. سپس خروجی آن، همان value تنظیم شده‌ی توسط نزدیک‌ترین Provider آن در component tree است. این روش، بار ذهنی کمتری را نسبت به حالت قبلی استفاده‌ی از UserConsumer و کار با یک تابع درون آن‌را به همراه دارد؛ ساده‌تر خوانده می‌شود، ساده‌تر استفاده می‌شود. فقط باید دقت داشت که این متد، کل شیء Context را دریافت می‌کند و نه فقط شیء UserConsumer آن‌را.

مزیت دیگر این روش، ساده سازی کار با چندین شیء Context است. برای مثال اگر دو شیء Context را تعریف کرده باشید، خواندن دو مقدار از آن‌ها، پیشتر چنین شکل تو در تویی را توسط دو Consumer پیدا می‌کرد:
function HeaderBar() {
  return (
    <CurrentUser.Consumer>
      {user =>
        <Notifications.Consumer>
          {notifications =>
            <header>
              Welcome back, {user.name}!
              You have {notifications.length} notifications.
            </header>
          }
      }
    </CurrentUser.Consumer>
  );
}
اما اکنون با استفاده از useContext، نوشتن و خواندن آن به سادگی چند سطر زیر است که بسیار منطقی‌تر و عادی‌تر به نظر می‌رسد:
function HeaderBar() {
  const user = useContext(CurrentUser);
  const notifications = useContext(Notifications);
return (
    <header>
      Welcome back, {user.name}!
      You have {notifications.length} notifications.
    </header>
  );
}


ارسال اطلاعات به کامپوننت Context Provider، از طریق کامپوننت‌های فرزند

تا اینجا با استفاده از React Context، اطلاعات یک Provider را با فرزندان آن به اشتراک گذاشتیم؛ عکس این عمل نیز میسر است. برای اینکار، همانند تمام کامپوننت‌های دیگری که برای ارسال اطلاعات به فراخوان خود از طریق رخ‌دادها عمل می‌کنند، می‌توان یک متد رویدادگردان را در کامپوننت والد، به استفاده کنند‌ه‌ی از Context ارسال کرد:
import "../../App.css";

import React, { Component } from "react";

import { UserProvider } from "../../contexts/userContext";
import Main from "./Main2";

class App extends Component {
  state = {
    user: { name: "User 1" }
  };

  componentDidMount() {
    // get user from the server or local storage and then set the currently logged in user to the this.state
  }

  logout = () => {
    console.log("logout");
    this.setState({ user: {} });
  };

  render() {
    const contextValue = {
      user: this.state.user,
      logoutUser: this.logout
    };
    return (
      <>
        <h1>App Class</h1>
        <UserProvider value={contextValue}>
          <Main />
        </UserProvider>
      </>
    );
  }
}

export default App;
در اینجا ابتدا به خاصیت logout، متدی را نسبت داده‌ایم که با فراخوانی آن، اطلاعات شیء user موجود در state کامپوننت جاری را پاک می‌کند. سپس این خاصیت را به صورت یک خاصیت جدید، به شیءای که به ویژگی value شیء UserProvider انتساب داده شده، اضافه می‌کنیم.
اکنون تمام استفاده کننده‌های از این UserProvider می‌توانند با فراخوانی متد منتسب به logout، سبب پاک شدن اطلاعات کاربر موجود در state کامپوننت App، به روز رسانی state و در نتیجه‌ی آن، رندر مجدد کامپوننت و ارائه‌ی یک UserProvider جدید، با اطلاعاتی جدید به فرزندان آن شوند:
import React, { useContext } from "react";

import { UserContext } from "../../contexts/userContext";

export default function Main() {
  const { user, logoutUser } = useContext(UserContext);
  return (
    <>
      <div>User name: {user.name}.</div>
      <button type="button" className="btn btn-primary" onClick={logoutUser}>
        Logout user
      </button>
    </>
  );
}
در این کامپوننت مصرف کننده‌ی Context، اینبار، مقدار دریافتی، یک شیء با چندین خاصیت است. بنابراین می‌توان با استفاده از Object Destructuring، خواص آن‌را استخراج و استفاده کرد. برای مثال با انتساب onClick={logoutUser} به دکمه‌ی خروج، این کامپوننت می‌تواند اطلاعات state و سپس Context ارائه شده‌ی در کامپوننت App را تغییر دهد.

روش انجام اینکار بدون استفاده از useContext را نیز در ادامه مشاهده می‌کنید که در ابتدا نیاز به تعریف تابعی را دارد که همان خواص استخراجی را دریافت می‌کند. سپس باید بر اساس آن‌ها، المان‌های مدنظر نمایش نام کاربر و دکمه‌ی خروج او را بازگشت داد:
import React from "react";

import { UserConsumer } from "../../contexts/userContext";

export default function Main(props) {
  return (
    <>
      <UserConsumer>
        {({ user, logoutUser }) => (
          <>
            <div>User name: {user.name}.</div>
            <button
              type="button"
              className="btn btn-primary"
              onClick={logoutUser}
            >
              Logout user
            </button>
          </>
        )}
      </UserConsumer>
    </>
  );
}


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: sample-30-part-04.zip
مطالب
یافتن Contextهای Dispose نشده در Entity framework
این دو متد را در نظر بگیرید:
        private static void disposedContext()
        {
            using (var context = new MyContext())
            {
                Debug.WriteLine("Posts count: " + context.BlogPosts.Count());
            }
        }

        private static void nonDisposedContext()
        {
            var context = new MyContext();
            Debug.WriteLine("Posts count: " + context.BlogPosts.Count());
        }
در اولی با استفاده از using، شیء context به صورت خودکار dispose خواهد شد؛ اما در دومی از using استفاده نشده‌است.

سؤال: در یک برنامه‌ی بزرگ چطور می‌توان لیست Contextهای Dispose نشده را یافت؟

در EF 6 با تعریف یک IDbConnectionInterceptor سفارشی می‌توان به متدهای باز، بسته و dispose شدن یک Connection دسترسی یافت. اگر Context ایی dispose نشده باشد، اتصال آن نیز dispose نخواهد شد.
using System.Data;
using System.Data.Common;
using System.Data.Entity.Infrastructure.Interception;

namespace EFNonDisposedContext.Core
{
    public class DatabaseInterceptor : IDbConnectionInterceptor
    {
        public void Closed(DbConnection connection, DbConnectionInterceptionContext interceptionContext)
        {
            Connections.AddOrUpdate(connection, ConnectionStatus.Closed);
        }

        public void Disposed(DbConnection connection, DbConnectionInterceptionContext interceptionContext)
        {
            Connections.AddOrUpdate(connection, ConnectionStatus.Disposed);
        }

        public void Opened(DbConnection connection, DbConnectionInterceptionContext interceptionContext)
        {
            Connections.AddOrUpdate(connection, ConnectionStatus.Opened);
        }
      
        // the rest of the IDbConnectionInterceptor methods ...

    }
}
همانطور که ملاحظه می‌کنید، با پیاده سازی IDbConnectionInterceptor، به سه متد Closed، Opened و Disposed یک DbConnection می‌توان دسترسی یافت.

مشکل مهم! در زمان فراخوانی متد Disposed، دقیقا کدام DbConnection باز شده، رها شده‌است؟
پاسخ به این سؤال را در مطلب «ایجاد خواص الحاقی» می‌توانید مطالعه کنید. با استفاده از یک ConditionalWeakTable به هر کدام از اشیاء DbConnection یک Id را انتساب خواهیم داد و پس از آن به سادگی می‌توان وضعیت این Id را ردگیری کرد.
برای این منظور، لیستی از ConnectionInfo را تشکیل خواهیم داد:
    public enum ConnectionStatus
    {
        None,
        Opened,
        Closed,
        Disposed
    }

    public class ConnectionInfo
    {
        public string ConnectionId { set; get; }
        public string StackTrace { set; get; }
        public ConnectionStatus Status { set; get; }

        public override string ToString()
        {
            return string.Format("{0}:{1} [{2}]",ConnectionId, Status, StackTrace);
        }
    }
در اینجا ConnectionId را به کمک ConditionalWeakTable محاسبه می‌کنیم.
StackTrace توسط نکته‌ی مطلب «کدام سلسله متدها، متد جاری را فراخوانی کرده‌اند؟ » تهیه می‌شود.
Status نیز وضعیت جاری اتصال است که بر اساس متدهای فراخوانی شده در پیاده سازی IDbConnectionInterceptor مشخص می‌گردد.

در پایان کار برنامه فقط باید یک گزارش تهیه کنیم از لیست ConnectionInfoهایی که Status آن‌ها مساوی Disposed نیست. این موارد با توجه به مشخص بودن Stack trace هر کدام، دقیقا محل متدی را که در آن context مورد استفاده dispose نشده‌است، مشخص می‌کنند.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید
EFNonDisposedContext.zip