مطالب
کوئری نویسی در EF Core - قسمت پنجم - اعمال تجمعی - بخش اول
امکان انجام محاسبات تجمعی، یکی از مواردی است که قدرت بانک‌های اطلاعاتی رابطه‌ای را نمایش می‌دهد. توسط این نوع کوئری‌ها از محدوده‌ی CRUD (ثبت/ویرایش/به روز رسانی) خارج شده و وارد دنیای تصمیم‌گیری‌ها می‌شویم. تعداد مثال‌های اعمال تجمعی این سری قابل توجه‌است. به همین جهت در دو قسمت ارائه می‌شوند.


مثال 1: چه تعداد امکانات، توسط این مجموعه ارائه می‌شود؟
var count = context.Facilities.Count();
برای شمارش ساده‌ی تعداد ردیف‌های یک کوئری، از متد Count استفاده می‌شود که به صورت زیر ترجمه خواهد شد:



مثال 2: چه تعداد امکانات گران قیمتی توسط این مجموعه ارائه می‌شود؟
می‌خواهیم تعداد امکاناتی را بیابیم که guestcost آن‌ها بزرگتر یا مساوی 10 است.
var count = context.Facilities.Count(x => x.GuestCost >= 10);
این گزارش نسبت به مثال قبلی، یک Where را بیشتر دارد که می‌توان این شرط را در همان متد Count نیز ذکر کرد؛ با این خروجی نهایی:



مثال 3: هر کاربر چه تعدادی کاربر دیگری را توصیه کرده‌است؟
خروجی این گزارش بر اساس recommendedby و count باشد و مرتب شده‌ی بر اساس ID افراد.
var members = context.Members
                        .Where(member => member.RecommendedBy != null)
                        .GroupBy(member => member.RecommendedBy)
                        .Select(group => new
                        {
                            RecommendedBy = group.Key,
                            Count = group.Count()
                        })
                        .OrderBy(result => result.RecommendedBy)
                        .ToList();
در دو مثال قبل، تنها یک حاصل عددی را از گزارشات دریافت کردیم. اما در اینجا نیاز است به ازای هر شخص، تعداد توصیه شده‌های او محاسبه شوند. به همین جهت نیاز است اطلاعات را به ازای هر شخص مجزا، گروه بندی کرد و سپس متد Count را بر روی این گروه ویژه اعمال نمود و همینطور برای مابقی گروه‌ها. در اینجا GroupBy بر روی خاصیت RecommendedBy انجام شده‌است. این خاصیت در Select بعدی، همان group.Key استفاده شده‌است.



مثال 4: تعداد slots رزرو شد‌ه‌ی به ازای هر کدام از امکانات موجود را نمایش دهید.
جهت یادآوری از قسمت اول: «هر رزرو کردن مکان و امکاناتی در این مجموعه، «نیم ساعته» است. بنابراین Slots در اینجا به معنای تعداد نیم ساعت‌های رزرو کردن یک مکان خاص است؛ که به آن «half hour slots» نیز گفته می‌شود و زمان شروع این رزرو نیز ثبت می‌شود.»
خروجی این گزارش بر اساس facid و Total Slots باشد و مرتب شده‌ی بر اساس ID هر امکان موجود.
var facilities = context.Bookings
                                    .GroupBy(booking => booking.FacId)
                                    .Select(group => new
                                    {
                                        FacId = group.Key,
                                        TotalSlots = group.Sum(booking => booking.Slots)
                                    })
                                    .OrderBy(result => result.FacId)
                                    .ToList();
در این گزارش بجای استفاده از متد Count، از متد Sum استفاده شده‌است. چون می‌خواهیم جمع slots را به ازای هر امکان موجود محاسبه کنیم، ابتدا گروه‌های مجزای این امکانات را تشکیل می‌دهیم و سپس Sum را به هر گروهی، به صورت مجزایی اعمال می‌کنیم. در اینجا group.Key دقیقا همان booking.FacId است و در متد Sum، امکان دسترسی به خواص booking نیز وجود دارد.



مثال 5: تعداد slots رزرو شد‌ه‌ی در ماه September 2012 را به ازای هر کدام از امکانات موجود، نمایش دهید.
خروجی این گزارش بر اساس facid و Total Slots باشد و مرتب شده‌ی بر اساس ID تعداد slots.
var date1 = new DateTime(2012, 09, 01);
var date2 = new DateTime(2012, 10, 01);

var facilities = context.Bookings
                                    .Where(booking => booking.StartTime >= date1
                                                        && booking.StartTime < date2)
                                    .GroupBy(booking => booking.FacId)
                                    .Select(group => new
                                    {
                                        FacId = group.Key,
                                        TotalSlots = group.Sum(booking => booking.Slots)
                                    })
                                    .OrderBy(result => result.TotalSlots)
                                    .ToList();
این گزارش تنها یک قسمت Where را نسبت به گزارش قبلی بیشتر دارد و این Where باید دقیقا پیش‌از گروه بندی اطلاعات اعمال شود. به عبارتی ابتدا باید ردیف‌های اصلی گزارش مشخص باشند تا بتوان آن‌ها را گروه بندی کرد.



مثال 6: محاسبه کنید در سال 2012 و به ازای هر ماه مجزای آن، چه تعداد slots رزرو شده‌اند.
خروجی این گزارش بر اساس facid, month, Total Slots باشد و مرتب شده‌ی بر اساس ID و شماره‌ی ماه.
var date1 = new DateTime(2012, 01, 01);
var date2 = new DateTime(2013, 01, 01);

var facilities = context.Bookings
                                    .Where(booking => booking.StartTime >= date1
                                                        && booking.StartTime < date2)
                                    .GroupBy(booking => new { booking.FacId, booking.StartTime.Month })
                                    .Select(group => new
                                    {
                                        group.Key.FacId,
                                        group.Key.Month,
                                        TotalSlots = group.Sum(booking => booking.Slots)
                                    })
                                    .OrderBy(result => result.FacId)
                                        .ThenBy(result => result.Month)
                                    .ToList();
دو نکته‌ی جدید در این گزارش نسبت به مثال‌های قبلی وجود دارند:
الف) می‌توان گروه بندی را بر روی بیش از یک ستون اعمال کرد. در این حالت در Select بعدی، group.Key به کل شیء گروه بندی شده‌، اشاره می‌کند.
ب) روش انتخاب ماه میلادی از یک خاصیت DateTime و گروه بندی بر اساس آن

که به صورت زیر ترجمه می‌شود:



مثال 7: چه تعداد کاربر مجموعه، حداقل یکبار امکاناتی را رزرو کرده‌اند؟

var count = context.Bookings.Select(booking => booking.MemId).Distinct().Count();
هدف از این گزارش، رسیدن به COUNT DISTINCT است.
- (*)COUNT یعنی بازگشت تعداد ردیف‌های نهایی گزارش.
- COUNT(address) یعنی بازگشت تعداد آدرس‌های غیرنال، در کل ردیف‌های نهایی گزارش.
- COUNT(DISTINCT address) یعنی بازگشت تعداد آدرس‌های غیرمشابه در کل ردیف‌های نهایی گزارش.

  COUNT DISTINCT را EF-Core به صورت ترکیبی از یک sub-query ترجمه می‌کند:



مثال 8: امکاناتی را لیست کنید که بیش از 1000 slots رزرو شده دارند.
خروجی این گزارش بر اساس facid و Total Slots باشد و مرتب شده‌ی بر اساس ID هر امکان موجود.
var facilities = context.Bookings
                                    .GroupBy(booking => booking.FacId)
                                    .Select(group => new
                                    {
                                        FacId = group.Key,
                                        TotalSlots = group.Sum(booking => booking.Slots)
                                    })
                                    .Where(result => result.TotalSlots > 1000)
                                    .OrderBy(result => result.FacId)
                                    .ToList();
در مثال‌های قبل، از Where جهت تشکیل تعداد ردیف‌های اصلی گزارش و سپس گروه بندی آن‌ها استفاده کردیم. در اینجا می‌خواهیم Where را بر روی نتیجه‌ی حاصل از گروه بندی اعمال کنیم. در کوئری LINQ فوق، خواص قابل دسترسی پس از Select نهایی، همان‌هایی هستند که توسط آن ارائه می‌شوند. این نوع Whereها در SQL حاصل به Having ترجمه خواهند شد:



مثال 9: میزان فروش کل هر امکان موجود را محاسبه کنید.
خروجی این گزارش بر اساس name, revenue باشد و مرتب شده‌ی بر اساس میزان فروش. بخاطر داشته باشید که میزان فروش کاربران ثبت نام شده با کاربران مهمان یکی نیست.
 var facilities =
                            context.Bookings.Select(booking =>
                                new
                                {
                                    booking.Facility.Name,
                                    Revenue = booking.MemId == 0 ?
                                            booking.Slots * booking.Facility.GuestCost
                                            : booking.Slots * booking.Facility.MemberCost
                                })
                                .GroupBy(b => b.Name)
                                .Select(group => new
                                {
                                    Name = group.Key,
                                    TotalRevenue = group.Sum(b => b.Revenue)
                                })
                                .OrderBy(result => result.TotalRevenue)
                                .ToList();
همانند تمام گروه بندی‌ها، ابتدا باید ردیف‌های اصلی گزارش را تشکیل داد و سپس بر روی آن‌ها گروه بندی نهایی را اعمال نمود. به همین جهت در ابتدا خاصیت محاسباتی Revenue را بر اساس کاربران مهمان با ID مساوی صفر و کاربران اصلی مجموعه، تشکیل داده و گروه بندی را به نام هر مجموعه اعمال می‌کنیم. سپس جمع Revenue محاسبه شده را به ازای هر گروه محاسبه کرده و نتیجه را بازگشت می‌دهیم.



مثال 10: کدامیک از امکانات موجود، میزان فروشی کمتر از 1000 داشته‌اند؟
خروجی این گزارش بر اساس name, revenue باشد و مرتب شده‌ی بر اساس میزان فروش. بخاطر داشته باشید که میزان فروش کاربران ثبت نام شده با کاربران مهمان یکی نیست.
var facilities =
                            context.Bookings.Select(booking =>
                                new
                                {
                                    booking.Facility.Name,
                                    Revenue = booking.MemId == 0 ?
                                            booking.Slots * booking.Facility.GuestCost
                                            : booking.Slots * booking.Facility.MemberCost
                                })
                                .GroupBy(b => b.Name)
                                .Select(group => new
                                {
                                    Name = group.Key,
                                    TotalRevenue = group.Sum(b => b.Revenue)
                                })
                                .Where(result => result.TotalRevenue < 1000)
                                .OrderBy(result => result.TotalRevenue)
                                .ToList();
این مورد نیز همانند گزارش 9 است که یک Where به نتیجه‌ی حاصل از آن اعمال شده که در خروجی نهایی به Having ترجمه می‌شود:



مثال 11: کدامیک از امکانات موجود، بیشترین slots رزرو شده را دارد؟

var item = context.Bookings
                                    .GroupBy(booking => booking.FacId)
                                    .Select(group => new
                                    {
                                        FacId = group.Key,
                                        TotalSlots = group.Sum(booking => booking.Slots)
                                    })
                                    .OrderByDescending(result => result.TotalSlots)
                                    .FirstOrDefault();
ساده‌ترین روش حل این مساله، گروه بندی اطلاعات بر اساس هر امکان موجود و سپس محاسبه‌ی TotalSlots هرکدام، به صورت مجزایی است. در ادامه ردیف‌های حاصل را بر اساس TotalSlots محاسبه شده، به صورت نزولی مرتب می‌کنیم. اولین ردیفی که در بالای گزارش قرار می‌گیرد همان FacId ای است که بیشترین TotalSlots را دارد.



کدهای کامل این قسمت را در اینجا می‌توانید مشاهده کنید.
مطالب
آشنایی با NHibernate - قسمت ششم

آشنایی با Automapping در فریم ورک Fluent NHibernate

اگر قسمت‌های قبل را دنبال کرده باشید، احتمالا به پروسه طولانی ساخت نگاشت‌ها توجه کرده‌اید. با کمک فریم ورک Fluent NHibernate می‌توان پروسه نگاشت domain model خود را به data model متناظر آن به صورت خودکار نیز انجام داد و قسمت عمده‌ای از کار به این صورت حذف خواهد شد. (این مورد یکی از تفاوت‌های مهم NHibernate با نمونه‌های مشابهی است که مایکروسافت تا تاریخ نگارش این مقاله ارائه داده است. برای مثال در نگار‌ش‌های فعلی LINQ to SQL یا Entity framework ، اول دیتابیس مطرح است و بعد ساخت کد از روی آن، در حالیکه در اینجا ابتدا کد و طراحی سیستم مطرح است و بعد نگاشت آن به سیستم داده‌ای و دیتابیس)

امروز قصد داریم یک سیستم ساده ثبت خبر را از صفر با NHibernate پیاده سازی کنیم و همچنین مروری داشته باشیم بر قسمت‌های قبلی.

مطابق کلاس دیاگرام فوق، این سیستم از سه کلاس خبر، کاربر ثبت کننده‌ی خبر و گروه خبری مربوطه تشکیل شده است.

ابتدا یک پروژه کنسول جدید را به نام NHSample2 آغاز کنید. سپس ارجاعاتی را به اسمبلی‌های زیر به آن اضافه نمائید:
FluentNHibernate.dll
NHibernate.dll
NHibernate.ByteCode.Castle.dll
NHibernate.Linq.dll
و ارجاعی به اسمبلی استاندارد System.Data.Services.dll دات نت فریم ورک سه و نیم

سپس پوشه‌ای را به نام Domain به این پروژه اضافه نمائید (کلیک راست روی نام پروژه در VS.Net و سپس مراجعه به منوی Add->New folder). در این پوشه تعاریف موجودیت‌های برنامه را قرار خواهیم داد. سه کلاس جدید Category ، User و News را در این پوشه ایجاد نمائید. محتویات این سه کلاس به شرح زیر هستند:

namespace NHSample2.Domain
{
public class User
{
public virtual int Id { get; set; }
public virtual string UserName { get; set; }
public virtual string Password { get; set; }
}
}


namespace NHSample2.Domain
{
public class Category
{
public virtual int Id { get; set; }
public virtual string CategoryName { get; set; }
}
}


using System;

namespace NHSample2.Domain
{
public class News
{
public virtual Guid Id { get; set; }
public virtual string Subject { get; set; }
public virtual string NewsText { get; set; }
public virtual DateTime DateEntered { get; set; }
public virtual Category Category { get; set; }
public virtual User User { get; set; }
}
}
همانطور که در قسمت‌های قبل نیز ذکر شد، تمام خواص پابلیک کلاس‌های Domain ما به صورت virtual تعریف شده‌اند تا lazy loading را در NHibernate فعال سازیم. در حالت lazy loading ، اطلاعات تنها زمانیکه به آن‌ها نیاز باشد بارگذاری خواهند شد. این مورد در حالتیکه نیاز به نمایش اطلاعات تنها یک شیء وجود داشته باشد بسیار مطلوب می‌باشد، یا هنگام ثبت و به روز رسانی اطلاعات نیز یکی از بهترین روش‌ها است. اما زمانیکه با لیستی از اطلاعات سروکار داشته باشیم باعث کاهش افت کارآیی خواهد شد زیرا برای مثال نمایش آن‌ها سبب خواهد شد که 100 ها کوئری دیگر جهت دریافت اطلاعات هر رکورد در حال نمایش اجرا شود (مفهوم دسترسی به اطلاعات تنها در صورت نیاز به آن‌ها). Lazy loading و eager loading (همانند مثال‌های قبلی) هر دو در NHibernate به سادگی قابل تنظیم هستند (برای مثال LINQ to SQL به صورت پیش فرض همواره lazy load است و تا این تاریخ راه استانداردی برای امکان تغییر و تنظیم این مورد پیش بینی نشده است).

اکنون کلاس جدید Config را به برنامه اضافه نمائید:

using FluentNHibernate.Automapping;
using FluentNHibernate.Cfg;
using FluentNHibernate.Cfg.Db;
using NHibernate;
using NHibernate.Cfg;
using NHibernate.Tool.hbm2ddl;

namespace NHSample2
{
class Config
{
public static Configuration GenerateMapping(IPersistenceConfigurer dbType)
{
var cfg = dbType.ConfigureProperties(new Configuration());

new AutoPersistenceModel()
.Where(x => x.Namespace.EndsWith("Domain"))
.AddEntityAssembly(typeof(NHSample2.Domain.News).Assembly).Configure(cfg);

return cfg;
}

public static void GenerateDbScript(Configuration config, string filePath)
{
bool script = true;//فقط اسکریپت دیتابیس تولید گردد
bool export = false;//نیازی نیست بر روی دیتابیس هم اجرا شود
new SchemaExport(config).SetOutputFile(filePath).Create(script, export);
}

public static void BuildDbSchema(Configuration config)
{
bool script = false;//آیا خروجی در کنسول هم نمایش داده شود
bool export = true;//آیا بر روی دیتابیس هم اجرا شود
bool drop = false;//آیا اطلاعات موجود دراپ شوند
new SchemaExport(config).Execute(script, export, drop);
}

public static void CreateSQL2008DbPlusScript(string connectionString, string filePath)
{
Configuration cfg =
GenerateMapping(
MsSqlConfiguration
.MsSql2008
.ConnectionString(connectionString)
.ShowSql()
);
GenerateDbScript(cfg, filePath);
BuildDbSchema(cfg);
}

public static ISessionFactory CreateSessionFactory(IPersistenceConfigurer dbType)
{
return
Fluently.Configure().Database(dbType)
.Mappings(m => m.AutoMappings
.Add(
new AutoPersistenceModel()
.Where(x => x.Namespace.EndsWith("Domain"))
.AddEntityAssembly(typeof(NHSample2.Domain.News).Assembly))
)
.BuildSessionFactory();
}
}
}

در متد GenerateMapping از قابلیت Automapping موجود در فریم ورک Fluent Nhibernate استفاده شده است (بدون نوشتن حتی یک سطر جهت تعریف این نگاشت‌ها). این متد نوع دیتابیس مورد نظر را جهت ساخت تنظیمات خود دریافت می‌کند. سپس با کمک کلاس AutoPersistenceModel این فریم ورک، به صورت خودکار از اسمبلی برنامه نگاشت‌های لازم را به کلاس‌های موجود در پوشه Domain ما اضافه می‌کند (مرسوم است که این پوشه در یک پروژه Class library مجزا تعریف شود که در این برنامه جهت سهولت کار در خود برنامه قرار گرفته است). قسمت Where ذکر شده به این جهت معرفی گردیده است تا Fluent Nhibernate برای تمامی کلاس‌های موجود در اسمبلی جاری، سعی در تعریف نگاشت‌های لازم نکند. این نگاشت‌ها تنها به کلاس‌های موجود در پوشه دومین ما محدود شده‌اند.
سه متد بعدی آن، جهت ایجاد اسکریپت دیتابیس از روی این نگاشت‌های تعریف شده و سپس اجرای این اسکریپت بر روی دیتابیس جاری معرفی شده، تهیه شده‌اند. برای مثال CreateSQL2008DbPlusScript یک مثال ساده از استفاده دو متد قبلی جهت ایجاد اسکریپت و دیتابیس متناظر اس کیوال سرور 2008 بر اساس نگاشت‌های برنامه است.
با متد CreateSessionFactory در قسمت‌های قبل آشنا شده‌اید. تنها تفاوت آن در این قسمت، استفاده از کلاس AutoPersistenceModel جهت تولید خودکار نگاشت‌ها است.

در ادامه دیتابیس متناظر با موجودیت‌های برنامه را ایجاد خواهیم کرد:

using System;

namespace NHSample2
{
class Program
{
static void Main(string[] args)
{
Config.CreateSQL2008DbPlusScript(
"Data Source=(local);Initial Catalog=HelloNHibernate;Integrated Security = true",
"db.sql");

Console.WriteLine("Press a key...");
Console.ReadKey();
}
}
}

پس از اجرای برنامه، ابتدا فایل اسکریپت دیتابیس به نام db.sql در پوشه اجرایی برنامه تشکیل خواهد شد و سپس این اسکریپت به صورت خودکار بر روی دیتابیس معرفی شده اجرا می‌گردد. دیتابیس دیاگرام حاصل را در شکل زیر می‌توانید ملاحظه نمائید:



همچنین اسکریپت تولید شده آن، صرفنظر از عبارات drop اولیه، به صورت زیر است:

create table [Category] (
Id INT IDENTITY NOT NULL,
CategoryName NVARCHAR(255) null,
primary key (Id)
)

create table [User] (
Id INT IDENTITY NOT NULL,
UserName NVARCHAR(255) null,
Password NVARCHAR(255) null,
primary key (Id)
)

create table [News] (
Id UNIQUEIDENTIFIER not null,
Subject NVARCHAR(255) null,
NewsText NVARCHAR(255) null,
DateEntered DATETIME null,
Category_id INT null,
User_id INT null,
primary key (Id)
)

alter table [News]
add constraint FKE660F9E1C9CF79
foreign key (Category_id)
references [Category]

alter table [News]
add constraint FKE660F95C1A3C92
foreign key (User_id)

references [User]

اکنون یک سری گروه خبری، کاربر و خبر را به دیتابیس خواهیم افزود:

using System;
using FluentNHibernate.Cfg.Db;
using NHibernate;
using NHSample2.Domain;

namespace NHSample2
{
class Program
{
static void Main(string[] args)
{
using (ISessionFactory sessionFactory = Config.CreateSessionFactory(
MsSqlConfiguration
.MsSql2008
.ConnectionString("Data Source=(local);Initial Catalog=HelloNHibernate;Integrated Security = true")
.ShowSql()
))
{
using (ISession session = sessionFactory.OpenSession())
{
using (ITransaction transaction = session.BeginTransaction())
{
//با توجه به کلیدهای خارجی تعریف شده ابتدا باید گروه‌ها را اضافه کرد
Category ca = new Category() { CategoryName = "Sport" };
session.Save(ca);
Category ca2 = new Category() { CategoryName = "IT" };
session.Save(ca2);
Category ca3 = new Category() { CategoryName = "Business" };
session.Save(ca3);

//سپس یک کاربر را به دیتابیس اضافه می‌کنیم
User u = new User() { Password = "123$5@1", UserName = "VahidNasiri" };
session.Save(u);

//اکنون می‌توان یک خبر جدید را ثبت کرد

News news = new News()
{
Category = ca,
User = u,
DateEntered = DateTime.Now,
Id = Guid.NewGuid(),
NewsText = "متن خبر جدید",
Subject = "عنوانی دلخواه"
};
session.Save(news);

transaction.Commit(); //پایان تراکنش
}
}
}

Console.WriteLine("Press a key...");
Console.ReadKey();
}
}
}
جهت بررسی انجام عملیات ثبت هم می‌توان به دیتابیس مراجعه کرد، برای مثال:



و یا می‌توان از LINQ استفاده کرد:
برای مثال کاربر VahidNasiri تعریف شده را یافته، اطلاعات آن‌را نمایش دهید؛ سپس نام او را به Vahid ویرایش کرده و دیتابیس را به روز کنید.

برای اینکه کوئری‌های LINQ ما شبیه به LINQ to SQL شوند، کلاس NewsContext را به صورت ذیل تشکیل می‌دهیم. این کلاس از کلاس پایه NHibernateContext مشتق شده و سپس به ازای تمام موجودیت‌های برنامه، یک متد از نوع IOrderedQueryable را تشکیل خواهیم داد.

using System.Linq;
using NHibernate;
using NHibernate.Linq;
using NHSample2.Domain;

namespace NHSample2
{
class NewsContext : NHibernateContext
{
public NewsContext(ISession session)
: base(session)
{ }

public IOrderedQueryable<News> News
{
get { return Session.Linq<News>(); }
}

public IOrderedQueryable<Category> Categories
{
get { return Session.Linq<Category>(); }
}

public IOrderedQueryable<User> Users
{
get { return Session.Linq<User>(); }
}
}
}
اکنون جهت یافتن کاربر و به روز رسانی اطلاعات او در دیتابیس خواهیم داشت:

using System;
using FluentNHibernate.Cfg.Db;
using NHibernate;
using System.Linq;
using NHSample2.Domain;

namespace NHSample2
{
class Program
{
static void Main(string[] args)
{
using (ISessionFactory sessionFactory = Config.CreateSessionFactory(
MsSqlConfiguration
.MsSql2008
.ConnectionString("Data Source=(local);Initial Catalog=HelloNHibernate;Integrated Security = true")
.ShowSql()
))
{
using (ISession session = sessionFactory.OpenSession())
{
using (ITransaction transaction = session.BeginTransaction())
{
using (NewsContext db = new NewsContext(session))
{
var query = from x in db.Users
where x.UserName == "VahidNasiri"
select x;

//اگر چیزی یافت شد
if (query.Any())
{
User vahid = query.First();
//نمایش اطلاعات کاربر
Console.WriteLine("Id: {0}, UserName: {0}", vahid.Id, vahid.UserName);
//به روز رسانی نام کاربر
vahid.UserName = "Vahid";
session.Update(vahid);

transaction.Commit(); //پایان تراکنش
}
}
}
}
}

Console.WriteLine("Press a key...");
Console.ReadKey();
}
}
}
مباحث تکمیلی AutoMapping

اگر به اسکریپت دیتابیس تولید شده دقت کرده باشید، عملیات AutoMapping یک سری پیش فرض‌هایی را اعمال کرده است. برای مثال فیلد Id را از نوع identity و به صورت کلید تعریف کرده، یا رشته‌ها را به صورت nvarchar با طول 255 ایجاد نموده است. امکان سفارشی سازی این موارد نیز وجود دارد.

مثال:

using FluentNHibernate.Conventions.Helpers;

public static Configuration GenerateMapping(IPersistenceConfigurer dbType)
{
var cfg = dbType.ConfigureProperties(new Configuration());

new AutoPersistenceModel()
.Conventions.Add()
.Where(x => x.Namespace.EndsWith("Domain"))
.Conventions.Add(
PrimaryKey.Name.Is(x => "ID"),
DefaultLazy.Always(),
ForeignKey.EndsWith("ID"),
Table.Is(t => "tbl" + t.EntityType.Name)
)
.AddEntityAssembly(typeof(NHSample2.Domain.News).Assembly)
.Configure(cfg);

return cfg;
}

تابع GenerateMapping معرفی شده را اینجا با قسمت Conventions.Add تکمیل کرده‌ایم. به این صورت دقیقا مشخص شده است که فیلدهایی با نام ID باید primary key در نظر گرفته شوند، همواره lazy loading صورت گیرد و نام کلید خارجی به ID ختم شود. همچنین نام جداول با tbl شروع گردد.
روش دیگری نیز برای معرفی این قرار دادها و پیش فرض‌ها وجود دارد. فرض کنید می‌خواهیم طول رشته پیش فرض را از 255 به 500 تغییر دهیم. برای اینکار باید اینترفیس IPropertyConvention را پیاده سازی کرد:

using FluentNHibernate.Conventions;
using FluentNHibernate.Conventions.Instances;

namespace NHSample2.Conventions
{
class MyStringLengthConvention : IPropertyConvention
{
public void Apply(IPropertyInstance instance)
{
instance.Length(500);
}
}
}
سپس نحوه‌ی معرفی آن به صورت زیر خواهد بود:

public static Configuration GenerateMapping(IPersistenceConfigurer dbType)
{
var cfg = dbType.ConfigureProperties(new Configuration());

new AutoPersistenceModel()
.Conventions.Add()
.Where(x => x.Namespace.EndsWith("Domain"))
.Conventions.Add<MyStringLengthConvention>()
.AddEntityAssembly(typeof(NHSample2.Domain.News).Assembly)
.Configure(cfg);

return cfg;
}

نکته:
اگر برای یافتن اطلاعات بیشتر در این مورد در وب جستجو کنید، اکثر مثال‌هایی را که مشاهده خواهید کرد بر اساس نگارش بتای fluent NHibernate هستند و هیچکدام با نگارش نهایی این فریم ورک کار نمی‌کنند. در نگارش رسمی نهایی ارائه شده، تغییرات بسیاری صورت گرفته که آن‌ها را در این آدرس می‌توان مشاهده کرد.

دریافت سورس برنامه قسمت ششم


ادامه دارد ...

مطالب
ایجاد ایندکس منحصربفرد در EF Code first
در EF Code first برای ایجاد UNIQUE INDEX ویژگی یا تنظیمات Fluent API خاصی درنظر گرفته نشده است و می‌توان از همان روش‌های متداول اجرای مستقیم کوئری SQL بر روی بانک اطلاعاتی جهت ایجاد UNIQUE INDEX‌ها کمک گرفت:
public static void CreateUniqueIndex(this DbContext context, string tableName, string fieldName)
{
      context.Database.ExecuteSqlCommand("CREATE UNIQUE INDEX [IX_Unique_" + tableName 
+ "_" + fieldName + "] ON [" + tableName + "]([" + fieldName + "] ASC);");
}
و این کل کاری است که باید در متد Seed کلاس مشتق شده از DbMigrationsConfiguration انجام شود. مثلا:
public class MyDbMigrationsConfiguration : DbMigrationsConfiguration<MyContext>
{
        public BlogDbMigrationsConfiguration()
        {
            AutomaticMigrationsEnabled = true;
            AutomaticMigrationDataLossAllowed = true;
        }

        protected override void Seed(MyContext context)
        {
            CreateUniqueIndex(context, "table1", "field1");
            base.Seed(context);
        }
}
روش فوق کار می‌کند اما آنچنان مناسب نیست؛ چون به صورت strongly typed تعریف نشده است و اگر نام جداول یا فیلدها را بعدها تغییر دادیم، به مشکل برخواهیم خورد و کامپایلر خطایی را صادر نخواهد کرد؛ چون table1 و field1 در اینجا به صورت رشته تعریف شده‌اند.
برای حل این مشکل و تبدیل کدهای فوق به کدهایی Refactoring friendly، نیاز است نام جدول به صورت خودکار از DbContext دریافت شود. همچنین نام خاصیت یا فیلد نیز به صورت strongly typed قابل تعریف باشد.
کدهای کامل نمونه بهبود یافته را در ذیل مشاهده می‌کنید:
using System;
using System.Data.Entity;
using System.Data.Entity.Infrastructure;
using System.Data.Objects;
using System.Linq;
using System.Linq.Expressions;
using System.Text.RegularExpressions;

namespace General
{
    public static class ContextExtensions
    {
        public static string GetTableName<T>(this DbContext context) where T : class
        {
            ObjectContext objectContext = ((IObjectContextAdapter)context).ObjectContext;
            return objectContext.GetTableName<T>();
        }

        public static string GetTableName<T>(this ObjectContext context) where T : class
        {
            var sql = context.CreateObjectSet<T>().ToTraceString();
            var regex = new Regex("FROM (?<table>.*) AS");
            var match = regex.Match(sql);
            string table = match.Groups["table"].Value;
            return table
                    .Replace("`", string.Empty)
                    .Replace("[", string.Empty)
                    .Replace("]", string.Empty)
                    .Replace("dbo.", string.Empty)
                    .Trim();
        }

        private static bool hasUniqueIndex(this DbContext context, string tableName, string indexName)
        {
            var sql = "SELECT count(*) FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS where table_name = '" 
                      + tableName + "' and CONSTRAINT_NAME = '" + indexName + "'";
            var result = context.Database.SqlQuery<int>(sql).FirstOrDefault();
            return result > 0;
        }

        private static void createUniqueIndex(this DbContext context, string tableName, string fieldName)
        {
            var indexName = "IX_Unique_" + tableName + "_" + fieldName;
            if (hasUniqueIndex(context, tableName, indexName))
                return;

            var sql = "ALTER TABLE [" + tableName + "] ADD CONSTRAINT [" + indexName + "] UNIQUE ([" + fieldName + "])";
            context.Database.ExecuteSqlCommand(sql);
        }

        public static void CreateUniqueIndex<TEntity>(this DbContext context, Expression<Func<TEntity, object>> fieldName) where TEntity : class
        {
            var field = ((MemberExpression)fieldName.Body).Member.Name;
            createUniqueIndex(context, context.GetTableName<TEntity>(), field);
        }
    }
}

توضیحات
متد GetTableName ، به کمک SQL تولیدی حین تعریف جدول متناظر با کلاس جاری، نام جدول را با استفاده از عبارات باقاعده جدا کرده و باز می‌گرداند. به این ترتیب به دقیق‌ترین نامی که واقعا جهت تولید جدول مورد استفاده قرار گرفته است خواهیم رسید.
در مرحله بعد آن، همان متد createUniqueIndex ابتدای بحث را ملاحظه می‌کنید. در اینجا جهت حفظ سازگاری بین SQL Server کامل و SQL CE از UNIQUE CONSTRAINT استفاده شده است که همان کار ایجاد ایندکس منحصربفرد را نیز انجام می‌دهد. به علاوه مزیت دیگر آن امکان دسترسی به تعاریف قید اضافه شده توسط view ایی به نام INFORMATION_SCHEMA.TABLE_CONSTRAINTS است که در نگارش‌های مختلف SQL Server به یک نحو تعریف گردیده و قابل دسترسی است. از این view در متد hasUniqueIndex جهت بررسی تکراری نبودن UNIQUE CONSTRAINT در حال تعریف، استفاده می‌شود. اگر این قید پیشتر تعریف شده باشد، دیگر سعی در تعریف مجدد آن نخواهد شد.
متد CreateUniqueIndex تعریف شده در انتهای کلاس فوق، امکان دریافت نام خاصیتی از TEntity را به صورت strongly typed میسر می‌سازد.
اینبار برای تعریف یک قید و یا ایندکس منحصربفرد بر روی خاصیتی مشخص در متد Seed، تنها کافی است بنویسیم:
context.CreateUniqueIndex<User>(x=>x.Name);
در اینجا دیگر از رشته‌ها خبری نبوده و حاصل نهایی Refactoring friendly است. به علاوه نام جدول را نیز به صورت خودکار از context استخراج می‌کند.
 
مطالب دوره‌ها
ساخت یک Mini ORM با AutoMapper
Mini ORM‌ها برخلاف ORMهای کاملی مانند Entity framework یا NHibernate، کوئری‌های LINQ را تبدیل به SQL نمی‌کنند. در اینجا کار با SQL نویسی مستقیم شروع می‌شود و مهم‌ترین کار این کتابخانه‌ها، نگاشت نتیجه‌ی دریافتی از بانک اطلاعاتی به اشیاء دات نتی هستند. خوب ... AutoMapper هم دقیقا همین کار را انجام می‌دهد! بنابراین در ادامه قصد داریم یک Mini ORM را به کمک AutoMapper طراحی کنیم.


کلاس پایه AdoMapper

public abstract class AdoMapper<T> where T : class
{
    private readonly SqlConnection _connection;
 
    protected AdoMapper(string connectionString)
    {
        _connection = new SqlConnection(connectionString);
    }
 
    protected virtual IEnumerable<T> ExecuteCommand(SqlCommand command)
    {
        command.Connection = _connection;
        command.CommandType = CommandType.StoredProcedure;
        _connection.Open();
 
        try
        {
            var reader = command.ExecuteReader();
            try
            {
                return Mapper.Map<IDataReader, IEnumerable<T>>(reader);
            }
            finally
            {
                reader.Close();
            }
        }
        finally
        {
            _connection.Close();
        }
    }
 
    protected virtual T GetRecord(SqlCommand command)
    {
        command.Connection = _connection;
        _connection.Open();
        try
        {
            var reader = command.ExecuteReader();
            try
            {
                reader.Read();
                return Mapper.Map<IDataReader, T>(reader);
            }
            finally
            {
                reader.Close();
            }
        }
        finally
        {
            _connection.Close();
        }
    }
 
    protected virtual IEnumerable<T> GetRecords(SqlCommand command)
    {
        command.Connection = _connection;
        _connection.Open();
        try
        {
            var reader = command.ExecuteReader();
            try
            {
                return Mapper.Map<IDataReader, IEnumerable<T>>(reader);
            }
            finally
            {
                reader.Close();
            }
        }
        finally
        {
            _connection.Close();
        }
    }
}
در اینجا کلاس پایه Mini ORM طراحی شده را ملاحظه می‌کنید. برای نمونه قسمت GetRecords آن مانند مباحث استاندارد ADO.NET است. فقط کار خواندن و همچنین نگاشت رکوردهای دریافت شده از بانک اطلاعاتی به شیء‌ایی از نوع T توسط AutoMapper انجام خواهد شد.


نحوه‌ی استفاده از کلاس پایه AdoMapper

در کدهای ذیل نحوه‌ی ارث بری از کلاس پایه AdoMapper و سپس استفاده از متدهای آن‌را ملاحظه می‌کنید:
public class UsersService : AdoMapper<User>, IUsersService
{
    public UsersService(string connectionString)
        : base(connectionString)
    {
    }
 
    public IEnumerable<User> GetAll()
    {
        using (var command = new SqlCommand("SELECT * FROM Users"))
        {
            return GetRecords(command);
        }
    }
 
    public User GetById(int id)
    {
        using (var command = new SqlCommand("SELECT * FROM Users WHERE Id = @id"))
        {
            command.Parameters.Add(new SqlParameter("id", id));
            return GetRecord(command);
        }
    }
}
در این مثال نحوه‌ی تعریف کوئری‌های پارامتری نیز در متد GetById به نحو متداولی مشخص شده‌است. کار نگاشت حاصل این کوئری‌ها به اشیاء دات نتی را AutoMapper انجام خواهد داد. نحوه‌ی کار نیز، نگاشت فیلد f1 به خاصیت f1 است (هم نام‌ها به هم نگاشت می‌شوند).


تعریف پروفایل مخصوص AutoMapper

ORMهای تمام عیار، کار نگاشت فیلدهای بانک اطلاعاتی را به خواص اشیاء دات نتی، به صورت خودکار انجام می‌دهند. در اینجا همانند روش‌های متداول کار با AutoMapper نیاز است این نگاشت را به صورت دستی یکبار تعریف کرد:
public class UsersProfile : Profile
{
    protected override void Configure()
    {
        this.CreateMap<IDataRecord, User>();
    }
 
    public override string ProfileName
    {
        get { return this.GetType().Name; }
    }
}
و سپس در ابتدای برنامه آن‌را به AutoMapper معرفی نمود:
Mapper.Initialize(cfg => // In Application_Start()
{
    cfg.AddProfile<UsersProfile>();
});


سفارشی سازی نگاشت‌های AutoMapper

فرض کنید کلاس Advertisement زیر، معادل است با جدول Advertisements بانک اطلاعاتی؛ با این تفاوت که در کلاس تعریف شده، خاصیت TitleWithOtherName تطابقی با هیچکدام از فیلدهای بانک اطلاعاتی ندارد. بنابراین اطلاعاتی نیز به آن نگاشت نخواهد شد.
public class Advertisement
{
    public int Id { set; get; }
    public string Title { get; set; }
    public string Description { get; set; }
    public int UserId { get; set; }
 
    public string TitleWithOtherName { get; set; }
}
برای رفع این مشکل می‌توان حین تعریف پروفایل مخصوص Advertisement، آن‌را سفارشی سازی نیز نمود:
public class AdvertisementsProfile : Profile
{
    protected override void Configure()
    {
        this.CreateMap<IDataRecord, Advertisement>()
            .ForMember(dest => dest.TitleWithOtherName,
                       options => options.MapFrom(src =>
                            src.GetString(src.GetOrdinal("Title"))));
    }
 
    public override string ProfileName
    {
        get { return this.GetType().Name; }
    }
}
در اینجا پس از تعریف نگاشت مخصوص کار با IDataRecordها، عنوان شده‌است که هر زمانیکه به خاصیت TitleWithOtherName رسیدی، مقدارش را از فیلد Title دریافت و جایگزین کن.


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید.
مطالب
شروع به کار با EF Core 1.0 - قسمت 11 - بررسی رابطه‌ی Self Referencing
پیشنیازها
- بررسی نحوه تعریف نگاشت جداول خود ارجاع دهنده (Self Referencing Entity)
- مباحث تکمیلی مدل‌های خود ارجاع دهنده در EF Code first
- آشنایی با SQL Server Common Table Expressions - CTE
- بدست آوردن برگهای یک درخت توسط Recursive CTE


در پیشنیازهای بحث، روش تعریف روابط خود ارجاع دهنده و یا Self Referencing را تا EF 6.x می‌توانید مطالعه کنید. در این قسمت قصد داریم معادل این روش‌ها را در EF Core بررسی کنیم.


روش تعریف روابط خود ارجاع دهنده توسط Fluent API در EF Core

اگر همان مدل کامنت‌های چندسطحی یک بلاگ را درنظر بگیریم:
    public class BlogComment
    {
        public int Id { get; set; }

        public string Body { get; set; }

        public DateTime Date1 { get; set; }


        public virtual BlogComment Reply { get; set; }
        public int? ReplyId { get; set; }

        public virtual ICollection<BlogComment> Children { get; set; }
    }
اینبار تنظیمات Fluent API معادل EF Core آن به صورت ذیل خواهد بود:
    public class MyDBDataContext : DbContext
    {
        protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
        {
            optionsBuilder.UseSqlServer(@"Data Source=(local);Initial Catalog=testdb2;Integrated Security = true");
        }

        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            modelBuilder.Entity<BlogComment>(entity =>
            {
                entity.HasIndex(e => e.ReplyId);

                entity.HasOne(d => d.Reply)
                    .WithMany(p => p.Children)
                    .HasForeignKey(d => d.ReplyId);
            });
        }

        public virtual DbSet<BlogComment> BlogComments { get; set; }
    }
هدف از مدل‌های خود ارجاع دهنده، مدلسازی اطلاعات چند سطحی است؛ مانند منوهای چندسطحی یک سایت، کامنت‌های چند سطحی یک مطلب، سلسله مراتب کارمندان یک شرکت و امثال آن.
نکته‌ها‌ی مهم مدلسازی این نوع روابط، موارد ذیل هستند:
الف) وجود خاصیتی از جنس کلاس اصلی در همان کلاس
   public virtual BlogComment Reply { get; set; }
ب) که در حقیقت مشخص می‌کند، والد رکورد جاری کدام رکورد قبلی است:
   public int? ReplyId { get; set; }
برای اینکه چنین رابطه‌ای تشکیل شود، باید این فیلد، مقدارش را از کلید اصلی جدول تامین کند (تشکیل یک کلید خارجی که به کلید اصلی جدول اشاره می‌کند).
علت نال پذیر بودن این خاصیت، نیاز به ثبت ریشه‌ای است که خودش والد است و فرزند رکوردی پیشین، نیست.


ج) همچنین برای سهولت دریافت فرزندان یک ریشه، مجموعه‌ای از جنس همان کلاس نیز تشکیل می‌شود.
 public virtual ICollection<BlogComment> Children { get; set; }


روش تعریف روابط خود ارجاع دهنده توسط Data Annotations در EF Core

در ادامه معادل تنظیمات فوق را توسط ویژگی‌ها ملاحظه می‌کنید که در اینجا توسط ویژگی‌های InverseProperty و ForeignKey، کار تشکیل روابط صورت گرفته‌است:
    public class BlogComment
    {
        public int Id { get; set; }
        public string Body { get; set; }
        public DateTime Date1 { get; set; }

        [ForeignKey("ReplyId")]
        [InverseProperty("Children")]
        public virtual BlogComment Reply { get; set; }
        public int? ReplyId { get; set; }

        [InverseProperty("Reply")]
        public virtual ICollection<BlogComment> Children { get; set; }
    }
البته قسمت تشکیل ایندکس بر روی ReplyId را فقط توسط Fluent API می‌توان انجام داد:
        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            modelBuilder.Entity<BlogComment>(entity =>
            {
                entity.HasIndex(e => e.ReplyId);
            });
        }


ثبت اطلاعات و کوئری گرفتن از روابط خود ارجاع دهنده در EF Core

در اینجا نحوه‌ی ثبت دو سری نظر و زیر نظر را مشاهده می‌کنید:
var comment1 = new BlogComment { Body = "نظر من این است که" };
var comment12 = new BlogComment { Body = "پاسخی به نظر اول", Reply = comment1 };
var comment121 = new BlogComment { Body = "پاسخی به پاسخ به نظر اول", Reply = comment12 };

context.BlogComments.Add(comment121);

var comment2 = new BlogComment { Body = "نظر من این بود که" };
var comment22 = new BlogComment { Body = "پاسخی به نظر قبلی", Reply = comment2 };
var comment221 = new BlogComment { Body = "پاسخی به پاسخ به نظر من اول", Reply = comment22 };
context.BlogComments.Add(comment221);

context.SaveChanges();


نظرات اصلی، با ReplyId مساوی نال قابل تشخیص هستند. سایر نظرات، توسط همین ReplyId به یکی از Idهای موجود، متصل شده‌اند.

در تصویر فوق و با توجه به اطلاعات ثبت شده، فرض کنید می‌خواهیم ریشه‌ی با id مساوی 1 و تمام زیر ریشه‌های آن‌را بیابیم. انجام یک چنین کاری نه در EF Core و نه در EF 6.x، پشتیبانی نمی‌شود. بدیهی است در اینجا هنوز روش‌های Include و ThenInclue هم جواب می‌دهند؛ اما چون Lazy loading فعال نیست، عملا نمی‌توان تمام زیر ریشه‌ها را یافت و همچنین به چندین و چند رفت و برگشت به ازای هر زیر ریشه خواهیم رسید که اصلا بهینه نیست.
برای اینکار نیاز است مستقیما کوئری نویسی کرد که در مطلب «شروع به کار با EF Core 1.0 - قسمت 10 - استفاده از امکانات بومی بانک‌های اطلاعاتی» زیر ساخت آن‌را بررسی کردیم:
var id = 1;
var childIds = new List<int>();
 
var connection = context.Database.GetDbConnection();
connection.Open();
var command = connection.CreateCommand();
command.CommandText =
    @"WITH Hierachy(ChildId, ParentId) AS (
                SELECT Id, ReplyId
                    FROM BlogComments
                UNION ALL
                SELECT h.ChildId, bc.ReplyId
                    FROM BlogComments bc
                    INNER JOIN Hierachy h ON bc.Id = h.ParentId
            )
 
            SELECT h.ChildId
                FROM Hierachy h
                WHERE h.ParentId = @Id";
command.Parameters.Add(new SqlParameter("id", id));
 
var reader = command.ExecuteReader();
while (reader.Read())
{
    var childId = (int)reader[0];
    childIds.Add(childId);
}
reader.Dispose();

 
var list = context.BlogComments
                .Where(blogComment => blogComment.Id == id ||
                                      childIds.Contains(blogComment.Id))
                .ToList();
زمانیکه کدهای فوق اجرا می‌شوند، تنها دو کوئری ذیل به بانک اطلاعاتی ارسال خواهند شد:
exec sp_executesql N'WITH Hierachy(ChildId, ParentId) AS (
                            SELECT Id, ReplyId
                                FROM BlogComments
                            UNION ALL
                            SELECT h.ChildId, bc.ReplyId
                                FROM BlogComments bc
                                INNER JOIN Hierachy h ON bc.Id = h.ParentId
                        )

                        SELECT h.ChildId
                            FROM Hierachy h
                            WHERE h.ParentId = @Id',N'@id int',@id=1
که لیست Idهای تمام زیر ریشه‌های مربوط به id مساوی یک را بر می‌گرداند:


و پس از آن:
 exec sp_executesql N'SELECT [blogComment].[Id], [blogComment].[Body], [blogComment].[Date1], [blogComment].[ReplyId]
FROM [BlogComments] AS [blogComment]
WHERE [blogComment].[Id] IN (@__id_0, 3, 5)',N'@__id_0 int',@__id_0=1
اکنون که Idهای مساوی 3 و 5 را یافتیم، با استفاده از متد Contains آن‌ها را تبدیل به where in کرده و لیست نهایی گزارش را تهیه می‌کنیم:


یافتن Idهای زیر ریشه‌ها توسط روش CTE (پیشنیازهای ابتدای بحث) و سپس کوئری گرفتن بر روی این Idها، بهینه‌ترین روشی‌است که در EF می‌توان جهت کار با مدل‌های خود ارجاع دهنده بکار گرفت.
نظرات مطالب
دریافت اطلاعات از پایگاه داده بواسطه Stored Procedure در EF Core 2.0
FirstOrDefault یعنی select top 1. در SQL Server نمی‌توان یک چنین کاری را بر روی یک رویه‌ی ذخیره شده به صورت مستقیم انجام داد. یعنی نمی‌توان نوشت:
SELECT top 1 * FROM (EXEC MyProc) AS TEMP
چنین چیزی توسط خود SQL Server پشتیبانی نمی‌شود. علت هم اینجا است که یک SP می‌تواند multiple result sets را بازگشت دهد؛ یعنی می‌تواند چندین select را با چندین ساختار متفاوت، بازگشت دهد و به همین جهت برای کار با Select مناسب نیست. مگر اینکه یک جدول موقتی را ایجاد کنید، سپس داده‌های خروجی رویه‌ی ذخیره شده را در آن ثبت کنید. دست آخر از آن جدول موقتی گزارش بگیرید. EF Core چنین کاری را برای شما انجام نمی‌دهد. بنابراین  FirstOrDefault در اینجا فقط یک client side evaluation خواهد بود که در نگارش 3 آن ممنوع شده‌است. اما می‌توانید client side evaluation را به صورت زیر بر روی FromSqlRaw فعال کنید:
context.Products.FromSqlRaw("[dbo].[Ten Most Expensive Products]").AsEnumerable().FirstOrDefault();
مطالب
معرفی Microsoft.Data.dll یا WebMatrix.Data.dll

مایکروسافت اخیرا علاوه بر تکمیل ORM های خود مانند LINQ to SQL و همچنین Entity framework ، لایه دیگری را نیز بر روی ADO.NET جهت کسانی که به هر دلیلی دوست ندارند با ORMs کار کنند و از نوشتن کوئری‌های مستقیم SQL لذت می‌برند،‌ ارائه داده است که Microsoft.Data library نام دارد و از قابلیت‌های جدید زبان سی شارپ مانند واژه‌ کلیدی dynamic استفاده می‌کند.

در ادامه قصد داریم جهت بررسی توانایی‌های این کتابخانه از بانک اطلاعاتی معروف Northwind استفاده کنیم. این بانک اطلاعاتی را از اینجا می‌توانید دریافت کنید.

مراحل استفاده از Microsoft.Data library:
الف) این اسمبلی جدید به همراه پروژه WebMatrix ارائه شده است. بنابراین ابتدا باید آن‌را دریافت کنید: +
لازم به ذکر است که این کتابخانه اخیرا به WebMatrix.Data.dll تغییر نام یافته است. (اگر وب را جستجو کنید فقط به Microsoft.Data.dll اشاره شده است)

ب) پس از نصب، ارجاعی را از اسمبلی WebMatrix.Data.dll به پروژه خود اضافه نمائید. این اسمبلی در صفحه‌ی Add References ظاهر نمی‌شود و باید کامپیوتر خود را برای یافتن آن جستجو کنید که عموما در آدرس زیر قرار دارد:
C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\WebMatrix.Data.dll

ج) اتصال به بانک اطلاعاتی
پیش فرض اصلی این کتابخانه بانک اطلاعاتی SQL Server CE است. بنابراین اگر قصد استفاده از پروایدرهای دیگری را دارید باید به صورت صریح آن‌را ذکر نمائید:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="systemData:defaultProvider" value="System.Data.SqlClient" />
</appSettings>
<connectionStrings>
<add name="Northwind"
connectionString="Data Source=(local);Integrated Security = true;Initial Catalog=Northwind"
providerName="System.Data.SqlClient" />
</connectionStrings>
</configuration>

این تعاریف در فایل web.config و یا app.config برنامه وب یا ویندوزی شما قرار خواهند گرفت.

د) نحوه‌ی تعریف کوئری‌ها و دریافت اطلاعات
using System;
using WebMatrix.Data;

namespace TestMicrosoftDataLibrary
{
class Program
{
static void Main(string[] args)
{
getProducts();

Console.Read();
Console.WriteLine("Press a key ...");
}

private static void getProducts()
{
using (var db = Database.Open("Northwind"))
{
foreach (var product in db.Query("select * from products where UnitsInStock < @0", 20))
{
Console.WriteLine(product.ProductName + " " + product.UnitsInStock);
}
}
}
}
}
پس از افزودن ارجاعی به اسمبلی WebMatrix.Data و مشخص سازی رشته‌ی اتصالی به بانک اطلاعاتی، استفاده از آن جهت دریافت اطلاعات کوئری‌ها همانند چند سطر ساده‌ی فوق خواهد بود که از امکانات dynamic زبان سی شارپ 4 استفاده می‌کند؛ به این معنا که product.ProductName و product.UnitsInStock در زمان اجرا مورد ارزیابی قرار خواهند گرفت.
همچنین نکته‌ی مهم دیگر آن نحوه‌ی تعریف پارامتر در آن است (همان 0@ ذکر شده) که نسبت به ADO.NET کلاسیک به شدت ساده شده‌است (و نوشتن کوئری‌های امن و SQL Injection safe را تسهیل می‌کند).
در اینجا Database.Open کار گشودن name ذکر شده در فایل کانفیگ برنامه را انجام خواهد داد. اگر بخواهید این تعاریف را در کدهای خود قرار دهید (که اصلا توصیه نمی‌شود)، می‌توان از متد Database.OpenConnectionString استفاده نمود.

یا مثالی دیگر: استفاده از LINQ حین تعریف کوئری‌ها:
private static void getCustomerFax()
{
using (var db = Database.Open("Northwind"))
{
var product = db.Query("SELECT * FROM [Customers] WHERE City=@0", "Paris").FirstOrDefault();
if (product != null)
Console.WriteLine(product.Fax);
else
Console.WriteLine("not found.");
}
}

ه) اجرای کوئری‌ها بر روی بانک اطلاعاتی
private static void ExecQuery()
{
using (var db = Database.Open("Northwind"))
{
int affectedRecords = db.Execute("UPDATE [Customers] SET fax = fax + '*' WHERE City = @0", "Paris");
Console.WriteLine("Affected records: {0}", affectedRecords);
}
}

با استفاده از متد Execute آن می‌توان کوئری‌های دلخواه خود را بر روی بانک اطلاعاتی اجرا کرد. خروجی آن تعداد رکورد تغییر کرده است.

و) نحوه‌ی اجرای یک رویه ذخیره شده و نمایش خروجی آن
private static void ExecSPShowResult()
{
using (var db = Database.Open("Northwind"))
{
var customer = db.Query("exec CustOrderHist @0", "ALFKI").FirstOrDefault();
if (customer != null)
{
Console.WriteLine(customer.ProductName);
}
}
}
در این مثال رویه ذخیره شده CustOrderHist در بانک اطلاعاتی Northwind اجرا گردیده و سپس اولین خروجی آن نمایش داده شده است.

ز) اجرای یک تابع و نمایش خروجی آن
private static void useFuncs()
{
using (var db = Database.Open("Northwind"))
{
var query = db.Query("SELECT dbo.FN_GET_CATEGORY_TREE(@0) as Rec1", 3);
foreach(var tree in query)
{
Console.WriteLine(tree.Rec1);
}
}
}
در اینجا تابع FN_GET_CATEGORY_TREE موجود در بانک اطلاعاتی Northwind انتخاب گردیده و سپس خروجی آن به کمک یک نام مستعار (برای مثال Rec1) نمایش داده شده است.

سؤال : آیا WebMatrix.Data.dll بهتر است یا استفاده از ORMs ؟

در اینجا چون از قابلیت‌های داینامیک زبان سی شارپ 4 استفاده می‌شود، کامپایلر درکی از اشیاء خروجی و خواص آن‌ها برای مثال tree.Rec1 (در مثال آخر) ندارد و تنها در زمان اجرا است که مشخص می‌شود آیا یک چنین ستونی در خروجی کوئری وجود داشته است یا خیر. اما حین استفاده از ORMs این طور نیست و Schema یک بانک اطلاعاتی پیشتر از طریق نگاشت‌های جداول به اشیاء دات نتی، به کامپایلر معرفی می‌شوند و همین امر سبب می‌شود تا اگر ساختار بانک اطلاعاتی تغییر کرد، پیش از اجرای برنامه و در حین کامپایل بتوان مشکلات را دقیقا مشاهده نمود و سپس برطرف کرد.
ولی در کل استفاده از این کتابخانه نسبت به ADO.NET کلاسیک بسیار ساده‌تر بوده، می‌توان اشیاء و خواص آن‌ها را مطابق نام جداول و فیلدهای بانک اطلاعاتی تعریف کرد و همچنین تعریف پارامترها و برنامه نویسی امن نیز در آن بسیار ساده‌تر شده است.

برای مطالعه بیشتر:
Introduction to Microsoft.Data.dll

مطالب
شرط گذاری روی Include ها در EF Core 5x
سناریویی را در نظر بگیرید که میخواهید لیست Blog‌ها را به همراه Post هایشان که شامل کلمه‌ی خاصی است، به کلاینت باز گردانید. در این حالت احتمالا چنین کدی به نظرتان خواهد آمد:
// -- FilteredInclude_EFCore5
var list = dbContext.Blogs
    .AsNoTracking()
    .Include(p => p.Posts.Where(p => p.Title.Contains("test title")))
    .ToList();
return Json(list);
این کد تا قبل از EFCore 5.0 پیش نمایش 3، به خطای زیر منجر میشود؛ چرا که EFCore از شرط گذاری روی Include‌ها پشتیبانی نمی‌کند:
System.InvalidOperationException: 'Lambda expression used inside Include is not valid.'
پس مجبوریم همه‌ی رکورد‌های Include را از دیتابیس خوانده و سپس آنها را در حافظه فیلتر کنیم:
// -- NonFilteredInclude
var list = dbContext.Blogs
    .AsNoTracking()
    .Include(e => e.Posts)
    .ToList();
list.ForEach(p => p.Posts = p.Posts.Where(p => p.Title.Contains("test title")).ToList());
این روش سربار بسیار زیادی دارد و بسته به تعداد رکورد‌ها و ستون‌های Post، حجم زیادی از دیتای غیر لازم را از دیتابیس میخواند و تخصیص حافظه (memory allocation) اضافی و زیادی را به همراه دارد. مثلا اگر 100 Blog داشته باشیم که هرکدام 100 Post داشته باشند و فقط یکی از Post‌ها شرط مورد نظر را داشته باشد، بدین ترتیب 100 * 100 منهای 1 رکورد اضافی واکشی خواهد شد؛ یعنی برابر ‭9,999‬! (می توان با لحاظ کردن تعداد و حجم ستون‌های اضافی نیز وخامت اوضاع را درک کرد)
همچنین اگر به صورت غیر read-only (عدم استفاده از AsNoTracking)  داده‌ها را لود کرده باشید، با شرطی که داخل ForEach اعمال می‌شود، رکوردهایی که فیلتر میشوند به صورت Deleted در ChangeTracker علامت گذاری میشوند که میتواند مشکل ساز نیز باشد.
برای حل این مشکل چندین روش وجود دارد:
1- توسط یک تایپ دلخواه (anonymous یا dto) واکشی را به صورت Projection انجام دهیم و Post‌ها را فیلتر کنیم:
// -- Projection_Manually
var list = dbContext.Blogs
    .AsNoTracking()
    .Select(p => new
    {
        p.Id,
        p.Name,
        Posts = p.Posts.Where(p => p.Title.Contains("test title")).ToList()
    }).ToList();
این دستور، کوئری SQL زیر را تولید میکند:
SELECT [b].[Id], [b].[Name], [t].[Id], [t].[BlogId], [t].[Description], [t].[Title]
FROM [Blogs] AS [b]
LEFT JOIN (
    SELECT [p].[Id], [p].[BlogId], [p].[Description], [p].[Title]
    FROM [Posts] AS [p]
    WHERE CHARINDEX(N'test title', [p].[Title]) > 0
) AS [t] ON [b].[Id] = [t].[BlogId]
ORDER BY [b].[Id], [t].[Id]
معایب این روش:
  • در صورت نیاز به ویرایش (عدم استفاده از AsNoTracking) بدلیل استفاده از anonymous بجای Blog، هیچ شیء Blog ایی در ChangeTracker ثبت نخواهد شد، ولی اشیا Post در ChangeTracker ثبت می‌شوند. در نتیجه تنها 1 شیء در ChangeTracker اضافه خواهد شد.
  • کد نویسی را کثیف میکند؛ مخصوصا اگر نیاز به شرط گذاری بر روی چندین Navigation Collection تو در تو را داشته باشید.
برای جلوگیری از این کثیف شدن میتوان از قابلیت Projection کتابخانه‌ی AutoMapper استفاده کرد. کوئری تولید شده و عملکرد آن عینا مشابه همین روش است، ولی کد تمیز‌تری را موجب می‌شود ( از نظر سرعت، مقدار کمی کند‌تر است. انتهای مقاله، بنچمارک آن را میتوانید مشاهده کنید)

2- از قابلیت IncludeFilter کتابخانه‌ی  Z.EntityFramework.Plus.EFCore استفاده کنیم.
این کتابخانه امکانات بسیار مفیدی را ارائه میدهد و شخصا برای پروژه‌های واقعی و بزرگ آن را پیشنهاد میدهم. اگر از امکانات آن بجا استفاده شود، تاثیر بسیار زیادی را بر روی پرفرمنس پروژه خواهد گذاشت (توصیه میکنم حتما داکیومنت آن را مطالعه کنید). این کتابخانه کاملا رایگان است و از EFCore و EF6 (در یک پکیج جداگانه) پشتیبانی میکند. شرکت مالک آن (ZZZ) یک کتابخانه‌ی دیگر را نیز به نام  Z.EntityFramework.Extensions.EFCore دارد که امکانات بیشتری را ارائه میدهد؛ ولی رایگان نیست.
در این روش خواهیم داشت:
// -- IncludeFilter_EFCorePlus
var list = dbContext.Blogs
    .AsNoTracking()
    .IncludeFilter(e => e.Posts.Where(p => p.Title.Contains("test tile")))
    .ToList();
این دستور کوئری SQL زیر را تولید میکند:
-- EF+ Query Future: 1 of 2
SELECT [b].[Id], [b].[Name]
FROM [Blogs] AS [b]
;

-- EF+ Query Future: 2 of 2
SELECT [t].[Id], [t].[BlogId], [t].[Description], [t].[Title]
FROM [Blogs] AS [b]
INNER JOIN (
    SELECT [p].[Id], [p].[BlogId], [p].[Description], [p].[Title]
    FROM [Posts] AS [p]
    WHERE CHARINDEX(N'test title', [p].[Title]) > 0
) AS [t] ON [b].[Id] = [t].[BlogId]
;
  • همانطور که می‌بینید این دستور، 2 کوئری را اجرا میکند. سرعت آن از روش قبلی کمی کند‌تر است و memory allocation بیشتری را انجام میدهد.
  • در صورت عدم استفاده از AsNoTracking، اشیاء Blog را نیز ثبت میکند؛ درنتیجه تعداد 101 آبجکت (100 Blog و 1 Post) به ChangeTracker اضافه خواهند شد.
  • کد نویسی تمیزتر و راحت‌تری در سمت سی شارپ دارد. 
  • این روش در EF6 نیز قابل استفاده است.

3- کمبود این قابلیت در EFCore بسیار حس میشد (در NHibernate از قدیم این امکان وجود داشت) تا اینکه نهایتا در EFCore 5.0 پیش نمایش 3 (آخرین نسخه‌ی در حال حاضر) این قابلیت به EFCore اضافه شده‌است.
برای استفاده از آن نیاز به هیچ کد اضافه‌ای نیست و به صورت معمول میتوان از متد Include، همراه با شرط استفاده کرد:
// -- FilteredInclude_EFCore5
var list = dbContext.Blogs
    .AsNoTracking()
    .Include(p => p.Posts.Where(p => p.Title.Contains("test title")))
    .ToList();
این دستور، کوئری SQL زیر را تولید میکند:
SELECT [b].[Id], [b].[Name], [t].[Id], [t].[BlogId], [t].[Description], [t].[Title]
FROM [Blogs] AS [b]
LEFT JOIN (
    SELECT [p].[Id], [p].[BlogId], [p].[Description], [p].[Title]
    FROM [Posts] AS [p]
    WHERE CHARINDEX(N'test title', [p].[Title]) > 0
) AS [t] ON [b].[Id] = [t].[BlogId]
ORDER BY [b].[Id], [t].[Id]
  • این روش بسیار بهینه است و از روش قبلی (دوم) کمی سریع‌تر بوده و memory allocation کمتری (نزدیک به روش اول) دارد.
  • در صورت عدم استفاده از AsNoTracking، مانند قبلی عمل میکند؛ درنتیجه تعداد 101 آبجکت به ChangeTracker اضافه خواهند شد. 
  • کد نویسی تمیزتر و راحت‌تری در سمت سی شارپ دارد.

بنچمارک مقایسه‌ی این روش‌ها را میتوانید از ریپازیتوری گیتهاب زیر دریافت کنید:
تصویر زیر نتایج آن‌را نشان میدهد. این شاخص‌ها بر اساس تعداد رکوردها، ستون‌ها و حجم دیتای واکشی شده از دیتابیس، میتوانند متفاوت باشند؛ ولی نتیجه‌ی آن از لحاظ مقایسه‌ای، مشابه همین خواهد بود:

مطالب
کوئری نویسی در EF Core - قسمت هشتم - کوئری‌های بازگشتی
جدول اعضای این مجموعه، خود ارجاع دهنده طراحی شده‌است:
namespace EFCorePgExercises.Entities
{
    public class Member
    {
       // ...

        public virtual ICollection<Member> Children { get; set; }
        public virtual Member Recommender { set; get; }
        public int? RecommendedBy { set; get; }

       // ...
    }
}
در اینجا RecommendedBy، یک کلید خارجی نال پذیر است که به Id همین جدول اشاره می‌کند. دو خاصیت دیگر تعریف شده، مکمل این خاصیت عددی، جهت سهولت کوئری نویسی‌های EF-Core هستند که در قسمت‌های قبل نیز تعدادی کوئری را در این زمینه مشاهده کردید؛ مانند:
- تولید لیست کاربرانی که کاربر دیگری را توصیه کرده‌اند.
- تولید لیست کاربران، به همراه توصیه کننده‌ی آن‌ها.
- تولید لیست کاربران به همراه توصیه کننده‌ی آن‌ها، بدون استفاده از جوین.
- هر کاربر چه تعداد کاربر دیگری را توصیه کرده‌است؟

در این قسمت تعدادی مثال بازگشتی را می‌خواهیم بررسی کنیم.


مثال 1: رنجیره‌ی توصیه کنندگان کاربر با ID مساوی 27 را محاسبه کنید.

می‌خواهیم بدانیم چه کسی کاربر 27 را توصیه کرده و همچنین این کاربر نیز توسط چه شخص دیگری توصیه شده و به همین ترتیب تا بالاترین سطح ممکن.

روش معمول انجام این نوع کوئری‌ها استفاده از «WITH Hierachy» است. اما اگر بخواهیم بدون SQL نویسی مستقیم اینکار را انجام دهیم، می‌توان به صورت زیر عمل کرد:
var id = 27;
var entity27WithAllOfItsParents =
                        context.Members
                            .Where(member => member.MemId == id
                                            || member.Children.Any(m => member.MemId == m.RecommendedBy))
                            .ToList() //It's a MUST - get all children from the database
                            .FirstOrDefault(x => x.MemId == id);// then get the root of the tree


این کوئری ابتدا تمام رکوردهای جدول کاربران را لیست می‌کند. سپس خاصیت Recommender هر کدام را تا n سطح مقدار دهی می‌کند (خود EF-Core اینکار را انجام می‌دهد). تمام این اتفاقات تا قسمت ToList آن رخ می‌دهند. پس از آن یک FirstOrDefault سمت کاربر را هم داریم (LINQ to Objects). هدف از آن، بازگشت تنها ریشه‌ی مرتبط با ID=27 است و تمام Recommenderهای متصل به آن. این موارد را در تصویر ذیل بهتر می‌توانید مشاهده کنید:


لیست تمام کاربران وجود دارند. سپس سیزدهمین مورد آن، همان کاربر 27 است که توسط کاربر 20 توصیه شده. کاربر 20 توسط کاربر 5 توصیه شده و کاربر 5 توسط کاربر 1 و پس از آن خاصیت Recommender نال است که به معنای پایان پیمودن این زنجیره‌است.
بنابراین مرحله‌ی بعدی پس از یافتن ریشه‌ی کاربر 27، پیمودن خاصیت‌های Recommender به صورت بازگشتی است؛ کاری شبیه به متد FindParents زیر:
namespace EFCorePgExercises.Exercises.RecursiveQueries
{
    public static class RecursiveUtils
    {
        public static void FindParents(Member member, List<dynamic> actualResult)
        {
            if (member == null || member.Recommender == null)
            {
                return;
            }

            var item = member.Recommender;
            actualResult.Add(new { Recommender = item.MemId, item.FirstName, item.Surname });

            if (item.Recommender != null)
            {
                FindParents(item, actualResult);
            }
        }
    }
}
که به صورت زیر می‌تواند مورد استفاده قرار گیرد:
var actualResult = new List<dynamic>();
RecursiveUtils.FindParents(entity27WithAllOfItsParents, actualResult);


مثال 2: زنجیره‌ی توصیه شده‌های توسط کاربر با ID مساوی 1 را محاسبه کنید.

می‌خواهیم بدانیم کاربر 1، چه کسی را توصیه کرده و این کاربر نیز چه کاربر دیگری را توصیه کرده و به همین ترتیب تا پایین‌ترین سطح ممکن.
var id = 1;
var entity1WithAllOfItsDescendants =
                        context.Members
                            .Include(member => member.Children)
                            .Where(member => member.MemId == id
                                            || member.Children.Any(m => member.MemId == m.RecommendedBy))
                            .ToList() //It's a MUST - get all children from the database
                            .FirstOrDefault(x => x.MemId == id);// then get the root of the tree
این کوئری نیز شبیه به کوئری مثال قبلی است؛ با یک تفاوت. در اینجا Include(member => member.Children) هم ذکر شده‌است. هدف این است که EF-Core، خاصیت Children را تا n سطح ممکن به صورت خودکار مقدار دهی کند و این مورد دقیقا هدف اصلی مثال جاری است.
وجود Include، سبب تولید یک چنین کوئری می‌شود که در آن جدول کاربران با خودش جوین شده‌است:
SELECT   [m].[MemId],
         [m].[Address],
         [m].[FirstName],
         [m].[JoinDate],
         [m].[RecommendedBy],
         [m].[Surname],
         [m].[Telephone],
         [m].[ZipCode],
         [m0].[MemId],
         [m0].[Address],
         [m0].[FirstName],
         [m0].[JoinDate],
         [m0].[RecommendedBy],
         [m0].[Surname],
         [m0].[Telephone],
         [m0].[ZipCode]
FROM     [Members] AS [m]
         LEFT OUTER JOIN
         [Members] AS [m0]
         ON [m].[MemId] = [m0].[RecommendedBy]
WHERE    ([m].[MemId] = 1)
         OR EXISTS (SELECT 1
                    FROM   [Members] AS [m1]
                    WHERE  ([m].[MemId] = [m1].[RecommendedBy])
                           AND ([m].[MemId] = [m1].[RecommendedBy]))
ORDER BY [m].[MemId], [m0].[MemId];
پس از آن باید خاصیت member.Children را تا هر سطح ممکن به صورت بازگشتی پیمود تا به جواب اصلی این مثال رسید:
namespace EFCorePgExercises.Exercises.RecursiveQueries
{
    public static class RecursiveUtils
    {
        public static void FindChildren(Member member, List<dynamic> actualResult)
        {
            if (member == null)
            {
                return;
            }

            foreach (var item in member.Children)
            {
                actualResult.Add(new { item.MemId, item.FirstName, item.Surname });
                if (item.Children != null)
                {
                    FindChildren(item, actualResult);
                }
            }
        }
    }
}
که به صورت زیر می‌تواند مورد استفاده قرار گیرد:
var actualResult = new List<dynamic>();
RecursiveUtils.FindChildren(entity1WithAllOfItsDescendants, actualResult);


کدهای کامل این قسمت را در اینجا می‌توانید مشاهده کنید.
مطالب
کارهایی جهت بالابردن کارآیی Entity Framework #2

در ادامه‌ی مطلب قبلی، نکاتی دیگر را جهت افزایش کارآیی سیستم‌های مبتنی بر EF اشاره خواهیم کرد:

عدم استفاده از کوئری‌های کلی

فرض کنید در یک فرم جستجو، 4 تکست باکس FirstName, LastName, City و PostalZipCode برای عملیات جستجو در نظر گرفته شده است و کاربر می‌تواند بر اساس آنها جستجو را انجام دهد.

var searchModel = new Pupil
{
    FirstName = "Ben",
    LastName = null,
    City = null,
    PostalZipCode = null
};

List<Pupil> pupils = db.Pupils.Where(p =>
        (searchModel.FirstName == null || p.FirstName == searchModel.FirstName)
        && (searchModel.LastName == null || p.LastName == searchModel.LastName)
        && (searchModel.City == null || p.LastName == searchModel.City)
        && (searchModel.PostalZipCode == null || p.PostalZipCode == searchModel.PostalZipCode))
    .Take(100)
    .ToList()
در کد بالا کاربر فقط فیلد نام را برای جستجو انتخاب کرده است و سایر فیلدها را خالی در نظر گرفته است و کوئری بالا صادر شده است و دستورات زیر به اس کیو ال ارسال شده‌اند:
 USE [EFSchoolSystem]
DECLARE @p__linq__0 NVarChar(4000) SET @p__linq__0 = 'Ben'
DECLARE @p__linq__1 NVarChar(4000) SET @p__linq__1 = 'Ben'
DECLARE @p__linq__2 NVarChar(4000) SET @p__linq__2 = ''
DECLARE @p__linq__3 NVarChar(4000) SET @p__linq__3 = ''
DECLARE @p__linq__4 NVarChar(4000) SET @p__linq__4 = ''
DECLARE @p__linq__5 NVarChar(4000) SET @p__linq__5 = ''
DECLARE @p__linq__6 NVarChar(4000) SET @p__linq__6 = ''
DECLARE @p__linq__7 NVarChar(4000) SET @p__linq__7 = ''

-- Executed query
SELECT TOP (100)
        [Extent1].[PupilId] AS [PupilId] ,
        [Extent1].[FirstName] AS [FirstName] ,
        [Extent1].[LastName] AS [LastName] ,
        [Extent1].[Address1] AS [Address1] ,
        [Extent1].[Adderss2] AS [Adderss2] ,
        [Extent1].[PostalZipCode] AS [PostalZipCode] ,
        [Extent1].[City] AS [City] ,
        [Extent1].[PhoneNumber] AS [PhoneNumber] ,
        [Extent1].[SchoolId] AS [SchoolId] ,
        [Extent1].[Picture] AS [Picture]
FROM    [dbo].[Pupils] AS [Extent1]
WHERE   (@p__linq__0 IS NULL OR [Extent1].[FirstName] = @p__linq__1)
        AND (@p__linq__2 IS NULL OR [Extent1].[LastName] = @p__linq__3)
        AND (@p__linq__4 IS NULL OR [Extent1].[LastName] = @p__linq__5)
        AND (@p__linq__6 IS NULL OR [Extent1].[PostalZipCode] = @p__linq__7)
هنگامیکه کوئری، سمت اس کیو ال سرور اجرا می‌شود، در صورتیکه پلن مربوط به آن وجود نداشته باشد، اس کیو ال سرور اقدام به ایجاد پلن، براساس پارامترهای ورودی می‌کند و از این به بعد، کوئری‌هایی یکسان، با پارامترهای متفاوت، از پلن کش شده استفاده خواهند کرد و از ایجاد پلن دیگری بدلیل هزینه بر بودن آن جلوگیری می‌شود.
مشکلی که در این دسته از کوئری‌های عمومی ایجاد می‌گردد آن است که ممکن است پلنی که برای یک گروه از پارامترهای ورودی مناسب باشد (جستجو بر اساس نام) برای سایر پارامترهای ورودی نامناسب باشد. تصور کنید تمام دانش آموزان، در شهر نیویورک یا بوستون زندگی می‌کنند. بنابراین این ستون از تنوع انتخاب کمتری برخوردار است در مقایسه با ستون نام خانوادگی و فرض کنید پلن، براساس پارامتر شهر ایجاد شده است. بنابراین ایجاد این پلن برای سایر پارامترها از کارآیی کافی برخوردار نیست. این مشکل با نام Bad Parameter Sniffing شناخته می‌شود و درباره‌ی Parameter Sniffing در اینجا به تفصیل اشاره شده است.
این مشکل زمانی بیشتر مشکل ساز خواهد شد که 99 درصد دانش آموزان در شهر نیویورک و فقط 1 درصد آن‌ها در شهر بوستون زندگی می‌کنند و پلن ایجاد شده بر اساس پارامتر شهر بوستون باشد.

راه حل اول:
برای حل این مشکل تنها یک راه حل خاص وجود ندارد و باید براساس شرایط برنامه، کوئری از حالت عمومی خارج گردد؛ مانند زیر:
 if (searchModel.City == null)
{
    pupils = db.Pupils.Where(p =>
        (searchModel.FirstName == null || p.FirstName == searchModel.FirstName)
        && (searchModel.LastName == null || p.LastName == searchModel.LastName)
        && (searchModel.PostalZipCode == null || p.PostalZipCode == searchModel.PostalZipCode))
        .Take(100)
        .ToList();
}
else
{
    pupils = db.Pupils.Where(p =>
        (searchModel.FirstName == null || p.FirstName == searchModel.FirstName)
        && (searchModel.LastName == null || p.LastName == searchModel.LastName)
        && (searchModel.City == null || p.LastName == searchModel.City)
        && (searchModel.PostalZipCode == null || p.PostalZipCode == searchModel.PostalZipCode))
        .Take(100)
        .ToList();
}

راه حل دوم:

کامپایل مجدد پلن در اجرای هر کوئری، اما این راه حل سرباری را تحمیل می‌کند. بدین منظور مترجم زیر را ایجاد کنید:
public class RecompileDbCommandInterceptor : IDbCommandInterceptor
{
    public void ReaderExecuting(DbCommand command, DbCommandInterceptionContext<DbDataReader> interceptionContext)
    {
        if(!command.CommandText.EndsWith(" option(recompile)"))
        {
            command.CommandText += " option(recompile)";
        }
    }
    //and implement other interface members
}
و مانند زیر استفاده کنید:
 var interceptor = new RecompileDbCommandInterceptor();
DbInterception.Add(interceptor);
var pupils = db.Pupils.Where(p => p.City = city).ToList();
DbInterception.Remove(interceptor);

راه حل سوم:

استفاده از اجرای به تعویق افتاده به شکل زیر است:

var result = db.Pupils.AsQueryable();

if(searchModel.FirstName != null )
     result = result.Where(p => p.FirstName == searchModel.FirstName);

if(searchModel.LastName != null )
     result = result.Where(p => p.LastName == searchModel.LastName);

if(searchModel.PostalZipCode != null )
     result = result.Where(p => p.PostalZipCode == searchModel.PostalZipCode);

if(searchModel.City != null )
     result = result.Where(p => p.City == searchModel.City);

افزونگی کشِ پلن

استفاده‌ی مجدد از پلن بدلیل عدم ایجاد مجدد آن در زمان اجرای هر کوئری، بسیار خوب است. برای استفاده‌ی مجدد از پلن، باید دستورات ارسالی یکسان باشند؛ مانند کوئری‌های پارامتریک. در EF هنگامیکه از متغیرها استفاده کنید، کوئری‌ها پارامتریک تولید می‌کند؛ اما یک استثناء وجود دارد: ()Skip و ()Take

2 متد فوق بیشتر جهت صفحه بندی استفاده می‌شوند:

var schools = db.Schools
    .OrderBy(s => s.PostalZipCode)
    .Skip(model.Page * model.ResultsPerPage)
    .Take(model.ResultsPerPage)
    .ToList();
فرض کنید مقدار ResultsPerPage برابر 100 باشد و مقدار Page برابر 417. کوئری ارسالی به شکل زیر خواهد بود:

حال اگر قصد دریافت اطلاعات صفحه‌ی 500 را داشته باشید، مقادیر کوئری بعدی بترتیب 100 و 50000 خواهد بود و بجای مقادیر تصویر بالا 100 و 50000 قرار داده می‌شوند و کوئری متفاوتی با پلن متفاوتی ایجاد خواهد شد و اس کیو ال پلن کوئری قبلی را مورد استفاده قرار نخواهد داد و با اجرای کوئری دوم، پلن متفاوتی ایجاد خواهد کرد که این باعث ایجاد افزونگی پلن‌ها خواهد شد و همانگونه که قبلا اشاره شد ایجاد پلن جدید هزینه بر است.

نکته: جهت مشاهده پلن‌های کش شده در اس کیو ال، دستور زیر اجرا کنید:
SELECT  text, query_plan
FROM    sys.dm_exec_cached_plans
        CROSS APPLY sys.dm_exec_query_plan(plan_handle)
        CROSS APPLY sys.dm_exec_sql_text(plan_handle)
درصورتیکه کوئری دوم را برای صفحه 500 اجرا کنید، مشاهده خواهید کرد پلن کش شده‌ی دیگری ایجاد شده است. این افزونگی، نامناسب است به دو دلیل:
  1. صدمه به کارآیی؛ هربار EF یک کوئری و اس کیو ال یک پلن جدید را ایجاد می‌کنند.
  2. افزایش اشغال حافظه؛ کش شدن کوئری‌ها توسط EF سمت کلاینت و کش شدن پلن‌ها در اس کیو ال سرور (کش بی رویه‌ی پلن‌ها باعث حذف سایر پلن‌های مورد استفاده بدلیل محدودیت حافظه می‌شود که امکان بروز اختلال در کارآیی را به‌همراه خواهد داشت.)


علت بروز مشکل:

هنگامیکه یک مقدار int، به متدهای ()Skip و ()Take ارسال می‌شود، EF نمی‌تواند تشخیص دهد این مقدار ارسالی ثابت (absolute) مانند (100)Take است یا توسط یک متغیر مانند (متغیر)Take تولید شده است. به همین خاطر EF مقدار ارسال شده را پارامتریک در نظر نمی‌گیرد.


راه حل:

در EF6 پیاده سازی دیگری برای متدهای ()Skip و ()Take ارائه شده است که برای حل مشکل فوق می‌توان به کار گرفت، این پیاده سازی امکان دریافت lambada بجای int را دارد که باعث ایجاد کوئری‌های پارامتریک خواهد شد.

int resultsToSkip = model.Page * model.ResultsPerPage;
var schools = db.Schools
    .OrderBy(s => s.PostalZipCode)
    .Skip(() => resultsToSkip) //must pre-calculate this value
    .Take(() => model.ResultsPerPage)
    .ToList();
اکنون کوئری ارسال شده به اس کیو ال به صورت زیر خواهد بود:

همانطور که مشاهده می‌کنید این بار  EF کوئری پارامتریک ایجاد و ارسال کرده است.