مطالب
آموزش LightInject IoC Container - قسمت 1
LightInject در حال حاضر یکی از قدرتمند‌ترین IoC Container‌‌ها است که از لحاظ سرعت و کارآیی در بالاترین جایگاه در میان IoC Container‌‌های موجود قرار دارد. جهت بررسی کارایی IoC Container‌ها می‌توانید به این لینک مراجعه کنید . LightInject یک IoC Container فوق العاده سبک وزن می‌باشد که تمامی قابلیت‌های متداولی که از یک Service Container انتظار می‌رود را شامل می‌شود. تنها شامل یک فایل .cs می‌باشد که تمامی کدهای آن در همین یک فایل نوشته شده‌اند. در پروژه‌های کوچک تا بزرگ بدون از دست دادن کارآیی، با بالاترین سرعت ممکن عمل تزریق وابستگی را انجام می‌دهد. در این مجموعه مقالات به بررسی کامل این IoC Container می‌پردازیم و تمامی قابلیت‌های آن را آموزش می‌دهیم.

نحوه نصب و راه اندازی LightInject
در پنجره Package Manager Console می‌توانید با نوشتن دستور ذیل، نسخه باینری آن را نصب کنید که به فایل .dll آن Reference میدهد.

PM> Install-Package LightInject
 همچنین می‌توانید توسط دستور ذیل فایل .cs آن را به پروژه اضافه نمایید. 

PM> Install-Package LightInject.Source

 آماده سازی پروژه نمونه 
قبل از شروع کار با LightInject، یک پروژه Windows Forms Application را با ساختار کلاس‌های ذیل ایجاد نمایید. (در مقالات بعدی و پس از آموزش کامل LightInject نحوه استفاده از آن را در ASP.NET MVC نیز آموزش می‌دهیم)
    public class PersonModel
    {
        public int Id { get; set; }
        public string Name { get; set; }
        public string Family { get; set; }
        public DateTime Birth { get; set; }
    }

    public interface IRepository<T> where T:class
    {
        void Insert(T entity);
        IEnumerable<T> FindAll();
    }

    public interface IPersonRepository:IRepository<PersonModel>
    {
    }

    public class PersonRepository:IPersonRepository
    {
        public void Insert(PersonModel entity)
        {
            throw new NotImplementedException();
        }

        public IEnumerable<PersonModel> FindAll()
        {
            throw new NotImplementedException();
        }
    }

    public interface IPersonService
    {
        void Insert(PersonModel entity);
        IEnumerable<PersonModel> FindAll();
    }

    public class PersonService:IPersonService
    {
        private readonly IPersonRepository _personRepository;

        public PersonService(IPersonRepository personRepository)
        {
            _personRepository = personRepository;
        }

        public void Insert(PersonModel entity)
        {
            _personRepository.Insert(entity);
        }

        public IEnumerable<PersonModel> FindAll()
        {
            return _personRepository.FindAll();
        }
    }
توضیحات
PersonModel: ساختار داده ای جدول Person در سمت Application، که در لایه Domain Model ایجاد می‌گردد.
توجه: جهت سهولت تست و تسریع کدنویسی از لایه بندی و از کلاس‌های ViewModel استفاده نکردیم.
IRepository: یک Interface عمومی برای تمامی Interface‌های مربوط به Repository که عملیات مربوط به پایگاه داده مثل بروزرسانی و واکشی اطلاعات را انجام می‌دهند.
IPersonRepository: واسط بین لایه Service و لایه Repository می‌باشد.
PersonRepository: پیاده سازی واقعی عملیات مربوط به پایگاه داده برای PersonModel می‌باشد. به کلاسهایی که حاوی پیاده سازی واقعی کد می‌باشند Concrete Class می‌گویند.
IPersonService: واسط بین رابط کاربری و لایه سرویس می‌باشد. رابط کاربری به جای دسترسی مستقیم به PersonService از IPersonService استفاده می‌کند.
PersonService: دریافت درخواست‌های رابط کاربری و بررسی قوانین تجاری، سپس ارسال درخواست به لایه Repository در صورت صحت درخواست، و در نهایت ارسال پاسخ دریافتی به رابط کاربری. در واقع واسطی بین Repository و UI می‌باشد.
پس از ایجاد ساختار فوق کد مربوط به Form1 را بصورت زیر تغییر دهید.
public partial class Form1 : Form
    {
        private readonly IPersonService _personService;
        public Form1(IPersonService personService)
        {
            _personService = personService;
            InitializeComponent();
        }
    }
توضیحات
در کد فوق به منظور ارتباط با سرویس از IPersonService استفاده نمودیم که به عنوان پارامتر ورودی برای سازنده Form1 تعریف شده است. حتما با Dependency Inversion و انواع Dependency Injection آشنا هستید که به سراغ مطالعه این مقاله آمدید و علت این نوع کدنویسی را هم می‌دانید. بنابراین توضیح بیشتری در این مورد نمی‌دهم.
حال اگر برنامه را اجرا کنید در Program.cs با خطای عدم وجود سازنده بدون پارامتر برای Form1 مواجه می‌شوید که کد آن را باید به صورت زیر تغییر می‌دهیم.
        static void Main()
        {
            Application.EnableVisualStyles();
            Application.SetCompatibleTextRenderingDefault(false);
            var container = new ServiceContainer();
            container.Register<IPersonService, PersonService>();
            container.Register<IPersonRepository, PersonRepository>();
            Application.Run(new Form1(container.GetInstance<IPersonService>()));
        }
توضیحات
کلاس ServiceContainer وظیفه‌ی Register کردن یک کلاس را برای یک Interface دارد. زمانی که می‌خواهیم Form1 را نمونه سازی نماییم و Application را راه اندازی کنیم، باید نمونه ای را از جنس IPersonService ایجاد نموده و به سازنده‌ی Form1 ارسال نماییم. با رعایت اصل DIP، نمونه سازی واقعی یک کلاس لایه دیگر، نباید در داخل کلاس‌های لایه جاری انجام شود. برای این منظور از شیء container استفاده نمودیم و توسط متد GetInstance، نمونه‌ای از جنس IPersonService را ایجاد نموده و به Form1 پاس دادیم. حال container از کجا متوجه می‌شود که چه کلاسی را برای IPersonService نمونه سازی نماید؟
در خطوط قبلی توسط متد Register، کلاس PersonService را برای IPersonService ثبت نمودیم. container نیز برای نمونه سازی به کلاس هایی که برایش Register نمودیم مراجعه می‌نماید و نمونه سازی را انجام می‌دهد. جهت استفاده از PersonService به پارامتر ورودی IPersonRepository برای سازنده‌ی آن نیاز داریم که کلاس PersonRepository را برای IPersonRepository ثبت کردیم.
حال اگر برنامه را اجرا کنید، به درستی اجرا خواهد شد. برنامه را متوقف کنید و به کد موجود در Program.cs مراجعه نموده و دو خط مربوط به Register را Comment نمایید. سپس برنامه را اجرا کنید و خطای تولید شده را ببینید. این خطا بیان می‌کند که امکان نمونه سازی برای IPersonService را ندارد. چون قبلا هیچ کلاسی را برای آن Register نکرده ایم.
Named Services
در برخی مواقع، بیش از یک کلاس وجود دارند که ممکن است از یک Interface ارث بری نمایند. در این حالت و در زمان Register، باید به ServiceContainer بگوییم که کدام کلاس را باید نمونه سازی نماید. برای بررسی این موضوع، کلاسهای زیر را به ساختار پروژه اضافه نمایید.
    public class WorkerModel:PersonModel
    {
        public ManagerModel Manager { get; set; }
    }

    public class ManagerModel:PersonModel
    {
        public IEnumerable<WorkerModel> Workers { get; set; }
    }

    public class WorkerRepository:IPersonRepository
    {
        public void Insert(PersonModel entity)
        {
            throw new NotImplementedException();
        }

        public IEnumerable<PersonModel> FindAll()
        {
            throw new NotImplementedException();
        }
    }

    public class ManagerRepository:IPersonRepository
    {
        public void Insert(PersonModel entity)
        {
            throw new NotImplementedException();
        }

        public IEnumerable<PersonModel> FindAll()
        {
            throw new NotImplementedException();
        }
    }

    public class WorkerService:IPersonService
    {
        private readonly IPersonRepository _personRepository;

        public WorkerService(IPersonRepository personRepository)
        {
            _personRepository = personRepository;
        }

        public void Insert(PersonModel entity)
        {
            var worker = entity as WorkerModel;
            _personRepository.Insert(worker);
        }

        public IEnumerable<PersonModel> FindAll()
        {
            return _personRepository.FindAll();
        }
    }

    public class ManagerService:IPersonService
    {
        private readonly IPersonRepository _personRepository;

        public ManagerService(IPersonRepository personRepository)
        {
            _personRepository = personRepository;
        }

        public void Insert(PersonModel entity)
        {
            var manager = entity as ManagerModel;
            _personRepository.Insert(manager);
        }

        public IEnumerable<PersonModel> FindAll()
        {
            return _personRepository.FindAll();
        }
    }
توضیحات
دو کلاس Manager و Worker به همراه سرویس‌ها و Repository هایشان اضافه شده اند که از IPersonService و IPersonRepository مشتق شده اند.
حال کد کلاس Program را به صورت زیر تغییر می‌دهیم
...
 var container = new ServiceContainer();
            container.Register<IPersonService, PersonService>();
            container.Register<IPersonService, WorkerService>();
            container.Register<IPersonRepository, PersonRepository>();
            container.Register<IPersonRepository, WorkerRepository>();
            Application.Run(new Form1(container.GetInstance<IPersonService>()));
توضیحات
در کد فوق، چون WorkerService بعد از PersonService ثبت یا Register شده است، LightInject در زمان ارسال پارامتر به Form1، نمونه ای از کلاس WorkerService را ایجاد میکند. اما اگر بخواهیم از کلاس PersonService نمونه سازی نماید باید کد را به صورت زیر تغییر دهیم.
...
            container.Register<IPersonService, PersonService>("PersonService");
            container.Register<IPersonService, WorkerService>();
            container.Register<IPersonRepository, PersonRepository>();
            container.Register<IPersonRepository, WorkerRepository>();
            Application.Run(new Form1(container.GetInstance<IPersonService>("PersonService")));
همانطور که مشاهده می‌نمایید، در زمان Register نامی را به آن اختصاص دادیم که در زمان نمونه سازی از این نام استفاده شده است.
اگر در زمان ثبت، نامی را به نمونه‌ی مورد نظر اختصاص داده باشیم، و فقط یک Register برای آن Interface معرفی نموده باشیم، در زمان نمونه سازی، LightInject آن نمونه را به عنوان سرویس پیش فرض در نظر می‌گیرد.
  container.Register<IPersonService, PersonService>("PersonService");
  Application.Run(new Form1(container.GetInstance<IPersonService>()));
در کد فوق، چون برای IPersonService فقط یک کلاس برای نمونه سازی معرفی شده است، با فراخوانی متد GetInstance، حتی بدون ذکر نام، نمونه ای را از کلاس PersonService ایجاد می‌کند.
IEnumerable<T>
زمانی که چند کلاس را که از یک Interface مشتق شده اند، با هم Register می‌نمایید، LightInject این قابلیت را دارد که این کلاس‌های Register شده را در قالب یک لیست شمارشی برگردانید.
            container.Register<IPersonService, PersonService>();
            container.Register<IPersonService, WorkerService>("WorkerService");
            var personList = container.GetInstance<IEnumerable<IPersonService>>();
در کد فوق لیستی با دو آیتم ایجاد می‌شود که یک آیتم از نوع PersonService و دیگری از نوع WorkerService می‌باشد. همچنین از کد زیر نیز می‌توانید استفاده کنید:
            container.Register<IPersonService, PersonService>();
            container.Register<IPersonService, WorkerService>("WorkerService");
            var personList = container.GetAllInstances<IPersonService>();
به جای متد GetInstance از متد GetAllInstances استفاده شده است.
LightInject از Collection‌های زیر نیز پشتیبانی می‌نماید:
  • Array
  • ICollection<T>
  • IList<T>
  • IReadOnlyCollection<T>
  • IReadOnlyList<T>
Values
توسط LightInject می‌توانید مقادیر ثابت را نیز تعریف کنید
            container.RegisterInstance<string>("SomeValue");
            var value = container.GetInstance<string>();
متغیر value با رشته "SomeValue" مقداردهی می‌گردد. اگر چندین ثابت رشته ای داشته باشید می‌توانید نام جداگانه ای را به هر کدام اختصاص دهید و در زمان فراخوانی مقدار به آن نام اشاره کنید.
            container.RegisterInstance<string>("SomeValue","String1");
            container.RegisterInstance<string>("OtherValue","String2");
            var value = container.GetInstance<string>("String2");
متغیر value با رشته "OtherValue" مقداردهی می‌گردد.
مطالب
C# 6 - Index Initializers
زمان زیادی از ارائه‌ی امکان Collection Initializer برای ایجاد یک متغیر از نوع Collection می‌گذرد؛ برای نمونه به مثال زیر توجه کنید:
enum USState {...}
var AreaCodeUSState = new Dictionary<string, USState>
    {
        {"408", USState.California},
        {"701", USState.NorthDakota},
        ...
    };
در پشت صحنه، کامپایلر، Collection Initializer را می‌گیرد، با استفاده از یک <Dictionary<TKey, TValue و با فراخوانی متد Add آن بر روی لیست Collection Initializer شروع به درج آن در دیکشنری ساخته شده می‌کند. Collection Initializer فقط بر روی کلاس هایی که در آن‌ها IEnumerable پیاده سازی شده باشد امکان پذیر است چرا که کامپایلر کار اضافه کردن مقادیر اولیه را به ()IEnumerable.Add می‌سپارد.

اکنون در C# 6.0 ما می‌توانیم از Index Initializer استفاده کنیم:
enum USState {...}
var AreaCodeUSState = new Dictionary<string, USState>
    {
        ["408"] = USState.California,
        ["701"] = USState.NorthDakota,
        ...
    };
اولین تفاوتی که این دو روش با هم دارند این است که در حالت استفاده‌ی از Index Initializer پس از کامپایل، ()IEnumerable.Add فراخوانی نمی‌شود. این تفاوت بسیار مهم است و کار اضافه کردن مقادیر اولیه را با استفاده از کلید (Key) ویژه انجام می‌دهد.
شبه کد مثال بالا به صورت زیر می‌شود:

Collection Initializer
create a Dictionary<string, USState>
add to new Dictionary the following items: 
     "408", USState.California
     "701", USState.NorthDakota
Index Initializer
create a Dictionary<string, USState> then
using AreaCodeUSState's default Indexed property
    set the Value of Key "408" to USState.California
    set the Value of Key "701" to USState.NorthDakota
حال به مثال زیر توجه کنید:

Collection Initializer 
enum USState {...}
var AreaCodeUSState = new Dictionary<string, USState>
        {
            { "408", USState.Confusion},
            { "701", USState.NorthDakota },
            { "408", USState.California},
            ...
        };
Console.WriteLine( AreaCodeUSState.Where(x => x.Key == "408").FirstOrDefault().Value );
Index Initializer
enum USState {...}
var AreaCodeUSState = new Dictionary<string, USState>
    {
        ["408"] = USState.Confusion,
        ["701"] = USState.NorthDakota,
        ["408"] = USState.California,
        ...
    };
Console.WriteLine( AreaCodeUSState2.Where(x => x.Key == "408").FirstOrDefault().Value );  // output = California
هر دو کد بالا با موفقیت کامپایل و اجرا می‌شود، اما در زمان اجرای Collection Initializer هنگامیکه می‌خواهد مقدار دوم "408" را اضافه کند با استثناء ArgumentException متوقف می‌شود چرا که کلید "408" از قبل وجود دارد.
اما در زمان اجرا، Index Initializer به صورت کامل و بدون خطا این کار را انجام می‌دهد و در کلید "408" مقدار USState.Confusion قرار می‌گیرد. سپس "701" مقدار USState.NorthDakota و بعد از استفاده‌ی مجدد از کلید "408" مقدار USState.California جایگزین مقدار قبلی می‌شود.

var fibonaccis = new List<int>
    {
        [0] = 1,
        [1] = 2,
        [3] = 5,
        [5] = 13
    }
این کد هم معتبر است و هم کامپایل می‌شود. البته معتبر است، ولی صحیح نیست. <List<T اجازه‌ی تخصیص اندیسی فراتر از اندازه‌ی فعلی را نمی‌دهد.
تلاش برای تخصیص مقدار 1 با کلید 0 به <List<int، سبب بروز استثناء ArguementOutOfRangeException می شود. وقتی (List<T>.Add(item فراخوانی می‌شود اندازه‌ی لیست یک واحد افزایش می‌یابد. بنابراین باید دقت داشت که Index Initializer از ()Add. استفاده نمی‌کند؛ در عوض با استفاده از خصوصیت اندیس پیش فرض، مقداری را برای یک کلید تعیین می‌کند.
برای چنین حالتی بهتر است از همان روش قدیمی Collection Initializer استفاده کنیم:
var fibonaccis = new List<int>()
    {
        1,
        3,
        5,
        13
    };
بازخوردهای پروژه‌ها
اضافه کردن چند متد الحاقی
با سلام من توی پروژه هام چند تا متد استفاده می‌کنم. خوشحال می‌شم نظر شمارو هم بدونم و به پروژه اتون اضافه اش کنید.

این متد برای محاسبه اختلاف دو تاریخ استفاده میشه، البته منبعش یادم نیست این متد از کجا گرفتم:
/// <summary>
        /// DateDiff in SQL style.
        /// Datepart implemented:
        ///     "year" (abbr. "yy", "yyyy"),
        ///     "quarter" (abbr. "qq", "q"),
        ///     "month" (abbr. "mm", "m"),
        ///     "day" (abbr. "dd", "d"),
        ///     "week" (abbr. "wk", "ww"),
        ///     "hour" (abbr. "hh"),
        ///     "minute" (abbr. "mi", "n"),
        ///     "second" (abbr. "ss", "s"),
        ///     "millisecond" (abbr. "ms").
        /// </summary>
        /// <param name="startDate"></param>
        /// <param name="datePart"></param>
        /// <param name="endDate"></param>
        /// <returns></returns>
        public static Int64 DateDiff(this DateTime startDate, String datePart, DateTime endDate)
        {
            Int64 dateDiffVal;
            System.Globalization.Calendar cal = System.Threading.Thread.CurrentThread.CurrentCulture.Calendar;
            TimeSpan ts = new TimeSpan(endDate.Ticks - startDate.Ticks);
            switch (datePart.ToLower().Trim())
            {
                #region year

                case "year":
                case "yy":
                case "yyyy":
                    dateDiffVal = cal.GetYear(endDate) - cal.GetYear(startDate);
                    break;

                #endregion

                #region quarter

                case "quarter":
                case "qq":
                case "q":
                    dateDiffVal = (((cal.GetYear(endDate) - cal.GetYear(startDate)) * 4) + ((cal.GetMonth(endDate) - 1) / 3)) - ((cal.GetMonth(startDate) - 1) / 3);
                    break;

                #endregion

                #region month

                case "month":
                case "mm":
                case "m":
                    dateDiffVal = ((cal.GetYear(endDate) - cal.GetYear(startDate)) * 12 + cal.GetMonth(endDate)) - cal.GetMonth(startDate);
                    break;

                #endregion

                #region day

                case "day":
                case "d":
                case "dd":
                    dateDiffVal = (Int64)ts.TotalDays;
                    break;

                #endregion

                #region week

                case "week":
                case "wk":
                case "ww":
                    dateDiffVal = (Int64)(ts.TotalDays / 7);
                    break;

                #endregion

                #region hour

                case "hour":
                case "hh":
                    dateDiffVal = (Int64)ts.TotalHours;
                    break;

                #endregion

                #region minute

                case "minute":
                case "mi":
                case "n":
                    dateDiffVal = (Int64)ts.TotalMinutes;
                    break;

                #endregion

                #region second

                case "second":
                case "ss":
                case "s":
                    dateDiffVal = (Int64)ts.TotalSeconds;
                    break;

                #endregion

                #region millisecond

                case "millisecond":
                case "ms":
                    dateDiffVal = (Int64)ts.TotalMilliseconds;
                    break;

                #endregion

                default:
                    throw new Exception(String.Format("DatePart \"{0}\" is unknown", datePart));
            }
            return dateDiffVal;
        }

بررسی اینکه آیا رشته ورودی به الگوی مورد نظر مطابقت دارد یا خیر؟
/// <summary>
        /// بررسی اینکه رشته وارد شده با قالب مورد نظر مطابقت دارد یا خیر
        /// </summary>
        /// <param name="source">متن وارد شده</param>
        /// <param name="regexTemplate">قالب مورد نظر</param>
        /// <returns></returns>
        public static Boolean IsMatchTemplate(this String source, String regexTemplate)
        {
            var regex = new Regex(regexTemplate);
            return regex.IsMatch(source);
        }
البته متدهای زیادی دارم می‌ترسم وجهه خوبی نداشته باشه همش اینجا بذارم، با اجازه مدیریت سایت در صورت تمایل ایمیلتون بهم پیام خصوصی بدین، که متد هارو براتون ارسال کنم.

نظرات مطالب
ASP.NET MVC #19
ممنون از پاسختون؛ با استفاده از این روش:
Response.RemoveOutputCacheItem(Url.Action("ActionName", "ControllerName"));
تمامی کش‌های مربوط به این اکشن خاص، حذف میشن در صورتی که من میخوام به این نحو عمل کنم:
مثلا اکشن با مقدار productId=10 صدا زده می‌شه و خروجی مربوط به اون کش میشه 
دفعه بعد اکشن با مقدار productId=11 فراخوانی میشه و خروجی اون هم کش میشه
حالا productId=10 ویرایش میشه و یا حذف میشه؛با روش بالا کلیه‌ی کش‌های مربوط به اکشن حذف میشن در صورتی که من میخوام فقط کش‌های مربوط به productId=10 حذف بشن، در واقع حذف هم Vary By Param بشه، ممنون
مطالب
Implementing second level caching in EF code first
هدف اصلی از انواع و اقسام مباحث caching اطلاعات، فراهم آوردن روش‌هایی جهت میسر ساختن دسترسی سریعتر به داده‌هایی است که به صورت متناوب در برنامه مورد استفاده قرار می‌گیرند، بجای مراجعه مستقیم به بانک اطلاعاتی و خواندن اطلاعات از دیسک سخت.

عموما در ORMها دو سطح کش می‌تواند وجود داشته باشد:
الف) سطح اول کش
که نمونه بارز آن در EF Code first استفاده از متد context.Entity.Find است. در بار اول فراخوانی این متد، مراجعه‌ای به بانک اطلاعاتی صورت گرفته تا بر اساس primary key ذکر شده در آرگومان آن، رکورد متناظری بازگشت داده شود. در بار دوم فراخوانی متد Find، دیگر مراجعه‌ای به بانک اطلاعاتی صورت نخواهد گرفت و اطلاعات از سطح اول کش (یا همان Context جاری) خوانده می‌شود.
بنابراین سطح اول کش در طول عمر یک تراکنش معنا پیدا می‌کند و به صورت خودکار توسط EF مدیریت می‌شود.

ب) سطح دوم کش
سطح دوم کش در ORMها طول عمر بیشتری داشته و سراسری است. هدف از آن کش کردن اطلاعات عمومی و پر مصرفی است که در دید تمام کاربران قرار دارد و همچنین تمام کاربران می‌توانند به آن دسترسی داشته باشند. بنابراین محدود به یک Context نیست.
عموما پیاده سازی سطح دوم کش خارج از ORM مورد استفاده قرار می‌گیرد و توسط اشخاص و شرکت‌های ثالث تهیه می‌شود.
در حال حاضر پیاده سازی توکاری از سطح دوم کش در EF Code first وجود ندارد و قصد داریم در مطلب جاری به یک پیاده سازی نسبتا خوب از آن برسیم.


تلاش‌های صورت گرفته

تا کنون دو پیاده سازی نسبتا خوب از سطح دوم کش در EF صورت گرفته:

Entity Framework Code First Caching
Caching the results of LINQ queries

مورد اول برای ایده گرفتن خوب است. بحث اصلی پیاده سازی سطح دوم کش، یافتن کلیدی است که معادل کوئری LINQ در حال فراخوانی است. سطح دوم کش را به صورت یک Dictionary تصور کنید. هر آیتم آن تشکیل شده است از یک کلید و یک مقدار. از کلید برای یافتن مقدار متناظر استفاده می‌شود.
اکنون مشکل چیست؟ در یک برنامه ممکن است صدها کوئری لینک وجود داشته باشد. چطور باید به ازای هر کوئری LINQ یک کلید منحصربفرد تولید کرد؟
در مطلب «Entity Framework Code First Caching» از متد ToString استفاده شده است. اگر این متد، بر روی یک عبارت LINQ در EF Code first فراخوانی شود، معادل SQL آن نمایش داده می‌شود. بنابراین یک قدم به تولید کلید منحصربفرد متناظر با یک کوئری نزدیک شده‌ایم. اما ... مشکل اینجا است که متد ToString پارامترها را لحاظ نمی‌کند. بنابراین این روش اصلا قابل استفاده نیست. چون کاربر به ازای تمام پارامترهای ارسالی، همواره یک نتیجه را دریافت خواهد کرد.
در مقاله «Caching the results of LINQ queries» این مشکل برطرف شده است. با parse کامل expression tree یک عبارت LINQ کلید منحصربفرد معادل آن یافت می‌شود. سپس بر این اساس می‌توان نتیجه کوئری را به نحو صحیحی کش کرد. در این روش پارامترها هم لحاظ می‌شوند و مشکل مقاله قبلی را ندارد.
اما این مقاله دوم یک مشکل مهم را به همراه دارد: روشی را برای حذف آیتم‌ها از کش ارائه نمی‌دهد. فرض کنید مقالات سایت را در سطح دوم کش قرار داده‌اید. اکنون یک مقاله جدید در سایت ثبت شده است. اصطلاحا برای invalidating کش در این روش، راهکاری پیشنهاد نشده است.


پیاده سازی بهتری از سطح دوم کش در EF Code fist

می‌توان از همان روش یافتن کلید منحصربفرد معادل با یک کوئری LINQ، که در مقاله دوم فوق، یاد شد، کار را شروع کرد و سپس آن‌را به مرحله‌ای رساند که مباحث حذف کش نیز به صورت خودکار مدیریت شود. پیاده سازی آن را برای برنامه‌های وب در ذیل ملاحظه می‌کنید:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Data.Objects;
using System.Diagnostics;
using System.Linq;
using System.Web;
using System.Web.Caching;

namespace EfSecondLevelCaching.Core
{
    public static class EfHttpRuntimeCacheProvider
    {
        #region Methods (6)

        // Public Methods (2) 

        public static IList<TEntity> ToCacheableList<TEntity>(
                            this IQueryable<TEntity> query,
                            int durationMinutes = 15,
                            CacheItemPriority priority = CacheItemPriority.Normal)
        {
            return query.Cacheable(x => x.ToList(), durationMinutes, priority);
        }

        /// <summary>
        /// Returns the result of the query; if possible from the cache, otherwise
        /// the query is materialized and the result cached before being returned.
        /// The cache entry has a one minute sliding expiration with normal priority.
        /// </summary>
        public static TResult Cacheable<TEntity, TResult>(
                            this IQueryable<TEntity> query,
                            Func<IQueryable<TEntity>, TResult> materializer,
                            int durationMinutes = 15,
                            CacheItemPriority priority = CacheItemPriority.Normal)
        {
            // Gets a cache key for a query.
            var queryCacheKey = query.GetCacheKey();

            // The name of the cache key used to clear the cache. All cached items depend on this key.
            var rootCacheKey = typeof(TEntity).FullName;

            // Try to get the query result from the cache.
            printAllCachedKeys();
            var result = HttpRuntime.Cache.Get(queryCacheKey);
            if (result != null)
            {
                debugWriteLine("Fetching object '{0}__{1}' from the cache.", rootCacheKey, queryCacheKey);
                return (TResult)result;
            }

            // Materialize the query.
            result = materializer(query);

            // Adding new data.
            debugWriteLine("Adding new data: queryKey={0}, dependencyKey={1}", queryCacheKey, rootCacheKey);
            storeRootCacheKey(rootCacheKey);
            HttpRuntime.Cache.Insert(
                    key: queryCacheKey,
                    value: result,
                    dependencies: new CacheDependency(null, new[] { rootCacheKey }),
                    absoluteExpiration: DateTime.Now.AddMinutes(durationMinutes),
                    slidingExpiration: Cache.NoSlidingExpiration,
                    priority: priority,
                    onRemoveCallback: null);

            return (TResult)result;
        }

        /// <summary>
        /// Call this method in `public override int SaveChanges()` of your DbContext class 
        /// to Invalidate Second Level Cache automatically.
        /// </summary>        
        public static void InvalidateSecondLevelCache(this DbContext ctx)
        {
            var changedEntityNames = ctx.ChangeTracker
                                      .Entries()
                                      .Where(x => x.State == EntityState.Added ||
                                                  x.State == EntityState.Modified ||
                                                  x.State == EntityState.Deleted)
                                      .Select(x => ObjectContext.GetObjectType(x.Entity.GetType()).FullName)
                                      .Distinct()
                                      .ToList();

            if (!changedEntityNames.Any()) return;

            printAllCachedKeys();
            foreach (var item in changedEntityNames)
            {
                item.removeEntityCache();
            }
            printAllCachedKeys();
        }
        // Private Methods (4) 

        private static void debugWriteLine(string format, params object[] args)
        {
            if (!Debugger.IsAttached) return;
            Debug.WriteLine(format, args);
        }

        private static void printAllCachedKeys()
        {
            if (!Debugger.IsAttached) return;
            debugWriteLine("Available cached keys list:");
            int count = 0;
            var enumerator = HttpRuntime.Cache.GetEnumerator();
            while (enumerator.MoveNext())
            {
                if (enumerator.Key.ToString().StartsWith("__")) continue; // such as __System.Web.WebPages.Deployment
                debugWriteLine("queryKey: {0}", enumerator.Key.ToString());
                count++;
            }
            debugWriteLine("count: {0}", count);
        }

        private static void removeEntityCache(this string rootCacheKey)
        {
            if (string.IsNullOrWhiteSpace(rootCacheKey)) return;
            debugWriteLine("Removing items with dependencyKey={0}", rootCacheKey);
            // Removes all cached items depend on this key.
            HttpRuntime.Cache.Remove(rootCacheKey);
        }

        private static void storeRootCacheKey(string rootCacheKey)
        {
            // The cacheKeys of a cacheDependency that are not already in cache ARE NOT inserted into the cache 
            // on the Insert of the item in which the dependency is used.
            if (HttpRuntime.Cache.Get(rootCacheKey) != null)
                return;

            HttpRuntime.Cache.Add(
                rootCacheKey,
                rootCacheKey,
                null,
                Cache.NoAbsoluteExpiration,
                Cache.NoSlidingExpiration,
                CacheItemPriority.Default,
                null);
        }

        #endregion Methods
    }
}

توضیحات کدهای فوق

در اینجا یک متدالحاقی به نام Cacheable توسعه داده شده است که می‌تواند در انتهای کوئری‌های LINQ شما قرار گیرد. مثلا:

var data = context.Products.AsQueryable().Cacheable(x => x.FirstOrDefault());

کاری که در این متد انجام می‌شود به این شرح است:
الف) ابتدا کلید منحصربفرد معادل کوئری LINQ فراخوانی شده محاسبه می‌شود.
ب) بر اساس نام کامل نوع Entity در حال استفاده، کلید دیگری به نام rootCacheKey تولید می‌گردد.
شاید بپرسید اهمیت این کلید چیست؟
فرض کنید در حال حاضر 1000 آیتم در کش وجود دارند. چه روشی را برای حذف آیتم‌های مرتبط با کش Entity1 پیشنهاد می‌دهید؟ احتمالا خواهید گفت تمام کش را بررسی کرده و آیتم‌ها را یکی یکی حذف می‌کنیم.
این روش بسیار کند است (و جواب هم نمی‌دهد؛ چون کلیدی که در اینجا تولید شده، هش MD5 معادل کوئری است و نمی‌توان آن‌را به موجودیتی خاص ربط داد) و ... نکته جالبی در متد HttpRuntime.Cache.Insert برای مدیریت آن پیش بینی شده است: استفاده از CacheDependency.
توسط CacheDependency می‌توان گروهی از آیتم‌های هم‌خانواده را تشکیل داد. سپس برای حذف کل این گروه کافی است کلید اصلی CacheDependency را حذف کرد. به این ترتیب به صورت خودکار کل کش مرتبط خالی می‌شود.
ج) مراحل بعدی آن هم یک سری اعمال متداول هستند. ابتدا توسط HttpRuntime.Cache.Get بررسی می‌شود که آیا بر اساس کلید متناظر با کوئری جاری، اطلاعاتی در کش وجود دارد یا خیر. اگر بله، نتیجه از کش خوانده می‌شود. اگر خیر، کوئری اصطلاحا materialized می‌شود تا بر روی بانک اطلاعاتی اجرا شده و نتیجه بازگشت داده شود. سپس این نتیجه را در کش قرار می‌دهیم.

مورد بعدی که باید به آن دقت داشت، خالی کردن کش، پس از به روز رسانی اطلاعات توسط کاربران است. این کار در متد InvalidateSecondLevelCache صورت می‌گیرد. به کمک ChangeTracker می‌توان نام نوع‌های موجودیت‌های تغییر کرده را یافت. چون کلید اصلی CacheDependency را بر مبنای همین نام نوع‌های موجودیت‌ها تعیین کرده‌ایم، به سادگی می‌توان کش مرتبط با موجودیت یافت شده را خالی کرد.
استفاده از متد InvalidateSecondLevelCache یاد شده به نحو زیر است:

using System.Data.Entity;
using EfSecondLevelCaching.Core;
using EfSecondLevelCaching.Test.Models;

namespace EfSecondLevelCaching.Test.DataLayer
{
    public class ProductContext : DbContext
    {
        public DbSet<Product> Products { get; set; }

        public override int SaveChanges()
        {
            this.InvalidateSecondLevelCache();
            return base.SaveChanges();
        }        
    }
}

در اینجا با تحریف متد SaveChanges، می‌توان درست در زمان اعمال تغییرات به بانک اطلاعاتی، قسمتی از کش را غیرمعتبر کرد.


نحوه استفاده از سطح دوم کش توسعه داده شده

مثالی از کاربرد متدهای الحاقی توسعه داده شده را در ذیل مشاهده می‌کنید:

using System.Data.Entity;
using System.Linq;
using EfSecondLevelCaching.Core;
using EfSecondLevelCaching.Test.DataLayer;
using EfSecondLevelCaching.Test.Models;
using System;

namespace EfSecondLevelCaching
{
    public static class TestUsages
    {
        public static void RunQueries()
        {
            using (ProductContext context = new ProductContext())
            {
                var isActive = true;
                var name = "Product1";

                // reading from db
                var list1 = context.Products
                                   .OrderBy(one => one.ProductNumber)
                                   .Where(x => x.IsActive == isActive && x.ProductName == name)
                                   .ToCacheableList();

                // reading from cache
                var list2 = context.Products
                                   .OrderBy(one => one.ProductNumber)
                                   .Where(x => x.IsActive == isActive && x.ProductName == name)
                                   .ToCacheableList();

                // reading from cache
                var list3 = context.Products
                                   .OrderBy(one => one.ProductNumber)
                                   .Where(x => x.IsActive == isActive && x.ProductName == name)
                                   .ToCacheableList();

                // reading from db
                var list4 = context.Products
                                   .OrderBy(one => one.ProductNumber)
                                   .Where(x => x.IsActive == isActive && x.ProductName == "Product2")
                                   .ToCacheableList();
            }

            // removes products cache
            using (ProductContext context = new ProductContext())
            {
                var p = new Product()
                {
                    IsActive = false,
                    ProductName = "P4",
                    ProductNumber = "004"
                };
                context.Products.Add(p);
                context.SaveChanges();
            }

            using (ProductContext context = new ProductContext())
            {
                var data = context.Products.AsQueryable().Cacheable(x => x.FirstOrDefault());
                var data2 = context.Products.AsQueryable().Cacheable(x => x.FirstOrDefault());
                context.SaveChanges();
            }
        }
    }
}

در این حالت اگر برنامه را اجرا کنیم به یک چنین خروجی در پنجره Debug ویژوال استودیو خواهیم رسید:

Adding new data: queryKey=72AF5DA1BA9B91E24DCCF83E88AD1C5F, dependencyKey=EfSecondLevelCaching.Test.Models.Product

Available cached keys list:
queryKey: EfSecondLevelCaching.Test.Models.Product
queryKey: 72AF5DA1BA9B91E24DCCF83E88AD1C5F
count: 2

Fetching object 'EfSecondLevelCaching.Test.Models.Product__72AF5DA1BA9B91E24DCCF83E88AD1C5F' from the cache.

Available cached keys list:
queryKey: EfSecondLevelCaching.Test.Models.Product
queryKey: 72AF5DA1BA9B91E24DCCF83E88AD1C5F
count: 2

Fetching object 'EfSecondLevelCaching.Test.Models.Product__72AF5DA1BA9B91E24DCCF83E88AD1C5F' from the cache.

Available cached keys list:
queryKey: EfSecondLevelCaching.Test.Models.Product
queryKey: 72AF5DA1BA9B91E24DCCF83E88AD1C5F
count: 2

Adding new data: queryKey=11A2C33F9AD7821A0A31003BFF1DF886, dependencyKey=EfSecondLevelCaching.Test.Models.Product

Available cached keys list:
queryKey: 72AF5DA1BA9B91E24DCCF83E88AD1C5F
queryKey: 11A2C33F9AD7821A0A31003BFF1DF886
queryKey: EfSecondLevelCaching.Test.Models.Product
count: 3

Removing items with dependencyKey=EfSecondLevelCaching.Test.Models.Product
Available cached keys list:
count: 0
Available cached keys list:
count: 0

Adding new data: queryKey=02E6FE403B461E45C5508684156C1D10, dependencyKey=EfSecondLevelCaching.Test.Models.Product

Available cached keys list:
queryKey: 02E6FE403B461E45C5508684156C1D10
queryKey: EfSecondLevelCaching.Test.Models.Product
count: 2


Fetching object 'EfSecondLevelCaching.Test.Models.Product__02E6FE403B461E45C5508684156C1D10' from the cache.

توضیحات:
در زمان تولید list1 چون اطلاعاتی در کش سطح دوم وجود ندارد، پیغام Adding new data قابل مشاهده است. اطلاعات از بانک اطلاعاتی دریافت شده و سپس در کش قرار داده می‌شود.
حین فراخوانی list2 که دقیقا همان کوئری list1 را یکبار دیگر فراخوانی می‌کند، به عبارت Fetching object خواهیم رسید که بر دریافت اطلاعات از کش سطح دوم بجای مراجعه به بانک اطلاعاتی دلالت دارد.
در list4 چون پارامترهای کوئری تغییر کرده‌اند، بنابراین دیگر کلید منحصربفرد معادل آن با list1 و lis2 یکی نیست و اینبار پیغام Adding new data مشاهده می‌شود؛ چون برای دریافت اطلاعات آن نیاز است که به بانک اطلاعاتی مراجعه شود.
در ادامه یک context دیگر باز شده و در آن رکوردی به بانک اطلاعاتی اضافه می‌شود. به همین دلیل اینبار پیام Removing items with dependencyKey قابل مشاهده است. به عبارتی متد InvalidateSecondLevelCache وارد عمل شده است و بر اساس تغییری که صورت گرفته، کش را غیرمعتبر کرده است.
سپس در context بعدی تعریف شده، دوبار متد FirstOrDefault فراخوانی شده است. اولین مورد Adding new data است و دومین فراخوانی به Fetching object ختم شده است (دریافت اطلاعات از کش).

کدهای کامل این پروژه را از اینجا می‌توانید دریافت کنید:
  EfSecondLevelCaching.zip
مطالب
نوشتن آزمون‌های واحد به کمک کتابخانه‌ی Moq - قسمت دوم - تنظیم مقادیر بازگشتی متدها
در قسمت قبل با مفاهیمی مانند fakes ،stubs ،dummies و mocks آشنا شدیم و در اولین آزمایشی که نوشتیم، کار تدارک dummies را به عنوان پارامترهای سازنده‌ی سرویس مورد بررسی، توسط کتابخانه‌ی Moq و اشیاء <Mock<T آن انجام دادیم؛ پارامترهایی که ذکر آن‌ها ضروری بودند، اما در آزمایش ما مورد استفاده قرار نمی‌گرفتند. در این قسمت می‌خواهیم کار تدارک stubs را توسط کتابخانه‌ی Moq انجام دهیم؛ به عبارتی می‌خواهیم مقادیر بازگشتی از متدهای اشیاء Mock شده را تنظیم و کنترل کنیم.


تنظیم خروجی متدهای اشیاء Mock شده

در انتهای قسمت قبل، آزمون واحد متد Accept، با شکست مواجه شد؛ چون متد Validate استفاده شده، همواره مقدار false را بر می‌گرداند:
_identityVerifier.Initialize();
var isValidIdentity = _identityVerifier.Validate(
     application.Applicant.Name, application.Applicant.Age, application.Applicant.Address);

در ادامه شیء Mock از نوع IIdentityVerifier را طوری تنظیم خواهیم کرد که بر اساس یک applicant مشخص، خروجی true را بازگشت دهد:
namespace Loans.Tests
{
    [TestClass]
    public class LoanApplicationProcessorShould
    {
        [TestMethod]
        public void Accept()
        {
            var product = new LoanProduct {Id = 99, ProductName = "Loan", InterestRate = 5.25m};
            var amount = new LoanAmount {CurrencyCode = "Rial", Principal = 2_000_000_0};
            var applicant =
                new Applicant {Id = 1, Name = "User 1", Age = 25, Address = "This place", Salary = 1_500_000_0};
            var application = new LoanApplication {Id = 42, Product = product, Amount = amount, Applicant = applicant};

            var mockIdentityVerifier = new Mock<IIdentityVerifier>();
            mockIdentityVerifier.Setup(x => x.Validate(applicant.Name, applicant.Age, applicant.Address))
                .Returns(true);

            var mockCreditScorer = new Mock<ICreditScorer>();

            var processor = new LoanApplicationProcessor(mockIdentityVerifier.Object, mockCreditScorer.Object);
            processor.Process(application);

            Assert.IsTrue(application.IsAccepted);
        }
    }
}
در اینجا ابتدا کار با شیء Mock شده آغاز می‌شود. سپس باز ذکر متد Setup، می‌توان به صورت strongly typed به تمام متدهای اینترفیس IIdentityVerifier دسترسی یافت و آن‌ها را تنظیم کرد. تا اینجا متد مدنظر را از اینترفیس IIdentityVerifier انتخاب کردیم. سپس توسط متد Returns، خروجی دقیقی را برای آن مشخص می‌کنیم.
به این ترتیب زمانیکه در متد Process کلاس LoanApplicationProcessor کار به بررسی هویت کاربر می‌رسد، اگر متد Validate آن با اطلاعات applicant مشخصی که تنظیم کردیم، یکی بود، متغیر isValidIdentity که حاصل بررسی identityVerifier.Validate_ است، به true مقدار دهی خواهد شد. برای بررسی آن یک break-point را در این نقطه قرار داده و آزمون واحد را در حالت دیباگ اجرا کنید.
البته هرچند اگر اکنون نیز این آزمایش واحد را مجددا بررسی کنیم، باز هم با شکست مواجه خواهد شد؛ چون مرحله‌ی بعدی بررسی، کار با سرویس ICreditScorer است که هنوز تنظیم نشده‌است:
_creditScorer.CalculateScore(application.Applicant.Name, application.Applicant.Address);
if (_creditScorer.Score < MinimumCreditScore)
{
    return application.IsAccepted;
}
فعلا این قسمت از code را comment می‌کنیم تا آزمایش واحد ما با موفقیت به پایان برسد. در قسمت بعدی کار تنظیم مقادیر خواص را انجام داده و این قسمت از code را نیز پوشش خواهیم داد.


تطابق با آرگومان‌های متدها در متدهای Mock شده

با تنظیمی که انجام دادیم، اگر متد Validate به مشخصات شیء applicant مشخص ما برسد، خروجی true را بازگشت می‌دهد. برای مثال اگر در این بین تنها نام شخص تغییر کند، خروجی بازگشت داده شده همان false خواهد بود. اما اگر این نام برای ما اهمیتی نداشت و قصد داشتیم با تمام نام‌های متفاوتی که دریافت می‌کند، بازهم خروجی true را بازگشت دهد، می‌توان از قابلیت argument matching کتابخانه‌ی Moq و کلاس It آن استفاده کرد:
var mockIdentityVerifier = new Mock<IIdentityVerifier>();
mockIdentityVerifier.Setup(x => x.Validate(
        //applicant.Name,
        It.IsAny<string>(),
        applicant.Age, 
        applicant.Address))
    .Returns(true);
()<It.IsAny<string در اینجا به این معنا است که هر نوع ورودی رشته‌ای، قابل قبول بوده و دیگر متد Validate بر اساس یک نام مشخص، مورد بررسی قرار نمی‌گیرد. IsAny یک متد جنریک است و بر اساس نوع آرگومان مدنظر که برای مثال در اینجا رشته‌ای است، نوع جنریک آن مشخص می‌شود.
بدیهی است در این حالت باید سایر پارامترها دقیقا با مقادیر مشخص شده تطابق داشته باشند و اگر این موارد نیز اهمیتی نداشتند، می‌توان به صورت زیر عمل کرد:
var mockIdentityVerifier = new Mock<IIdentityVerifier>();
mockIdentityVerifier.Setup(x => x.Validate(
        //applicant.Name,
        It.IsAny<string>(),
        //applicant.Age,
        It.IsAny<int>(),
        //applicant.Address
        It.IsAny<string>()
        ))
    .Returns(true);
در این حالت متد Validate، صرفنظر از ورودهای آن، همواره مقدار true را باز می‌گرداند.
البته این نوع تنظیمات بیشتر برای حالات غیرمشخص مانند استفادهاز Guidها به عنوان پارامترها و مقادیر، می‌تواند مفید باشد.


تقلید متدهایی که پارامترهایی از نوع out دارند

اگر به اینترفیس IIdentityVerifier که در قسمت قبل معرفی شد دقت کنیم، یکی از متدهای آن دارای خروجی از نوع out است:
using Loans.Models;

namespace Loans.Services.Contracts
{
    public interface IIdentityVerifier
    {
        void Validate(string applicantName, int applicantAge, string applicantAddress, out bool isValid);
// ...
    }
}
این متد خروجی ندارد، اما خروجی اصلی آن از طریق پارامتر isValid، دریافت می‌شود. برای استفاده‌ی از آن، متد Process کلاس LoanApplicationProcessor را به صورت زیر تغییر می‌دهیم:
//var isValidIdentity = _identityVerifier.Validate(
//    application.Applicant.Name, application.Applicant.Age, application.Applicant.Address);
_identityVerifier.Validate(
    application.Applicant.Name, application.Applicant.Age, application.Applicant.Address,
    out var isValidIdentity);
در این حالت اگر آزمون واحد متد Accept را بررسی کنیم، با شکست مواجه خواهد شد. به همین جهت تنظیمات Mocking این متد را به صورت زیر تعریف می‌کنیم:
var isValidOutValue = true;
mockIdentityVerifier.Setup(x => x.Validate(applicant.Name,
    applicant.Age,
    applicant.Address,
    out isValidOutValue));
برای تنظیم متدهایی که پارامترهایی از نوع out دارند، باید ابتدا مقدار مورد انتظار را مشخص کرد. بنابراین مقدار آن‌را به true در اینجا تنظیم کرده‌ایم. سپس در متد Setup، متدی تنظیم شده‌است که پارامتری از نوع out دارد. در آخر نیازی به ذکر متد Returns نیست؛ چون خروجی متد از نوع void است.
اکنون اگر مجددا آزمون واحد متد Accept را اجرا کنیم، با موفقیت به پایان می‌رسد.


تقلید متدهایی که پارامترهایی از نوع ref دارند

اگر به اینترفیس IIdentityVerifier که در قسمت قبل معرفی شد دقت کنیم، یکی از متدهای آن دارای خروجی از نوع ref است:
using Loans.Models;

namespace Loans.Services.Contracts
{
    public interface IIdentityVerifier
    {        
          void Validate(string applicantName, int applicantAge, string applicantAddress,
                             ref IdentityVerificationStatus status);
// ...
    }
}
این متد خروجی ندارد، اما خروجی اصلی آن از طریق پارامتر status، دریافت می‌شود و نوع آن به صورت زیر تعریف شده‌است تا وضعیت تعیین هویت شخص را مشخص کند:
namespace Loans.Models
{
    public class IdentityVerificationStatus
    {
        public bool Passed { get; set; }
    }
}
 برای استفاده‌ی از آن، متد Process کلاس LoanApplicationProcessor را به صورت زیر تغییر می‌دهیم تا بتوان به نمونه‌ی وهله سازی شده‌ی status دسترسی یافت:
IdentityVerificationStatus status = null;
  _identityVerifier.Validate(
      application.Applicant.Name, application.Applicant.Age, application.Applicant.Address,
      ref status);

if (!status.Passed)
{
    return application.IsAccepted;
}
در این حالت اگر آزمون واحد متد Accept را بررسی کنیم، با شکست مواجه خواهد شد. به همین جهت تنظیمات Mocking این متد را به صورت زیر تعریف می‌کنیم که با متدهای out دار مقداری متفاوت است:
ابتدا در سطح کلاس آزمایش واحد یک delegate را تعریف می‌کنیم:
delegate void ValidateCallback(string applicantName,
    int applicantAge,
    string applicantAddress,
    ref IdentityVerificationStatus status);
این delegate دقیقا دارای همان پارامترهای متد Validate در حال بررسی است.
اکنون روش استفاده‌ی از آن برای برپایی تنظیمات mocking متد Validate از نوع ref دار به صورت زیر است:
mockIdentityVerifier
    .Setup(x => x.Validate(applicant.Name,
        applicant.Age,
        applicant.Address,
        ref It.Ref<IdentityVerificationStatus>.IsAny))
    .Callback(new ValidateCallback(
        (string applicantName,
         int applicantAge,
         string applicantAddress,
         ref IdentityVerificationStatus status) =>
            status = new IdentityVerificationStatus {Passed = true}));
تنظیمات قسمت Setup آن آشنا است؛ بجز قسمت ref آن که از It.Ref<IdentityVerificationStatus>.IsAny استفاده کرده‌است. چون نوع پارامتر، ref است، باید از It.Ref استفاده کرد که به نوع بازگشت داده شده‌ی IdentityVerificationStatus اشاره می‌کند. IsAny آن هم هر نوع ورودی از این دست را می‌پذیرد.
سپس متد جدید Callback را مشاهده می‌کنید. توسط آن می‌توان یک قطعه کد سفارشی را زمانیکه متد Mock شده‌ی Validate ما اجرا می‌شود، اجرا کرد. در اینجا delegate سفارشی ما اجرا شده و مقدار status را بر می‌گرداند؛ اما در ادامه این مقدار را به یک new IdentityVerificationStatus سفارشی تنظیم می‌کنیم که در آن مقدار خاصیت Passed، مساوی true است.
اکنون اگر مجددا آزمون واحد متد Accept را اجرا کنیم، با موفقیت به پایان می‌رسد.


تنظیم متدهای Mock شده جهت بازگشت null

فرض کنید اینترفیسی به صورت زیر تعریف شده‌است:
namespace Loans.Services.Contracts
{
    public interface INullExample
    {
        string SomeMethod();
    }
}
و اگر بخواهیم برای آن آزمون واحدی را بنویسیم که خروجی این متد به صورت مشخصی نال باشد، می‌توان تنظیمات Moq آن‌را به صورت زیر انجام داد:
namespace Loans.Tests
{
    [TestClass]
    public class LoanApplicationProcessorShould
    {        
        [TestMethod]
        public void NullReturnExample()
        {
            var mock = new Mock<INullExample>();

            mock.Setup(x => x.SomeMethod());
            //.Returns<string>(null);

            string mockReturnValue = mock.Object.SomeMethod();

            Assert.IsNull(mockReturnValue);
        }
    }
}
در اینجا دو روش را برای بازگشت نال ملاحظه می‌کنید:
الف) می‌توان همانند سابق متد Returns را ذکر کرد که نال بر می‌گرداند؛ اما با این تفاوت که حتما باید نوع آرگومان جنریک آن‌را نیز بر اساس خروجی متد، مشخص کرد.
ب) کتابخانه‌ی Moq، مقدار خروجی پیش‌فرض تمام متدهایی را که یک نوع ارجاعی را باز می‌گردانند، نال درنظر می‌گیرد و عملا نیازی به ذکر متد Returns در اینجا نیست.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: MoqSeries-02.zip
مطالب دوره‌ها
استفاده از Full Text Search بر روی اسناد XML
امکان استفاده‌ی همزمان قابلیت Full Text Search و اسناد XML ایی نیز در SQL Server پیش بینی شده‌است. به این ترتیب می‌توان متون این اسناد را ایندکس و جستجو کرد. در این حالت تگ‌های XML ایی و ویژگی‌ها، به صورت خودکار حذف شده و در نظر گرفته نمی‌شوند. Syntax استفاده از Full text search در اینجا با سایر حالات و ستون‌های متداول رابطه‌ای SQL Server تفاوتی ندارد. به علاوه امکان ترکیب آن با یک XQuery نیز میسر است. در این حالت، Full text search، ابتدا انجام شده و سپس با استفاده از XQuery می‌توان بر روی این نتایج، نودها، مسیرها و ویژگی‌های خاصی را جستجو کرد.


نحوه‌ی استفاده از Full Text Search بر روی ستون‌های XML ایی

برای  آزمایش، ابتدا یک جدول جدید را که حاوی ستونی XML ایی است، ایجاد کرده و سپس چند سند XML را که حاوی متونی نسبتا طولانی هستند، در آن ثبت می‌کنیم. ذکر CONSTRAINT در اینجا جهت دستور ایجاد ایندکس Full Text Search ضروری است.
CREATE TABLE ftsXML(
id INT IDENTITY PRIMARY KEY,
doc XML NULL
CONSTRAINT UQ_FTS_Id UNIQUE(id)
)
GO
INSERT ftsXML VALUES('
<book>
<title>Sample book title 1</title>
<author>Vahid</author>
<chapter ID="1">
<title>Chapter 1</title>
<content>
"The quick brown fox jumps over the lazy dog" is an English-language 
pangram—a phrase that contains all of the letters of the English alphabet. 
It has been used to test typewriters and computer keyboards, and in other 
applications involving all of the letters in the English alphabet. Owing to its 
brevity and coherence, it has become widely known.
</content>
</chapter>
<chapter ID="2">
<title>Chapter 2</title>
<content>
In publishing and graphic design, lorem ipsum is a placeholder text commonly used 
to demonstrate the graphic elements of a document or visual presentation. 
By replacing the distraction of meaningful content with filler text of scrambled 
Latin it allows viewers to focus on graphical elements such as font, typography, 
and layout.
</content>
</chapter>
</book>
')

INSERT ftsXML VALUES('
<book>
<title>Sample book title 2</title>
<author>Farid</author>
<chapter ID="1">
<title>Chapter 1</title>
<content>
The original passage began: Neque porro quisquam est qui dolorem ipsum quia dolor sit 
amet consectetur adipisci velit 
</content>
</chapter>
<chapter ID="2">
<title>Chapter 2</title>
<content>
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor 
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis 
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. 
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore 
eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, 
sunt in culpa qui officia deserunt mollit anim id est laborum.
</content>
</chapter>
</book>
')
GO
سپس با استفاده از دستورات ذیل، Full text search را بر روی ستون doc جدول ایجاد شده، فعال می‌کنیم:
 CREATE FULLTEXT CATALOG FT_CATALOG
GO
CREATE FULLTEXT INDEX ON ftsXML([doc])
KEY INDEX UQ_FTS_Id ON ([FT_CATALOG], FILEGROUP [PRIMARY])
GO
اکنون می‌توانیم با ترکیبی از امکانات Full Text Search و XQuery، از ستون doc، کوئری‌های پیشرفته و سریعی را تهیه کنیم.


راه اندازی سرویس Full Text Search

البته پیش از ادامه‌ی بحث به کنسول سرویس‌های ویندوز مراجعه کرده و مطمئن شوید که سرویس SQL Full-text Filter Daemon Launcher MSSQLSERVER در حال اجرا است. در غیراینصورت با خطای ذیل مواجه خواهید شد:
 SQL Server encountered error 0x80070422 while communicating with full-text filter daemon host (FDHost) process.
اگر این سرویس در حال اجرا است و باز هم خطای فوق ظاهر شد، مجددا به کنسول سرویس‌های ویندوز مراجعه کرد، در برگه‌ی  خواص سرویس SQL Full-text Filter Daemon Launcher MSSQLSERVER، گزینه‌ی logon را یافته و آن‌را به local system account تغییر دهید و سپس سرویس را ری استارت کنید. پس از آن نیاز است دستور ذیل را نیز اجرا کنید:
 sp_fulltext_service 'restart_all_fdhosts'
go
بعد از اینکار، بازسازی مجدد Full text search را فراموش نکنید. در این حالت در management studio، به بانک اطلاعاتی مورد نظر مراجعه کرده، نود Storage / Full Text Catalog را باز کنید. سپس بر روی FT_CATALOG ایجاد شده در ابتدای بحث کلیک راست کرده و از منوی ظاهر شده، گزینه‌ی Rebuild را انتخاب کنید. در غیراینصورت کوئری‌های ادامه‌ی بحث، خروجی خاصی را نمایش نخواهند داد.


استفاده از متد Contains

در ادامه، نحوه‌ی ترکیب امکانات Full text search و XQuery را ملاحظه می‌کنید:
 -- استفاده از ایکس کوئری برای جستجو در نتایج حاصل
SELECT T.doc.value('(/book/title)[1]', 'varchar(100)') AS title
FROM
-- استفاده از اف تی اس برای جستجو
(SELECT * FROM ftsXML
WHERE CONTAINS(doc, '"Quick Brown Fox "')) AS T
ابتدا توسط متد Contains مرتبط به Full text search، ردیف‌های مورد نظر را یافته و سپس بر روی آن‌ها با استفاده از XQuery جستجوی دلخواهی را انجام می‌دهیم؛ از این جهت که Full text search تنها متون فیلدهای XML ایی را ایندکس می‌کند و نه تگ‌های آن‌ها را.
خروجی کوئری فوق، Sample book title 1 است.

Full text search امکانات پیشرفته‌تری را نیز ارائه می‌دهد. برای مثال در ردیف‌های ثبت شده داریم fox jumps، اما در متن ورودی عبارت جستجو، jumped را وارد کرده و به دنبال نزدیک‌ترین رکورد به آن خواهیم گشت:
 SELECT T.doc.value('(/book/title)[1]', 'varchar(100)') AS title
FROM
(SELECT * FROM ftsXML
WHERE CONTAINS(doc, 'FORMSOF (INFLECTIONAL ,"Quick Brown Fox jumped")')) AS T

و یا دو کلمه‌ی نزدیک به هم را می‌توان جستجو کرد:
 SELECT T.doc.value('(/book/title)[1]', 'varchar(100)') AS title
FROM
(SELECT * FROM ftsXML
WHERE CONTAINS(doc, 'quick NEAR fox')) AS T


نکته‌ای در مورد متد Contains

هم Full text search و هم XQuery، هر دو دارای متدی به نام Contains هستند اما یکی نمی‌باشند.
 SELECT doc.value('(/book/title)[1]', 'varchar(100)') AS title
FROM ftsXML
WHERE doc.exist('/book/chapter/content[contains(., "Quick Brown Fox")]') = 1
در اینجا نحوه‌ی استفاده از متد contains مرتبط با XQuery را مشاهده می‌کنید. اگر این کوئری را اجرا کنید، نتیجه‌ای را دریافت نخواهید کرد. زیرا در ردیف‌ها داریم quick brown fox و نه Quick Brown Fox (حروف ابتدای کلمات، بزرگ نیستند).
بنابراین متد contains مرتبط با XQuery یک جستجوی case sensitive را انجام می‌دهد.
مطالب
استفاده از Fluent Validation در برنامه‌های ASP.NET Core - قسمت اول - معرفی، نصب و تعریف قواعد اعتبارسنجی
روش مرسوم اعتبارسنجی اطلاعات مدل‌های ASP.NET Core، با استفاده از data annotations توکار آن است که در بسیاری از موارد هم به خوبی کار می‌کند. اما اگر به دنبال ویژگی‌های دیگری مانند نوشتن آزمون‌های واحد برای اعتبارسنجی اطلاعات، جداسازی شرط‌های اعتبارسنجی از تعاریف مدل‌ها، نوشتن اعتبارسنجی‌های پیچیده به همراه تزریق وابستگی‌ها هستید، کتابخانه‌ی FluentValidation می‌تواند جایگزین بهتر و بسیار کاملتری باشد.


نصب کتابخانه‌ی FluentValidation در پروژه

فرض کنید پروژه‌ی ما از سه پوشه‌ی FluentValidationSample.Web، FluentValidationSample.Models و FluentValidationSample.Services تشکیل شده‌است که اولی یک پروژه‌ی MVC است و دو مورد دیگر classlib هستند.
در پروژه‌ی FluentValidationSample.Models، بسته‌ی نیوگت کتابخانه‌ی FluentValidation را به صورت زیر نصب می‌کنیم:
dotnet add package FluentValidation.AspNetCore


جایگزین کردن سیستم اعتبارسنجی مبتنی بر DataAnnotations با FluentValidation

اکنون فرض کنید در پروژه‌ی Models، مدل ثبت‌نام زیر را اضافه کرده‌ایم که از همان data annotations توکار و استاندارد ASP.NET Core برای اعتبارسنجی اطلاعات استفاده می‌کند:
using System.ComponentModel.DataAnnotations;

namespace FluentValidationSample.Models
{
    public class RegisterModel
    {
        [Required]
        [Display(Name = "User name")]
        public string UserName { get; set; }

        [Required]
        [StringLength(100, ErrorMessage = "The {0} must be at least {2} characters long.", MinimumLength = 6)]
        [DataType(DataType.Password)]
        [Display(Name = "Password")]
        public string Password { get; set; }

        [DataType(DataType.Password)]
        [Display(Name = "Confirm password")]
        [Compare("Password", ErrorMessage = "The password and confirmation password do not match.")]
        public string ConfirmPassword { get; set; }

        [DataType(DataType.EmailAddress)]
        [Display(Name = "Email")]
        [EmailAddress]
        public string Email { get; set; }

        [Range(18, 60)]
        [Display(Name = "Age")]
        public int Age { get; set; }
    }
}
برای جایگزین کردن data annotations اعتبارسنجی اطلاعات با روش FluentValidation، می‌توان به صورت زیر عمل کرد:
using FluentValidation;

namespace FluentValidationSample.Models
{
    public class RegisterModelValidator : AbstractValidator<RegisterModel>
    {
        public RegisterModelValidator()
        {
            RuleFor(x => x.UserName).NotNull();
            RuleFor(x => x.Password).NotNull().Length(6, 100);
            RuleFor(x => x.ConfirmPassword).Equal(x => x.Password);
            RuleFor(x => x.Email).EmailAddress();
            RuleFor(x => x.Age).InclusiveBetween(18, 60);
        }
    }
}
برای این منظور ابتدا یک کلاس Validator را با ارث بری از AbstractValidator از نوع مدلی که می‌خواهیم قواعد اعتبارسنجی آن‌را مشخص کنیم، ایجاد می‌کنیم. سپس در سازنده‌ی آن، می‌توان به متدهای تعریف شده‌ی در این کلاس پایه دسترسی یافت.
در اینجا در ابتدا به ازای هر خاصیت کلاس مدل مدنظر، یک RuleFor تعریف می‌شود که با استفاده از static reflection، امکان تعریف strongly typed آن‌ها وجود دارد. سپس ویژگی Required به متد NotNull تبدیل می‌شود و ویژگی StringLength توسط متد Length قابل تعریف خواهد بود و یا ویژگی Compare توسط متد Equal به صورت strongly typed به خاصیت دیگری متصل می‌شود.

پس از این تعاریف، می‌توان ویژگی‌های اعتبارسنجی اطلاعات را از مدل ثبت نام حذف کرد و تنها ویژگی‌های خاص Viewهای MVC را در صورت نیاز باقی گذاشت:
using System.ComponentModel.DataAnnotations;

namespace FluentValidationSample.Models
{
    public class RegisterModel
    {
        [Display(Name = "User name")]
        public string UserName { get; set; }

        [DataType(DataType.Password)]
        [Display(Name = "Password")]
        public string Password { get; set; }

        [DataType(DataType.Password)]
        [Display(Name = "Confirm password")]
        public string ConfirmPassword { get; set; }

        [DataType(DataType.EmailAddress)]
        [Display(Name = "Email")]
        public string Email { get; set; }

        [Display(Name = "Age")]
        public int Age { get; set; }
    }
}


تعریف پیام‌های سفارشی اعتبارسنجی

روش تعریف پیام‌های سفارشی شکست اعتبارسنجی اطلاعات را توسط متد WithMessage در ادامه مشاهده می‌کنید:
using FluentValidation;

namespace FluentValidationSample.Models
{
    public class RegisterModelValidator : AbstractValidator<RegisterModel>
    {
        public RegisterModelValidator()
        {
            RuleFor(x => x.UserName)
                .NotNull()
                    .WithMessage("Your first name is required.")
                .MaximumLength(20)
                    .WithMessage("Your first name is too long!")
                .MinimumLength(3)
                    .WithMessage(registerModel => $"Your first name `{registerModel.UserName}` is too short!");

            RuleFor(x => x.Password)
                .NotNull()
                    .WithMessage("Your password is required.")
                .Length(6, 100);

            RuleFor(x => x.ConfirmPassword)
                .NotNull()
                    .WithMessage("Your confirmation password is required.")
                .Equal(x => x.Password)
                    .WithMessage("The password and confirmation password do not match.");

            RuleFor(x => x.Email).EmailAddress();
            RuleFor(x => x.Age).InclusiveBetween(18, 60);
        }
    }
}
به ازای هر متد تعریف یک قاعده‌ی اعتبارسنجی جدید، بلافاصله می‌توان از متد WithMessage نیز استفاده کرد. همچنین این متد می‌تواند به اطلاعات اصل model دریافتی نیز همانند پیام سفارشی مرتبط با MinimumLength نام کاربری، دسترسی پیدا کند.


روش تعریف اعتبارسنجی‌های سفارشی خواص مدل

فرض کنید می‌خواهیم یک کلمه‌ی عبور وارد شده‌ی معتبر، حتما از جمع حروف کوچک، بزرگ، اعداد و symbols تشکیل شده باشد. برای این منظور می‌توان از متد Must استفاده کرد:
using System.Text.RegularExpressions;
using FluentValidation;

namespace FluentValidationSample.Models
{
    public class RegisterModelValidator : AbstractValidator<RegisterModel>
    {
        public RegisterModelValidator()
        {
            RuleFor(x => x.Password)
                .NotNull()
                    .WithMessage("Your password is required.")
                .Length(6, 100)
                .Must(password => hasValidPassword(password));
            //...

        }

        private static bool hasValidPassword(string password)
        {
            var lowercase = new Regex("[a-z]+");
            var uppercase = new Regex("[A-Z]+");
            var digit = new Regex("(\\d)+");
            var symbol = new Regex("(\\W)+");
            return lowercase.IsMatch(password) &&
                    uppercase.IsMatch(password) &&
                    digit.IsMatch(password) &&
                    symbol.IsMatch(password);
        }
    }
}
متد Must، می‌تواند مقدار خاصیت متناظر را نیز در اختیار ما قرار دهد و بر اساس آن مقدار می‌توان خروجی true/false ای را بازگشت داد تا نشان شکست و یا موفقیت آمیز بودن اعتبارسنجی اطلاعات باشد.

البته lambda expression نوشته شده را می‌توان توسط method groups، به صورت زیر نیز خلاصه نوشت:
RuleFor(x => x.Password)
    .NotNull()
        .WithMessage("Your password is required.")
    .Length(6, 100)
    .Must(hasValidPassword);


انتقال تعاریف اعتبارسنج‌های سفارشی خواص به کلاس‌های مجزا

اگر نیاز به استفاده‌ی از متد hasValidPassword در کلاس‌های دیگری نیز وجود دارد، می‌توان اینگونه اعتبارسنجی‌های سفارشی را به کلاس‌های مجزایی نیز تبدیل کرد. برای مثال فرض کنید که می‌خواهیم ایمیل دریافت شده، فقط از یک دومین خاص قابل قبول باشد.
using System;
using FluentValidation;
using FluentValidation.Validators;

namespace FluentValidationSample.Models
{
    public class EmailFromDomainValidator : PropertyValidator
    {
        private readonly string _domain;

        public EmailFromDomainValidator(string domain)
            : base("Email address {PropertyValue} is not from domain {domain}")
        {
            _domain = domain;
        }

        protected override bool IsValid(PropertyValidatorContext context)
        {
            if (context.PropertyValue == null) return false;
            var split = context.PropertyValue.ToString().Split('@');
            return split.Length == 2 && split[1].Equals(_domain, StringComparison.OrdinalIgnoreCase);
        }
    }
}
برای این منظور یک کلاس جدید را با ارث‌بری از PropertyValidator تعریف شده‌ی در فضای نام FluentValidation.Validators، ایجاد می‌کنیم. سپس متد IsValid آن‌را بازنویسی می‌کنیم تا برای مثال ایمیل‌ها را صرفا از دومین خاصی بپذیرد.
PropertyValidatorContext امکان دسترسی به نام و مقدار خاصیت در حال اعتبارسنجی را میسر می‌کند. همچنین مقدار کل model جاری را نیز به صورت یک object در اختیار ما قرار می‌دهد.

اکنون برای استفاده‌ی از آن می‌توان از متد SetValidator استفاده کرد:
RuleFor(x => x.Email)
    .SetValidator(new EmailFromDomainValidator("gmail.com"));
و یا حتی می‌توان یک متد الحاقی fluent را نیز برای آن طراحی کرد تا SetValidator را به صورت خودکار فراخوانی کند:
    public static class CustomValidatorExtensions
    {
        public static IRuleBuilderOptions<T, string> EmailAddressFromDomain<T>(
            this IRuleBuilder<T, string> ruleBuilder, string domain)
        {
            return ruleBuilder.SetValidator(new EmailFromDomainValidator(domain));
        }
    }
سپس تعریف قاعده‌ی اعتبارسنجی ایمیل‌ها به صورت زیر تغییر می‌کند:
RuleFor(x => x.Email).EmailAddressFromDomain("gmail.com");


تعریف قواعد اعتبارسنجی خواص تو در تو و لیستی

فرض کنید به RegisterModel این قسمت، دو خاصیت آدرس و شماره تلفن‌ها نیز اضافه شده‌است که یکی به شیء آدرس و دیگری به مجموعه‌ای از آدرس‌ها اشاره می‌کند:
    public class RegisterModel
    {
        // ...

        public Address Address { get; set; }

        public ICollection<Phone> Phones { get; set; }
    }

    public class Phone
    {
        public string Number { get; set; }
        public string Description { get; set; }
    }

    public class Address
    {
        public string Location { get; set; }
        public string PostalCode { get; set; }
    }
در یک چنین حالتی، ابتدا به صورت متداول، قواعد اعتبارسنجی Phone و Address را جداگانه تعریف می‌کنیم:
    public class PhoneValidator : AbstractValidator<Phone>
    {
        public PhoneValidator()
        {
            RuleFor(x => x.Number).NotNull();
        }
    }

    public class AddressValidator : AbstractValidator<Address>
    {
        public AddressValidator()
        {
            RuleFor(x => x.PostalCode).NotNull();
            RuleFor(x => x.Location).NotNull();
        }
    }
سپس برای تعریف اعتبارسنجی دو خاصیت پیچیده‌ی اضافه شده، می‌توان از همان متد SetValidator استفاده کرد که اینبار پارامتر ورودی آن، نمونه‌ای از AbstractValidator‌های هرکدام است. البته برای خاصیت مجموعه‌ای اینبار باید با متد RuleForEach شروع کرد:
    public class RegisterModelValidator : AbstractValidator<RegisterModel>
    {
        public RegisterModelValidator()
        {
            // ...

            RuleFor(x => x.Address).SetValidator(new AddressValidator());

            RuleForEach(x => x.Phones).SetValidator(new PhoneValidator());
        }


در قسمت بعد، روش‌های مختلف استفاده‌ی از قواعد اعتبارسنجی تعریف شده را در یک برنامه‌ی ASP.NET Core بررسی می‌کنیم.



برای مطالعه‌ی بیشتر
- «FluentValidation #1»
نظرات مطالب
EF Code First #7
- در قسمت HasRequired که Username نباید تعریف شود. در اینجا یک سر دیگر رابطه باید معرفی گردد. همان روابط و کلاس‌هایی که به صورت virtual در کدها آمده.  HasRequired با IsRequired متفاوت است.
+ حذف آبشاری به صورت پیش فرض فعال است (برای مواردی که کلید خارجی نال پذیر نیست). نیازی به فعال سازی دستی آن نیست.
نظرات مطالب
EF Code First #5
فقط قسمت Database.SetInitializer را نال کنید تا برنامه مستقیما کار به روز رسانی ساختار بانک اطلاعاتی را انجام ندهد. بعد، از اسکریپت تولیدی مطابق روشی که در انتهای بحث توضیح دادم پس از بررسی‌های لازم استفاده کنید. بنابراین تنظیمی را لازم نیست حذف کنید. فقط باید با احتیاط جلو رفت و بررسی کامل اسکریپت تولیدی و سپس اجرای دستی آن روی بانک اطلاعاتی.