مطالب
Blazor 5x - قسمت 31 - احراز هویت و اعتبارسنجی کاربران Blazor WASM - بخش 1 - انجام تنظیمات اولیه
در قسمت قبل، امکان سفارش یک اتاق را به همراه پرداخت آنلاین آن، به برنامه‌ی Blazor WASM این سری اضافه کردیم؛ اما ... هویت کاربری که مشغول انجام اینکار است، هنوز مشخص نیست. بنابراین در این قسمت می‌خواهیم مباحثی مانند ثبت نام و ورود به سیستم را تکمیل کنیم. البته مقدمات سمت سرور این بحث را در مطلب «Blazor 5x - قسمت 25 - تهیه API مخصوص Blazor WASM - بخش 2 - تامین پایه‌ی اعتبارسنجی و احراز هویت»، بررسی کردیم.


ارائه‌ی AuthenticationState به تمام کامپوننت‌های یک برنامه‌ی Blazor WASM

در قسمت 22، با مفاهیم CascadingAuthenticationState و AuthorizeRouteView در برنامه‌های Blazor Server آشنا شدیم؛ این مفاهیم در اینجا نیز یکی هستند:
- کامپوننت CascadingAuthenticationState سبب می‌شود AuthenticationState (لیستی از Claims کاربر)، به تمام کامپوننت‌های یک برنامه‌یBlazor  ارسال شود. در مورد پارامترهای آبشاری، در قسمت نهم این سری بیشتر بحث شد و هدف از آن، ارائه‌ی یکسری اطلاعات، به تمام زیر کامپوننت‌های یک کامپوننت والد است؛ بدون اینکه نیاز باشد مدام این پارامترها را در هر زیر کامپوننتی، تعریف و تنظیم کنیم. همینقدر که آن‌ها را در بالاترین سطح سلسله مراتب کامپوننت‌های تعریف شده تعریف کردیم، در تمام زیر کامپوننت‌های آن نیز در دسترس خواهند بود.
- کامپوننت AuthorizeRouteView امکان محدود کردن دسترسی به صفحات مختلف برنامه‌ی Blazor را بر اساس وضعیت اعتبارسنجی و نقش‌های کاربر جاری، میسر می‌کند.

روش اعمال این دو کامپوننت نیز یکی است و نیاز به ویرایش فایل BlazorWasm.Client\App.razor در اینجا وجود دارد:
<CascadingAuthenticationState>
    <Router AppAssembly="@typeof(Program).Assembly" PreferExactMatches="@true">
        <Found Context="routeData">
            <AuthorizeRouteView RouteData="@routeData" DefaultLayout="@typeof(MainLayout)">
                <Authorizing>
                    <p>Please wait, we are authorizing the user.</p>
                </Authorizing>
                <NotAuthorized>
                    <p>Not Authorized</p>
                </NotAuthorized>
            </AuthorizeRouteView>
        </Found>
        <NotFound>
                <LayoutView Layout="@typeof(MainLayout)">
                    <p>Sorry, there's nothing at this address.</p>
                </LayoutView>
        </NotFound>
    </Router>
</CascadingAuthenticationState>
کامپوننت CascadingAuthenticationState، اطلاعات AuthenticationState را در اختیار تمام کامپوننت‌های برنامه قرار می‌دهد و کامپوننت AuthorizeRouteView، امکان نمایش یا عدم نمایش قسمتی از صفحه را بر اساس وضعیت لاگین شخص و یا محدود کردن دسترسی بر اساس نقش‌ها، میسر می‌کند.


مشکل! برخلاف برنامه‌های Blazor Server، برنامه‌های Blazor WASM به صورت پیش‌فرض به همراه تامین کننده‌ی توکار AuthenticationState نیستند.

اگر سری Blazor جاری را از ابتدا دنبال کرده باشید، کاربرد AuthenticationState را در برنامه‌های Blazor Server، در قسمت‌های 21 تا 23، پیشتر مشاهده کرده‌اید. همان مفاهیم، در برنامه‌های Blazor WASM هم قابل استفاده هستند؛ البته در اینجا به علت جدا بودن برنامه‌ی سمت کلاینت WASM Blazor، از برنامه‌ی Web API سمت سرور، نیاز است یک تامین کننده‌ی سمت کلاینت AuthenticationState را بر اساس JSON Web Token دریافتی از سرور، تشکیل دهیم و برخلاف برنامه‌های Blazor Server، این مورد به صورت خودکار مدیریت نمی‌شود و با ASP.NET Core Identity سمت سروری که JWT تولید می‌کند، یکپارچه نیست.
بنابراین در اینجا نیاز است یک AuthenticationStateProvider سفارشی سمت کلاینت را تهیه کنیم که بر اساس JWT دریافتی از Web API کار می‌کند. به همین جهت در ابتدا یک JWT Parser را طراحی می‌کنیم که رشته‌ی JWT دریافتی از سرور را تبدیل به <IEnumerable<Claim می‌کند. سپس این لیست را در اختیار یک AuthenticationStateProvider سفارشی قرار می‌دهیم تا اطلاعات مورد نیاز کامپوننت‌های CascadingAuthenticationState و AuthorizeRouteView تامین شده و قابل استفاده شوند.


نیاز به یک JWT Parser

در قسمت 25، پس از لاگین موفق، یک JWT تولید می‌شود که به همراه قسمتی از مشخصات کاربر است. می‌توان محتوای این توکن را در سایت jwt.io مورد بررسی قرار داد که برای نمونه به این خروجی می‌رسیم و حاوی claims تعریف شده‌است:
{
  "iss": "https://localhost:5001/",
  "iat": 1616396383,
  "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name": "vahid@dntips.ir",
  "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress": "vahid@dntips.ir",
  "Id": "582855fb-e95b-45ab-b349-5e9f7de40c0c",
  "DisplayName": "vahid@dntips.ir",
  "http://schemas.microsoft.com/ws/2008/06/identity/claims/role": "Admin",
  "nbf": 1616396383,
  "exp": 1616397583,
  "aud": "Any"
}
بنابراین برای استخراج این claims در سمت کلاینت، نیاز به یک JWT Parser داریم که نمونه‌ای از آن می‌تواند به صورت زیر باشد:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Security.Claims;
using System.Text.Json;

namespace BlazorWasm.Client.Utils
{
    /// <summary>
    /// From the Steve Sanderson’s Mission Control project:
    /// https://github.com/SteveSandersonMS/presentation-2019-06-NDCOslo/blob/master/demos/MissionControl/MissionControl.Client/Util/ServiceExtensions.cs
    /// </summary>
    public static class JwtParser
    {
        public static IEnumerable<Claim> ParseClaimsFromJwt(string jwt)
        {
            var claims = new List<Claim>();
            var payload = jwt.Split('.')[1];

            var jsonBytes = ParseBase64WithoutPadding(payload);

            var keyValuePairs = JsonSerializer.Deserialize<Dictionary<string, object>>(jsonBytes);
            claims.AddRange(keyValuePairs.Select(kvp => new Claim(kvp.Key, kvp.Value.ToString())));
            return claims;
        }

        private static byte[] ParseBase64WithoutPadding(string base64)
        {
            switch (base64.Length % 4)
            {
                case 2: base64 += "=="; break;
                case 3: base64 += "="; break;
            }
            return Convert.FromBase64String(base64);
        }
    }
}
که آن‌را در فایل BlazorWasm.Client\Utils\JwtParser.cs برنامه‌ی کلاینت ذخیره خواهیم کرد. متد ParseClaimsFromJwt فوق، رشته‌ی JWT تولیدی حاصل از لاگین موفق در سمت Web API را دریافت کرده و تبدیل به لیستی از Claimها می‌کند.


تامین AuthenticationState مبتنی بر JWT مخصوص برنامه‌‌های Blazor WASM

پس از داشتن لیست Claims دریافتی از یک رشته‌ی JWT، اکنون می‌توان آن‌را تبدیل به یک AuthenticationStateProvider کرد. برای اینکار در ابتدا نیاز است بسته‌ی نیوگت Microsoft.AspNetCore.Components.Authorization را به برنامه‌ی کلاینت اضافه کرد:
<Project Sdk="Microsoft.NET.Sdk.BlazorWebAssembly">
  <ItemGroup>
    <PackageReference Include="Microsoft.AspNetCore.Components.Authorization" Version="5.0.4" />
  </ItemGroup>
</Project>
سپس سرویس سفارشی AuthStateProvider خود را به پوشه‌ی Services برنامه اضافه می‌کنیم و متد GetAuthenticationStateAsync کلاس پایه‌ی AuthenticationStateProvider استاندارد را به نحو زیر بازنویسی و سفارشی سازی می‌کنیم:
namespace BlazorWasm.Client.Services
{
    public class AuthStateProvider : AuthenticationStateProvider
    {
        private readonly HttpClient _httpClient;
        private readonly ILocalStorageService _localStorage;

        public AuthStateProvider(HttpClient httpClient, ILocalStorageService localStorage)
        {
            _httpClient = httpClient ?? throw new ArgumentNullException(nameof(httpClient));
            _localStorage = localStorage ?? throw new ArgumentNullException(nameof(localStorage));
        }

        public override async Task<AuthenticationState> GetAuthenticationStateAsync()
        {
            var token = await _localStorage.GetItemAsync<string>(ConstantKeys.LocalToken);
            if (token == null)
            {
                return new AuthenticationState(new ClaimsPrincipal(new ClaimsIdentity()));
            }

            _httpClient.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("bearer", token);
            return new AuthenticationState(
                        new ClaimsPrincipal(
                            new ClaimsIdentity(JwtParser.ParseClaimsFromJwt(token), "jwtAuthType")
                        )
                    );
        }
    }
}
- اگر با برنامه‌های سمت کلاینت React و یا Angular پیشتر کار کرده باشید، منطق این کلاس بسیار آشنا به نظر می‌رسد. در این برنامه‌ها، مفهومی به نام Interceptor وجود دارد که توسط آن به صورت خودکار، هدر JWT را به تمام درخواست‌های ارسالی به سمت سرور، اضافه می‌کنند تا از تکرار این قطعه کد خاص، جلوگیری شود. علت اینجا است که برای دسترسی به منابع محافظت شده‌ی سمت سرور، نیاز است هدر ویژه‌ای را به نام "Authorization" که با مقدار "bearer jwt" تشکیل می‌شود، به ازای هر درخواست ارسالی به سمت سرور نیز ارسال کرد؛ تا تنظیمات ویژه‌ی AddJwtBearer که در قسمت 25 در کلاس آغازین برنامه‌ی Web API انجام دادیم، این هدر مورد انتظار را دریافت کرده و پردازش کند و در نتیجه‌ی آن، شیء this.User، در اکشن متدهای کنترلرها تشکیل شده و قابل استفاده شود.
در اینجا نیز مقدار دهی خودکار httpClient.DefaultRequestHeaders.Authorization را مشاهده می‌کنید که مقدار token خودش را از Local Storage دریافت می‌کند که کلید متناظر با آن‌را در پروژه‌ی BlazorServer.Common به صورت زیر تعریف کرده‌ایم:
namespace BlazorServer.Common
{
    public static class ConstantKeys
    {
        // ...
        public const string LocalToken = "JWT Token";
    }
}
به این ترتیب دیگر نیازی نخواهد بود در تمام سرویس‌های برنامه‌ی WASM که با HttpClient کار می‌کنند، مدام سطر مقدار دهی httpClient.DefaultRequestHeaders.Authorization را تکرار کنیم.
- همچنین در اینجا به کمک متد JwtParser.ParseClaimsFromJwt که در ابتدای بحث تهیه کردیم، لیست Claims دریافتی از JWT ارسالی از سمت سرور را تبدیل به یک AuthenticationState قابل استفاده‌ی در برنامه‌ی Blazor WASM کرده‌ایم.

پس از تعریف یک AuthenticationStateProvider سفارشی، باید آن‌را به همراه Authorization، به سیستم تزریق وابستگی‌های برنامه در فایل Program.cs اضافه کرد:
namespace BlazorWasm.Client
{
    public class Program
    {
        public static async Task Main(string[] args)
        {
            var builder = WebAssemblyHostBuilder.CreateDefault(args);
            // ...

            builder.Services.AddAuthorizationCore();
            builder.Services.AddScoped<AuthenticationStateProvider, AuthStateProvider>();

            // ...
        }
    }
}
و برای سهولت استفاده‌ی از امکانات اعتبارسنجی فوق در کامپوننت‌های برنامه، فضای نام زیر را به فایل BlazorWasm.Client\_Imports.razor اضافه می‌کنیم:
@using Microsoft.AspNetCore.Components.Authorization


تهیه‌ی سرویسی برای کار با AccountController

اکنون می‌خواهیم در برنامه‌ی سمت کلاینت، از AccountController سمت سرور که آن‌را در قسمت 25 این سری تهیه کردیم، استفاده کنیم. بنابراین نیاز است سرویس زیر را تدارک دید که امکان لاگین، ثبت نام و خروج از سیستم را در سمت کلاینت میسر می‌کند:
namespace BlazorWasm.Client.Services
{
    public interface IClientAuthenticationService
    {
        Task<AuthenticationResponseDTO> LoginAsync(AuthenticationDTO userFromAuthentication);
        Task LogoutAsync();
        Task<RegisterationResponseDTO> RegisterUserAsync(UserRequestDTO userForRegisteration);
    }
}
و به صورت زیر پیاده سازی می‌شود:
namespace BlazorWasm.Client.Services
{
    public class ClientAuthenticationService : IClientAuthenticationService
    {
        private readonly HttpClient _client;
        private readonly ILocalStorageService _localStorage;

        public ClientAuthenticationService(HttpClient client, ILocalStorageService localStorage)
        {
            _client = client;
            _localStorage = localStorage;
        }

        public async Task<AuthenticationResponseDTO> LoginAsync(AuthenticationDTO userFromAuthentication)
        {
            var response = await _client.PostAsJsonAsync("api/account/signin", userFromAuthentication);
            var responseContent = await response.Content.ReadAsStringAsync();
            var result = JsonSerializer.Deserialize<AuthenticationResponseDTO>(responseContent);

            if (response.IsSuccessStatusCode)
            {
                await _localStorage.SetItemAsync(ConstantKeys.LocalToken, result.Token);
                await _localStorage.SetItemAsync(ConstantKeys.LocalUserDetails, result.UserDTO);
                _client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("bearer", result.Token);
                return new AuthenticationResponseDTO { IsAuthSuccessful = true };
            }
            else
            {
                return result;
            }
        }

        public async Task LogoutAsync()
        {
            await _localStorage.RemoveItemAsync(ConstantKeys.LocalToken);
            await _localStorage.RemoveItemAsync(ConstantKeys.LocalUserDetails);
            _client.DefaultRequestHeaders.Authorization = null;
        }

        public async Task<RegisterationResponseDTO> RegisterUserAsync(UserRequestDTO userForRegisteration)
        {
            var response = await _client.PostAsJsonAsync("api/account/signup", userForRegisteration);
            var responseContent = await response.Content.ReadAsStringAsync();
            var result = JsonSerializer.Deserialize<RegisterationResponseDTO>(responseContent);

            if (response.IsSuccessStatusCode)
            {
                return new RegisterationResponseDTO { IsRegisterationSuccessful = true };
            }
            else
            {
                return result;
            }
        }
    }
}
که به نحو زیر به سیستم تزریق وابستگی‌های برنامه معرفی می‌شود:
namespace BlazorWasm.Client
{
    public class Program
    {
        public static async Task Main(string[] args)
        {
            var builder = WebAssemblyHostBuilder.CreateDefault(args);
            // ...
            builder.Services.AddScoped<IClientAuthenticationService, ClientAuthenticationService>();
            // ...
        }
    }
}
توضیحات:
- متد LoginAsync، مشخصات لاگین کاربر را به سمت اکشن متد api/account/signin ارسال کرده و در صورت موفقیت این عملیات، اصل توکن دریافتی را به همراه مشخصاتی از کاربر، در Local Storage ذخیره سازی می‌کند. این مورد سبب خواهد شد تا بتوان به مشخصات کاربر در صفحات دیگر و سرویس‌های دیگری مانند AuthStateProvider ای که تهیه کردیم، دسترسی پیدا کنیم. به علاوه مزیت دیگر کار با Local Storage، مواجه شدن با حالت‌هایی مانند Refresh کامل صفحه و برنامه، توسط کاربر است. در یک چنین حالتی، برنامه از نو بارگذاری مجدد می‌شود و به این ترتیب می‌توان به مشخصات کاربر لاگین کرده، به سادگی دسترسی یافت و مجددا قسمت‌های مختلف برنامه را به او نشان داد. نمونه‌ی دیگر این سناریو، بازگشت از درگاه پرداخت بانکی است. در این حالت نیز از یک سرویس سمت سرور دیگر، کاربر به سمت برنامه‌ی کلاینت، Redirect کامل خواهد شد که در اصل اتفاقی که رخ می‌دهد، با Refresh کامل صفحه یکی است. در این حالت نیز باید بتوان کاربری را که از درگاه بانکی ثالث، به سمت برنامه‌ی کلاینت از نو بارگذاری شده، هدایت شده، بلافاصله تشخیص داد.

- اگر برنامه، Refresh کامل نشود، نیازی به Local Storage نخواهد بود؛ از این لحاظ که در برنامه‌های سمت کلاینت Blazor، طول عمر تمام سرویس‌ها، صرفنظر از نوع طول عمری که برای آن‌ها مشخص می‌کنیم، همواره Singleton هستند (ماخذ).
Blazor WebAssembly apps don't currently have a concept of DI scopes. Scoped-registered services behave like Singleton services.
بنابراین می‌توان یک سرویس سراسری توکن را تهیه و به سادگی آن‌را در تمام قسمت‌های برنامه تزریق کرد. این روش هرچند کار می‌کند، اما همانطور که عنوان شد، به Refresh کامل صفحه حساس است. اگر برنامه در مرورگر کاربر Refresh نشود، تا زمانیکه باز است، سرویس‌های در اصل Singleton تعریف شده‌ی در آن نیز در تمام قسمت‌های برنامه در دسترس هستند؛ اما با Refresh کامل صفحه، به علت بارگذاری مجدد کل برنامه، سرویس‌های آن نیز از نو، وهله سازی خواهند شد که سبب از دست رفتن حالت قبلی آن‌ها می‌شود. بنابراین نیاز به روشی داریم که بتوانیم حالت قبلی برنامه را در زمان راه اندازی اولیه‌ی آن بازیابی کنیم و یکی از روش‌های استاندارد اینکار، استفاده از Local Storage خود مرورگر است که مستقل از برنامه و توسط مرورگر مدیریت می‌شود.

- در متد LoginAsync، علاوه بر ثبت اطلاعات کاربر در Local Storage، مقدار دهی client.DefaultRequestHeaders.Authorization را نیز ملاحظه می‌کنید. همانطور که عنوان شد، سرویس‌های Blazor WASM در اصل دارای طول عمر Singleton هستند. بنابراین تنظیم این هدر در اینجا، بر روی تمام سرویس‌های HttpClient تزریق شده‌ی به سایر سرویس‌های برنامه نیز بلافاصله تاثیرگذار خواهد بود.

- متد LogoutAsync، اطلاعاتی را که در حین لاگین موفق در Local Storage ذخیره کردیم، حذف کرده و همچنین client.DefaultRequestHeaders.Authorization را نیز نال می‌کند تا دیگر اطلاعات لاگین شخص قابل بازیابی نبوده و مورد استفاده قرار نگیرد. همین مقدار برای شکست پردازش درخواست‌های ارسالی به منابع محافظت شده‌ی سمت سرور کفایت می‌کند.

- متد RegisterUserAsync، مشخصات کاربر در حال ثبت نام را به سمت اکشن متد api/account/signup ارسال می‌کند که سبب افزوده شدن کاربر جدیدی به بانک اطلاعاتی برنامه و سیستم ASP.NET Core Identity خواهد شد.


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: Blazor-5x-Part-31.zip
مطالب
مبانی TypeScript؛ کلاس‌ها
تا قبل از ES 6 در جاوا اسکریپت از توابع جهت ایجاد کامپوننت‌هایی با قابلیت استفاده مجدد استفاده می‌شد. این امر برای برنامه‌نویسانی که با زبان‌های OOP آشنایی دارند، شاید چندان خوشایند نباشد. در TypeScript نیز همانند ES 6 امکان استفاده از کلاس‌ها مهیا است.
در حالت کلی یک کلاس قالبی برای ایجاد اشیاء است. تمامی اشیاء ایجاد شده از این الگو دارای یکسری پراپرتی و متد می‌باشند. از پراپرتی‌ها جهت تعریف وضعیت‌ها و از متدها جهت تعریف رفتارها استفاده خواهد شد. همچنین مزیت اصلی یک کلاس، کپسوله‌سازی قابلیت‌های یک موجودیت خاص است. همانند دیگر زبان‌های شیءگرا، در TypeScript نیز یک کلاس می‌تواند ویژگی‌های زیر را داشته باشد:
  • سازنده (constructor)
  • پراپرتی، متد
  • Access Modifiers
  • ارث‌بری
  • کلاس‌های Abstract
در ادامه هر کدام از موارد فوق را بررسی خواهیم کرد.

سازنده (Constructor)
از سازنده‌ها جهت مقداردهی وهله‌های یک کلاس استفاده می‌شود. در ادامه یک کلاس جدید را با استفاده از کلمه‌ی کلیدی class ایجاد کرده‌ایم. این کلاس دارای یک سازنده است:
class ReferenceItem {
    constructor(title: string, publisher?: string) {
        // perform initialization here
    }
}
همانطور که مشاهده می‌کنید یک سازنده شبیه به یک متد است؛ با این تفاوت که برای نام آن از کلمه کلیدی constructor استفاده می‌شود. در TypeScript برای یک کلاس تنها یک سازنده را می‌توانیم داشته باشیم. البته در دیگر زبان‌های برنامه‌نویسی امکان تعریف چندین سازنده را با پارامترهای مختلف برای یک کلاس می‌توانید داشته باشید. برای رسیدن به این هدف در TypeScript می‌توان از Optional Parameters استفاده کرد. برای ایجاد یک وهله از کلاس فوق می‌توانیم به این صورت عمل کنیم:
let encyclopedia = new ReferenceItem('WorldPedia', 'WorldPub');
در کد فوق با استفاده از کلمه‌ی کلیدی new یک وهله از کلاس ReferenceItem را ایجاد کرده‌ایم و در نهایت آن را به متغیری با نام encyclopedia انتساب داده‌ایم. یعنی در واقع با استفاده از new توانسته‌ایم سازنده‌ی کلاس را فراخوانی کرده و سپس وهله‌ایی از آن را به متغیر ذکر شده انتساب دهیم.

پراپرتی، متد 
همانند اینترفیس‌ها، کلاس‌ها نیز می‌توانند پراپرتی و متد داشته باشند. با این تفاوت که در کلاس‌ها جزئیات پیاده‌سازی نیز ذکر خواهد شد. در یک کلاس به دو روش متفاوت می‌توانیم پراپرتی را تعریف کنیم. روش اول همانند تعریف یک متغیر است. به عنوان مثال در کلاس زیر یک پراپرتی با نام numberOfPages را از نوع عددی تعریف کرده‌ایم:
class ReferenceItem {
    numberOfPages: number;
}
برای دسترسی به این پراپرتی می‌توانیم از سینتکس نقطه (.) استفاده کنیم. روش دوم برای تعریف یک پراپرتی، ایجاد accessor‌های سفارشی است. accessors در واقع توابع getter و setter هستند که به شما در نحوه‌ی get و set کردن یک پراپرتی کمک خواهند کرد:
class ReferenceItem {
    numberOfPages: number;
    
    get editor(): string {
        // custom getter logic goes here, should return a value
    }
    
    set editor(newEditor: string) {
        // custom setter logic goes here
    }
}
همانطور که مشاهده می‌کنید، accessorهایی را برای پراپرتی editor با استفاده از کلمات کلیدی get و set ایجاد کرده‌ایم. این accessorها در واقع توابعی همنام هستند. تابع get همیشه فاقد پارامتر است. می‌توانیم برای تابع get نوع برگشتی را نیز تعیین کنیم (به عنوان مثال در کد فوق نوع برگشتی string است). setter نیز باید تنها یک پارامتر از ورودی دریافت کند. همچنین نمی‌توانیم برای آن نوع برگشتی را تعیین کنیم. درون بدنه‌ی این accessorها می‌توانیم هر نوع کنترلی را بر روی پراپرتی داشته باشیم. برای دسترسی این accessorها نیز باید از سینتکس نقطه (.) استفاده کنیم.
متدها نیز توابعی هستند که درون یک کلاس تعریف می‌شوند. برای نمونه در کد زیر یک تابع با نام printChapterTitle را تعریف کرده‌ایم که یک پارامتر را از ورودی دریافت کرده و هیچ مقداری را در خروجی بر نمی‌گرداند:
class ReferenceItem {
    numberOfPages: number;
    
    get editor(): string {
        // custom getter logic goes here, should return a value
    }
    
    set editor(newEditor: string) {
        // custom setter logic goes here
    }
    
    printChapterTitle(chapterNum: number): void {
        // print title here
    }
}

Parameter properties
در حالت عادی برای مقداردهی اولیه‌ی پراپرتی‌ها یک شیء می‌توانیم یکسری پارامتر را برای سازنده کلاس تعریف کرده و درون سازنده، پراپرتی‌های موردنیازمان را مقداردهی کنیم:
class Author {
    name: string;
    
    constructor(authorName: string) {
        name = authorName;
    }
}
با کمک Parameter properties می‌توانیم به صورت خلاصه‌تری اینکار را انجام دهیم:
class Author {
    constructor(public name: string){}
}
همانطور که مشاهده می‌کنید اینکار را با افزودن کلمه‌ی کلیدی public به ابتدای پارامتر name انجام داده‌ایم. در این‌حالت دیگر نیازی به تعریف یک پراپرتی اضافی درون کلاس نخواهیم داشت. کامپایلر TypeScript خودش یک پراپرتی را با همین نام ایجاد کرده و مقدار دریافتی از سازنده را برای آن ست خواهد کرد.

Static Properties
تاکنون درباره‌ی اعضای مربوط به هر وهله از کلاس‌ها صحبت کردیم؛ یعنی اعضایی که در زمان وهله‌سازی در دسترس خواهند بود. در واقع می‌توانیم اعضای استاتیک را نیز برای کلاس‌ها داشته باشیم. منظور از استاتیک این است که مقادیر یک عضوء استاتیک در وهله‌های مختلف یک شیء، متفاوت نیست. بلکه یک مقدار آن برای تمامی وهله‌ها به اشتراک گذاشته خواهد شد:
class Library {
    constructor(public name: string) {}
    
    static description: string = 'A source of knowledge';
}

let lib = new Library('New York Public Library');
console.log(lib.name); // available on instances of the class

console.log(Library.description);

Access Modifiers
با استفاده از Access Modifier می‌توانیم میدان دید یک پراپرتی و یا یک متد را برای مصرف کننده‌ی کلاس کنترل کنیم. TypeScript دارای سه Access Modifier است:
public: در حالت پیش‌فرض تمامی اعضای یک کلاس عمومی (public) هستند. در نتیجه لزومی به ذکر آن برای پراپرتی‌ها و متدها نیست. یک حالت استثناء، استفاده از Parameter properties است. در این حالت باید کلمه‌ی کلیدی public حتماً ذکر شود. 
private: برای محدود کردن دسترسی اعضای یک کلاس می‌توانید از کلمه‌ی کلیدی private استفاده کنید. در این‌حالت مصرف کننده‌ی کلاس به اعضای خصوصی (private) دسترسی نخواهد داشت. 
protected: این modifier نیز شبیه به private عمل می‌کند، با این تفاوت که توسط subclassهای مربوط به کلاس تعریف شده در آن نیز قابل دسترس است.


Inheritance
منظور از Inheritance یا ارث‌بری، اشتراک‌گذاری تعاریف یک کلاس برای یک یا چند sub-class است. فرض کنید یک کلاس با نام ReferenceItem با یکسری اعضای تعریف شده درون آن داریم و می‌خواهیم دو کلاس مشتق شده را از این کلاس تهیه کنیم. در این‌حالت کلاس ReferenceItem کلاس پایه (base class) و کلاس‌های مشتق شده از آن sub-class نامیده می‌شوند. بنابراین وهله‌های ایجاد شده از کلاس‌های مشتق شده دارای پراپرتی‌های کلاس پایه نیز خواهند بود. برای داشتن قابلیت ارث‌بری در TypeScript می‌توانیم به اینصورت عمل کنیم:
class ReferenceItem {
    title: string;
    printItem(): void { 
        // print something here 
    }
}

class Journal extends ReferenceItem {
    constructor() {
        super();
    }
    
    contributors: string[];
}
همانطور که مشاهده می‌کنید با استفاده از کلمه‌ی کلیدی extends توانسته‌ایم یک sub-class ایجاد کنیم. بنابراین وهله‌های کلاس Journal علاوه بر پراپرتی‌های خود (در اینجا contributors ) دارای پراپرتی title و همچنین متد printItem نیز هستند. نکته‌ایی که در اینجا وجود دارد این است که تمامی sub-classها یا کلاس‌های مشتق شده باید درون سازنده‌ی خود، تابع super را فراخوانی کنند؛ با اینکار سازنده‌ی کلاس پایه فراخوانی خواهد شد.
لازم به ذکر است که می‌توان متدهای کلاس پایه را درون کلاس‌های مشتق شده، override کرد. برای اینکار کافی است متد موردنظر در کلاس پایه را درون کلاس مشتق شده مجدداً تعریف کرده و منطق موردنظر را درون آن نوشت:
class Journal extends ReferenceItem {
    constructor() {
        super();
    }
    
    printItem(): void { 
        super.printItem();
        console.log('message from Journal');
    }
    
    contributors: string[];
}
با استفاده از super.printItem به کامپایلر TypeScript گفته‌ایم که تمامی کدهای درون متد printItem در کلاس پایه نیز اجرا شوند. اگر مایل بودید می‌توانید از آن صرفنظر کنید.

Abstract Classes 
کلاس‌های Abstract یک نوع خاص از کلاس‌ها هستند که نمی‌توان آنها را وهله‌سازی کرد. یعنی تنها برای تعریف کلاس‌های پایه از آنها استفاده خواهد شد. این نوع کلاس‌ها شبیه به اینترفیس‌ها هستند؛ اما ممکن است دارای پیاده‌سازی نیز باشند. در ادامه یک نمونه از abstract class را مشاهده می‌کنید:
abstract class ReferenceItem {
    private _publisher: string;
    static departement: string = 'Research';
    
    constructor(public title: string, protected year: number) {
        
    }
    
    printItem(): void {
        console.log('message from abstract class');
    } 
    
    get publisher(): string {
        return this._publisher.toUpperCase();
    }
    
    set publisher(newPublisher: string) {
        this._publisher = newPublisher;
    }
    
    abstract printCitation(): void;
}

class Encyclopedia extends ReferenceItem {
    
    constructor(newTitle: string, newYear, public edition: number) {
        super(newTitle, newYear);
    }
    
    printCitation(): void {
        console.log('message');
    }
}

let test = new Encyclopedia('WorldPerdia', 1900, 10);
test.printItem();
همانطور که مشاهده می‌کنید درون یک کلاس abstract می‌توانیم متدهای abstract را نیز داشته باشیم؛ یعنی تنها امضای متد را تعیین کرده و پیاده‌سازی آن را به کلاس‌های مشتق شده واگذار کنیم. 
مطالب
مقدار دهی کلیدهای خارجی در NHibernate و Entity framework

ORM های NHibernate و Entity framework روش‌های متفاوتی را برای به روز رسانی کلید خارجی با حداقل رفت و برگشت به دیتابیس ارائه می‌دهند که در ادامه معرفی خواهند شد.

صورت مساله:
فرض کنید می‌خواهیم برنامه‌ای را بنویسیم که ریز پرداخت‌های روزانه‌ی ما را ثبت کند. برای اینکار حداقل به یک جدول گروه‌های اقلام خریداری شده، یک جدول حساب‌های تامین کننده‌ی مخارج، یک جدول فروشنده‌ها و نهایتا یک جدول صورتحساب‌های پرداختی بر اساس جداول ذکر شده نیاز خواهد بود.

الف) بررسی مدل برنامه



در اینجا جهت تعریف ویژگی‌ها یا Attributes تعریف شده در این کلاس‌ها از NHibernate validator استفاده شده (+). مزیت اینکار هم علاوه بر اعتبارسنجی سمت کلاینت (پیش از تبادل اطلاعات با بانک اطلاعاتی)، تولید جداولی با همین مشخصات است. برای مثال Fluent NHibernate بر اساس ویژگی Length تعریف شده با طول حداکثر 120 ، یک فیلد nvarchar با همین طول را ایجاد می‌کند.

public class Account
{
public virtual int Id { get; set; }

[NotNullNotEmpty]
[Length(Min = 3, Max = 120, Message = "طول نام باید بین 3 و 120 کاراکتر باشد")]
public virtual string Name { get; set; }
}

public class Category
{
public virtual int Id { get; set; }

[NotNullNotEmpty]
[Length(Min = 3, Max = 130, Message = "طول نام باید بین 3 و 130 کاراکتر باشد")]
public virtual string Name { get; set; }
}

public class Payee
{
public virtual int Id { get; set; }

[NotNullNotEmpty]
[Length(Min = 3, Max = 120, Message = "طول نام باید بین 3 و 120 کاراکتر باشد")]
public virtual string Name { get; set; }
}

public class Bill
{
public virtual int Id { get; set; }

[NotNull]
public virtual Account Account { get; set; }

[NotNull]
public virtual Category Category { get; set; }

[NotNull]
public virtual Payee Payee { get; set; }

[NotNull]
public virtual decimal Amount { set; get; }

[NotNull]
public virtual DateTime BillDate { set; get; }

[NotNullNotEmpty]
[Length(Min = 1, Max = 500, Message = "طول توضیحات باید بین 1 و 500 کاراکتر باشد")]
public virtual string Description { get; set; }
}




ب) ساختار جداول متناظر (تولید شده به صورت خودکار توسط Fluent NHibernate در اینجا)


در مورد نحوه‌ی استفاده از ویژگی AutoMapping و همچنین تولید خودکار ساختار بانک اطلاعاتی از روی جداول در NHibernate قبلا توضیح داده شده است. البته بدیهی است که ترکیب مقاله‌ی Validation و آشنایی با AutoMapping در اینجا جهت اعمال ویژگی‌ها باید بکار گرفته شود که در همان مقاله‌ی Validation مفصل توضیح داده شده است.
نکته‌ی مهم database schema تولیدی، کلید‌های خارجی (foreign key) تعریف شده بر روی جدول Bills است (همان AccountId، CategoryId و PayeeId تعریف شده) که به primary key جداول متناظر اشاره می‌کند.
    create table Accounts (
AccountId INT IDENTITY NOT NULL,
Name NVARCHAR(120) not null,
primary key (AccountId)
)

create table Bills (
BillId INT IDENTITY NOT NULL,
Amount DECIMAL(19,5) not null,
BillDate DATETIME not null,
Description NVARCHAR(500) not null,
AccountId INT not null,
CategoryId INT not null,
PayeeId INT not null,
primary key (BillId)
)

create table Categories (
CategoryId INT IDENTITY NOT NULL,
Name NVARCHAR(130) not null,
primary key (CategoryId)
)

create table Payees (
PayeeId INT IDENTITY NOT NULL,
Name NVARCHAR(120) not null,
primary key (PayeeId)
)

alter table Bills
add constraint fk_Account_Bill
foreign key (AccountId)
references Accounts

alter table Bills
add constraint fk_Category_Bill
foreign key (CategoryId)
references Categories

alter table Bills
add constraint fk_Payee_Bill
foreign key (PayeeId)
references Payees

ج) صفحه‌ی ثبت صورتحساب‌ها

صفحات ثبت گروه‌های اقلام، حساب‌ها و فروشنده‌ها، نکته‌ی خاصی ندارند. چون این جداول وابستگی خاصی به جایی نداشته و به سادگی اطلاعات آن‌ها را می‌توان ثبت یا به روز کرد.
صفحه‌ی مشکل در این مثال، همان صفحه‌ی ثبت صورتحساب‌ها است که از سه کلید خارجی به سه جدول دیگر تشکیل شده است.
عموما برای طراحی این نوع صفحات، کلیدهای خارجی را با drop down list نمایش می‌دهند و اگر در جهت سهولت کار کاربر قدم برداشته شود، باید از یک Auto complete drop down list استفاده کرد تا کاربر برنامه جهت یافتن آیتم‌های از پیش تعریف شده کمتر سختی بکشد.



اگر از Silverlight یا WPF استفاده شود، امکان بایند یک لیست کامل از اشیاء با تمام خواص مرتبط به آن‌ها وجود دارد (هر رکورد نمایش داده شده در دراپ داون لیست، دقیقا معادل است با یک شیء متناظر با کلاس‌های تعریف شده است). اگر از ASP.NET استفاده شود (یعنی یک محیط بدون حالت که پس از نمایش یک صفحه دیگر خبری از لیست اشیاء بایند شده وجود نخواهد داشت و همگی توسط وب سرور جهت صرفه جویی در منابع تخریب شده‌اند)، بهتر است datatextfield را با فیلد نام و datavaluefield را با فیلد Id مقدار دهی کرد تا کاربر نهایی، نام را جهت ثبت اطلاعات مشاهده کند و برنامه از Id موجود در لیست جهت ثبت کلیدهای خارجی استفاده نماید.
و نکته‌ی اصلی هم همینجا است که چگونه؟! چون ما زمانیکه با یک ORM سر و کار داریم، برای ثبت یک رکورد در جدول Bills باید یک وهله از کلاس Bill را ایجاد کرده و خواص آن‌را مقدار دهی کنیم. اگر به تعریف کلاس Bill مراجعه کنید، سه خاصیت آن از نوع سه کلاس مجزا تعریف شده است. به به عبارتی با داشتن فقط یک id از رکوردهای این کلاس‌ها باید بتوان سه وهله‌ی متناظر آن‌ها را از بانک اطلاعاتی خواند و سپس به این خواص انتساب داد:

var newBill = new Bill
{
Account = accountRepository.GetByKey(1),
Amount = 1,
BillDate = DateTime.Now,
Category = categoryRepository.GetByKey(1),
Description = "testestest...",
Payee = payeeRepository.GetByKey(1)
};
یعنی برای ثبت یک رکورد در جدول Bills فوق، چهار بار رفت و برگشت به دیتابیس خواهیم داشت:
- یکبار برای دریافت رکورد متناظر با گروه‌ها بر اساس کلید اصلی آن (که از دراپ داون لیست مربوطه دریافت می‌شود)
- یکبار برای دریافت رکورد متناظر با فروشند‌ه‌ها بر اساس کلید اصلی آن (که از دراپ داون لیست مربوطه دریافت می‌شود)
- یکبار برای دریافت رکورد متناظر با حساب‌ها بر اساس کلید اصلی آن (که از دراپ داون لیست مربوطه دریافت می‌شود)
- یکبار هم ثبت نهایی اطلاعات در بانک اطلاعاتی

متد GetByKey فوق همان متد session.Get استاندارد NHibernate است (چون به primary key ها از طریق drop down list دسترسی داریم، به سادگی می‌توان بر اساس متد Get استاندارد ذکر شده عمل کرد).

SQL نهایی تولیدی هم به صورت واضحی این مشکل را نمایش می‌دهد (4 بار رفت و برگشت؛ سه بار select یکبار هم insert نهایی):
SELECT account0_.AccountId as AccountId0_0_, account0_.Name as Name0_0_
FROM Accounts account0_ WHERE account0_.AccountId=@p0;@p0 = 1 [Type: Int32 (0)]

SELECT category0_.CategoryId as CategoryId2_0_, category0_.Name as Name2_0_
FROM Categories category0_ WHERE category0_.CategoryId=@p0;@p0 = 1 [Type: Int32 (0)]

SELECT payee0_.PayeeId as PayeeId3_0_, payee0_.Name as Name3_0_
FROM Payees payee0_ WHERE payee0_.PayeeId=@p0;@p0 = 1 [Type: Int32 (0)]

INSERT INTO Bills (Amount, BillDate, Description, AccountId, CategoryId, PayeeId)
VALUES (@p0, @p1, @p2, @p3, @p4, @p5);
select SCOPE_IDENTITY();
@p0 = 1 [Type: Decimal (0)],
@p1 = 2010/12/27 11:48:33 ق.ظ [Type: DateTime (0)],
@p2 = 'testestest...' [Type: String (500)],
@p3 = 1 [Type: Int32 (0)],
@p4 = 1 [Type: Int32 (0)],
@p5 = 1 [Type: Int32 (0)]

کسانی که قبلا با رویه‌های ذخیره شده کار کرده باشند (stored procedures) احتمالا الان خواهند گفت؛ ما که گفتیم این روش کند است! سربار زیادی دارد! فقط کافی است یک SP بنویسید و کل عملیات را با یک رفت و برگشت انجام دهید.
اما در ORMs نیز برای انجام این مورد در طی یک حرکت یک ضرب راه حل‌هایی وجود دارد که در ادامه بحث خواهد شد:

د) پیاده سازی با NHibernate
برای حل این مشکل در NHibernate با داشتن primary key (برای مثال از طریق datavaluefield ذکر شده)، بجای session.Get از session.Load استفاده کنید.
session.Get یعنی همین الان برو به بانک اطلاعاتی مراجعه کن و رکورد متناظر با کلید اصلی ذکر شده را بازگشت بده و یک شیء از آن را ایجاد کن (حالت‌های دیگر دسترسی به اطلاعات مانند استفاده از LINQ یا Criteria API یا هر روش مشابه دیگری نیز در اینجا به همین معنا خواهد بود).
session.Load یعنی فعلا دست نگه دار! مگر در جدول نهایی نگاشت شده، اصلا چیزی به نام شیء مثلا گروه وجود دارد؟ مگر این مورد واقعا یک فیلد عددی در جدول Bills بیشتر نیست؟ ما هم که الان این عدد را داریم (به کمک عناصر دراپ داون لیست)، پس لطفا در پشت صحنه یک پروکسی برای ایجاد شیء مورد نظر ایجاد کن (uninitialized proxy to the entity) و سپس عملیات مرتبط را در حین تشکیل SQL نهایی بر اساس این عدد موجود انجام بده. یعنی نیازی به رفت و برگشت به بانک اطلاعاتی نیست. در این حالت اگر SQL نهایی را بررسی کنیم فقط یک سطر زیر خواهد بود (سه select ذکر شده حذف خواهند شد):
INSERT INTO Bills (Amount, BillDate, Description, AccountId, CategoryId, PayeeId)
VALUES (@p0, @p1, @p2, @p3, @p4, @p5);
select SCOPE_IDENTITY();
@p0 = 1 [Type: Decimal (0)],
@p1 = 2010/12/27 11:58:22 ق.ظ [Type: DateTime (0)],
@p2 = 'testestest...' [Type: String (500)],
@p3 = 1 [Type: Int32 (0)],
@p4 = 1 [Type: Int32 (0)],
@p5 = 1 [Type: Int32 (0)]

ه) پیاده سازی با Entity framework

Entity framework زمانیکه بانک اطلاعاتی فوق را (به روش database first) به کلاس‌های متناظر تبدیل/نگاشت می‌کند، حاصل نهایی مثلا در مورد کلاس Bill به صورت خلاصه به شکل زیر خواهد بود:
public partial class Bill : EntityObject
{
public global::System.Int32 BillId {set;get;}
public global::System.Decimal Amount {set;get;}
public global::System.DateTime BillDate {set;get;}
public global::System.String Description {set;get;}
public global::System.Int32 AccountId {set;get;}
public global::System.Int32 CategoryId {set;get;}
public global::System.Int32 PayeeId {set;get;}
public Account Account {set;get;}
public Category Category {set;get;}
}
به عبارتی فیلدهای کلیدهای خارجی، در تعریف نهایی این کلاس هم مشاهده می‌شوند. در اینجا فقط کافی است سه کلید خارجی، از نوع int مقدار دهی شوند (و نیازی به مقدار دهی سه شیء متناظر نیست). در این حالت نیز برای ثبت اطلاعات، فقط یکبار رفت و برگشت به بانک اطلاعاتی خواهیم داشت.

مطالب
آزمون‌های یکپارچگی در برنامه‌های ASP.NET Core
تا اینجا دو روش را برای آزمایش کلی یک سیستم Web API به همراه تمام زیر ساخت‌های آن، بررسی کردیم:
- استفاده از Postman برای آزمایش یک برنامه‌ی Web API
- استفاده از strest برای آزمایش یک برنامه‌ی Web API

روش سومی هم برای انجام اینکار وجود دارد که به صورت توکار از زمان ارائه‌ی ASP.NET Core 2.1 به همراه TestServer آزمایشی آن میسر شد. این روش در نگارش 3.1، با تغییر روش تعریف فایل program.cs، جهت سازگاری آن با آزمون‌های یکپارچگی/آزمایش کل سیستم، بهبود یافته‌است که خلاصه‌ای از آن را در این مطلب بررسی می‌کنیم.


آزمون‌های یکپارچگی در ASP.NET Core

آزمون‌های یکپارچگی، برخلاف آزمون‌های واحد که عموما از اشیاء تقلیدی استفاده می‌کنند، دقیقا بر روی همان سیستمی که قرار است به کاربر نهایی ارائه شود، اجرا می‌شوند. به همین جهت تنظیمات اولیه‌ی آن‌ها کمی بیشتر است و همچنین زمان اجرای آن‌ها نیز به علت وابستگی به بانک اطلاعاتی واقعی، فایل سیستم، شبکه و غیره، نسبت به آزمون‌های واحد بیشتر است.

برای ایجاد آزمون‌های یکپارچگی در برنامه‌های ASP.NET Core، حداقل سه مرحله باید طی شوند:
الف) ایجاد یک class library که ارجاعی را به پروژه‌ی اصلی دارد. این پروژه حاوی آزمایش‌های ما خواهد بود.
ب) راه اندازی یک هاست وب آزمایشی برای ارسال درخواست‌ها به آن و دریافت پاسخ‌های نهایی.
ج) استفاده از یک test runner (انواع و اقسام فریم ورک‌های unit testing) برای اجرای آزمایش‌ها


ایجاد یک پروژه‌ی کتابخانه برای هاست و اجرای آزمایش‌های یکپارچگی

فرض کنید می‌خواهیم برای همان پروژه‌ی ایجاد JWTها، آزمایش یکپارچگی بنویسیم. پس از ایجاد یک پروژه‌ی کتابخانه‌ی جدید که قرار است هاست آزمایش‌های ما شود، نیاز است محتوای فایل csproj آن‌را به صورت زیر تغییر داد:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <TargetFramework>netcoreapp3.1</TargetFramework>
    <NoWarn>RCS1090</NoWarn>
  </PropertyGroup>
  <ItemGroup>
    <ProjectReference Include="..\ASPNETCore2JwtAuthentication.WebApp\ASPNETCore2JwtAuthentication.WebApp.csproj" />
  </ItemGroup>
  <ItemGroup>
    <None Include="..\ASPNETCore2JwtAuthentication.WebApp\appsettings.json" CopyToOutputDirectory="PreserveNewest" />
  </ItemGroup>
  <ItemGroup>
    <Service Include="{82a7f48d-3b50-4b1e-b82e-3ada8210c329}" />
  </ItemGroup>
  <ItemGroup>
    <PackageReference Include="fluentassertions" Version="5.10.3" />
    <PackageReference Include="Microsoft.AspNetCore.Mvc.Testing" Version="3.1.8" />
    <PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.7.1" />
    <PackageReference Include="MSTest.TestAdapter" Version="2.1.2" />
    <PackageReference Include="MSTest.TestFramework" Version="2.1.2" />
  </ItemGroup>
</Project>
در اینجا، این نکات قابل مشاهده هستند:
1) TargetFramework آن باید به netcoreapp تنظیم شود.
2) باید ارجاع مستقیمی به کل پروژه‌ی نهایی WebApp در آن وجود داشته باشد. چون در ادامه می‌خواهیم فایل Program.cs آن‌را برای راه اندازی یک هاست وب آزمایشی، فراخوانی کنیم.
3) بسته‌ی نیوگتی که کار راه اندازی هاست وب آزمایشی را انجام می‌دهد، Microsoft.AspNetCore.Mvc.Testing نام دارد. این بسته، کار کپی فایل‌های پروژه‌ی اصلی و همچنین تنظیم مسیر پروژه را به این مسیر جدید نیز انجام می‌دهد.
4) روش افزودن بسته‌های MSTest را مشاهده می‌کنید.
5) همچنین جهت ساده‌تر شدن بررسی نتایج آزمون‌های انجام شده می‌توان از fluentassertions نیز استفاده کرد.


راه اندازی هاست وب آزمایشی جهت انجام آزمون‌های واحد

پس از انجام تنظیمات ابتدایی پروژه‌ی آزمون یکپارچگی، نیاز است یک WebApplicationFactory سفارشی را ایجاد کرد:
using ASPNETCore2JwtAuthentication.WebApp;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Mvc.Testing;
using Microsoft.AspNetCore.TestHost;
using Microsoft.Extensions.DependencyInjection.Extensions;
using Microsoft.Extensions.Hosting;

namespace ASPNETCore2JwtAuthentication.IntegrationTests
{
    public class CustomWebApplicationFactory : WebApplicationFactory<Program>
    {
        protected override IWebHostBuilder CreateWebHostBuilder()
        {
            var builder = base.CreateWebHostBuilder();
            builder.ConfigureLogging(logging =>
            {
                //TODO: ...
            });
            return builder;
        }

        protected override void ConfigureWebHost(IWebHostBuilder builder)
        {
            builder.ConfigureTestServices(services =>
            {
                // Don't run `IHostedService`s when running as a test
                services.RemoveAll(typeof(IHostedService));
            });
        }
    }
}
در این تعریف، Program در <WebApplicationFactory<Program، دقیقا به همان کلاس Program برنامه‌ی اصلی وب اشاره می‌کند. به همین جهت امضای این کلاس در نگارش 3.1 تغییر کرده‌است تا با WebApplicationFactory بسته‌ی Microsoft.AspNetCore.Mvc.Testing هماهنگ شود.
در ادامه روش سفارشی سازی WebApplicationFactory  را مشاهده می‌کنید. برای مثال اگر خواستید سرویس‌ها و تنظیمات پیش‌فرض برنامه‌ی اصلی را تغییر دهید می‌توانید متد CreateWebHostBuilder را بازنویسی کنید و یا اگر خواستید سرویس جدیدی را اضافه و یا حذف کنید، می‌توان متد ConfigureWebHost را بازنویسی کرد.


استفاده از WebApplicationFactory سفارشی، جهت ایجاد یک HttpClient

هدف اصلی از ایجاد CustomWebApplicationFactory نه فقط راه اندازی یک هاست وب سفارشی است، بلکه توسط متد CreateClient آن می‌توان به یک HttpClient دسترسی یافت که قابلیت ارسال اطلاعات را به برنامه‌ی وبی که در پشت صحنه راه اندازی می‌شود، دارا است. کار CustomWebApplicationFactory شبیه به راه اندازی dotnet run در پشت صحنه‌است. در اینجا دیگر نیازی نیست تا اینکار را به صورت دستی انجام داد. به همین جهت چون برنامه‌ی وب اصلی به نحو متداولی در پشت صحنه اجرا می‌شود، عموما راه اندازی آن که شامل تنظیمات اولیه و یا حتی ایجاد بانک اطلاعاتی است، کمی کند است و اگر قرار باشد هربار اینکار صورت گیرد، به آزمون‌های بسیار کندی خواهیم رسید. به همین جهت می‌توان یک کلاس singleton را برای مدیریت تک وهله‌ی نهایی HttpClient آن به صورت زیر ایجاد کرد:
using System;
using System.Threading;
using System.Net.Http;

namespace ASPNETCore2JwtAuthentication.IntegrationTests
{
    public static class TestsHttpClient
    {
        private static readonly Lazy<HttpClient> _serviceProviderBuilder =
                new Lazy<HttpClient>(getHttpClient, LazyThreadSafetyMode.ExecutionAndPublication);

        /// <summary>
        /// A lazy loaded thread-safe singleton
        /// </summary>
        public static HttpClient Instance { get; } = _serviceProviderBuilder.Value;

        private static HttpClient getHttpClient()
        {
            var services = new CustomWebApplicationFactory();
            return services.CreateClient(); //NOTE: This action is very time consuming, so it should be defined as a singleton.
        }
    }
}
مزیت کار با این کلاس، عدم راه اندازی مجدد برنامه به ازای هر آزمون انجام شده‌است. چون به ازای هر آزمونی که خواهیم نوشت، نیاز است به HttpClient دسترسی داشته باشیم.


نوشتن اولین آزمون یکپارچگی

پس از تنظیم هاست وب آزمایشی و ایجاد یک HttpClient از پیش تنظیم شده که به آن اشاره می‌کند، اکنون می‌توان اولین آزمون یکپارچگی را به صورت زیر نوشت:
using System.Net.Http;
using System.Net.Http.Headers;
using System.Text;
using System.Text.Json;
using System.Threading.Tasks;
using FluentAssertions;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace ASPNETCore2JwtAuthentication.IntegrationTests
{
    [TestClass]
    public class JwtTests
    {
        [TestMethod]
        public async Task TestLoginWorks()
        {
            // Arrange
            var client = TestsHttpClient.Instance;

            // Act
            var token = await doLoginAsync(client);

            // Assert
            token.Should().NotBeNull();
            token.AccessToken.Should().NotBeNullOrEmpty();
            token.RefreshToken.Should().NotBeNullOrEmpty();
        }

        [TestMethod]
        public async Task TestCallProtectedApiWorks()
        {
            // Arrange
            var client = TestsHttpClient.Instance;

            // Act
            var token = await doLoginAsync(client);

            // Assert
            token.Should().NotBeNull();
            token.AccessToken.Should().NotBeNullOrEmpty();
            token.RefreshToken.Should().NotBeNullOrEmpty();

            // Act
            const string protectedApiUrl = "/api/MyProtectedApi";
            client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", token.AccessToken);
            var response = await client.GetAsync(protectedApiUrl);
            response.EnsureSuccessStatusCode();

            // Assert
            var responseString = await response.Content.ReadAsStringAsync();
            responseString.Should().NotBeNullOrEmpty();
            var options = new JsonSerializerOptions { PropertyNamingPolicy = JsonNamingPolicy.CamelCase };
            var apiResponse = JsonSerializer.Deserialize<MyProtectedApiResponse>(responseString, options);
            apiResponse.Title.Should().NotBeNullOrEmpty();
            apiResponse.Title.Should().Be("Hello from My Protected Controller! [Authorize]");
        }

        private static async Task<Token> doLoginAsync(HttpClient client)
        {
            const string loginUrl = "/api/account/login";
            var user = new { Username = "Vahid", Password = "1234" };
            var response = await client.SendAsync(new HttpRequestMessage(HttpMethod.Post, loginUrl)
            {
                Content = new StringContent(JsonSerializer.Serialize(user), Encoding.UTF8, "application/json")
            });
            response.EnsureSuccessStatusCode();
            var responseString = await response.Content.ReadAsStringAsync();
            responseString.Should().NotBeNullOrEmpty();
            return JsonSerializer.Deserialize<Token>(responseString);
        }
    }
}
توضیحات:
- در هر آزمونی نیاز است در ابتدا به TestsHttpClient.Instance، که همان HttpClient ساخته شده‌ی توسط CustomWebApplicationFactory است، دسترسی یافت و همانطور که عنوان شد، دسترسی به وهله‌ای از HttpClient که به هاست وب آزمایشی برنامه‌ی اصلی اشاره می‌کند، عموما بسیار زمانبراست و برای مثال در دو آزمایش نوشته شده‌ی در اینجا اگر قرا باشد هربار اینکار از صفر انجام شود، زمان به اتمام رسیدن این آزمایش‌ها بسیار طولانی خواهد شد. به همین جهت طول عمر TestsHttpClient را singleton تعریف کردیم تا فقط یکبار کار برپایی وب سرور آزمایشی در پشت صحنه انجام شود.
- سپس مابقی کار، همان روش استاندارد کار با HttpClient است. در ابتدا درخواستی را به سمت سرور آزمایشی که در پشت صحنه در حال اجرا است، ارسال می‌کنیم. چون HttpClient دریافتی توسط  CustomWebApplicationFactory تنظیم شده‌است، دیگر نیازی به ذکر آدرس پایه‌ی وب سایت مانند https://localhost:5001 نیست و آدرس‌های ذکر شده‌ی در اینجا، نسبی هستند. سپس محتوای Response دریافتی از سرور را جهت تکمیل آزمایشات، بررسی خواهیم کرد.


یک نکته: اگر OpenAPI را در برنامه‌های Web API فعال کنید، می‌توان با استفاده از ابزارهای تولید کد، کدهای مرتبط با HttpClient را نیز به صورت خودکار تولید و سپس از آن‌ها در اینجا استفاده کرد.


اجرای آزمون‌های یکپارچگی نوشته شده

چون ظاهر این آزمون‌ها با آزمون‌های واحد MSTest یا هر فریم ورک مشابه دیگری یکسان است، می‌توان از امکانات IDEها برای اجرای آن‌ها استفاده کرد و یا حتی می‌توان دستور dotnet test را نیز در ریشه‌ی این پروژه‌ی جدید برای اجرای تمام آزمون‌های نوشته شده، اجرا کرد:



کدهای کامل این مطلب را در اینجا می‌توانید مشاهده کنید.
مطالب
بررسی کارآیی کوئری‌ها در SQL Server - قسمت اول - جمع آوری اطلاعات آماری کوئری‌های زنده
بسیاری از شرکت‌ها دارای نقشی مانند «مدیران بانک اطلاعاتی» نیستند؛ اما تعدادی «توسعه دهنده‌ی بانک‌های اطلاعاتی» را به همراه دارند که گاهی از اوقات از آن‌ها خواسته می‌شود تا کارآیی پایین کوئری‌های صورت گرفته را بررسی و رفع کنند و ... آن‌ها دقیقا نمی‌دانند که باید از کجا شروع کنند! فقط می‌دانند که یک کوئری، مدت زمان زیادی را برای اجرا به خود اختصاص می‌دهد؛ اما نمی‌دانند که چگونه باید به کوئری پلن آن دسترسی یافت و چگونه باید آن‌را تفسیر کرد. در این حالت حداکثر کاری را که ممکن است انجام دهند، افزودن یک ایندکس جدید است که ممکن است کار کند و یا خیر و حتی اگر کار کند، دقیقا نمی‌دانند که چگونه! هدف از این سری، بررسی مقدماتی روش‌های بهبود کارآیی کوئری‌ها در SQL Server، از دید یک «توسعه دهنده‌ی بانک‌های اطلاعاتی» است.


پیشنیازهای این سری

در این سری از بانک اطلاعاتی استاندارد مثال به همراه SQL Server 2016، به نام WideWorldImporters استفاده می‌کنیم. برای دریافت آن، به قسمت releases مثال‌های مایکروسافت مراجعه کرده و فایل WideWorldImporters-Full.bak را دریافت کنید. پس از دریافت این فایل، برای restore سریع آن، می‌توانید دستور زیر را اجرا کنید که در آن باید مسیر فایل bak دریافتی و همچنین مسیر ایجاد فایل‌های mdf/ldf/ndf را مطابق مسیرهای سیستم خودتان اصلاح نمائید (فقط مسیر پوشه‌ها را نیاز است تغییر دهید):
use master;

RESTORE DATABASE WideWorldImporters 
FROM disk='D:\path\WideWorldImporters-Full.bak'
WITH MOVE 'WWI_Primary' TO 'D:\SQL_Data\WideWorldImporters.mdf',
MOVE 'WWI_Log' TO 'D:\SQL_Data\WideWorldImporters_log.ldf',
MOVE 'WWI_UserData' TO 'D:\SQL_Data\WideWorldImporters_UserData.ndf',
MOVE 'WWI_InMemory_Data_1' TO 'D:\SQL_Data\WideWorldImporters_InMemory_Data_1'
همچنین صرفنظر از نگارش SQL Server ای که در حال استفاده‌ی از آن هستید (البته به حداقل SQL Server 2016 نیاز خواهید داشت)، بهتر است آخرین نگارش برنامه‌ی management studio را نیز به صورت مستقل دریافت و نصب کنید که در این زمان نگارش 18.1 است.


یافتن اطلاعاتی در مورد کوئری‌ها

SQL Server زمانیکه یک کوئری را اجرا می‌کند، اطلاعاتی را نیز به همراه آن تولید خواهد کرد که سبب ایجاد یک Query Plan می‌شود و در آن، اطلاعاتی مانند جداول مورد استفاده، نوع جوین‌ها، ایندکس‌های استفاده شده و غیره وجود دارند. علاوه بر آن، Query Statistics نیز قابل دسترسی هستند که در آن مدت زمان اجرای یک کوئری، میزان I/O صورت گرفته و میزان مصرف CPU کوئری، ذکر می‌شوند. برای دسترسی یافتن به این اطلاعات، می‌توان به اشیاء مختلف SQL Server مراجعه کرد؛ مانند dynamic management objects یا به اختصار DMO's، همچنین extended events، traces، query stores و یا حتی management studio. مهم‌ترین تفاوت این‌ها نیز در نحوه‌ی دسترسی به اطلاعات آن‌ها است که می‌تواند زنده (live) و یا ذخیره شده در جائی باشند. در اینجا تنها منبعی که امکان مشاهده‌ی این اطلاعات را به صورت زنده میسر می‌کند، management studio است. البته live در اینجا به معنای امکان مشاهده‌ی تمام اطلاعات مرتبط با یک کوئری، مانند آمار و کوئری پلن آن در داخل محیط management studio، پس از اجرای یک کوئری است. در این قسمت بیشتر به روش استخراج اطلاعات آماری کوئری‌های زنده می‌پردازیم و در قسمت‌های بعدی، سایر گزینه‌های نامبرده شده را نیز بررسی خواهیم کرد.


مشاهده‌ی زنده‌ی داده‌های مرتبط با اجرای یک کوئری در management studio

پس از restore بانک اطلاعاتی مثال WideWorldImporters که عنوان شد، در برنامه‌ی Microsoft SQL Server Management Studio، کوئری زیر را اجرا می‌کنیم:
USE [WideWorldImporters];
GO

SELECT
    [s].[StateProvinceName],
    [s].[SalesTerritory],
    [s].[LatestRecordedPopulation],
    [s].[StateProvinceCode]
FROM [Application].[Countries] [c]
    JOIN [Application].[StateProvinces] [s]
    ON [s].[CountryID] = [c].[CountryID]
WHERE [c].[CountryName] = 'United States';
GO
با اجرای آن، اگر به ذیل ردیف‌های بازگشت داده شده‌ی در Management Studio دقت کنیم، مشخص کرده‌است که این کوئری، 53 ردیف را بازگشت داده و همچنین کمتر از 1 ثانیه مدت زمان اجرای آن، طول کشیده‌است:


اینجا است که نیاز به اطلاعات بیشتری در مورد نحوه‌ی اجرای این کوئری داریم. برای استخراج این اطلاعات، اینبار گزینه‌های تولید و جمع آوری اطلاعات آماری IO و TIME را روشن می‌کنیم و سپس همان کوئری قبلی را اجرا خواهیم کرد:
USE [WideWorldImporters];
GO

SET STATISTICS IO ON;
GO
SET STATISTICS TIME ON;
GO

SELECT
    [s].[StateProvinceName],
    [s].[SalesTerritory],
    [s].[LatestRecordedPopulation],
    [s].[StateProvinceCode]
FROM [Application].[Countries] [c]
    JOIN [Application].[StateProvinces] [s]
    ON [s].[CountryID] = [c].[CountryID]
WHERE [c].[CountryName] = 'United States';
GO
ظاهر اجرای این کوئری با کوئری قبلی، تفاوت خاصی ندارد. اما اگر در همینجا به برگه‌ی messages، که در کنار برگه‌ی results و نمایش ردیف‌ها قرار دارد، مراجعه کنیم، یک چنین خروجی قابل مشاهده است:
SQL Server parse and compile time: 
   CPU time = 0 ms, elapsed time = 504 ms.

(53 rows affected)
Table 'Countries'. Scan count 0, logical reads 118, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
Table 'StateProvinces'. Scan count 1, logical reads 43, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

 SQL Server Execution Times:
   CPU time = 0 ms,  elapsed time = 10 ms.
در اینجا اطلاعات آماری مدت زمان کامپایل و همچنین مدت زمان اجرای کوئری، ارائه شده‌اند. به علاوه در میانه‌ی این آمار، اطلاعات IO کوئری مانند logical reads درج شده‌اند.


استخراج اطلاعات Actual Execution Plan یک کوئری

کوئری را زیر با فرض IO ON و TIME ON حاصل از اجرای کوئری قبل، اجرا می‌کنیم:
USE [WideWorldImporters];
GO

SET STATISTICS XML ON;
GO

SELECT
    [s].[StateProvinceName],
    [s].[SalesTerritory],
    [s].[LatestRecordedPopulation],
    [s].[StateProvinceCode]
FROM [Application].[Countries] [c]
    JOIN [Application].[StateProvinces] [s]
    ON [s].[CountryID] = [c].[CountryID]
WHERE [c].[CountryName] = 'United States';
GO

SET STATISTICS XML OFF;
GO
با فعالسازی اطلاعات آماری XML (و خاموش کردن آن در انتهای کار)، اینبار در برگه‌ی messages، اطلاعات بیشتری ارائه شده‌اند:
SQL Server parse and compile time: 
   CPU time = 0 ms, elapsed time = 0 ms.

 SQL Server Execution Times:
   CPU time = 0 ms,  elapsed time = 0 ms.
SQL Server parse and compile time: 
   CPU time = 0 ms, elapsed time = 0 ms.

 SQL Server Execution Times:
   CPU time = 0 ms,  elapsed time = 0 ms.
SQL Server parse and compile time: 
   CPU time = 0 ms, elapsed time = 7 ms.

(53 rows affected)
Table 'Countries'. Scan count 0, logical reads 118, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.
Table 'StateProvinces'. Scan count 1, logical reads 43, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

(1 row affected)

 SQL Server Execution Times:
   CPU time = 15 ms,  elapsed time = 179 ms.
SQL Server parse and compile time: 
   CPU time = 0 ms, elapsed time = 0 ms.

 SQL Server Execution Times:
   CPU time = 0 ms,  elapsed time = 0 ms.
اگر دقت کنید اینبار زمان اجرا اندکی بیشتر شده‌است؛ چون درخواست تهیه‌ی query plan را داده‌ایم. این plan را در ذیل قسمت نتایج کوئری می‌توان مشاهده کرد:


اگر بر روی این XML کلیک کنیم، برگه‌ی جدید نمایش گرافیکی این plan ظاهر می‌شود:


با کلیک راست بر روی این برگه، می‌توان اطلاعات آن‌را جهت بررسی‌های بعدی و یا به اشتراک گذاری آن ذخیره کرد.
در این plan اگر اشاره‌گر ماوس را بر روی هر کدام از عناصر آن حرکت دهیم، اطلاعاتی مانند actual number of rows نیز مشاهده می‌شود، در کنار اطلاعات تخمینی؛ به همین جهت به آن Actual Execution Plan هم گفته می‌شود.


این یک روش دسترسی به Execution Plan است. روش دوم آن با استفاده از امکانات رابط کاربری خود Management Studio است؛ با فشردن دکمه‌های Ctrl+M و یا انتخاب گزینه‌ی Include actual execution plan از منوی Query آن. پس از آن کوئری زیر را اجرا کنید:
SET STATISTICS IO ON;
GO
SET STATISTICS TIME ON;
GO

SELECT
    [s].[StateProvinceName],
    [s].[SalesTerritory],
    [s].[LatestRecordedPopulation],
    [s].[StateProvinceCode]
FROM [Application].[Countries] [c]
    JOIN [Application].[StateProvinces] [s]
    ON [s].[CountryID] = [c].[CountryID]
WHERE [c].[CountryName] = 'United States';
GO
اینبار در برگه‌ی نتایج کوئری، برگه‌ی سوم Execution Plan قابل مشاهده‌است:




استخراج اطلاعات Estimated Execution Plan یک کوئری

تا اینجا نحوه‌ی استخراج اطلاعات Actual Execution Plan را بررسی کردیم که به همراه اطلاعات دقیق حاصل از اجرای کوئری نیز بود؛ مانند actual number of rows. نوع دیگری از Execution Planها را نیز می‌توان از SQL Server درخواست کرد که به آن‌ها Estimated Execution Plan گفته می‌شود و حاصل اجرای کوئری نیستند؛ بلکه تخمینی هستند از روش اجرای این کوئری توسط SQL Server. برای فعالسازی محاسبه‌ی آن، ابتدا کوئری زیر را در management studio انتخاب کنید:
USE [WideWorldImporters];
GO

SELECT
    [s].[StateProvinceName],
    [s].[SalesTerritory],
    [s].[LatestRecordedPopulation],
    [s].[StateProvinceCode]
FROM [Application].[Countries] [c]
    JOIN [Application].[StateProvinces] [s]
    ON [s].[CountryID] = [c].[CountryID]
WHERE [c].[CountryName] = 'United States';
GO
سپس از منوی Query، گزینه‌ی Display estimated execution plan را انتخاب نمائید و یا دکمه‌های Ctrl+L را فشار دهید. در این حالت برگه‌های حاصل، حاوی قسمت results نیستند؛ چون کوئری اجرا نشده‌است. اما هنوز برگه‌ی Execution Plan قابل مشاهده است:


همانطور که مشاهده می‌کنید، اینبار نتیجه‌ی حاصل، به همراه اطلاعاتی مانند actual number of rows نیست و صرفا تخمینی است از روش اجرای این کوئری، توسط SQL Server.


جمع آوری اطلاعات آماری کلاینت‌ها

در منوی Query، گزینه‌ای تحت عنوان Include client statistics نیز وجود دارد. با انتخاب آن، اگر کوئری زیر را اجرا کنیم:
USE [WideWorldImporters];
GO

SELECT
    [s].[StateProvinceName],
    [s].[SalesTerritory],
    [s].[LatestRecordedPopulation],
    [s].[StateProvinceCode]
FROM [Application].[Countries] [c]
    JOIN [Application].[StateProvinces] [s]
    ON [s].[CountryID] = [c].[CountryID]
WHERE [c].[CountryName] = 'United States';
GO
اینبار برگه‌ی جدید client statistics ظاهر می‌شود:


در اینجا مشخص می‌شود که آیا عملیات insert/update/delete انجام شده‌است. چه تعداد ردیف تحت تاثیر اجرای این کوئری قرار گرفته‌اند. چه تعداد تراکنش انجام شده‌است. همچنین اطلاعات آماری شبکه و زمان نیز در اینجا ارائه شده‌اند.
در همین حالت، کوئری جدید زیر را با تغییر قسمت where کوئری قبلی، اجرا کنید:
SELECT
    [s].[StateProvinceName],
    [s].[SalesTerritory],
    [s].[LatestRecordedPopulation],
    [s].[StateProvinceCode]
FROM [Application].[Countries] [c]
    JOIN [Application].[StateProvinces] [s]
    ON [s].[CountryID] = [c].[CountryID]
WHERE [s].[StateProvinceName] LIKE 'O%';
GO
نتیجه‌ی آن، ظاهر شدن ستون جدید trial 2 است که می‌تواند جهت مقایسه‌ی کوئری‌های مختلف با هم، بسیار مفید باشد:


در اینجا حداکثر 10 کوئری را می‌توان با هم مقایسه کرد و بیشتر از آن سبب حذف موارد قدیمی از لیست می‌شود.


عدم نمایش ردیف‌های بازگشت داده شده‌ی توسط کوئری در حین جمع آوری اطلاعات آماری

هربار اجرای یک کوئری در management studio، به همراه بازگشت و نمایش ردیف‌های مرتبط با آن کوئری نیز می‌باشد. اگر می‌خواهید در حین بررسی کارآیی کوئری‌ها از نمایش این ردیف‌ها صرف نظر کنید (تا بار این برنامه کاهش یابد)، می‌توانید از منوی Query، گزینه‌ی Query Options را انتخاب کرده و در قسمت Results، گزینه‌ی Grid آن، گزینه‌ی discard results after execution را انتخاب کنید تا دیگر برگه‌ی results نمایش داده نشود و وقت و منابع را تلف نکند. بدیهی است پس از پایان کار بررسی آماری، نیاز به عدم انتخاب این گزینه خواهد بود.
مطالب
Lambda Syntax و کارآیی
در این مطلب می‌خواهیم کارآیی event handlers پیاده سازی شده با روش‌های متفاوتی را مورد بررسی قراردهیم.
به مثال زیر توجه کنید:
class EventSource : System.Progress<int>
{
    public async System.Threading.Tasks.Task<int> PerformExpensiveCalculation()
    {
        var sum = 0;
        for (var i = 0; i < 100; i++)
        {
            await System.Threading.Tasks.Task.Delay(100);
            sum += i;
            this.OnReport(sum);
        }
        return sum;
    }
}

static class Program
{
    static void Main(string[] args)
    {
        var source = new EventSource();
        System.EventHandler<int> handler = (_, progress) => System.Console.WriteLine(progress);
        source.ProgressChanged += handler;
        System.Console.WriteLine(source.PerformExpensiveCalculation().Result);
        source.ProgressChanged -= handler;

        source.ProgressChanged += ProgressChangedMethod;
        System.Console.WriteLine(source.PerformExpensiveCalculation().Result);
        source.ProgressChanged -= ProgressChangedMethod;
    }

    private static void ProgressChangedMethod( object sender, int e )
    {
        System.Console.WriteLine(e);
    }
}
در مثال بالا دو نسخه‌ی مختلف از event handler را با دو روش، (روش اول) با استفاده از Lambda syntax و (روش دوم) با استفاده از یک متد، به صورت جدا تعریف شده، پیاده سازی کرده‌ایم.
خوب؛ برای اندازه گیری کارآیی این دو روش باید کمی فکر کنیم که چه چیزی کارآیی این دو روش را تغییر می‌دهد؟
آیا پردازش event با اضافه کردن و حذف کردن event handler؟ و یا پردازش درون event باعث تغییر در کارآیی می‌شود؟
این، سوال مهمی در تست کارآیی این دو روش مختلف است. اگر پردازش درون event باعث ایجاد تفاوت کارآیی می‌شود، با استفاده از این برنامه می‌توان آن را اندازه گیری کرد. با این حال اگر تفاوت کارآیی با اضافه کردن و حذف کردن event handler اتفاق می‌افتد، با این برنامه بعید است بتوان این روش را تست کرد چرا که فقط یکبار این عمل انجام می‌شود.
قبل از شروع به اندازه گیری کارآیی این دو روش‌، اجازه بدهید ابتدا به کد IL آن‌ها نگاهی کنیم. (روش اول با استفاده از Lambda syntax)
IL_0007:  ldsfld     class [mscorlib]System.EventHandler`1<int32> LambdaPerformance.Program/'<>c'::'<>9__0_0'
IL_000c:  dup
IL_000d:  brtrue.s   IL_0026
IL_000f:  pop
IL_0010:  ldsfld     class LambdaPerformance.Program/'<>c' LambdaPerformance.Program/'<>c'::'<>9'
IL_0015:  ldftn      instance void LambdaPerformance.Program/'<>c'::'<Main>b__0_0'(object, int32)
IL_001b:  newobj     instance void class [mscorlib]System.EventHandler`1<int32>::.ctor(object, native int)
IL_0020:  dup
IL_0021:  stsfld     class [mscorlib]System.EventHandler`1<int32> LambdaPerformance.Program/'<>c'::'<>9__0_0'
IL_0026:  stloc.1
IL_0027:  ldloc.0
IL_0028:  ldloc.1
IL_0029:  callvirt   instance void class [mscorlib]System.Progress`1<int32>::add_ProgressChanged(class [mscorlib]System.EventHandler`1<!0>)
IL_002e:  nop
IL_002f:  ldloc.0
IL_0030:  callvirt   instance class [mscorlib]System.Threading.Tasks.Task`1<int32> LambdaPerformance.EventSource::PerformExpensiveCalculation()
IL_0035:  callvirt   instance !0 class [mscorlib]System.Threading.Tasks.Task`1<int32>::get_Result()
IL_003a:  call       void [mscorlib]System.Console::WriteLine(int32)
IL_003f:  nop
IL_0040:  ldloc.0
IL_0041:  ldloc.1
IL_0042:  callvirt   instance void class [mscorlib]System.Progress`1<int32>::remove_ProgressChanged(class [mscorlib]System.EventHandler`1<!0>)
در بالا 5 دستورالعمل برای اضافه کردن event handler وجود دارد (از IL_0010 تا IL_0029) و یک دستور برای حذف handler وجود دارد (IL_0042).
قبل از شروع مقایسه، کد IL روش دوم را نیز بررسی می‌کنیم:
IL_004a:  ldftn      void LambdaPerformance.Program::ProgressChangedMethod(object, int32)
IL_0050:  newobj     instance void class [mscorlib]System.EventHandler`1<int32>::.ctor(object, native int)
IL_0055:  callvirt   instance void class [mscorlib]System.Progress`1<int32>::add_ProgressChanged(class [mscorlib]System.EventHandler`1<!0>)
IL_005a:  nop
IL_005b:  ldloc.0
IL_005c:  callvirt   instance class [mscorlib]System.Threading.Tasks.Task`1<int32> LambdaPerformance.EventSource::PerformExpensiveCalculation()
IL_0061:  callvirt   instance !0 class [mscorlib]System.Threading.Tasks.Task`1<int32>::get_Result()
IL_0066:  call       void [mscorlib]System.Console::WriteLine(int32)
IL_006b:  nop
IL_006c:  ldloc.0
IL_006d:  ldnull
IL_006e:  ldftn      void LambdaPerformance.Program::ProgressChangedMethod(object, int32)
IL_0074:  newobj     instance void class [mscorlib]System.EventHandler`1<int32>::.ctor(object, native int)
IL_0079:  callvirt   instance void class [mscorlib]System.Progress`1<int32>::remove_ProgressChanged(class [mscorlib]System.EventHandler`1<!0>)
همانطور که مشاهده می‌کنید در روش دوم برای اضافه کردن event handler تنها 3 خط وجود دارند (IL_004a تا IL_0055) و برای حذف کردن آن نیز 3 خط وجود دارند (IL_006e تا IL_0079).

برای اندازه گیری دقیق، برنامه‌ی بالا را کمی تغییر می‌دهیم. ما میزان اضافه و حذف شدن event handler را می‌خواهیم اندازه‌گیری کنیم و کاری به زمان اجرای یک عملیات نداریم. بنابراین فراخوانی ()PerformExpensiveCalculation را comment کرده و به صورت خیلی ساده فقط handler را اضافه و حذف می‌کنیم.
static class Program
{
    static void Main(string[] args)
    {
        for (var repeats = 10; repeats <= 1000000; repeats *= 10)
        {
            VersionOne(repeats);
            VersionTwo(repeats);
        }
    }

    private static void VersionOne(int repeats)
    {
        var timer = new System.Diagnostics.Stopwatch();
        timer.Start();

        var source = new EventSource();
        for (var i = 0; i < repeats; i++)
        {
            System.EventHandler<int> handler = (_, progress) => System.Console.WriteLine(progress);
            source.ProgressChanged += handler;
            // Console.WriteLine(source.PerformExpensiveCalculation().Result);
            source.ProgressChanged -= handler;
        }

        timer.Stop();

        System.Console.WriteLine($"Version one: {repeats} add/remove takes {timer.ElapsedMilliseconds}ms");
    }

    private static void VersionTwo(int repeats)
    {
        var timer = new System.Diagnostics.Stopwatch();
        timer.Start();

        var source = new EventSource();
        for (var i = 0; i < repeats; i++)
        {
            source.ProgressChanged += ProgressChangedMethod;
            // Console.WriteLine(source.PerformExpensiveCalculation().Result);
            source.ProgressChanged -= ProgressChangedMethod;
        }

        timer.Stop();

        System.Console.WriteLine($"Version two: {repeats} add/remove takes {timer.ElapsedMilliseconds}ms");
    }

    private static void ProgressChangedMethod(object sender, int e)
    {
        System.Console.WriteLine(e);
    }
}
و چنین خروجی را تولید می‌کند (البته نسبت به سرعت CPU این زمان‌ها متفاوت خواهد بود)
Version one: 10 add/remove takes 0ms
Version two: 10 add/remove takes 0ms
Version one: 100 add/remove takes 0ms
Version two: 100 add/remove takes 0ms
Version one: 1000 add/remove takes 0ms
Version two: 1000 add/remove takes 0ms
Version one: 10000 add/remove takes 0ms
Version two: 10000 add/remove takes 1ms
Version one: 100000 add/remove takes 8ms
Version two: 100000 add/remove takes 13ms
Version one: 1000000 add/remove takes 93ms
Version two: 1000000 add/remove takes 121ms
خوب؛ اگر در یک اجرای برنامه، شما یک میلیون بار event handler را اضافه و حذف کنید، 28ms می‌توانید صرفه جویی کنید (در روش اول).

توجه:
اگر در برنامه‌ی شما یک میلیون بار event handler اضافه و حذف می‌شوند، نیاز به بازنگری مجدد در طراحی کلی برنامه تان دارد.

یک اشتباه بزرگ

با ایجاد یک تغییر در روش اول (Lambda syntax)، ممکن است تاثیر بسیار زیادی را در عملکرد برنامه مشاهده کنید:
private static void VersionOne(int repeats)
{
    var timer = new System.Diagnostics.Stopwatch();
    timer.Start();

    var source = new EventSource();
    for (var i = 0; i < repeats; i++)
    {
        // System.EventHandler<int> handler = (_, progress) => System.Console.WriteLine(progress);
        source.ProgressChanged += (_, progress) => System.Console.WriteLine(progress);
        // Console.WriteLine(source.PerformExpensiveCalculation().Result);
        source.ProgressChanged -= (_, progress) => System.Console.WriteLine(progress);
    }

    timer.Stop();

    System.Console.WriteLine($"Version one: {repeats} add/remove takes {timer.ElapsedMilliseconds}ms");
}
به جای تعریف یک متغیر محلی برای عبارت Lambda، دستور اضافه و حذف کردن event handler را به صورت inline استفاده کردیم. خروجی این روش به صورت زیر می‌شود:
Version one: 10 add/remove takes 0ms
Version two: 10 add/remove takes 0ms
Version one: 100 add/remove takes 1ms
Version two: 100 add/remove takes 0ms
Version one: 1000 add/remove takes 102ms
Version two: 1000 add/remove takes 0ms
Version one: 10000 add/remove takes 10509ms
Version two: 10000 add/remove takes 1ms
Version one: 100000 add/remove takes 1039014ms
Version two: 100000 add/remove takes 11ms
همانطور که مشاهده می‌کنید، روش اول خیلی خیلی آهسته است. توجه کنید من بعد از یکصد هزار بار اضافه و حذف کردن handler، به دلیل طولانی شدن، عملیات را قطع کردم. خب دلیل این همه کندی چیست؟ بیایید نگاهی به کد IL درون حلقه‌ی روش اول بیاندازیم.
  IL_0018:  nop
  IL_0019:  ldloc.1
  IL_001a:  ldsfld     class [mscorlib]System.EventHandler`1<int32> LambdaPerformance.Program/'<>c'::'<>9__1_0'
  IL_001f:  dup
  IL_0020:  brtrue.s   IL_0039
  IL_0022:  pop
  IL_0023:  ldsfld     class LambdaPerformance.Program/'<>c' LambdaPerformance.Program/'<>c'::'<>9'
  IL_0028:  ldftn      instance void LambdaPerformance.Program/'<>c'::'<VersionOne>b__1_0'(object, int32)
  IL_002e:  newobj     instance void class [mscorlib]System.EventHandler`1<int32>::.ctor(object, native int)
  IL_0033:  dup
  IL_0034:  stsfld     class [mscorlib]System.EventHandler`1<int32> LambdaPerformance.Program/'<>c'::'<>9__1_0'
  IL_0039:  callvirt   instance void class [mscorlib]System.Progress`1<int32>::add_ProgressChanged(class [mscorlib]System.EventHandler`1<!0>)
  IL_003e:  nop
  IL_003f:  ldloc.1
  IL_0040:  ldsfld     class [mscorlib]System.EventHandler`1<int32> LambdaPerformance.Program/'<>c'::'<>9__1_1'
  IL_0045:  dup
  IL_0046:  brtrue.s   IL_005f
  IL_0048:  pop
  IL_0049:  ldsfld     class LambdaPerformance.Program/'<>c' LambdaPerformance.Program/'<>c'::'<>9'
  IL_004e:  ldftn      instance void LambdaPerformance.Program/'<>c'::'<VersionOne>b__1_1'(object, int32)
  IL_0054:  newobj     instance void class [mscorlib]System.EventHandler`1<int32>::.ctor(object, native int)
  IL_0059:  dup
  IL_005a:  stsfld     class [mscorlib]System.EventHandler`1<int32> LambdaPerformance.Program/'<>c'::'<>9__1_1'
  IL_005f:  callvirt   instance void class [mscorlib]System.Progress`1<int32>::remove_ProgressChanged(class [mscorlib]System.EventHandler`1<!0>)
  IL_0064:  nop
  IL_0065:  nop
  IL_0066:  ldloc.2
  IL_0067:  stloc.3
  IL_0068:  ldloc.3
  IL_0069:  ldc.i4.1
  IL_006a:  add
  IL_006b:  stloc.2
  IL_006c:  ldloc.2
  IL_006d:  ldarg.0
  IL_006e:  clt
  IL_0070:  stloc.s    V_4
  IL_0072:  ldloc.s    V_4
  IL_0074:  brtrue.s   IL_0018
به خطهای ( IL_0028 و IL_0034 و IL_004e و IL_005a ) در کد بالا دقت کنید. توجه داشته باشید که event handler اضافه شده با event handler حذف شده، با هم متفاوت هستند. حذف کردن event handler ای که به جایی متصل نیست باعث ایجاد خطا نمی‌شود ولی کاری هم انجام نمی‌دهد. بنابراین اتفاقی که در روش اول درون حلقه می‌افتد این است که بیش از یک میلیون بار event handler به delegate اضافه می‌شود. همه‌ی آنها یکسان هستند؛ اما همچنان CPU و حافظه مصرف می‌کنند.

ممکن است شما به این نتیجه رسیده باشید که استفاده از Lambda syntax برای اضافه و حذف کردن event handler آهسته‌تر از، استفاده از متد جدا است، این یک اشتباه بزرگ است. در صورتی که شما اضافه و حذف کردن event handler را با استفاده از Lambda syntax به شکل صحیح انجام ندهید، به سرعت، در معیارهای کارآیی خود را نشان می‌دهد.

دانلود برنامه بالا
مطالب
معرفی و روش استفاده از Dispatcher در WPF
باید این سوال را از خودمان بپرسیم که اصلا چه نیازی به استفاده از Dispatcher در WPF می‌باشد و این که ما چه نیازی داریم با ساختمان Thread آشنا شویم؟

می‌دانید که در پروژه و نرم افزارهایی که توسعه داده می‌شوند بعضی مواقع مشاهده می‌کنیم قسمتی از برنامه نیاز به زمان یا پردازش بیشتری دارد تا عملیات خود را به اتمام برساند و رابط کاربری (User Interface) برنامه در این حین منتظر می‌ماند و یا به اصطلاح (Freeze) می‌شود تا یک پردازش طولانی به اتمام برسد و بعد رابط کاربری به کار خود ادامه می‌دهد و بعضی مواقع پنجره Windows explorer is not responding را مشاهده کرده‌اید که با کلیک بر روی Close the program از آن گذر می‌کنیم. در حالی که برنامه ما باید حالت Responsive  داشته باشد و نباید برنامه با یک‌چنین مواردی روبه رو شود.

ساختمان Thread :
تمامی اشیاء (Objects) در این مدل به دو گروه تقسیم بندی می‌شوند:
Single-Threaded Apartment
Multi-Threaded Apartment
ساختمان  Single-Threaded Apartment (STA) :

STA شامل فقط یک Thread می‌باشد و تمامی اشیاء در این ساختمان فقط می‌توانند متدی را که در این Thread صدا زده می‌شود دریافت کنند؛ یا به عبارتی دیگر هنگامیکه شیء به Thread ای متصل می‌شود دیگر شما قادر نخواهید بود اشیاء UI را به صورت مستقیم و یا از طریق Thread‌های دیگر تغییر دهید. لازم به ذکر است WPF از مدل STA پشتیبانی می‌کند که شامل نکات  زیر می‌باشد:
1. یک Thread در کل برنامه اجرا می‌شود و شامل همه Object‌های WPF می‌باشد.
2. عناصر یا المان‌های  WPF، قابلیت تنظیم Thread Affinity را دارند. منظور این می‌باشدکه Thread‌ها نمی‌توانند با یکدیگر ارتباط  برقرار کنند.
3. اشیاء WPF که قابلیت Thread Affinityرا دارند، از یک Object Dispatcher مشتق می‌شوند.
4. اشیاء WPF متعلق به Thread ای می‌باشند که توسط آن ایجاد شده است و Thread دیگر قادر به دسترسی مستقیم به این اشیاء نمی‌باشد.

ساختمان Multi-Threaded Apartment (MTA) :

MTA  شامل یک یا چندین Thread می‌باشد. تمامی اشیاء در این مدل می‌توانند از هر Thread ای فراخوانی شوند. در حقیقت رجیستر‌های CPU و Ram که در اختیار برنامه قرار داده شده تکه تکه می‌شوند و برنامه ما تعداد Thread‌های مورد نظر را اجرا می‌کند و یکی از راه حل‌های بر طرف کردن اینکه رابط کاربری ما در حالت انتظار باقی نماند استفاده از پردازش کارها بصورت غیر همزمان (Asynchronous) می‌باشد که در اصطلاح Multithreading نامیده می‌شود. 

WPF Dispatcher :

WPF از مدل STA پشتیبانی می‌کند. زمانیکه برنامه WPF  اجرا می‌شود، به طور خودکار یک Dispatcher Object ساخته می‌شود و متد Run صدا زده می‌شود و از آن برای آماده سازی صف پیام‌ها استفاده می‌شود که مدیریت یک صف از کارها بر عهده آن است و کارهای UI را در یک صف FIFO اجرا می‌کند. WPF یک Dispatcher را برای UI Thread ایجاد می‌کند. بنابراین شما نمی‌توانید یک dispatcher دیگر برای آن تعریف کنید. 

نکته : دیاگرام زیر نمایش می‌هد که تمامی اشیاء WPF از DispatcherObject مشتق شده‌اند.

نکته : زمانیکه برنامه WPF  اجرا می‌شود دو Thread ساخته می‌شود:
1.  UI Thread (Main Thread) 
2.  Render Thread
 

UI Thread : مسئولیت تمامی ورودی‌های کاربر، handle events, paints screen و اجرای کدهای برنامه را بر عهده دارد.

Render Thread : در Background اجرا می‌شود و برای Render صفحه نمایش WPF استفاده می‌شود.

نکته: همانطور که آشنا شدیم WPF نمی‌تواند UI Thread را از طریق یک Thread دیگر به روز رسانی کند و یا به عبارتی دیگر یک Thread نمی‌تواند بصورت مستقیم به اشیایی که توسط Thread دیگر ایجاد شده، دسترسی داشته باشد.

Dispatcher برای این کار دو متد را در اختیار ما قرار می‌دهد :

متد Invoke : یک Action یا Delegate را میگیرد و متد آن‌را به صورت همزمان اجرا می‌کند. این مورد به این معنا است که تا زمانی که اجرای متد کامل نگردد، عملیاتی صورت نخواهد گرفت و یا به عبارتی دیگر فراخوان را تا زمانیکه زمانبندی به پایان برسد، در حالت مسدود نگهداری خواهد کرد.

مثال :

public partial class MainWindow : Window
{
    public MainWindow()
    {
        InitializeComponent();
        Task.Factory.StartNew(() =>
            {
                InvokeMethodExample();
            });
    }
 
    private void InvokeMethodExample()
    {
        Thread.Sleep(2000);
        Dispatcher.Invoke(() =>
            {
                btn1.Content = "By Invoke";
            });
    }
}
متد BeginInvoke : یک Delegate را می‌گیرد و متد آن‌را به صورت ناهمزمان اجرا می‌کند. این مورد به این معنا است که قبل از آنکه متد فراخوانی گردد، برگشت داده می‌شود و یا به عبارتی دیگر به ما اجازه می‌دهد تا Thread جاری را با کنترل دوباره به جریان بیندازیم.
مثال :
public MainWindow()
{
    InitializeComponent();
    Task.Factory.StartNew(() =>
        {
            BeginInvokeExample();
        });
}
 
private void BeginInvokeExample()
{
    DispatcherOperation op = Dispatcher.BeginInvoke((Action)(() => {
         btn1.Content = "By BeginInvoke";
        }));
}
BeginInvoke یک شیء DispatcherOperation برگشت می‌دهد. این شیء یا Object برای دانستن اینکه وضعیت عملیات کامل شده است یا خیر می‌تواند استفاده شود و همچین دو رویداد Aborted و Completed را فراهم می‌کند. 

نظرات مطالب
نحوه کار با ftp - بخش اول
ممنون از مطلب شما.
چند نکته جزئی در مورد کدهای تهیه شده:
- وجود این try/catch در اینجا هیچ هدفی رو برآورده نکرده. از قسمت throw ex هم توصیه می‌شود که استفاده نکنید. از thow خالی استفاده کنید تا stack trace پاک نشه.  به علاوه زمانیکه مشغول به طراحی یک کتابخانه هستید تا حد ممکن از ذکر try/catch خودداری کنید. وظیفه بررسی این مسایل مرتبط است به لایه‌های بالاتر استفاده کننده و نه کتابخانه پایه.
- if ابتدای متد هم ضرورتی ندارد. اگر قرار است باشد، باید به استفاده کننده در طی یک استثناء اعلام شود که چرا فایل درخواستی او آپلود نشده. در کل استفاده از متد File.Exists به همراه صدور استثناء در صورت عدم وجود فایل، در اینجا مناسب‌تر است.
- نامگذاری‌هایی مانند obj_ftp مربوط به دوران C است. در سی‌شارپ روش دیگری رو باید استفاده کنید که در مطلب اصول نامگذاری در دات نت به تفصیل بررسی شده.
- بررسی صفر بودن readBytes بهتر است پیش از فراخوانی متد Write انجام شود.
- یک سری از اشیاء در دات نت پیاده سازی کننده IDispoable هستند. به این معنا که بهتر است از using برای استفاده از آن‌ها کمک گرفته شود تا کامپایلر قسمت finally به همراه آزاد سازی منابع را به صورت خودکار اضافه کند. این نکته برای مواردی که در بین کار استثنایی رخ می‌دهد جهت آزاد سازی منابع لازم است. یعنی بهتر بود بجای try/catch از try/finally و یا using در مکان‌های مناسب استفاده می‌شد.
- علت استفاده از شیء Application دراینجا چه چیزی بوده؟ AppSettings خوانده شده از وب کانفیگ برنامه و کل اطلاعات آن در آغاز به کار یک برنامه ASP.NET به صورت خودکار کش می‌شوند. به همین جهت است که اگر حتی یک نقطه در فایل وب کانفیگ تغییر کند برنامه ASP.NET ری استارت می‌شود (تا دوباره تنظیمات را بخواند). بنابراین مستقیما از همان امکانات ConfigurationManager بدون انتساب آن به شیء سراسری Application استفاده کنید. اینکار سرباری آنچنانی هم ندارد؛ چون از حافظه خوانده می‌شود و نه از فایل. هر بار فراخوانی ConfigurationManager.AppSettings به معنای مراجعه به فایل web.config نیست. فقط بار اول اینکار انجام می‌شود؛ تا زمانیکه این فایل تغییر کند یا برنامه ری استارت شود.
مطالب
امکان تعریف ساده‌تر خواص Immutable در C# 9.0 با معرفی ویژگی خواص Init-Only
نگاهی به روند تکاملی نحوه‌ی تعریف خواص از C# 1.0 تا C# 9.0

در C# 1.0 برای تعریف خواص، نیاز به نوشتن مقدار زیادی کد بود:
public class Person 
{ 
    public string _firstName; 
 
    public string FirstName 
    { 
        get 
        { 
            return _firstName; 
        } 
        set 
        { 
            _firstName = value; 
        } 
    }  
}
در اینجا تعریف backing field‌ها (مانند public string _firstName) و استفاده‌ی دستی از آن‌ها الزامی بود.

در C# 2.0 از لحاظ ساده سازی این تعاریف، اتفاق خاصی رخ‌نداد. فقط امکان تعریف سطوح دسترسی مانند private بر روی getter‌ها و setter‌ها میسر شد:
public string _firstName; 
public string FirstName 
{ 
    get 
    { 
        return _firstName; 
    } 
    private set 
    { 
        _firstName = value; 
    } 
}

در C# 3.0 بود که با ارائه‌ی auto-implemented properties، نحوه‌ی تعریف خواص، بسیار ساده شد و دیگر نیازی به تعریف backing field‌ها نبود؛ چون کامپایلر به صورت خودکار آن‌ها را در پشت صحنه ایجاد می‌کرد/می‌کند:
public class Person
{
   public string FirstName { get; set; }
}

در C# 6.0، امکان حذف private setter‌ها از تعریف یک خاصیت میسر شد. یعنی مثال زیر را
public class User
{
   public string Name { get; private set; }
}
به این نحو ساده‌تر و واضح‌تر نیز می‌توان نوشت:
public class User
{
   public string Name { get; }
}
به‌علاوه در همین زمان بود که امکان مقدار دهی اولیه‌ی خواص نیز در همان سطر تعریف آن‌ها ممکن شد:
public class Foo
{
   public string FirstName { get; set; } = "Initial Value";
}
پیش از این برای مقدار دهی اولیه‌ی خواص در همان کلاسی که آن‌ها را تعریف می‌کند، می‌بایستی از طریق مقدار دهی آن‌ها در سازنده‌ی کلاس اقدام می‌شد.

همچنین در C# 6.0 با معرفی expression bodied members که بر روی خواص نیز قابل اعمال است، امکان تعریف خواص readonly محاسبه شده‌ی بر اساس مقدار سایر خواص نیز میسر شد:
public class Foo
{  
   public DateTime DateOfBirth { get; set; }
   public int Age => DateTime.Now.Year - DateOfBirth.Year;  
}

و در C# 9.0، با معرفی واژه‌ی کلیدی init، امکان تعریف ساده‌تر خواص immutable ممکن شد‌ه‌است که در مطلب جاری به آن خواهیم پرداختیم.


روش غیرقابل مقدار دهی کردن خواص، در نگارش‌ها پیش از C# 9.0

در بسیاری از موارد می‌خواهیم که خاصیتی از یک کلاس مدل، در خارج از آن قابل تغییر نباشد (مانند خواص شیء‌ای که به محتوای فایل config ثابت برنامه اشاره می‌کند). راه حل فعلی آن تا پیش از C# 9.0 به صورت زیر است:
public class User
{
   public string Name { get; private set; }
}
که در این حالت دیگر نمی‌توان مقدار خاصیت Name را در خارج از کلاس User مقدار دهی کرد:
var user = new User
{
   Name = "User 1" // Compile Error
};
وبا اینکار خطای کامپایلر زیر را دریافت می‌کنیم:
The property or indexer 'User.Name' cannot be used in this context
because the set accessor is inaccessible [CS9Features]csharp(CS0272)
در این تعریف باتوجه به وجود private set، برای مقداردهی خاصیت Name می‌توان از یکی از دو روش زیر در داخل کلاس User استفاده کرد:
- تنظیم مقدار خاصیت Name در سازنده‌ی کلاس
- و یا تنظیم این مقدار در یک متد ثالث دیگر مانند SetName
public class User
{
  public User(string name)
  {
    this.Name = name;
  }

  public void SetName(string name)
  {
    this.Name = name;
  }

  public string Name { get; private set; }
}
در هر دو حالت، از مقدار دهی مستقیم خاصیت Name توسط Object Initializer (یا همان روش متداول new User { Name = "some name"}) محروم می‌شویم. همچنین در ادامه شاید نیاز باشد که این خاصیت پس از مقدار دهی اولیه، دیگر قابل تغییر نباشد؛ یا به عبارتی immutable شود. در مثال فوق هنوز هم امکان تغییر مقدار خاصیت Name درون کلاس User، با فراخوانی‌های بعدی متد SetName، وجود دارد.


معرفی خواص Init-Only در C# 9.0

برای رفع دو مشکل یاد شده (امکان تنظیم مقدار خاصیت‌ها با همان روش متداول object initializer و همچنین غیرقابل تغییر شدن آن‌ها)، اکنون در C# 9.0 می‌توان بجای private set از واژه‌ی کلیدی init استفاده کرد:
public class User
{
   public string Name { get; init; }
}
در اینجا تنها تغییر صورت گرفته، استفاده از واژه‌ی کلیدی init، در حین تعریف خاصیت Name است. به این ترتیب به دو مزیت زیر دسترسی پیدا می‌کنیم:
الف) امکان مقدار دهی خاصیت Name، در خارج بدنه‌ی کلاس User و توسط روش متداول کار با object initializer‌ها هنوز هم وجود دارد و در این حالت الزامی به تعریف یک سازنده و یا متد خاصی درون کلاس User برای مقدار دهی آن نیست:
var user = new User
{
   Name = "User 1"
};
ب) پس از اولین بار مقدار دهی این خاصیت init-only، دیگر نمی‌توان مقدار آن‌را تغییر داد:
// Compile Time Error
// Init-only property or indexer 'User.Name' can only be assigned in an object initializer,
// or on 'this' or 'base' in an instance constructor or an 'init' accessor. [CS9Features]csharp(CS8852)
user.Name = "Test";
این نکته در مورد متدهای داخل کلاس User هم صدق می‌کند:
public class User
{
   public string Name { get; init; }

   public User(string name)
   {
     this.Name = name; // Works fine
   }

   public void SetName(string name)
   {
     this.Name = name; // Compile Time Error
   }
}
می‌توان یک خاصیت init-only را برای بار اول، در سازنده‌ی همان کلاس نیز مقدار دهی کرد؛ اما مقدار دهی ثانویه‌ی آن در سایر متدهای داخل کلاس User نیز به خطای زمان کامپایل یاد شده، ختم می‌شود و مجاز نیست.


روش تعریف immutable properties در نگارش‌های پیشین #C

با استفاده از واژه‌ی readonly در نگارش‌های قبلی #C نیز می‌توان به صورت زیر، یک خاصیت را به صورت غیرقابل تغییر یا immutable در آورد:
    public class Product
    {
        public Product(string name)
        {
            _name = name;
        }

        private readonly string _name;

        public string Name => _name;
    }
هرچند این روش کار می‌کند اما دیگر همانند init-only properties نمی‌توان از طریق object initializers خاصیت Name را مقدار دهی کرد و این مقدار دهی حتما باید از طریق سازنده‌ی کلاس باشد. همچنین ایجاد یک اصطلاحا backing filed هم برای آن، کدها را طولانی‌تر می‌کند.

یک نکته: امکان استفاده‌ی از فیلدهای readonly با خواص init-only هم وجود دارد؛ از این جهت که این نوع خواص تنها در زمان نمونه سازی اولیه‌ی شیء، اجرا و مقدار دهی می‌شوند، با مفهوم readonly، سازگاری دارند:
    public class Person
    {
        private readonly string _name;

        public string Name
        {
            get => _name;
            init => _name = value;
        }
    }
مطالب
بررسی کارآیی کوئری‌ها در SQL Server - قسمت چهارم - شاخص‌های مهم اطلاعات آماری کوئری‌ها
تا اینجا با روش‌های مختلف جمع آوری اطلاعات آماری مرتبط با کوئری‌های اجرا شده‌ی در SQL Server آشنا شدیم. در این قسمت قصد داریم بررسی کنیم این اطلاعات جمع آوری شده، چه مفاهیمی را در بر دارند و مهم‌ترین‌های آن‌ها کدامند؟


شاخص‌های مهم بررسی کارآیی کوئری‌ها

در ابتدای بررسی هر کوئری، باید 4 شاخص بسیار مهم، مدنظر باشند:
- مدت زمان اجرای کوئری: هرچند بررسی مدت زمان اجرای کوئری، شاخص مهمی‌است، اما الزاما حاوی اطلاعات مفیدی در مورد آن کوئری نیست. برای مثال اگر یک کوئری زیاد طول می‌کشد، حتما به معنای وجود مشکلی با آن نیست؛ ممکن است اطلاعات زیادی را واکشی می‌کند یا ممکن است توسط عاملی سد شده‌است. در این موارد هرچند مشکلاتی وجود دارند، اما مستقیما مرتبط با آن کوئری نیستند.
- میزان مصرف CPU: میزان کاری که باید توسط CPU انجام شود تا کوئری به نتیجه برسد.
- I/O: در SQL Server می‌توان هم physical I/O و هم logical I/O را بررسی کرد. برای مثال اگر اطلاعات مورد درخواست توسط کوئری هم اکنون در حافظه موجود باشند، نیازی به physical I/O پرهزینه نخواهد بود و در مقابل آن logical I/O کم هزینه‌تر است.
- میزان مصرف حافظه

در کل هر کدام از این شاخص‌ها اگر دارای مقدار بالایی باشند، بیانگر وجود مشکلی است.


مروری بر ابزارهای مختلف اندازه‌گیری شاخص‌های کارآیی

Management studio
درون Management studio می‌توان اطلاعات مرتبط با یک کوئری را به صورت زنده مشاهده کرد. البته این اطلاعات صرفا مرتبط با یک کوئری و یا تعدادی مشخص هستند؛ چون باید کوئری را به صورت دستی درون این برنامه اجرا کرد و سپس اطلاعات اجرای کوئری‌ها را دریافت نمود. اطلاعات آماری که توسط آن نیز ارائه می‌شود محدودیت‌هایی دارد. برای مثال مدت زمان اجرای کوئری و یا تعداد رکوردهای تحت تاثیر قرار گرفته شده را می‌توان مشاهده کرد. اما به اندازه‌ی اطلاعات ارائه شده‌ی در یک execution plan کامل نیست. به علاوه بازگشت اطلاعات حاصل از اجرای کوئری‌ها درون این برنامه، سربار خودش را داشته و سبب کند شدن برنامه می‌شود. در آخر اطلاعات ارائه شده‌ی توسط آن‌را نیز باید از قسمت‌های مختلفی جمع آوری و به صورت دستی ذخیره کرد.

Extended Events
توسط Extended Events نیز می‌توان همانند Management studio، اطلاعات آماری یک تک کوئری و یا یک batch را جمع آوری کرد؛ اما پس از ایجاد و تنظیم آن، به صورت خودکار اجرا می‌شود. در حین تعریف یک سشن Extended Events می‌توان شاخص‌های خاصی را انتخاب کرد و یا شرط‌های دقیقی را اعمال کرد. خروجی آن نیز به صورت خودکار در یک فایل ذخیره می‌شود.

Dynamic management objects
با استفاده از DMO's از نتایج آماری مرتبط با تک کوئری‌ها، به نتایج تجمعی حاصل از اجرای آن‌ها می‌رسیم. این نتایج نیز در plan cache ذخیره می‌شوند. به این معنا که اگر کش، تخلیه (با اجرای دستور DBCC FREEPROCCACHE) و یا سرور ری‌استارت شود، این اطلاعات از دست خواهند رفت. هدف آن بیشتر رفع اشکال کوئری‌هایی است که هم اکنون در حال اجرا هستند. اگر نیاز به اطلاعات دوره‌ای را داشته باشید، نیاز خواهید داشت تا با تهیه‌ی snapshotهایی از بانک اطلاعاتی، این تاریخچه را تکمیل کنید. به همین جهت Query Store ارائه شده‌است تا نیازی به اینکار نباشد.

Query Store
Query Store کار ذخیره سازی متن plan و آمار تجمعی مرتبط با آن‌را به صورت خودکار انجام می‌دهد و آن‌را درون بانک اطلاعاتی کاربر ذخیره می‌کند. به همین جهت با خالی شدن کش، برخلاف DMO's، اطلاعات آن حذف نمی‌شود.


مثالی از روش‌های مختلف جمع آوری اطلاعات آماری حاصل از اجرای کوئری‌ها در SQL Server

در ادامه قصد داریم با مثالی، خلاصه‌ای را از سه قسمتی که تاکنون بررسی کردیم، ارائه دهیم. برای این منظور ابتدا رویه‌ی ذخیره شده‌ی زیر را ایجاد می‌کنیم:
USE [WideWorldImporters];
GO

DROP PROCEDURE IF EXISTS [Application].[usp_GetPersonInfo];
GO

CREATE PROCEDURE [Application].[usp_GetPersonInfo]
    (@PersonID INT)
AS

SELECT
    [p].[FullName],
    [p].[EmailAddress],
    [c].[FormalName]
FROM [Application].[People] [p]
    LEFT OUTER JOIN [Application].[Countries] [c]
    ON [p].[PersonID] = [c].[LastEditedBy]
WHERE [p].[PersonID] = @PersonID;
GO
کار آن دریافت اطلاعات یک کاربر بر اساس ID او می‌باشد.

سپس یک سشن Extended event را با نام QueryPerf ایجاد می‌کنیم:
IF EXISTS (
SELECT *
FROM sys.server_event_sessions
WHERE [name] = 'QueryPerf')
BEGIN
    DROP EVENT SESSION [QueryPerf] ON SERVER;
END
GO

CREATE EVENT SESSION [QueryPerf]
ON SERVER
ADD EVENT sqlserver.sp_statement_completed(
WHERE ([duration]>(1000))),
ADD EVENT sqlserver.sql_statement_completed(
WHERE ([duration]>(1000))),
ADD EVENT sqlserver.query_post_execution_showplan
ADD TARGET package0.event_file(
SET filename=N'C:\Temp\QueryPerf\test.xel',max_file_size=(256))
WITH (
MAX_MEMORY=16384 KB,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,
MAX_DISPATCH_LATENCY=5 SECONDS,MAX_EVENT_SIZE=0 KB,
MEMORY_PARTITION_MODE=NONE,TRACK_CAUSALITY=ON,STARTUP_STATE=OFF);
GO
این سشن به رخ‌دادهای sql_statement_completed، sp_statement_completed و query_post_execution_showplan، اگر طول مدت آن کوئری بیش از 1 میلی ثانیه باشد، واکنش نشان می‌دهد. نتیجه‌ی نهایی را نیز در پوشه‌ی C:\Temp\QueryPerf ذخیره می‌کند (این پوشه را باید به صورت دستی ایجاد کنید).

در ادامه Query Store را نیز بر روی بانک اطلاعاتی WideWorldImporters فعال کرده و همچنین اگر اطلاعاتی از پیش در آن وجود دارند، پاک می‌شود.
USE [master];
GO

ALTER DATABASE [WideWorldImporters] SET QUERY_STORE = ON;
GO

ALTER DATABASE [WideWorldImporters] SET QUERY_STORE (
OPERATION_MODE = READ_WRITE,
CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 30),
DATA_FLUSH_INTERVAL_SECONDS = 60,
INTERVAL_LENGTH_MINUTES = 5,
MAX_STORAGE_SIZE_MB = 100,
QUERY_CAPTURE_MODE = ALL,
SIZE_BASED_CLEANUP_MODE = AUTO,
MAX_PLANS_PER_QUERY = 200);
GO

ALTER DATABASE [WideWorldImporters] SET QUERY_STORE CLEAR;
GO

سپس هر آنچه را که در plan cache نیز وجود دارد، حذف می‌کنیم:
DBCC FREEPROCCACHE;
GO

اکنون سشن QueryPerf را که پیشتر ایجاد کردیم، آغاز می‌کنیم:
ALTER EVENT SESSION [QueryPerf]
ON SERVER
STATE = START;
GO
نتیجه‌ی آن‌را در قسمت management->extended events، با سبز شدن آیکن QueryPerf می‌توانید مشاهده کنید.


در ادامه چون می‌خواهیم نتایج آماری را در management studio نیز مشاهده کنیم، ابتدا جمع آوری شاخص‌های آماری را در یک پنجره‌ی جدید new query، فعال می‌کنیم:
SET STATISTICS IO ON;
GO
SET STATISTICS TIME ON;
GO
SET STATISTICS XML ON;
GO

همچنین در منوی Query، گزینه‌ی Include client statistics را نیز انتخاب می‌کنیم تا مشخص شود که آیا عملیات insert/update/delete انجام شده‌است. چه تعداد ردیف تحت تاثیر اجرای این کوئری قرار گرفته‌اند. چه تعداد تراکنش انجام شده‌است. همچنین اطلاعات آماری شبکه و زمان نیز ارائه شوند.

پس از این تنظیمات، اکنون نوبت به اجرای کوئری‌های زیر رسیده‌است که یکی پارامتری است و دیگری AdHoc:
USE [WideWorldImporters];
GO

EXECUTE [Application].[usp_GetPersonInfo] 1234;
GO

SELECT
    [s].[StateProvinceName],
    [s].[SalesTerritory],
    [s].[LatestRecordedPopulation],
    [s].[StateProvinceCode]
FROM [Application].[Countries] [c]
    JOIN [Application].[StateProvinces] [s]
    ON [s].[CountryID] = [c].[CountryID]
WHERE [c].[CountryName] = 'United States';
GO
با اجرای آن، در management studio، برگه‌های messages و client statistics ظاهر می‌شوند که هر کدام اینبار اطلاعات آماری اجرای این کوئری را به همراه دارند. همچنین در قسمت results، امکان مشاهده‌ی query plan، به علت فعال بودن اطلاعات آماری XML، وجود دارد.




سپس سشن QueryPerf را متوقف و حذف می‌کنیم:
ALTER EVENT SESSION [QueryPerf]
ON SERVER
STATE = STOP;
GO

DROP EVENT SESSION [QueryPerf] ON SERVER;
GO
فایل خروجی با پسوند xel آن را که در پوشه‌ی C:\Temp\QueryPerf ذخیره شده‌است، می‌توان در management studio مشاهده کرد. البته در ابتدای نمایش آن، صرفا دو ستون name و timestamp را نمایش می‌دهد که می‌توان با انتخاب هر ردیف آن و سپس انتخاب و کلیک راست بر روی ردیف‌های details آن، گزینه‌ی Show Column in table را انتخاب کرد تا شاخص مدنظر، در ستون‌های گزارش نیز ظاهر شود.


اگر بخواهیم از عملیات صورت گرفته توسط DMO's کوئری بگیریم:
SELECT
    [qs].[last_execution_time],
    [qs].[execution_count],
    [qs].[total_elapsed_time],
    [qs].[total_elapsed_time]/[qs].[execution_count] [AvgDuration],
    [qs].[total_logical_reads],
    [qs].[total_logical_reads]/[qs].[execution_count] [AvgLogicalReads],
    [t].[text],
    [p].[query_plan]
FROM sys.dm_exec_query_stats [qs]
CROSS APPLY sys.dm_exec_sql_text([qs].sql_handle) [t]
CROSS APPLY sys.dm_exec_query_plan([qs].[plan_handle]) [p]
WHERE [t].[text] LIKE '%Countries%';
GO
که در آن تنها ردیف‌هایی که متن کوئری آن‌ها حاوی Countries است، فیلتر شده، به یک چنین خروجی خواهیم رسید:


همانطور که مشاهده می‌کنید، شاخص‌های چهارگانه‌ای که در ابتدای بحث معرفی شدند، در مورد کوئری پارامتری نوشته شده، وضعیت بسیار بهتری نسبت به کوئری AdHoc دوم دارند.

از Query Store هم می‌توان به صورت زیر کوئری گرفت (علاوه بر قسمت رابط کاربری Query Store که ذیل اشیاء مرتبط با بانک اطلاعاتی WideWorldImporters در management studio قابل مشاهده‌است):
USE [WideWorldImporters];
GO

SELECT
    [qsq].[query_id],
    [qst].[query_sql_text],
    CASE
WHEN [qsq].[object_id] = 0 THEN N'Ad-hoc'
ELSE OBJECT_NAME([qsq].[object_id])
END AS [ObjectName],
    [qsp].[plan_id],
    [rs].[count_executions],
    [rs].[avg_logical_io_reads],
    [rs].[avg_duration],
    TRY_CONVERT(XML, [qsp].[query_plan]),
    [rs].[last_execution_time],
    (DATEADD(MINUTE, -(DATEDIFF(MINUTE, GETDATE(), GETUTCDATE())),
[rs].[last_execution_time])) AS [LocalLastExecutionTime]
FROM [sys].[query_store_query] [qsq]
    JOIN [sys].[query_store_query_text] [qst]
    ON [qsq].[query_text_id] = [qst].[query_text_id]
    JOIN [sys].[query_store_plan] [qsp]
    ON [qsq].[query_id] = [qsp].[query_id]
    JOIN [sys].[query_store_runtime_stats] [rs]
    ON [qsp].[plan_id] = [rs].[plan_id]
WHERE [qst].[query_sql_text] LIKE '%Countries%';
GO