مطالب
Blazor 5x - قسمت ششم - مبانی Blazor - بخش 3 - چرخه‌های حیات کامپوننت‌ها
در این قسمت می‌خواهیم انواع رویدادهای چرخه‌ی حیات یک کامپوننت را بررسی کنیم. به همین جهت ابتدا دو کامپوننت جدید Lifecycle.razor و Lifecycle‍Child.razor را به مثالی که تا این قسمت تکمیل کرده‌ایم، اضافه کرده و آن‌ها‌را به صورت زیر جهت نمایش رویدادهای چرخه‌ی حیات، تغییر می‌دهیم:

کدهای کامل کامپوننت Pages\LearnBlazor\Lifecycle.razor
@page "/lifecycle"
@using System.Threading

<div class="border">
    <h3>Lifecycles Parent Component</h3>

    <div class="border">
        <LifecycleChild CountValue="CurrentCount"></LifecycleChild>
    </div>

    <p>Current count: @CurrentCount</p>

    <button class="btn btn-primary" @onclick="IncrementCount">Click me</button>
    <br /><br />
    <button class="btn btn-primary" @onclick=StartCountdown>Start Countdown</button> @MaxCount
</div>

@code
{
    int CurrentCount = 0;
    int MaxCount = 5;

    private void IncrementCount()
    {
        CurrentCount++;
        Console.WriteLine("Parnet - IncrementCount is called");
    }

    protected override void OnInitialized()
    {
        Console.WriteLine("Parnet - OnInitialized is called");
    }

    protected override async Task OnInitializedAsync()
    {
        await Task.Delay(100);
        Console.WriteLine("Parnet - OnInitializedAsync is called");
    }

    protected override void OnParametersSet()
    {
        Console.WriteLine("Parnet - OnParameterSet is called");
    }

    protected override async Task OnParametersSetAsync()
    {
        await Task.Delay(100);
        Console.WriteLine("Parnet - OnParametersSetAsync is called");
    }

    protected override void OnAfterRender(bool firstRender)
    {
        if (firstRender)
        {
            Console.WriteLine("Parnet - OnAfterRender(firstRender == true) is called");
            CurrentCount = 111;
        }
        else
        {
            CurrentCount = 999;
            Console.WriteLine("Parnet - OnAfterRender(firstRender == false) is called");
        }
    }

    protected override async Task OnAfterRenderAsync(bool firstRender)
    {
        await Task.Delay(100);
        Console.WriteLine("Parnet - OnAfterRenderAsync is called");
    }

    protected override bool ShouldRender()
    {
        Console.WriteLine("Parnet - ShouldRender is called");
        return true;
    }

    void StartCountdown()
    {
        Console.WriteLine("Parnet - StartCountdown()");
        var timer = new Timer(TimeCallBack, null, 1000, 1000);
    }

    void TimeCallBack(object state)
    {
        if (MaxCount > 0)
        {
            MaxCount--;
            Console.WriteLine("Parnet - InvokeAsync(StateHasChanged)");
            InvokeAsync(StateHasChanged);
        }
    }
}

و کدهای کامل کامپوننت Pages\LearnBlazor\LearnBlazor‍Components\Lifecycle‍Child.razor
<h3 class="ml-3 mr-3">Lifecycles Child Componenet</h3>

@code
{
    [Parameter]
    public int CountValue { get; set; }

    protected override void OnInitialized()
    {
        Console.WriteLine("  Child - OnInitialized is called");
    }

    protected override async Task OnInitializedAsync()
    {
        await Task.Delay(100);
        Console.WriteLine("  Child - OnInitializedAsync is called");
    }

    protected override void OnParametersSet()
    {
        Console.WriteLine("  Child - OnParameterSet is called");
    }

    protected override async Task OnParametersSetAsync()
    {
        await Task.Delay(100);
        Console.WriteLine("  Child - OnParametersSetAsync is called");
    }

    protected override void OnAfterRender(bool firstRender)
    {
        if (firstRender)
        {
            Console.WriteLine("  Child - OnAfterRender(firstRender == true) is called");
        }
        else
        {
            Console.WriteLine("  Child - OnAfterRender(firstRender == false) is called");
        }
    }

    protected override async Task OnAfterRenderAsync(bool firstRender)
    {
        await Task.Delay(100);
        Console.WriteLine("  Child - OnAfterRenderAsync is called");
    }

    protected override bool ShouldRender()
    {
        Console.WriteLine("  Child - ShouldRender is called");
        return true;
    }
}
و همچنین برای دسترسی به آن‌ها، مدخل منوی زیر را به کامپوننت Shared\NavMenu.razor اضافه می‌کنیم:
<li class="nav-item px-3">
    <NavLink class="nav-link" href="lifecycle">
        <span class="oi oi-list-rich" aria-hidden="true"></span> Lifecycles
    </NavLink>
</li>
با توجه به اینکه برنامه‌ی جاری از نوع Blazor Server است، Console.WriteLine‌های آن، در صفحه‌ی کنسول اجرای برنامه ظاهر می‌شوند و نه در developer tools مرورگر:





رویدادهای OnInitialized و OnInitializedAsync

@code
{
    protected override void OnInitialized()
    {
        Console.WriteLine("Parnet - OnInitialized is called");
    }

    protected override async Task OnInitializedAsync()
    {
        await Task.Delay(100);
        Console.WriteLine("Parnet - OnInitializedAsync is called");
    }
همانطور که در تصویر فوق نیز ملاحظه می‌کنید، اولین رویدادی که فراخوانی می‌شود، OnInitialized نام دارد و پس از آن نمونه‌ی async آن به نام OnInitializedAsync. این رویدادها زمانیکه یک کامپوننت و اجزای UI آن کاملا بارگذاری شده‌اند، فراخوانی می‌شوند. مهم‌ترین کاربرد آن‌ها، دریافت اطلاعات از سرویس‌های برنامه‌است.
در کامپوننت Lifecycle.razor، یک کامپوننت دیگر نیز به نام Lifecycle‍Child.razor فراخوانی شده‌است. در این حالت ابتدا OnInitialized کامپوننت والد فراخوانی شده‌است و پس از آن بلافاصله فراخوانی OnInitialized کامپوننت فرزند را مشاهده می‌کنیم.


رویدادهای OnParametersSet و OnParametersSetAsync

این رویدادها یکبار در زمان بارگذاری اولیه‌ی کامپوننت و بار دیگر هر زمانیکه کامپوننت فرزند، پارامتر جدیدی را از طریق کامپوننت والد دریافت می‌کند، فراخوانی می‌شوند. برای نمونه کامپوننت LifecycleChild، پارامتر CurrentCount را از والد خود دریافت می‌کند:
<LifecycleChild CountValue="CurrentCount"></LifecycleChild>
هرچند این پارامتر در UI کامپوننت فرزند مثال تهیه شده استفاده نمی‌شود، اما مقدار دهی آن از طرف والد، سبب بروز رویدادهای OnParametersSet و OnParametersSetAsync خواهد شد. برای آزمایش آن اگر بر روی دکمه‌ی click me در کامپوننت والد کلیک کنیم، این رویدادهای جدید را مشاهده خواهیم کرد:
Parnet - IncrementCount is called
Parnet - ShouldRender is called
  Child - OnParameterSet is called
  Child - ShouldRender is called
Parnet - OnAfterRender(firstRender == false) is called
  Child - OnAfterRender(firstRender == false) is called
  Child - OnParametersSetAsync is called
  Child - ShouldRender is called
  Child - OnAfterRender(firstRender == false) is called
  Child - OnAfterRenderAsync is called
Parnet - OnAfterRenderAsync is called
  Child - OnAfterRenderAsync is called
ابتدا متد IncrementCount کامپوننت والد فراخوانی شده‌است که سبب تغییر مقدار پارامتر CurrentCount ارسالی به کامپوننت Lifecycle‍Child می‌شود و پس از آن، رویداد OnParameterSet کامپوننت فرزند را مشاهده می‌کنید که عکس العملی است به این تغییر مقدار. یکی از کاربردهای آن، دریافت مقدار جدید پارامترهای کامپوننت و سپس به روز رسانی قسمت خاصی از UI بر اساس آن‌ها است.



رویدادهای OnAfterRender و OnAfterRenderAsync

پس از هر بار رندر کامپوننت، این متدها فراخوانی می‌شوند. در این مرحله کار بارگذاری کامپوننت، دریافت اطلاعات و نمایش آن‌ها به پایان رسیده‌است. یکی از کاربردهای آن، آغاز کامپوننت‌های جاوا اسکریپتی است که برای کار، نیاز به DOM را دارند؛ مانند نمایش یک modal بوت استرپی.

یک نکته: هر تغییری که در مقادیر فیلدها در این رویدادها صورت گیرند، به UI اعمال نمی‌شوند؛ چون در مرحله‌ی آخر رندر UI قرار دارند.

@code
{
    protected override void OnAfterRender(bool firstRender)
    {
        if (firstRender)
        {
            Console.WriteLine("Parnet - OnAfterRender(firstRender == true) is called");
            CurrentCount = 111;
        }
        else
        {
            CurrentCount = 999;
            Console.WriteLine("Parnet - OnAfterRender(firstRender == false) is called");
        }
    }

    protected override async Task OnAfterRenderAsync(bool firstRender)
    {
        await Task.Delay(100);
        Console.WriteLine("Parnet - OnAfterRenderAsync is called");
    }
}
در مثال‌های فوق، پارامتر firstRender را نیز مشاهده می‌کنید. یک کامپوننت چندین بار می‌تواند رندر شود. برای مثال هربار که توسط رویدادگردانی مقدار فیلدی را که در UI استفاده می‌شود، تغییر دهیم، کامپوننت مجددا رندر می‌شود. برای نمونه با کلیک بر روی دکمه‌ی click me، سبب تغییر مقدار فیلد CurrentCount می‌شویم. این تغییر و فراخوانی ضمنی StateHasChanged در پایان کار متد و در پشت صحنه، سبب رندر مجدد UI شده و در نتیجه‌ی آن، مقدار جدیدی را در صفحه مشاهده می‌کنیم. در اینجا اگر خواستیم بدانیم که رندر انجام شده برای بار اول است که صورت می‌گیرد یا خیر، می‌توان از پارامتر firstRender استفاده کرد.

سؤال: با توجه به مقدار دهی‌های 111 و 999 صورت گرفته‌ی در متد OnAfterRender، در اولین بار نمایش کامپوننت، چه عددی به عنوان CurrentCount نمایش داده می‌شود؟
در اولین بار نمایش صفحه، لحظه‌ای عدد 111 و سپس عدد 999 نمایش داده می‌شود. عدد 111 را در بار اول رندر و عدد 999 را در بار دوم رندر که پس از مقدار دهی پارامتر کامپوننت فرزند است، می‌توان مشاهده کرد.
اما ... اگر پس از نمایش اولیه‌ی صفحه، چندین بار بر روی دکمه‌ی click me کلیک کنیم، همواره عدد 1000 مشاهده می‌شود. علت اینجا است که تغییرات مقادیر فیلدها در متد OnAfterRender، به UI اعمال نمی‌شوند؛ چون در این مرحله، رندر UI به پایان رسیده‌است. در اینجا فقط مقدار فیلد CurrentCount به 999 تغییر می‌کند و به همین صورت باقی می‌ماند. دفعه‌ی بعدی که بر روی دکمه‌ی click me کلیک می‌کنیم، یک واحد به آن اضافه شده و اکنون است که کار رندر UI، مجددا شروع خواهد شد (در واکشن به یک رخ‌داد و فراخوانی ضمنی StateHasChanged در پشت صحنه) و اینبار حاصل 999+1 را در UI مشاهده می‌کنیم و باز هم در پایان کار رندر، مجددا مقدار CurrentCount به 999 تغییر می‌کند که ... دیگر به UI منعکس نمی‌شود تا زمان کلیک بعدی و همینطور الی آخر.


رویدادهای StateHasChanged و ShouldRender

- اگر خروجی رویداد ShouldRender مساوی true باشد، اجازه‌ی اعمال تغییرات به UI داده خواهد شد و برعکس. بنابراین اگر حالت UI تغییر کند و خروجی این متد false باشد، این تغییرات نمایش داده نخواهند شد.
- اگر رویداد StateHasChanged فراخوانی شود، به معنای درخواست رندر مجدد UI است. کاربرد آن در مکان‌هایی است که نیاز به اطلاع رسانی دستی تغییرات UI وجود دارد؛ درست پس از زمانیکه رندر UI به پایان رسیده‌است. برای آزمایش این مورد و فراخوانی دستی StateHasChanged، کدهای تایمر زیر تهیه شده‌اند:
@page "/lifecycle"
@using System.Threading

button class="btn btn-primary" @onclick=StartCountdown>Start Countdown</button> @MaxCount

@code
{
    int MaxCount = 5;

    void StartCountdown()
    {
        Console.WriteLine("Parnet - StartCountdown()");
        var timer = new Timer(TimeCallBack, null, 1000, 1000);
    }

    void TimeCallBack(object state)
    {
        if (MaxCount > 0)
        {
            MaxCount--;
            Console.WriteLine("Parnet - InvokeAsync(StateHasChanged)");
            InvokeAsync(StateHasChanged);
        }
    }
}
تایمر تعریف شده، یک thread timer است. یعنی callback آن بر روی یک ترد جدید و مجزای از ترد UI اجرا می‌شود. در این حالت اگر StateHasChanged را جهت اطلاع رسانی تغییر حالت UI فراخوانی نکنیم، در حین کار تایمر، هیچ تغییری را در UI مشاهده نخواهیم کرد.


یک نکته: متدهای رویدادگردان در Blazor، می‌توانند sync و یا async باشند؛ مانند متدهای OnClick و OnClickAsync زیر که هر دو پس از پایان متدها، سبب فراخوانی ضمنی StateHasChanged نیز می‌شوند (به این دلیل است که با کلیک بر روی دکمه‌ای، UI هم به روز رسانی می‌شود). البته متدهای رویدادگردان async، دوبار سبب فراخوانی ضمنی StateHasChanged می‌شوند؛ یکبار زمانیکه قسمت sync متد به پایان می‌رسد و یکبار هم زمانیکه کار فراخوانی کلی متد به پایان خواهد رسید:
<button @onclick="OnClick">Synchronous</button>
<button @onclick="OnClickAsync">Asynchronous</button>
@code{
    void OnClick()
    {
    } // StateHasChanged is called after the method

    async Task OnClickAsync()
    {
        text = "click1";
        // StateHasChanged is called here as the synchronous part of the method ends

        await Task.Delay(1000);
        await Task.Delay(2000);
        text = "click2";
    } // StateHasChanged is called after the method
}
بنابراین یکی دیگر از دلایل نیاز به فراخوانی صریح InvokeAsync(StateHasChanged) در callback تایمر تعریف شده، عدم فراخوانی خودکار آن، در پایان کار رویداد callback تایمر است.


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: Blazor-5x-Part-06.zip
مطالب
استفاده از SQLDom برای آنالیز عبارات T-SQL، قسمت دوم
مدتی قبل مطلبی را در مورد کتابخانه‌ی ویژه SQL Server که یک T-SQL Parser تمام عیار است، در این سایت مطالعه کردید. در این قسمت، همان مطلب را به نحو بهتر و ساده‌تری بازنویسی خواهیم کرد.
مشکلی که در دراز مدت با SQLDom وجود خواهد داشت، مواردی مانند SelectStarExpression و CreateProcedureStatement و امثال آن هستند. این‌ها را از کجا باید تشخیص داد؟ همچنین مراحل بررسی این اجزاء، نسبتا طولانی هستند و نیاز به یک راه حل عمومی‌تر در این زمینه وجود دارد.

راه حلی برای این مشکل در مطلب «XML ‘Visualizer’ for the TransactSql.ScriptDom parse tree» ارائه شده‌است. در اینجا تمام اجزای TSqlFragment توسط Reflection مورد بررسی و استخراج قرار گرفته و نهایتا یک فایل XML از آن حاصل می‌شود.
اگر نکات ذکر شده در این مقاله را تبدیل به یک برنامه با استفاده مجدد کنیم، به چنین شکلی خواهیم رسید:


این برنامه را از اینجا می‌توانید دریافت کنید:
DomToXml.zip

همانطور که در تصویر مشاهده می‌کنید، اینبار به سادگی، SelectStarExpression قابل تشخیص است و تنها کافی است در T-SQL پردازش شده، به دنبال SelectStarExpression‌ها بود. برای اینکار جهت ساده شدن آنالیز می‌توان با ارث بری از کلاس پایه TSqlFragmentVisitor شروع کرد:
using System;
using System.Linq;
using Microsoft.SqlServer.TransactSql.ScriptDom;

namespace DbCop
{
    public class SelectStarExpressionVisitor : TSqlFragmentVisitor
    {
        public override void ExplicitVisit(SelectStarExpression node)
        {
            Console.WriteLine(
                  "`Select *` detected @StartOffset:{0}, Line:{1}, T-SQL: {2}",
                  node.StartOffset,
                  node.StartLine,
                  string.Join(string.Empty, node.ScriptTokenStream.Select(x => x.Text)).Trim());

            base.ExplicitVisit(node);
        }
    }
}
در کلاس پایه TSqlFragmentVisitor به ازای تمام اشیاء شناخته شده‌ی ScriptDom، یک متد ExplicitVisit قابل بازنویسی درنظر گرفته شده‌است. در اینجا برای مثال نمونه‌ی SelectStarExpression آن را بازنویسی کرده‌ایم.
مرحله‌ی بعد، اجرای این کلاس Visitor است:
    public static class GenericVisitor
    {
        public static void Start(string tSql, TSqlFragmentVisitor visitor)
        {
            IList<ParseError> errors;
            TSqlScript sqlFragment;
            using (var reader = new StringReader(tSql))
            {
                var parser = new TSql120Parser(initialQuotedIdentifiers: true);
                sqlFragment = (TSqlScript)parser.Parse(reader, out errors);
            }

            if (errors != null && errors.Any())
            {
                var sb = new StringBuilder();
                foreach (var error in errors)
                    sb.AppendLine(error.Message);

                throw new InvalidOperationException(sb.ToString());
            }
            sqlFragment.Accept(visitor);
        }
    }
در اینجا متد Accept کلاس TSql120Parser، امکان پذیرش یک Visitor را دارد. به این معنا که Parser در حال کار، هر زمانیکه در حال آنالیز قسمتی از T-SQL دریافتی بود، نتیجه را به اطلاع یکی از متدهای کلاس پایه TSqlFragmentVisitor نیز خواهد رساند. بنابراین دیگر نیازی به نوشتن حلقه و بررسی تک تک اجزای خروجی TSql120Parser نیست. اگر نیاز به بررسی SelectStarExpression داریم، فقط کافی است Visitor آن‌را طراحی کنیم.

مثالی از نحوه‌ی استفاده از کلاس GenericVisitor فوق را در اینجا ملاحظه می‌کنید:
 var tsql = @"WITH ctex AS (
SELECT * FROM sys.objects
)
SELECT * FROM ctex";
GenericVisitor.Start(tsql, new SelectStarExpressionVisitor());
مطالب
بررسی تفصیلی رابطه Many-to-Many در EF Code first
رابطه چند به چند در مطالب EF Code first سایت جاری، در حد تعریف نگاشت‌های آن بررسی شده، اما نیاز به جزئیات بیشتری برای کار با آن وجود دارد که در ادامه به بررسی آن‌ها خواهیم پرداخت:


1) پیش فرض‌های EF Code first در تشخیص روابط چند به چند

تشخیص اولیه روابط چند به چند، مانند یک مطلب موجود در سایت و برچسب‌های آن؛ که در این حالت یک برچسب می‌تواند به چندین مطلب مختلف اشاره کند و یا برعکس، هر مطلب می‌تواند چندین برچسب داشته باشد، نیازی به تنظیمات خاصی ندارد. همینقدر که دو طرف رابطه توسط یک ICollection به یکدیگر اشاره کنند، مابقی مسایل توسط EF Code first به صورت خودکار حل و فصل خواهند شد:
using System;
using System.Linq;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Data.Entity;
using System.Data.Entity.Migrations;
using System.Data.Entity.ModelConfiguration;

namespace Sample
{
    public class BlogPost
    {
        public int Id { set; get; }

        [StringLength(maximumLength: 450, MinimumLength = 1), Required]
        public string Title { set; get; }

        [MaxLength]
        public string Body { set; get; }

        public virtual ICollection<Tag> Tags { set; get; } // many-to-many

        public BlogPost()
        {
            Tags = new List<Tag>();
        }
    }

    public class Tag
    {
        public int Id { set; get; }

        [StringLength(maximumLength: 450), Required]
        public string Name { set; get; }

        public virtual ICollection<BlogPost> BlogPosts { set; get; } // many-to-many

        public Tag()
        {
            BlogPosts = new List<BlogPost>();
        }
    }

    public class MyContext : DbContext
    {
        public DbSet<BlogPost> BlogPosts { get; set; }
        public DbSet<Tag> Tags { get; set; }
    }

    public class Configuration : DbMigrationsConfiguration<MyContext>
    {
        public Configuration()
        {
            AutomaticMigrationsEnabled = true;
            AutomaticMigrationDataLossAllowed = true;
        }

        protected override void Seed(MyContext context)
        {
            var tag1 = new Tag { Name = "Tag1" };
            context.Tags.Add(tag1);

            var post1 = new BlogPost { Title = "Title...1", Body = "Body...1" };
            context.BlogPosts.Add(post1);

            post1.Tags.Add(tag1);

            base.Seed(context);
        }
    }

    public static class Test
    {
        public static void RunTests()
        {
            Database.SetInitializer(new MigrateDatabaseToLatestVersion<MyContext, Configuration>());

            using (var ctx = new MyContext())
            {
                var post1 = ctx.BlogPosts.Find(1);
                if (post1 != null)
                {
                    Console.WriteLine(post1.Title);
                }
            }
        }
    }
}
در این مثال، رابطه بین مطالب ارسالی در یک سایت و برچسب‌های آن به صورت many-to-many تعریف شده است و همینقدر که دو طرف رابطه توسط یک ICollection به هم اشاره می‌کنند، رابطه زیر تشکیل خواهد شد:


در اینجا تمام تنظیمات صورت گرفته بر اساس یک سری از پیش فرض‌ها است. برای مثال نام جدول واسط تشکیل شده، بر اساس تنظیم پیش فرض کنار هم قرار دادن نام دو جدول مرتبط تهیه شده است.
همچنین بهتر است بر روی نام برچسب‌ها، یک ایندکس منحصربفرد نیز تعیین شود: (^ و ^)


2) تنظیم ریز جزئیات روابط چند به چند در EF Code first

تنظیمات پیش فرض انجام شده آنچنان نیازی به تغییر ندارند و منطقی به نظر می‌رسند. اما اگر به هر دلیلی نیاز داشتید کنترل بیشتری بر روی جزئیات این مسایل داشته باشید، باید از Fluent API جهت اعمال آن‌ها استفاده کرد:
    public class TagMap : EntityTypeConfiguration<Tag>
    {
        public TagMap()
        {
            this.HasMany(x => x.BlogPosts)
                .WithMany(x => x.Tags)
                .Map(map =>
                    {
                        map.MapLeftKey("TagId");
                        map.MapRightKey("BlogPostId");
                        map.ToTable("BlogPostsJoinTags");
                    });
        }
    }

    public class MyContext : DbContext
    {
        public DbSet<BlogPost> BlogPosts { get; set; }
        public DbSet<Tag> Tags { get; set; }

        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            modelBuilder.Configurations.Add(new TagMap());
            base.OnModelCreating(modelBuilder);
        }
    }
در اینجا توسط متد Map، نام کلیدهای تعریف شده و همچنین جدول واسط تغییر داده شده‌اند:


3) حذف اطلاعات چند به چند

برای حذف تگ‌های یک مطلب، کافی است تک تک آن‌ها را یافته و توسط متد Remove جهت حذف علامتگذاری کنیم. نهایتا با فراخوانی متد SaveChanges، حذف نهایی انجام و اعمال خواهد شد.
            using (var ctx = new MyContext())
            {
                var post1 = ctx.BlogPosts.Find(1);
                if (post1 != null)
                {
                    Console.WriteLine(post1.Title);
                    foreach (var tag in post1.Tags.ToList())
                        post1.Tags.Remove(tag);
                    ctx.SaveChanges();
                }
            }
در اینجا تنها اتفاقی که رخ می‌دهد، حذف اطلاعات ثبت شده در جدول واسط BlogPostsJoinTags است. Tag1 ثبت شده در متد Seed فوق، حذف نخواهد شد. به عبارتی اطلاعات جداول Tags و BlogPosts بدون تغییر باقی خواهند ماند. فقط یک رابطه بین آن‌ها که در جدول واسط تعریف شده است، حذف می‌گردد.

در ادامه اینبار اگر خود post1 را حذف کنیم:
                var post1 = ctx.BlogPosts.Find(1);
                if (post1 != null)
                {
                    ctx.BlogPosts.Remove(post1);
                    ctx.SaveChanges();
                }
علاوه بر حذف post1، رابطه تعریف شده آن در جدول BlogPostsJoinTags نیز حذف می‌گردد؛ اما Tag1 حذف نخواهد شد.
بنابراین دراینجا cascade delete ایی که به صورت پیش فرض وجود دارد، تنها به معنای حذف تمامی ارتباطات موجود در جدول میانی است و نه حذف کامل طرف دوم رابطه. اگر مطلبی حذف شد، فقط آن مطلب و روابط برچسب‌های متعلق به آن از جدول میانی حذف می‌شوند و نه برچسب‌های تعریف شده برای آن.
البته این تصمیم هم منطقی است. از این لحاظ که اگر قرار بود دو طرف یک رابطه چند به چند با هم حذف شوند، ممکن بود با حذف یک مطلب، کل بانک اطلاعاتی خالی شود! فرض کنید یک مطلب دارای سه برچسب است. این سه برچسب با 20 مطلب دیگر هم رابطه دارند. اکنون مطلب اول را حذف می‌کنیم. برچسب‌های متناظر آن نیز باید حذف شوند. با حذف این برچسب‌ها طرف دوم رابطه آن‌ها که چندین مطلب دیگر است نیز باید حذف شوند!


4) ویرایش و یا افزودن اطلاعات چند به چند

در مثال فوق فرض کنید که می‌خواهیم به اولین مطلب ثبت شده، تعدادی تگ جدید را اضافه کنیم:
                var post1 = ctx.BlogPosts.Find(1);
                if (post1 != null)
                {
                    var tag2 = new Tag { Name = "Tag2" };                    
                    post1.Tags.Add(tag2);
                    ctx.SaveChanges();
                }
در اینجا به صورت خودکار، ابتدا tag2 ذخیره شده و سپس ارتباط آن با post1 در جدول رابط ذخیره خواهد شد.

در مثالی دیگر اگر یک برنامه ASP.NET را درنظر بگیریم، در هربار ویرایش یک مطلب، تعدادی Tag به سرور ارسال می‌شوند. در ابتدای امر هم مشخص نیست کدامیک جدید هستند، چه تعدادی در لیست تگ‌های قبلی مطلب وجود دارند، یا اینکه کلا از لیست برچسب‌ها حذف شده‌اند:
                //نام تگ‌های دریافتی از کاربر  
                var tagsList = new[] { "Tag1", "Tag2", "Tag3" };

                //بارگذاری یک مطلب به همراه تگ‌های آن
                var post1 = ctx.BlogPosts.Include(x => x.Tags).FirstOrDefault(x => x.Id == 1);
                if (post1 != null)
                {
                    //ابتدا کلیه تگ‌های موجود را حذف خواهیم کرد
                    if (post1.Tags != null && post1.Tags.Any())
                        post1.Tags.Clear();

                    //سپس در طی فقط یک کوئری بررسی می‌کنیم کدامیک از موارد ارسالی موجود هستند
                    var listOfActualTags = ctx.Tags.Where(x => tagsList.Contains(x.Name)).ToList();
                    var listOfActualTagNames = listOfActualTags.Select(x => x.Name.ToLower()).ToList();

                    //فقط موارد جدید به تگ‌ها و ارتباطات موجود اضافه می‌شوند
                    foreach (var tag in tagsList)
                    {
                        if (!listOfActualTagNames.Contains(tag.ToLowerInvariant().Trim()))
                        {
                            ctx.Tags.Add(new Tag { Name = tag.Trim() });
                        }
                    }
                    ctx.SaveChanges(); // ثبت موارد جدید

                    //موارد قبلی هم حفظ می‌شوند
                    foreach (var item in listOfActualTags)
                    {
                        post1.Tags.Add(item);
                    }
                    ctx.SaveChanges();
                }
در این مثال فقط تعدادی رشته از کاربر دریافت شده است، بدون Id آن‌ها. ابتدا مطلب متناظر، به همراه تگ‌های آن توسط متد Include دریافت می‌شود. سپس نیاز داریم به سیستم ردیابی EF اعلام کنیم که اتفاقاتی قرار است رخ دهد. به همین جهت تمام تگ‌های مطلب یافت شده را خالی خواهیم کرد. سپس در یک کوئری، بر اساس نام تگ‌های دریافتی، معادل آن‌ها را از بانک اطلاعاتی دریافت خواهیم کرد؛ کوئری tagsList.Contains به where in در طی یک رفت و برگشت، ترجمه می‌شود:
SELECT
[Extent1].[Id] AS [Id],
[Extent1].[Name] AS [Name]
FROM [dbo].[Tags] AS [Extent1]
WHERE [Extent1].[Name] IN (N'Tag1',N'Tag2',N'Tag3')
 آن‌هایی که جدید هستند به بانک اطلاعاتی اضافه شده (بدون نیاز به تعریف قبلی آن‌ها)، آن‌هایی که در لیست قبلی برچسب‌های مطلب بوده‌اند، حفظ خواهند شد.
لازم است لیست موارد موجود را (listOfActualTags) از بانک اطلاعاتی دریافت کنیم، زیرا به این ترتیب سیستم ردیابی EF آن‌ها را به عنوان رکوردی جدید و تکراری ثبت نخواهد کرد.


5) تهیه کوئری‌های LINQ بر روی روابط چند به چند

الف) دریافت یک مطلب خاص به همراه تمام تگ‌های آن:
 ctx.BlogPosts.Where(p => p.Id == 1).Include(p => p.Tags).FirstOrDefault()
ب) دریافت کلیه مطالبی که شامل Tag1 هستند:

var posts = from p in ctx.BlogPosts
                 from t in p.Tags
                 where t.Name == "Tag1"
                 select p;
و یا :
 var posts = ctx.Tags.Where(x => x.Name == "Tag1").SelectMany(x => x.BlogPosts);
نظرات مطالب
یافتن مقادیر نال در Entity framework
سلام آقای نصیری

ممنون از مطلب مفیدتون راستش من به این نکته ای که فرمودین توجه نکرده بودم. من دستوراتی را روی دیتابیس northwind اجرا کردم که اولین دستور به این صورت بود:

rg = ent.regions.where(x => x.regionid != null).tolist();

این دستور در sql server به اینصورت تبدیل میشود :

select 
[extent1].[regionid] as [regionid], 
[extent1].[regiondescription] as [regiondescription]
from [dbo].[region] as [extent1]

آیا اینکه اصلا در دستور sql ما چک کردن برای null نداریم به این خاطر است که ef بطور اتوماتیک
چک میکند که فیلد regionid از نوع nullable هست و چنانچه نباشه اصلا شرط رو دخالت نمیده؟

من در گام بعدی این دستور را اجرا کردم :

rg = ent.regions.where(x => x.regiondescription == null).tolist();

که خروجی آن به این صورت بود:

select 
cast(null as int) as [c1], 
cast(null as varchar(1)) as [c2]
from  ( select 1 as x ) as [singlerowtable1]
where 1 = 0


میخواستم اگر ممکنه کمی راجع به این دستور توضیح بفرمایید آیا این دستور همون کار is null رو انجام میده یا خیر.

باز هم سپاسگزارم

مطالب
OpenCVSharp #18
ساخت یک OCR ساده تشخیص اعداد انگلیسی به کمک OpenCV

این مطلب را می‌توان به عنوان جمع بندی مطالبی که تاکنون بررسی شدند درنظر گرفت و در اساس مطلب جدیدی ندارد و صرفا ترکیب یک سری تکنیک است؛ برای مثال:
چطور یک تصویر را به نمونه‌ی سیاه و سفید آن تبدیل کنیم؟
کار با متد Threshold جهت بهبود کیفیت یک تصویر جهت تشخیص اشیاء
تشخیص کانتورها (Contours) و اشیاء موجود در یک تصویر
آشنایی با نحوه‌ی گروه بندی تصاویر مشابه و مفاهیمی مانند برچسب‌های تصاویر که بیانگر یک گروه از تصاویر هستند.


تهیه تصاویر اعداد انگلیسی جهت آموزش دادن به الگوریتم CvKNearest

در اینجا نیز از یکی دیگر از الگوریتم‌های machine learning موجود در OpenCV به نام CvKNearest برای تشخیص اعداد انگلیسی استفاده خواهیم کرد. این الگوریتم نزدیک‌ترین همسایه‌ی اطلاعاتی مفروض را در گروهی از داده‌های آموزش داده شده‌ی به آن پیدا می‌کند. خروجی آن شماره‌ی این گروه است. بنابراین نحوه‌ی طبقه‌ی بندی اطلاعات در اینجا چیزی شبیه به شکل زیر خواهد بود:


مجموعه‌ای از تصاویر 0 تا 9 را جمع آوری کرده‌ایم. هر کدام از پوشه‌ها، بیانگر اعدادی از یک خانواده هستند. این تصویر را با فرمت ذیل جمع آوری می‌کنیم:
public class ImageInfo
{
    public Mat Image { set; get; }
    public int ImageGroupId { set; get; }
    public int ImageId { set; get; }
}
به این ترتیب
public IList<ImageInfo> ReadTrainingImages(string path, string ext)
{
    var images = new List<ImageInfo>();
 
    var imageId = 1;
    foreach (var dir in new DirectoryInfo(path).GetDirectories())
    {
        var groupId = int.Parse(dir.Name);
        foreach (var imageFile in dir.GetFiles(ext))
        {
            var image = processTrainingImage(new Mat(imageFile.FullName, LoadMode.GrayScale));
            if (image == null)
            {
                continue;
            }
 
            images.Add(new ImageInfo
            {
                Image = image,
                ImageId = imageId++,
                ImageGroupId = groupId
            });
        }
    }
 
    return images;
}
در متد خواندن تصاویر آموزشی، ابتدا پوشه‌های اصلی مسیر Numbers تصویر ابتدای بحث دریافت می‌شوند. سپس نام هر پوشه، شماره‌ی گروه تصاویر موجود در آن پوشه را تشکیل خواهد داد. به این نام در الگوریتم‌های machine leaning، کلاس هم گفته می‌شود. سپس هر تصویر را با فرمت سیاه و سفید بارگذاری کرده و به لیست تصاویر موجود اضافه می‌کنیم. در اینجا از متد processTrainingImage نیز استفاده شده‌است. هدف از آن بهبود کیفیت تصویر دریافتی جهت کار تشخیص اشیاء است:
private static Mat processTrainingImage(Mat gray)
{
    var threshImage = new Mat();
    Cv2.Threshold(gray, threshImage, Thresh, ThresholdMaxVal, ThresholdType.BinaryInv); // Threshold to find contour
 
    Point[][] contours;
    HiearchyIndex[] hierarchyIndexes;
    Cv2.FindContours(
        threshImage,
        out contours,
        out hierarchyIndexes,
        mode: ContourRetrieval.CComp,
        method: ContourChain.ApproxSimple);
 
    if (contours.Length == 0)
    {
        return null;
    }
 
    Mat result = null;
 
    var contourIndex = 0;
    while ((contourIndex >= 0))
    {
        var contour = contours[contourIndex];
 
        var boundingRect = Cv2.BoundingRect(contour); //Find bounding rect for each contour
        var roi = new Mat(threshImage, boundingRect); //Crop the image
 
        //Cv2.ImShow("src", gray);
        //Cv2.ImShow("roi", roi);
        //Cv.WaitKey(0);
 
        var resizedImage = new Mat();
        var resizedImageFloat = new Mat();
        Cv2.Resize(roi, resizedImage, new Size(10, 10)); //resize to 10X10
        resizedImage.ConvertTo(resizedImageFloat, MatType.CV_32FC1); //convert to float
        result = resizedImageFloat.Reshape(1, 1);
 
        contourIndex = hierarchyIndexes[contourIndex].Next;
    }
 
    return result;
}
عملیات صورت گرفته‌ی در این متد را با تصویر ذیل بهتر می‌توان توضیح داد:


ابتدا تصویر اصلی بارگذاری می‌شود؛ همان تصویر سمت چپ. سپس با استفاده از متد Threshold، شدت نور نواحی مختلف آن یکسان شده و آماده می‌شود برای تشخیص کانتورهای موجود در آن. در ادامه با استفاده از متد FindContours، شیء مرتبط با عدد جاری یافت می‌شود. سپس متد Cv2.BoundingRect مستطیل دربرگیرنده‌ی این شیء را تشخیص می‌دهد (تصویر سمت راست). بر این اساس می‌توان تصویر اصلی ورودی را به یک تصویر کوچکتر که صرفا شامل ناحیه‌ی عدد مدنظر است، تبدیل کرد. در ادامه برای کار با الگوریتم  CvKNearest نیاز است تا این تصویر بهبود یافته را تبدیل به یک ماتریس یک بعدی کردی که روش انجام کار توسط متد Reshape مشاهده می‌کنید.
از همین روش پردازش و بهبود تصویر ورودی، جهت پردازش اعداد یافت شده‌ی در یک تصویر با تعداد زیادی عدد نیز استفاده خواهیم کرد.


آموزش دادن به الگوریتم CvKNearest

تا اینجا تصاویر گروه بندی شده‌ای را خوانده و لیستی از آن‌ها را مطابق فرمت الگوریتم CvKNearest تهیه کردیم. مرحله‌ی بعد، معرفی این لیست به متد Train این الگوریتم است:
public CvKNearest TrainData(IList<ImageInfo> trainingImages)
{
    var samples = new Mat();
    foreach (var trainingImage in trainingImages)
    {
        samples.PushBack(trainingImage.Image);
    }
 
    var labels = trainingImages.Select(x => x.ImageGroupId).ToArray();
    var responses = new Mat(labels.Length, 1, MatType.CV_32SC1, labels);
    var tmp = responses.Reshape(1, 1); //make continuous
    var responseFloat = new Mat();
    tmp.ConvertTo(responseFloat, MatType.CV_32FC1); // Convert  to float
 
 
    var kNearest = new CvKNearest();
    kNearest.Train(samples, responseFloat); // Train with sample and responses
    return kNearest;
}
متد Train دو ورودی دارد. ورودی اول آن یک تصویر است که باید از طریق متد PushBack کلاس Mat تهیه شود. بنابراین لیست تصاویر اصلی را تبدیل به لیستی از Matها خواهیم کرد.
سپس نیاز است لیست گروه‌های متناظر با تصاویر اعداد را تبدیل به فرمت مورد انتظار متد Train کنیم. در اینجا صرفا لیستی از اعداد صحیح را داریم. این لیست نیز باید تبدیل به یک Mat شود که روش انجام آن در متد فوق بیان شده‌است. کلاس Mat سازنده‌ی مخصوصی را جهت تبدیل لیست اعداد، به همراه دارد. این Mat نیز باید تبدیل به یک ماتریس یک بعدی شود که برای این منظور از متد Reshape استفاده شده‌است.


انجام عملیات OCR نهایی

پس از تهیه‌ی لیستی از تصاویر و آموزش دادن آن‌ها به الگوریتم CvKNearest، تنها کاری که باید انجام دهیم، یافتن اعداد در تصویر نمونه‌ی مدنظر و سپس معرفی آن به متد FindNearest الگوریتم CvKNearest است. روش انجام اینکار بسیار شبیه است به روش معرفی شده در متد processTrainingImage که پیشتر بررسی شد:
public void DoOCR(CvKNearest kNearest, string path)
{
    var src = Cv2.ImRead(path);
    Cv2.ImShow("Source", src);
 
    var gray = new Mat();
    Cv2.CvtColor(src, gray, ColorConversion.BgrToGray);
 
    var threshImage = new Mat();
    Cv2.Threshold(gray, threshImage, Thresh, ThresholdMaxVal, ThresholdType.BinaryInv); // Threshold to find contour
 
 
    Point[][] contours;
    HiearchyIndex[] hierarchyIndexes;
    Cv2.FindContours(
        threshImage,
        out contours,
        out hierarchyIndexes,
        mode: ContourRetrieval.CComp,
        method: ContourChain.ApproxSimple);
 
    if (contours.Length == 0)
    {
        throw new NotSupportedException("Couldn't find any object in the image.");
    }
 
    //Create input sample by contour finding and cropping
    var dst = new Mat(src.Rows, src.Cols, MatType.CV_8UC3, Scalar.All(0));
 
    var contourIndex = 0;
    while ((contourIndex >= 0))
    {
        var contour = contours[contourIndex];
 
        var boundingRect = Cv2.BoundingRect(contour); //Find bounding rect for each contour
 
        Cv2.Rectangle(src,
            new Point(boundingRect.X, boundingRect.Y),
            new Point(boundingRect.X + boundingRect.Width, boundingRect.Y + boundingRect.Height),
            new Scalar(0, 0, 255),
            2);
 
        var roi = new Mat(threshImage, boundingRect); //Crop the image
 
        var resizedImage = new Mat();
        var resizedImageFloat = new Mat();
        Cv2.Resize(roi, resizedImage, new Size(10, 10)); //resize to 10X10
        resizedImage.ConvertTo(resizedImageFloat, MatType.CV_32FC1); //convert to float
        var result = resizedImageFloat.Reshape(1, 1);
 
 
        var results = new Mat();
        var neighborResponses = new Mat();
        var dists = new Mat();
        var detectedClass = (int)kNearest.FindNearest(result, 1, results, neighborResponses, dists);
 
        //Console.WriteLine("DetectedClass: {0}", detectedClass);
        //Cv2.ImShow("roi", roi);
        //Cv.WaitKey(0);
 
        //Cv2.ImWrite(string.Format("det_{0}_{1}.png",detectedClass, contourIndex), roi);
 
        Cv2.PutText(
            dst,
            detectedClass.ToString(CultureInfo.InvariantCulture),
            new Point(boundingRect.X, boundingRect.Y + boundingRect.Height),
            0,
            1,
            new Scalar(0, 255, 0),
            2);
 
        contourIndex = hierarchyIndexes[contourIndex].Next;
    }
 
    Cv2.ImShow("Segmented Source", src);
    Cv2.ImShow("Detected", dst);
 
    Cv2.ImWrite("dest.jpg", dst);
 
    Cv2.WaitKey();
}
این عملیات به صورت خلاصه در تصویر ذیل مشخص شده‌است:


ابتدا تصویر اصلی که قرار است عملیات OCR روی آن صورت گیرد، بارگذاری می‌شود. سپس کانتورها و اعداد موجود در آن تشخیص داده می‌شوند. مستطیل‌های قرمز رنگ در برگیرنده‌ی این اعداد را در تصویر دوم مشاهده می‌کنید. سپس این کانتور‌های یافت شده را که شامل یکی از اعداد تشخیص داده شده‌است، تبدیل به یک ماتریس یک بعدی کرده و به متد FindNearest ارسال می‌کنیم. خروجی آن نام گروه یا پوشه‌ای است که این عدد در آن قرار دارد. در همینجا این خروجی را تبدیل به یک رشته کرده و در تصویر سوم با رنگ سبز رنگ نمایش می‌دهیم.
بنابراین در این تصویر، پنجره‌ی segmented image، همان اشیاء تشخیص داده شده‌ی از تصویر اصلی هستند.
پنجره‌ی با زمینه‌ی سیاه رنگ، نتیجه‌ی نهایی OCR است که نسبتا هم دقیق عمل کرده‌است.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
مطالب
شروع به کار با EF Core 1.0 - قسمت 13 - بررسی سیستم ردیابی تغییرات
هر Context در EF Core، دارای خاصیتی است به نام ChangeTracker که وظیفه‌ی آن ردیابی تغییراتی است که نیاز است به بانک اطلاعاتی منعکس شوند. برای مثال زمانیکه توسط یک کوئری، شیءایی را باز می‌گردانید و سپس مقدار یکی از خواص آن‌را تغییر داده و متد SaveChanges را فراخوانی می‌کنید، این ChangeTracker است که به EF اعلام می‌کند، کوئری Update ایی را که قرار است تولید کنی، فقط نیاز است یک خاصیت را به روز رسانی کند؛ آن هم تنها با این مقدار تغییر یافته.

روش‌های مختلف اطلاع رسانی به سیستم ردیابی تغییرات

متد DbSet.Add کار اطلاع رسانی تبدیل وهله‌‌های ثبت شده را به کوئری‌های Insert رکوردهای جدید، انجام می‌دهد:
using (var db = new BloggingContext())
{
   var blog = new Blog { Url = "http://sample.com" };
   db.Blogs.Add(blog);
   db.SaveChanges();
}

سیستم ردیابی اطلاعات، اگر تغییراتی را در خواص اشیاء تحت نظر خود مشاهده کند، سبب تولید کوئری‌های Update می‌گردد. یک چنین اشیایی تحت نظر Context هستند:
الف) اشیایی که در طول عمر Context از دیتابیس کوئری گرفته شده‌اند.
ب) اشیایی که در طول عمر Context به آن اضافه شده‌اند (حالت قبل).
using (var db = new BloggingContext())
{
  var blog = db.Blogs.First();
  blog.Url = "http://sample.com/blog";
  db.SaveChanges();
}

و متد DbSet.Remove کار اطلاع رسانی تبدیل وهله‌های حذف شده را به کوئری‌های Delete معادل، انجام می‌دهد:
using (var db = new BloggingContext())
{
  var blog = db.Blogs.First();
  db.Blogs.Remove(blog);
  db.SaveChanges();
}
اگر شیء حذف شده پیشتر توسط متد DbSet.Add اضافه شده باشد، تنها این شیء از Context حذف می‌شود و کوئری در مورد آن تولید نخواهد شد.

به علاوه امکان ترکیب متدهای Add، Remove و همچنین به روز رسانی اشیاء در طی یک Context و با فراخوانی یک SaveChanges در انتهای کار نیز وجود دارد. از این جهت که یک Context، الگوی واحد کار را پیاده سازی می‌کند و بیانگر یک تراکنش است. در این حالت ترکیبی، یا کل تراکنش با موفقیت به پایان می‌رسد و یا در صورت بروز مشکلی، هیچکدام از تغییرات درخواستی، اعمال نخواهند شد.


عملیات ردیابی، بر روی هر نوع Projections صورت نمی‌گیرد

اگر توسط LINQ Projections، نتیجه‌ی نهایی کوئری را تغییر دادید، فقط در زمانی سیستم ردیابی بر روی آن فعال خواهد بود که projection نهایی حاوی اصل موجودیت مدنظر باشد. برای مثال در کوئری ذیل چون در Projection صورت گرفته‌ی در متد Select، هنوز در خاصیت Blog، به اصل موجودیت Blog اشاره می‌شود، نتیجه‌ی این کوئری نیز تحت نظر سیستم ردیابی خواهد بود:
using (var context = new BloggingContext())
{
   var blog = context.Blogs
      .Select(b =>
            new
            {
               Blog = b,
               Posts = b.Posts.Count()
            });
 }
اما در کوئری ذیل، خیر:
using (var context = new BloggingContext())
{
   var blog = context.Blogs
            .Select(b =>
                 new
                 {
                   Id = b.BlogId,
                   Url = b.Url
                 });
 }
در اینجا در Projection انجام شده، نتیجه‌ی نهایی، به هیچکدام از موجودیت‌های ممکن اشاره نمی‌کند. بنابراین نتیجه‌ی آن تحت نظر سیستم ردیابی قرار نمی‌گیرد.


لغو سیستم ردیابی تغییرات، در زمانیکه به آن نیازی نیست

سیستم ردیابی تغییرات بر اساس مفاهیم AOP و تولید پروکسی‌های آن کار می‌کند. این پروکسی‌ها، اشیایی شفاف هستند که اشیاء شما را احاطه می‌کنند و هر تغییری را که اعمال می‌کنید، ابتدا از این غشاء رد شده و در سیستم ردیابی EF ثبت می‌شوند. سپس به وهله‌ی اصلی شیء موجود اعمال خواهند شد.
بدیهی است تولید این پروکسی‌ها، دارای سربار است و اگر هدف شما صرفا کوئری گرفتن از اطلاعات، جهت نمایش آن‌ها است، نیازی به تولید خودکار این پروکسی‌ها را ندارید و این مساله سبب کاهش مصرف حافظه‌ی برنامه و بالا رفتن سرعت آن می‌شود.
در قسمت قبل عنوان شد که «یک چنین اشیایی تحت نظر Context هستند: الف) اشیایی که در طول عمر Context از دیتابیس کوئری گرفته شده‌اند.»
اگر می‌خواهید این حالت پیش فرض را لغو کنید، از متد AsNoTracking استفاده نمائید:
using (var context = new BloggingContext())
{
  var blogs = context.Blogs.AsNoTracking().ToList();
}
یک چنین کوئری‌هایی برای سناریوهای فقط خواندنی (گزارشگیری‌ها) مناسب هستند و بدیهی است هرگونه تغییری در لیست blogs حاصل، توسط context جاری ردیابی نشده و در نهایت به بانک اطلاعاتی (در صورت فراخوانی SaveChanges) اعمال نمی‌گردد.

اگر می‌خواهید متد AsNoTracking را به صورت خودکار به تمام کوئری‌های یک context خاص اعمال کنید، روش کار و تنظیم آن به صورت زیر است:
using (var context = new BloggingContext())
{
    context.ChangeTracker.QueryTrackingBehavior = QueryTrackingBehavior.NoTracking;


نکات به روز رسانی ارجاعات موجودیت‌ها

دو حالت زیر را درنظر بگیرید که در اولی، blog از بانک اطلاعاتی واکشی شده‌است و post به صورت مستقیم وهله سازی شده‌است:
using (var context = new BloggingContext())
{
  var blog = context.Blogs.First();
  var post = new Post { Title = "Intro to EF Core" };

  blog.Posts.Add(post);
  context.SaveChanges();
}
و در دومی blog به صورت مستقیم وهله سازی گردیده‌است و post از بانک اطلاعاتی واکشی شده‌است:
using (var context = new BloggingContext())
{
  var blog = new Blog { Url = "http://blogs.msdn.com/visualstudio" };
  var post = context.Posts.First();

  blog.Posts.Add(post);
  context.SaveChanges();
}
در حالت اول، Post، ابتدا به بانک اطلاعاتی اضافه شده و سپس این مطلب جدید به لیست ارجاعات blog اضافه می‌شود (Post جدیدی اضافه شده و اولین Blog، جهت درج آن به روز رسانی می‌شود).
در حالت دوم، ابتدا blog در بانک اطلاعاتی ثبت می‌شود (چون برخلاف حالت اول، تحت نظر context نیست) و سپس این post (که تحت نظر context است) به مجموعه مطالب آن اضافه می‌شود (بلاگ جدیدی اضافه شده و ارجاع مطلب موجودی به آن اضافه می‌شود).


وارد کردن یک موجودیت به سیستم ردیابی اطلاعات

در مثال قبل مشاهده کردیم که اگر موجودیتی تحت نظر context نباشد (برای مثال توسط یک کوئری به context وارد نشده باشد)، در حین ذخیره سازی ارجاعات، با آن به صورت یک وهله‌ی جدید رفتار شده و حتما در بانک اطلاعاتی به صورت یک رکورد جدید ذخیره می‌شود؛ حتی اگر Id آن‌را دستی تنظیم کرده باشید که ندید گرفته خواهد شد.
اگر Id و سایر اطلاعات شیءایی را دارید، نیازی نیست تا حتما توسط یک کوئری ابتدا آن‌را از بانک اطلاعاتی دریافت و سپس به صورت خودکار وارد سیستم ردیابی کنید؛ متد Attach نیز یک چنین کاری را انجام می‌دهد:
 var blog = new Blog { Id = 2, Url = "https://www.dntips.ir" };
 context.Blog.Attach(blog);
 context.SaveChanges();
در اینجا هرچند شیء Blog از بانک اطلاعاتی واکشی نشده‌است، اما چون توسط متد Attach به DbSet اضافه شده‌است، اکنون جزئی از اشیاء تحت نظر به حساب می‌آید؛ اما با یک شرط. حالت اولیه‌ی این شیء به EntityState.Unchanged تنظیم شده‌است. یعنی زمانیکه SaveChanges فراخوانی می‌شود، عملیات خاصی صورت نخواهد گرفت و هیچ اطلاعاتی در بانک اطلاعاتی درج نمی‌گردد.
علاوه بر متد Attach، متد AttachRange نیز برای افزودن لیستی از موجودیت‌ها در حالت EntityState.Unchanged، پیش بینی شده‌است.

روش دیگر انجام اینکار به صورت ذیل است:
در اینجا ابتدا یک وهله‌ی جدید از Blog ایجاد شده‌است و سپس توسط متد Entry به Context وارد شده و همچنین حالت آن به صورت صریح، به تغییر یافته، مشخص گردیده‌است:
 var blog = new Blog { Id = 2, Url = "https://www.dntips.ir" };
 context.Entry(blog).State = EntityState.Modified ;
 context.SaveChanges();
و یا می‌توان این عملیات را به صورت زیر ساده کرد:
 var blog = new Blog { Id = 2, Url = "https://www.dntips.ir" };
 context.Update(blog);
 context.SaveChanges();
در اینجا متد جدید Update، همان کار Attach و سپس تنظیم حالت را به EntityState.Modified انجام می‌دهد.
به علاوه متد UpdateRange نیز برای افزودن لیستی از موجودیت‌ها در حالت EntityState.Modified، پیش بینی شده‌است.

یک نکته: متدهای Attach و Update، هم بر روی یک DbSet و هم بر روی Context، قابل اجرا هستند. اگر بر روی Context اجرا شدند، نوع موجودیت دریافتی به نوع DbSet متناظر به صورت خودکار نگاشت شده و استفاده می‌شود (context.Set<T>().Attach(entity)). یعنی در حقیقت بین این دو حالت تفاوتی نیست و امکان فراخوانی این متدها بر روی Context، صرفا جهت سهولت کار درنظر گرفته شده‌است.


تفاوت رفتار context.Entry در EF Core با EF 6.x

متد  context.Entry در EF 6.x هم وجود دارد. اما در EF core سبب تغییر وضعیت گراف متصل به یک شیء نمی‌شود و ضعیت روابط آن‌را به روز رسانی نمی‌کند (برخلاف EF 6.x). اگر در EF Core نیاز به یک چنین به روز رسانی گراف مانندی را داشتید، باید از متد جدید context.ChangeTracker.TrackGraph به نحو ذیل استفاده نمائید:
 context.ChangeTracker.TrackGraph(blog, e => e.Entry.State = EntityState.Added);


کوئری گرفتن از سیستم ردیابی اطلاعات

این سناریوها را درنظر بگیرید:
 - می‌خواهم سیستمی شبیه به تریگرهای اس کیوال سرور را با EF داشته باشم.
 - می‌خواهم اطلاعات تمام رکوردهای ثبت شده، حذف شده و به روز رسانی شده را لاگ کنم.
 - می‌خواهم پس از ثبت رکوردی در هر جای برنامه، شبیه به مباحث SQL Server Service Broker و SqlDependency بلافاصله مطلع شده و توسط SignalR اطلاع رسانی کنم.

و در حالت کلی می‌خواهم پیش و یا پس از ثبت اطلاعات، بتوانم به تغییرات صورت گرفته دسترسی داشته باشم و عملیاتی را بر روی آن‌ها انجام دهم. تمام این موارد و سناریوها را با کوئری گرفتن از سیستم ردیابی اطلاعات EF می‌توان پیاده سازی کرد.
برای نمونه در مطلب قبل و قسمت «طراحی یک کلاس پایه، بدون تنظیمات ارث بری روابط»، یک کلاس پایه را که مقادیر پیش فرض خود را از SQL Server دریافت می‌کند، طراحی کردیم. در اینجا می‌خواهیم با استفاده از سیستم ردیابی EF، طراحی این کلاس پایه را عمومی کرده و سازگار با تمام بانک‌های اطلاعاتی موجود کنیم.
جهت یادآوری، کلاس پایه موجودیت‌ها، یک چنین شکلی را داشته:
public class BaseEntity
{
   public int Id { set; get; }
   public DateTime? DateAdded { set; get; }
   public DateTime? DateUpdated { set; get; }
}
و پس از آن، هر موجودیت برنامه به این شکل خلاصه شده و نشانه گذاری می‌شود:
public class Person : BaseEntity
{
   public string FirstName { get; set; }
   public string LastName { get; set; }
}
اکنون به کلاس Context برنامه مراجعه کرده و متد SaveChanges آن‌را بازنویسی می‌کنیم:
    public class ApplicationDbContext : DbContext
    {
        // same as before 

        public override int SaveChanges()
        {
            this.ChangeTracker.DetectChanges();

            var modifiedEntries = this.ChangeTracker
                                      .Entries<BaseEntity>()
                                      .Where(x => x.State == EntityState.Modified);
            foreach (var modifiedEntry in modifiedEntries)
            {
                modifiedEntry.Entity.DateUpdated = DateTime.UtcNow;
            }
 
            var addedEntries = this.ChangeTracker
                                      .Entries<BaseEntity>()
                                      .Where(x => x.State == EntityState.Added);
            foreach (var addedEntry in addedEntries)
            {
                addedEntry.Entity.DateAdded = DateTime.UtcNow;
            }
 
            return base.SaveChanges();
        }
    }
این متد SaveChanges، نقطه‌ی مشترک تمام تغییرات برنامه است. به همین دلیل است که اینجا را می‌توان جهت اعمالی، پیش و پس از فراخوانی متد اصلی base.SaveChanges که کار نهایی درج تغییرات را به بانک اطلاعاتی انجام می‌دهد، مورد استفاده قرار داد.
در اینجا کار با کوئری گرفتن از خاصیت ChangeTracker شروع می‌شود. سپس باید مشخص کنیم چه نوع موجودیت‌هایی را مدنظر داریم. چون تمام موجودیت‌های ما از کلاس پایه‌ی BaseEntity مشتق می‌شوند، بنابراین کوئری گرفتن بر روی این نوع، به معنای دسترسی به تمام موجودیت‌های برنامه نیز هست. سپس در اینجا اگر حالتی EntityState.Modified بود، فقط مقدار خاصیت DateUpdated را به صورت خودکار مقدار دهی می‌کنیم و اگر حالتی EntityState.Added بود، تنها مقدار خاصیت DateAdded را به روز رسانی خواهیم کرد.
در یک چنین حالتی دیگر نیازی نیست تا مقادیر این خواص را در حین ثبت اطلاعات برنامه به صورت دستی مشخص کنیم.

یک نکته: اگر به ابتدای متد بازنویسی شده دقت کنید، فراخوانی متد this.ChangeTracker.DetectChanges در آن انجام شده‌است. علت اینجا است که این فراخوانی به صورت خودکار توسط متد base.SaveChanges انجام می‌شود، اما چون این مرحله را تا انتهای متد بازنویسی شده، به تاخیر انداخته‌ایم، نیاز است خودمان به صورت دستی سبب محاسبه‌ی مجدد تغییرات صورت گرفته شویم.

نکته‌ای در مورد بهبود کیفیت کدهای متد SaveChanges: استفاده‌ی Change Tracker به این صورت با بازنویسی متد SaveChanges بسیار مرسوم است. اما پس از مدتی به متد SaveChanges ایی خواهید رسید که کنترل آن از دست خارج می‌شود. به همین جهت برای EF 6.x پروژه‌هایی مانند EFHooks طراحی شده‌اند تا کپسوله سازی بهتری را بتوان ارائه داد. انتقال کدهای آن به EF Core کار مشکلی نیست و اصل آن، بازنویسی HookedDbContext آن است که نحوه‌ی مدیریت شکیل‌تر کوئری گرفتن از ChangeTracker را بیان می‌کند.


خواص سایه‌ای یا Shadow properties

EF Core به همراه مفهوم کاملا جدیدی است به نام خواص سایه‌ای. این نوع خواص در سمت کدهای ما و در کلاس‌های موجودیت‌های برنامه وجود خارجی نداشته، اما در سمت جداول بانک اطلاعاتی وجود دارند و اکنون امکان کوئری گرفتن و کار کردن با آن‌ها در EF Core میسر شده‌است.
برای تعریف آن‌ها، بجای افزودن خاصیتی به کلاس‌های برنامه، کار از متد OnModelCreating به نحو ذیل شروع می‌شود:
protected override void OnModelCreating(ModelBuilder modelBuilder)
{
  modelBuilder.Entity<Blog>().Property<DateTime>("DateAdded");
در اینجا یک خاصیت جدید به نام DateAdded، از نوع DateTime که در کلاس Blog وجود خارجی ندارد، تعریف شده‌است. به این خاصیت، shadow property می‌گویند (سایه‌ای است از ستونی از جدول بلاگ).
سپس برای کار کردن و کوئری گرفتن از آن می‌توان از متد جدید EF.Property، به نحو ذیل استفاده کرد:
 var blogs = context.Blogs.OrderBy(b => EF.Property<DateTime>(b, "DateAdded"));
همچنین برای مقدار دهی آن تنها می‌توان توسط سیستم Change Tracker اقدام نمود:
 context.Entry(myBlog).Property("DateAdded").CurrentValue = DateTime.Now;
و یا در همان قطعه کد بازنویسی متد SaveChanges فوق، نحوه‌ی دسترسی به اینگونه خواص، به صورت زیر می‌باشد:
foreach (var addedEntry in addedEntries)
{
  addedEntry.Property("DateAdded").CurrentValue = DateTime.UtcNow;
}
مهم‌ترین دلیل وجودی این خواص، پیاده سازی روابطی مانند many-to-many، در نگارش‌های بعدی EF Core هستند. در حقیقت جدول واسطی که در اینجا به صورت خودکار تشکیل می‌شود، به همراه خواصی است که تاکنون امکان دسترسی به آن‌ها در کدهای EF وجود نداشت؛ اما Shadow properties این امر را میسر می‌کنند (فیلدهایی که در سمت بانک اطلاعاتی وجود دارند، اما در کدهای کلاس‌های ما، خیر).
مطالب
بررسی مفهوم Captured Variable در زبان سی شارپ
Capturing Outer Variables  
یک عبارت لامبدا می‌تواند از متغیرهای محلی و یا پارامترهای متدی که در آن تعریف شده است، استفاده نماید (Outer Variables). این متغیرها را captured variables می‌نامند. عبارت لامبدایی که از این متغیرها استفاده می‌کند، closure نامیده می‌شود. برای مثال:
static void Main()
{
 int factor = 2;
 Func<int, int> multiplier = n => n * factor;
 Console.WriteLine (multiplier (3)); // 6
}
در کد فوق multiplier یک delegate می‌باشد که ورودی صحیح n را گرفته و در مقدار factor ضرب کرده و بر می‌گرداند.

عبارت لامبدا زمانی ارزیابی می‌شود که delegate متناظر فراخوانی (Invoke) گردد؛ نه زمانیکه متغیر اصطلاحا capture می‌شود:
int factor = 2;
Func<int, int> multiplier = n => n * factor;
factor = 10;
Console.WriteLine (multiplier (3)); // 30
در کد فوق در زمانی که multiplier فراخوانی می‌شود مقدار factor برابر 10 ارزیابی شده و لذا عدد 30 چاپ خواهد شد.

عبارات لامبدا خود می‌توانند captured variable‌ها را تغییر دهند:
int seed = 0;
Func<int> natural = () => seed++;
Console.WriteLine (natural()); // 0
Console.WriteLine (natural()); // 1
Console.WriteLine (seed); // 2
در کد فوق natural یک delegate بدون ورودی و با یک خروجی integer می‌باشد. در ابتدا متغیر محلی seed تعریف شده و با مقدار اولیه 0 مقداردهی می‌شود. با هر بار اجرای natural مقدار seed به اندازه 1 واحد افزایش می‌یابد.
طول عمر(lifetime) متغیرهای captured شده در حد طول عمر delegate افزایش پیدا می‌کند. در مثال زیر متغیر محلی seed در حالت معمول، محدوده دیدی (scope) در حد تعریف این متغیر تا پایان اجرای متد دارد. اما از آنجاییکه در اینجا متغیر captured شده است، طول عمر آن در حدا طول عمر delegate افزایش می‌یابد: theNatural
static Func<int> Natural()
{
 int seed = 0;
 return () => seed++; // Returns a closure
}
static void Main()
{
 Func<int> theNatural = Natural();
 Console.WriteLine (theNatural ()); // 0
 Console.WriteLine (theNatural ()); // 1
}
اگر متغیر seed را در بدنه عبارت لامبدا تعریف نماییم، این متغیر برای هر بار اجرای delegate یکتا خواهد بود:
static Func<int> Natural()
{
 return() => { int seed = 0; return seed++; };
}
static void Main()
{
 Func<int> natural = Natural();
 Console.WriteLine (natural()); // 0
 Console.WriteLine (natural()); // 0
}

نکته: پیاده سازی پروسه Capture شدن متغیر، به این صورت است که این متغیرها به عنوان یک فیلد از یک کلاس (با سطح دسترسی private) در نظر گرفته می‌شوند. زمانیکه متد فراخوانی شد، کلاس مزبور وهله سازی شده و طول عمر آن به  طول عمر delegate گره می‌خورد.

Capturing iteration variables
در حلقه for، وقتی که متغیر حلقه توسط یک عبارت لامبدا capture می‌گردد، #C با آن متغیر طوری رفتار می‌کند که گویی در خارج از حلقه تعریف شده‌است و این بدان معناست که در هر بار تکرار حلقه، مقدار یکسانی برای متغیر در نظر گرفته می‌شود. کد زیر 333 را در خروجی چاپ می‌کند(بجای 012). 
Action[] actions = new Action[3];
for (int i = 0; i < 3; i++)
actions [i] = () => Console.Write (i);
foreach (Action a in actions) a(); // 333
دلیل این موضوع این است که در هنگام اجرای delegate ها، هر delegate مقدار i را برابر مقدار آن در زمان اجرا می‌بیند و این مقدار در زمان اجرا برابر با 3 می‌باشد.
با نوشتن کد زیر می‌توان درک بهتری از موضوع پیدا کرد. 
Action[] actions = new Action[3];
int i = 0;
actions[0] = () => Console.Write (i);
i = 1;
actions[1] = () => Console.Write (i);
i = 2;
actions[2] = () => Console.Write (i);
i = 3;
foreach (Action a in actions) a(); // 333
اگر بخواهیم خروجی 012 چاپ شود راه حل به شرح زیر خواهد بود:
Action[] actions = new Action[3];
for (int i = 0; i < 3; i++)
{
 int loopScopedi = i;
 actions [i] = () => Console.Write (loopScopedi);
}
foreach (Action a in actions) a(); // 012
زیرا هر متغیر loopScopedi در هر بار تکرار حلقه مجددا تعریف می‌گردد و لذا هر بار متغیر متفاوتی capture می‌گردد.
مطالب
تبدیل html به pdf با کیفیت بالا

کتابخانه iTextSharp دارای کلاسی است به نام HTMLWorker که کار تبدیل عناصر HTML را به عناصر متناظر خودش، انجام می‌دهد. این کلاس در حال حاضر منسوخ شده درنظر گرفته می‌شود (اینطور توسط نویسندگان آن اعلام شده) و دیگر توسعه نخواهد یافت. بنابراین اگر از HTMLWorker استفاده می‌کنید با یک کلاس قدیمی که دارای HTML Parser ایی بسیار بدوی است طرف هستید و در کل برای تبدیل محتوای HTML ایی با ساختار بسیار ساده بد نیست؛ اما انتظار زیادی از آن نداشته باشید.
جایگزین کلاس HTMLWorker در این کتابخانه در حال حاضر کتابخانه itextsharp.xmlworker است، که به صورت یک افزونه در کنار کتابخانه اصلی در حال توسعه می‌باشد. مشکل اصلی این کتابخانه، عدم پشتیبانی از UTF8 و راست به چپ است. بنابراین حداقل به درد کار ما نمی‌خورد.

راه حل بسیار بهتری برای موضوع اصلی بحث ما وجود دارد و آن هم استفاده از موتور WebKit (همان موتوری که برای مثال در Apple Safari استفاده می‌شود) برای HTML parsing و سپس تبدیل نتیجه نهایی به PDF است. پروژه‌ای که این مقصود را میسر کرده، wkhtmltopdf نام دارد.
توسط آن به کمک موتور WebKit، کار HTML Parsing انجام شده و سپس برای تبدیل عناصر نهایی به PDF از امکانات کتابخانه‌ای به نام QT استفاده می‌شود. کیفیت نهایی آن کپی مطابق اصل HTML قابل مشاهده در یک مرورگر است و با یونیکد و زبان فارسی هم مشکلی ندارد.

برای استفاده از این کتابخانه‌ی native در دات نت، شخصی پروژه‌ای را ایجاد کرده است به نام WkHtmlToXSharp که محصور کننده‌ی wkhtmltopdf می‌باشد. در ادامه به نحوه استفاده از آن خواهیم پرداخت:

الف) دریافت پروژه WkHtmlToXSharp
پروژه WkHtmlToXSharp را از آدرس زیر می‌توانید دریافت کنید.

 این پروژه به همراه فایل‌های کامپایل شده نهایی wkhtmltopdf نیز می‌باشد و حجمی حدود 40 مگ دارد. به علاوه فعلا نسخه 32 بیتی آن در دسترس است. بنابراین باید دقت داشت که نباید تنظیمات پروژه دات نت خود را بر روی Any CPU قرار دهیم، زیرا در این حالت برنامه شما در یک سیستم 64 بیتی بلافاصله کرش خواهد کرد. تنظیمات target platform پروژه دات نتی ما حتما باید بر روی X86 تنظیم شود.

ب) پس از دریافت این پروژه و افزودن ارجاعی به اسمبلی WkHtmlToXSharp.dll، استفاده از آن به نحو زیر می‌باشد:

using System.IO;
using WkHtmlToXSharp;
using System;

namespace Test2
{
    public class WkHtmlToXSharpTest
    {
        public static void ConvertHtmlStringToPdfTest()
        {
            using (var wk = new MultiplexingConverter())
            {
                wk.Begin += (s, e) => Console.WriteLine("Conversion begin, phase count: {0}", e.Value);
                wk.Error += (s, e) => Console.WriteLine(e.Value);
                wk.Warning += (s, e) => Console.WriteLine(e.Value);
                wk.PhaseChanged += (s, e) => Console.WriteLine("PhaseChanged: {0} - {1}", e.Value, e.Value2);
                wk.ProgressChanged += (s, e) => Console.WriteLine("ProgressChanged: {0} - {1}", e.Value, e.Value2);
                wk.Finished += (s, e) => Console.WriteLine("Finished: {0}", e.Value ? "success" : "failed!");

                wk.GlobalSettings.Margin.Top = "0cm";
                wk.GlobalSettings.Margin.Bottom = "0cm";
                wk.GlobalSettings.Margin.Left = "0cm";
                wk.GlobalSettings.Margin.Right = "0cm";

                wk.ObjectSettings.Web.EnablePlugins = false;
                wk.ObjectSettings.Web.EnableJavascript = false;
                wk.ObjectSettings.Load.Proxy = "none";

                var htmlString = File.ReadAllText(@"c:\page.xhtml");
                var tmp = wk.Convert(htmlString);

                File.WriteAllBytes(@"tst.pdf", tmp);
            }
        }
    }
}

کار با وهله سازی از کلاس MultiplexingConverter شروع می‌شود. اگر علاقمند باشید که درصد پیشرفت کار به همراه خطاهای احتمالی پردازشی را ملاحظه کنید می‌توان از رخدادگردان‌هایی مانند ProgressChanged و Error استفاده نمائید که نمونه‌ای از آن در کد فوق بکارگرفته شده است.
تبدیل HTML به PDF آنچنان تنظیمات خاصی ندارد زیرا فرض بر این است که قرار است از همان تنظیمات اصلی HTML مورد نظر استفاده گردد. اما اگر نیاز به تنظیمات بیشتری وجود داشت، برای مثال به کمک GlobalSettings آن می‌توان حاشیه‌های صفحات فایل نهایی تولیدی را تنظیم کرد.
موتور WebKit با توجه به اینکه موتور یک مرورگر است، امکان پردازش جاوا اسکریپت را هم دارد. بنابراین اگر قصد استفاده از آن‌را نداشتید می‌توان خاصیت ObjectSettings.Web.EnableJavascript را به false مقدار دهی کرد.
کار اصلی، در متد Convert انجام می‌شود. در اینجا می‌توان یک رشته را که حاوی فایل HTML مورد نظر است به آن ارسال کرد و نتیجه نهایی، آرایه‌ای از بایت‌ها، حاوی فایل باینری PDF تولیدی است.
روش دیگر استفاده از این کتابخانه، مقدار دهی wk.ObjectSettings.Page می‌باشد. در اینجا می‌توان Url یک صفحه اینترنتی را مشخص ساخت. در این حالت دیگر نیازی نیست تا به متد Convert پارامتری را ارسال کرد. می‌توان از overload بدون پارامتر آن استفاده نمود.

یک نکته:
اگر می‌خواهید زبان فارسی را توسط این کتابخانه به درستی پردازش کنید، نیاز است حتما یک سطر زیر را به header فایل html خود اضافه نمائید:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 
مطالب
ویژگی های کمتر استفاده شده در NET. - بخش سوم

__arglist __reftype __makeref __refvalue کلمات کلیدی

در حالیکه، ویرایشگر Visual Studio این کلمات را به صورت رنگی و جزء کلمات کلیدی نمایش می‌دهد، ولی به دلیل عدم وجود مستندات برای این کلمات کلیدی، برای استفاده از آنها باید مراقب باشید؛ چرا که ممکن است به اندازه کافی تست نشده باشند. 
شما می‌توانید با استفاده از کلمه کلیدی makeref__ یک TypeReference را از یک متغیر، ایجاد کنید. با استفاده از کلمه کلیدی reftype__ می‌توانید نوع اصلی از متغیری را که TypeReference را از آن ایجاد کرده اید، استخراج کنید. در انتها می‌توانید با استفاده از کلمه کلیدی refvalue__ مقدار متغیر را از TypeReference ایجاد شده، بدست آورد. با استفاده از کلمه کلیدی arglist__ همانند کلمه کلیدی params می‌توانید به لیستی از پارامترهای یک تابع دسترسی داشته باشید.
var i = 28;
TypedReference tr = __makeref( i );
Type t = __reftype( tr );
Console.WriteLine( t );
int rv = __refvalue( tr, int );
Console.WriteLine( rv );
ArglistTest.DisplayNumbers( __arglist( 1, 2, 3, 5, 6 ) );
و برای استفاده از arglist__ کلاس ArglistTest را پیاده سازی میکنیم.
public static class ArglistTest
{
    public static void DisplayNumbers( __arglist )
    {
        var ai = new ArgIterator( __arglist );
        while ( ai.GetRemainingCount() > 0 )
        {
            var tr = ai.GetNextArg();
            Console.WriteLine( TypedReference.ToObject( tr ) );
        }
    }
}
شی ArgIterator لیست آرگومان‌ها را از اولین آرگومان اختیاری، شروع به شمارش می‌کند. این سازنده برای استفاده در زبان C++/C ایجاد شده است.

Environment.NewLine

رشته خط جدید (↵  Enter) تعریف شده در محیط در حال استفاده را می‌توان با استفاده از این دستور بدست آورد.
Console.WriteLine( "NewLine: {0}first line{0}second line{0}third line", Environment.NewLine );
این رشته شامل "r\n\" برای پلتفرم‌های غیر یونیکس و رشته "n\" برای پلتفرم‌های یونیکس است.

ExceptionDispatchInfo

ExceptionDispatchInfo بیان کننده یک استثناء در یک نقطه خاص از کد، که وضعیت آن قبلا کپچر شده‌است، می‌باشد. شما می‌توانید با استفاده از متد ExceptionDispatchInfo.Throw  (در فضای نام System.Runtime.ExceptionServices) یک استثناء را (با حفظ Stack Trace اصلی) ایجاد کنید.
ExceptionDispatchInfo possibleException = null;
try
{
    int.Parse( "a" );
}
catch ( FormatException ex )
{
    possibleException = ExceptionDispatchInfo.Capture( ex );
}
possibleException?.Throw();


Debug.Assert & Debug.WriteIf & Debug.Indent 

Debug.Assert  – بررسی صحت شرط تعیین شده و در صورت false بودن شرط، نمایش پیام نوشته شده به همراه call stack مربوطه می‌شود.
Debug.Assert(1 == 0, "عدد 1 برابر با 0 نیست");
و خروجی آن در تصویر زیر قابل مشاهده است:

Debug.WriteIf  – در صورت صحت شرط تعیین شده، پیام مشخص شده‌ای را در پنجره output نشان می‌دهد.
Debug.WriteIf( 1 == 1, "display message in output window :D" );

Debug.Indent/Debug.Unindent - برای افزایش/کاهش یک واحد تورفتگی در خروجی نمایش داده شده در پنجره Output، استفاده می‌شود.
Debug.WriteLine("تست تورفتگی");
Debug.Indent();
Debug.WriteLine("یک واحد افزایش داده شد");
Debug.Unindent();
Debug.WriteLine("یک واحد کاهش داده شد");
Debug.WriteLine("پایان تست");

مطالب
الگوی طراحی Factory Method به همراه مثال

الگوی طراحی Factory Method به همراه مثال

عناوین :

·   تعریف Factory Method
·   دیاگرام UML
·   شرکت کنندگان در UML
·   مثالی از Factory Pattern در #C 


تعریف الگوی Factory Method :

این الگو پیچیدگی ایجاد اشیاء برای استفاده کننده را پنهان می‌کند. ما با این الگو میتوانیم بدون اینکه کلاس دقیق یک شیئ را مشخص کنیم آن را ایجاد و از آن استفاده کنیم. کلاینت ( استفاده کننده ) معمولا شیئ واقعی را ایجاد نمی‌کند بلکه با یک واسط و یا کلاس انتزاعی (Abstract) در ارتباط است و کل مسئولیت ایجاد کلاس واقعی را به Factory Method می‌سپارد. کلاس Factory Method می‌تواند استاتیک باشد . کلاینت معمولا اطلاعاتی را به متدی استاتیک از این کلاس می‌فرستد و این متد بر اساس آن اطلاعات تصمیم می‌گیرید که کدام یک از پیاده سازی‌ها را برای کلاینت برگرداند.

از مزایای این الگو این است که اگر در نحوه ایجاد اشیاء تغییری رخ دهد هیچ نیازی به تغییر در کد کلاینت‌ها نخواهد بود. در این الگو اصل DIP از اصول پنجگانه SOLID به خوبی رعایت می‌شود چون که مسئولیت ایجاد زیرکلاس‌ها از دوش کلاینت برداشته می‌شود.


دیاگرام UML :

در شکل زیر دیاگرام UML الگوی Factory Method را مشاهده می‌کنید.

        

شرکت کنندگان در این الگو به شرح زیل هستند :

- Iproduct یک واسط است که هر کلاینت  از آن استفاده می‌کند. در اینجا کلاینت استفاده کننده نهایی است مثلا می‌تواند متد main یا هر متدی در کلاسی خارج از این الگو باشد. ما می‌توانیم پیاده سازی‌های مختلفی بر حسب نیاز از واسط Iproduct ایجاد کنیم.

- ConcreteProduct یک پیاده سازی از واسط Iproduct است ، برای این کار بایستی کلاس پیاده سازی (ConcreteProduct) از این واسط (IProduct) مشتق شود.

- Icreator واسطیست که Factory Method را تعریف می‌کند. پیاده ساز این واسط بر اساس اطلاعاتی دریافتی کلاس صحیح را ایجاد می‌کند. این اطلاعات از طریق پارامتر برایش ارسال می‌شوند.همانطور که گفتیم این عملیات بر عهده پیاده ساز این واسط است و ما در این نمودار این وظیفه را فقط بر عهده ConcreteCreator گذاشته ایم که از واسط Icreator مشتق شده است.


پیاده سازی UMLفوق به صورت زیر است:

در ابتدا کلاس واسط IProduct تعریف شده است.

interface IProduct
{
       //  در اینجا  برحسب نیاز فیلدها  و یا امضای متد‌ها قرار می‌گیرند 
}

در این مرحله ما پند پیاده سازی از IProduct انجام می‌دهیم.

class ConcreteProductA : IProduct
{
      // A پیاده سازی 
}
 
class ConcreteProductB : IProduct
{
      // B پیاده سازی 
}
در این مرحله کلاس انتزاعی Creator تعریف می‌شود.
abstract class Creator
{
          // این متد بر اساس نوع ورودی انتخاب مناسب را انجام و باز می‌گرداند
           public abstract IProduct FactoryMethod(string type);
}
در این مرحله ما با ارث بری از Creator متد Abstract آن را به شیوه خودمان پیاده سازی می‌کنیم.
class ConcreteCreator : Creator
{
     public override IProduct FactoryMethod(string type)
    {
            switch (type)
           {
                case "A": return new ConcreteProductA();
                case "B": return new ConcreteProductB();
                default: throw new ArgumentException("Invalid type", "type");
           }
     }
}
مثالی از Factory Pattern در #C :

برای روشن‌تر شدن موضوع ، یک مثال کاملتر ارائه داده می‌شود. در شکل زیر طراحی این برنامه نشان داده شده است.

کد برنامه به شرح زیل است :

using System;

namespace FactoryMethodPatternRealWordConsolApp
{
    internal class Program
    {
        private static void Main(string[] args)
        {
            VehicleFactory factory = new ConcreteVehicleFactory();

            IFactory scooter = factory.GetVehicle("Scooter");
            scooter.Drive(10);

            IFactory bike = factory.GetVehicle("Bike");
            bike.Drive(20);

            Console.ReadKey();

        }
    }

    public interface IFactory
    {
        void Drive(int miles);
    }

    public class Scooter : IFactory
    {
        public void Drive(int miles)
        {
            Console.WriteLine("Drive the Scooter : " + miles.ToString() + "km");
        }
    }

    public class Bike : IFactory
    {
        public void Drive(int miles)
        {
            Console.WriteLine("Drive the Bike : " + miles.ToString() + "km");
        }
    }

    public abstract class VehicleFactory
    {
        public abstract IFactory GetVehicle(string Vehicle);

    }

    public class ConcreteVehicleFactory : VehicleFactory
    {
        public override IFactory GetVehicle(string Vehicle)
        {
            switch (Vehicle)
            {
                case "Scooter":
                    return new Scooter();
                case "Bike":
                    return new Bike();
                default:
                    throw new ApplicationException(string.Format("Vehicle '{0}' cannot be created", Vehicle));
            }
        }
    }
}
خروجی اجرای برنامه فوق به شکل زیر است :






فایل این برنامه ضمیمه شده است، از لینک مقابل دانلود کنید FactoryMethodPatternRealWordConsolApp.zip

در مقالات بعدی مثال‌های کاربردی‌تر و جامع‌تری از این الگو و الگو‌های مرتبط ارائه خواهم کرد...