مطالب
OpenCVSharp #3
در قسمت دوم با نحوه‌ی بارگذاری تصاویر در OpenCVSharp آشنا شدیم. در این قسمت قصد داریم با نحوه‌ی ایجاد یک clone و نمونه‌ای مشابه از تصویر اصلی بارگذاری شده آشنا شویم. برای مثال هرچند متد LoadImage، دارای پارامتر بارگذاری تصویر، به صورت سیاه و سفید است، اما توصیه نمی‌شود که در بدو امر، تصویر را سیاه و سفید بارگذاری کنید. چون هرگونه تغییری در تصویر اصلی، امکان استفاده‌ی از آن‌را در سایر متدها و الگوریتم‌ها با مشکل مواجه می‌کند و استفاده‌ی از حالت LoadMode.GrayScale جهت بالا بردن سرعت عملیات، در کارهای پردازش تصویر بسیار معمول است.


تهیه‌ی یک نمونه‌ی سیاه و سفید از تصویر اصلی در OpenCVSharp

برای تهیه‌ی یک نمونه‌ی مشابه تصویر اصلی، از متد CreateImage استفاده می‌شود:
using (var src = Cv.LoadImage(@"..\..\images\ocv02.jpg", LoadMode.Color))
using (var dst = Cv.CreateImage(new CvSize(src.Width, src.Height), BitDepth.U8, 1))
{
    Cv.CvtColor(src, dst, ColorConversion.BgrToGray);
 
    using (new CvWindow("src", image: src))
    using (new CvWindow("dst", image: dst))
    {
        Cv.WaitKey();
    }
}
با این خروجی



معرفی متد CreateImage

پارامتر اول متد CreateImage، اندازه‌ی تصویر تولیدی را مشخص می‌کند. پارامتر دوم آن تعداد بیت تصویر را تعیین خواهد کرد. این تعداد بیت عموما بر اساس نیاز متدهای مختلف پردازش تصویر، متغیر خواهند بود و برای تعیین آن نیاز است مستندات هر متد را مطالعه کرد. BitDepth.U8 به معنای 8bit unsigned است.
پارامتر سوم این متد، تعیین کننده‌ی تعداد کانال تصویر است. تصاویر رنگی دارای سه کانال سبز، قرمز و آبی‌، هستند. چون در اینجا قصد داریم تصویر را سیاه و سفید کنیم، تعداد کانال را به عدد یک تنظیم کرده‌ایم.

متد CreateImage جهت سازگاری با اینترفیس C مربوط به OpenCV در اینجا وجود دارد. معادل
 using (var dst = Cv.CreateImage(new CvSize(src.Width, src.Height), BitDepth.U8, 1))
را می‌توان به نحو ذیل نیز نوشت:
 var dst = new IplImage(new CvSize(src.Width, src.Height), BitDepth.U8, 1)
و یا حتی پارامتر تعیین اندازه‌ی تصویر را نیز می‌توان ساده‌تر کرد:
 using (var dst = new IplImage(src.Size, BitDepth.U8, 1))


تبدیل تصویر به حالت سیاه و سفید

متد CvtColor جهت تغییر color space بکار می‌رود که در اینجا (BGR (Blue/Green/Red را به Gray تبدیل کرده‌است:
 Cv.CvtColor(src, dst, ColorConversion.BgrToGray);
این متد را در OpenCVSharp به نحو ذیل نیز می‌توان بازنویسی کرد:
 src.CvtColor(dst, ColorConversion.BgrToGray);

بنابراین به صورت خلاصه می‌توان کدهای ابتدای بحث را به صورت زیر نیز نوشت که با کلاس‌های OpenCVSharp بیشتر سازگاری دارد:
using (var src = new IplImage(@"..\..\images\ocv02.jpg", LoadMode.Color))
//using (var dst = new IplImage(new CvSize(src.Width, src.Height), BitDepth.U8, 1))
using (var dst = new IplImage(src.Size, BitDepth.U8, 1))
{
    src.CvtColor(dst, ColorConversion.BgrToGray);
 
    using (new CvWindow("src", image: src))
    using (new CvWindow("dst", image: dst))
    {
        Cv.WaitKey();
    }
}

کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
مطالب
آشنایی با تست واحد و استفاده از کتابخانه Moq
تست واحد چیست؟

تست واحد ابزاری است برای مشاهده چگونگی عملکرد یک متد که توسط خود برنامه نویس نوشته میشود. به این صورت که پارامتر‌های ورودی، برای یک متد ساخته شده و آن متد فراخوانی و خروجی متد بسته به حالت مطلوب بررسی میشود. چنانچه خروجی مورد نظر مطلوب باشد تست واحد با موفقیت انجام میشود.


اهمیت انجام تست واحد چیست؟

درستی یک متد، مهمترین مسئله برای بررسی است و بارها مشاهده شده، استثناهایی رخ میدهند که توان تولید را به دلیل فرسایش تکراری رخداد میکاهند. نوشتن تست واحد منجر به این می‌شود چناچه بعدها تغییری در بیزنس متد ایجاد شود و ورودی و خروجی‌ها تغییر نکند، صحت این تغییر بیزنس، توسط تست بررسی مشود؛ حتی میتوان این تست‌ها را در build پروژه قرار داد و در ابتدای اجرای یک Solution تمامی تست‌ها اجرا و درستی بخش به بخش اعضا چک شوند.


شروع تست واحد:

یک پروژه‌ی ساده را داریم برای تعریف حساب‌های بانکی شامل نام مشتری، مبلغ سپرده، وضعیت و 3 متد واریز به حساب و برداشت از حساب و تغییر وضعیت حساب که به صورت زیر است:
    /// <summary>
    /// حساب بانکی
    /// </summary>
    public class Account
    {
        /// <summary>
        /// مشتری
        /// </summary>
        public string Customer { get; set; }
        /// <summary>
        /// موجودی حساب
        /// </summary>
        public float Balance { get; set; }
        /// <summary>
        /// وضعیت
        /// </summary>
        public bool Active { get; set; }

        public Account(string customer, float balance)
        {
            Customer = customer;
            Balance = balance;
            Active = true;
        }
        /// <summary>
        /// افزایش موجودی / واریز به حساب
        /// </summary>
        /// <param name="amount">مبلغ واریز</param>
        public void Credit(float amount)
        {
            if (!Active)
                throw new Exception("این حساب مسدود است.");
            if (amount < 0)
                throw new ArgumentOutOfRangeException("amount");
            Balance += amount;
        }
        /// <summary>
        /// کاهش موجودی / برداشت از حساب
        /// </summary>
        /// <param name="amount">مبلغ برداشت</param>
        public void Debit(float amount)
        {
            if (!Active)
                throw new Exception("این حساب مسدود است.");
            if (amount < 0)
                throw new ArgumentOutOfRangeException("amount");
            if (Balance < amount)
                throw new ArgumentOutOfRangeException("amount");
            Balance -= amount;
        }
        /// <summary>
        /// انسداد / رفع انسداد
        /// </summary>
        public void ChangeStateAccount()
        {
            Active = !Active;
        }
    }
تابع اصلی نیز به صورت زیر است:
    class Program
    {
        static void Main(string[] args)
        {
            var account = new Account("Ali",1000);

            account.Credit(4000);
            account.Debit(2000);
            Console.WriteLine("Current balance is ${0}", account.Balance);
            Console.ReadKey();
        }
    }
به Solution، یک پروژه از نوع تست واحد اضافه میکنیم.
در این پروژه ابتدا Reference ایی از پروژه‌ای که مورد تست هست میگیریم. سپس در کلاس تست مربوطه شروع به نوشتن متدی برای انواع تست متدهای پروژه اصلی میکنیم.
توجه داشته باشید که Data Annotation‌های بالای کلاس تست و متدهای تست، در تعیین نوع نگاه کامپایلر به این بلوک‌ها موثر است و باید این مسئله به درستی رعایت شود. همچنین در صورت نیاز میتوان از کلاس StartUp برای شروع تست استفاده کرد که عمدتا برای تعریف آن از نام ClassInit استفاده میشود و در بالای آن از [ClassInitialize] استفاده میشود.
در Library تست واحد میتوان به دو صورت چگونگی صحت عملکرد یک تست را بررسی کرد: با استفاده از Assert و با استفاده از ExpectedException، که در زیر به هر دو صورت آن میپردازیم.
    [TestClass]
    public class UnitTest
    {
        /// <summary>
        /// تعریف حساب جدید و بررسی تمامی فرآیند‌های معمول روی حساب
        /// </summary>
        [TestMethod]
        public void Create_New_Account_And_Check_The_Process()
        {
            //Arrange
            var account = new Account("Hassan", 4000);
            var account2 = new Account("Ali", 10000);
            //Act
            account.Credit(5000);
            account2.Debit(3000);
            account.ChangeStateAccount();
            account2.Active = false;
            account2.ChangeStateAccount();
            //Assert
            Assert.AreEqual(account.Balance,9000);
            Assert.AreEqual(account2.Balance,7000);
            Assert.IsTrue(account2.Active);
            Assert.AreEqual(account.Active,false);
        }
همانطور که مشاهده میشود ابتدا در قسمت Arrange، خوراک تست آماده میشود. سپس در قسمت Act، فعالیت‌هایی که زیر ذره بین تست هستند صورت می‌پذیرند و سپس در قسمت Assert درستی مقادیر با مقادیر مورد انتظار ما مطابقت داده میشوند.
برای بررسی خطاهای تعیین شده هنگام نوشتن یک متد نیز میتوان به صورت زیر عمل کرد:
        /// <summary>
        /// زمانی که کاربر بخواهد به یک حساب مسدود واریز کند باید جلوی آن گرفته شود.
        /// </summary>
        [TestMethod]
        [ExpectedException(typeof (Exception))]
        public void When_Deactive_Account_Wants_To_add_Credit_Should_Throw_Exception()
        {
            //Arrange
            var account = new Account("Hassan", 4000) {Active = false};
            //Act
            account.Credit(4000);
            //Assert
            //Assert is handled with ExpectedException
        }

        [TestMethod]
        [ExpectedException(typeof (ArgumentOutOfRangeException))]
        public void When_Customer_Wants_To_Debit_More_Than_Balance_Should_Throw_ArgumentOutOfRangeException()
        {
            //Arrange
            var account = new Account("Hassan", 4000);
            //Act
            account.Debit(5000);
            //Assert
            //Assert is handled with ArgumentOutOfRangeException
        }
همانطور که مشخص است نام متد تست باید کامل و شفاف به صورتی انتخاب شود که بیانگر رخداد درون متد تست باشد. در این متدها Assert مورد انتظار با DataAnnotation که پیش از این توضیح داده شد کنترل گردیده است و بدین صورت کار میکند که وقتی Act انجام میشود، متد بررسی می‌کند تا آن Assert رخ بدهد.


استفاده از Library Moq در تست واحد

ابتدا باید به این توضیح بپردازیم که این کتابخانه چه کاری میکند و چه امکانی را برای انجام تست واحد فراهم میکند.
در پروژه‌های بزرگ و زمانی که ارتباطات بین لایه‌ای زیادی موجود است و اصول SOLID رعایت میشود، شما در یک لایه برای ارایه فعالیت‌ها و خدمات متدهایتان با Interface‌های لایه‌های دیگر در ارتباط هستید و برای نوشتن تست واحد متدهایتان، مشکلی بزرگ دارید که نمیتوانید به این لایه‌ها دسترسی داشته باشید و ماهیت تست واحد را زیر سوال میبرید. Library Moq این امکان را به شما میدهد که از این Interface‌ها یک تصویر مجازی بسازید و همانند Snap Shot با آن کار کنید؛ بدون اینکه در لایه‌های دیگر بروید و ماهیت تست واحد را زیر سوال ببرید.
برای استفاده از متدهایی که در این Interface‌ها موجود است شما باید یک شیء از نوع Mock<> از آنها بسازید و سپس با استفاده از متد Setup به صورت مجازی متد مورد نظر را فراخوانی کنید و مقدار بازگشتی مورد انتظار را با Return معرفی کنید، سپس از آن استفاده کنید.
همچنین برای دسترسی به خود شیء از Property ایی با نام Objet از موجودیت mock شده استفاده میکنیم.
برای شناسایی بهتر اینکه از چه اینترفیس هایی باید Mock<> بسازید، میتوانید به متد سازنده کلاسی که معرف لایه ایست که برای آن تست واحد مینویسید، مراجعه کنید.
نحوه اجرای یک تست واحد با استفاده از Moq با توجه به توضیحات بالا به صورت زیر است:
پروژه مورد بررسی لایه Service برای تعریف واحد‌های سازمانی است که با الگوریتم DDD و CQRS پیاده سازی شده است.
ابتدا به Constructor خود لایه سرویس نگاه میکنیم تا بتوانید شناسایی کنید از چه Interface هایی باید Mock<> کنیم.
  public class OrganizationalService : ICommandHandler<CreateUnitTypeCommand>,
                                         ICommandHandler<DeleteUnitTypeCommand>,                                    
    {
        private readonly IUnitOfWork _unitOfWork;
        private readonly IUnitTypeRepository _unitTypeRepository;
        private readonly IOrganizationUnitRepository _organizationUnitRepository;
        private readonly IOrganizationUnitDomainService _organizationUnitDomainService;

        public OrganizationalService(IUnitOfWork unitOfWork, IUnitTypeRepository unitTypeRepository, IOrganizationUnitRepository organizationUnitRepository, IOrganizationUnitDomainService organizationUnitDomainService)
        {
            _unitOfWork = unitOfWork;
            _unitTypeRepository = unitTypeRepository;
            _organizationUnitRepository = organizationUnitRepository;
            _organizationUnitDomainService = organizationUnitDomainService;
        }
مشاهده میکنید که 4 Interface استفاده شده و در متد سازنده نیز مقدار دهی شده اند. پس 4 Mock نیاز داریم. در پروژه تست به صورت زیر و در ClassInitialize عمل میکنیم.
    [TestClass]
    public class OrganizationServiceTest
    {
        private static OrganizationalService _organizationalService;
        private static Mock<IUnitTypeRepository> _mockUnitTypeRepository;
        private static Mock<IUnitOfWork> _mockUnitOfWork;
        private static Mock<IOrganizationUnitRepository> _mockOrganizationUnitRepository;
        private static Mock<IOrganizationUnitDomainService> _mockOrganizationUnitDomainService;

        [ClassInitialize]
        public static void ClassInit(TestContext context)
        {
            TestBootstrapper.ConfigureDependencies();
            _mockUnitOfWork = new Mock<IUnitOfWork>();
            _mockUnitTypeRepository = new Mock<IUnitTypeRepository>();
            _mockOrganizationUnitRepository = new Mock<IOrganizationUnitRepository>();
            _mockOrganizationUnitDomainService=new Mock<IOrganizationUnitDomainService>();
            _organizationalService = new OrganizationalService(_mockUnitOfWork.Object, _mockUnitTypeRepository.Object,  _mockOrganizationUnitRepository.Object,_mockOrganizationUnitDomainService.Object);
        }
از خود لایه سرویس با نام OrganizationService یک آبجکت میگیریم و 4 واسط دیگر به صورت Mock شده تعریف میشوند. همچنین در کلاس بارگذار از همان نوع مقدار دهی میگردند تا در اجرای تمامی متدهای تست، در دست کامپایلر باشند. همچنین برای new کردن خود سرویس از mock.obect‌ها که حاوی مقدار اصلی است استفاده می‌کنیم.
خود متد اصلی به صورت زیر است:
        /// <summary>
        /// یک نوع واحد سازمانی را حذف مینماید
        /// </summary>
        /// <param name="command"></param>
        public void Handle(DeleteUnitTypeCommand command)
        {
            var unitType = _unitTypeRepository.FindBy(command.UnitTypeId);
            if (unitType == null)
                throw new DeleteEntityNotFoundException();

            ICanDeleteUnitTypeSpecification canDeleteUnitType = new CanDeleteUnitTypeSpecification(_organizationUnitRepository);
            if (canDeleteUnitType.IsSatisfiedBy(unitType))
                throw new UnitTypeIsUnderUsingException(unitType.Title);
            _unitTypeRepository.Remove(unitType);
        }
متد‌های تست این متد نیز به صورت زیر هستند:
        /// <summary>
        /// کامند حذف نوع واحد سازمانی باید به درستی حذف کند.
        /// </summary>
        [TestMethod]
        public void DeleteUnitTypeCommand_Should_Delete_UnitType()
        {
            //Arrange
            var unitTypeId=new Guid();
            var deleteUnitTypeCommand = new DeleteUnitTypeCommand { UnitTypeId = unitTypeId };
            var unitType = new UnitType("خوشه");
            var org = new List<OrganizationUnit>();
            _mockUnitTypeRepository.Setup(d => d.FindBy(deleteUnitTypeCommand.UnitTypeId)).Returns(unitType);
            _mockUnitTypeRepository.Setup(x => x.Remove(unitType));
            _mockOrganizationUnitRepository.Setup(z => z.FindBy(unitType)).Returns(org);
            try
            {
                //Act
                _organizationalService.Handle(deleteUnitTypeCommand);
            }
            catch (Exception ex)
            {
                //Assert
                Assert.Fail(ex.Message);
            }
        }
همانطور که مشاهده میشود ابتدا یک Guid به عنوان آی دی نوع واحد سازمانی گرفته میشود و همان آی دی برای تعریف کامند حذف به آن ارسال میشود. سپس یک نوع واحد سازمانی دلخواه تستی ساخته میشود و همچنین یک لیست خالی از واحد‌های سازمانی که برای چک شدن توسط خود متد Handle استفاده شده‌است ساخته میشود. در اینجا این متد خالی است تا شرط غلط شود و عمل حذف به درستی صورت پذیرد.
برای اعمالی که در Handle انجام میشود و متدهایی که از Interface‌ها صدا زده میشوند Setup میکنیم و آنهایی را که Return دارند به object هایی که مورد انتظار خودمان هست نسبت میدهیم.
در Setup اول میگوییم که آن Guid مربوط به "خوشه" است. در Setup بعدی برای عمل Remove کدی مینویسیم و چون عمل حذف Return ندارد میتواند، این خط به کل حذف شود! به طور کلی Setup هایی که Return ندارند میتوانند حذف شوند.
در Setup بعدی از Interface دیگر متد FindBy که قرار است چک کند این نوع واحد سازمانی برای تعریف واحد سازمانی استفاده شده است، در Return به آن یک لیست خالی اختصاص میدهیم تا نشان دهیم لیست خالی برگشته است.
عملیات Act را وارد Try میکنیم تا اگر به هر دلیل انجام نشد، Assert ما باشد.
دو حالت رخداد استثناء که در متد اصلی تست شده است در دو متد تست به طور جداگانه تست گردیده است:
        /// <summary>
        /// کامند حذف یک نوع واحد سازمانی باید پیش از حذف بررسی کند که این شناسه داده شده برای حذف موجود باشد.
        /// </summary>
        [TestMethod]
        [ExpectedException(typeof(DeleteEntityNotFoundException))]
        public void DeleteUnitTypeCommand_ShouldNot_Delete_When_UnitTypeId_NotExist()
        {
            //Arrange
            var unitTypeId = new Guid();
            var deleteUnitTypeCommand = new DeleteUnitTypeCommand();
            var unitType = new UnitType("خوشه");
            var org = new List<OrganizationUnit>();
            _mockUnitTypeRepository.Setup(d => d.FindBy(unitTypeId)).Returns(unitType);
            _mockUnitTypeRepository.Setup(x => x.Remove(unitType));
            _mockOrganizationUnitRepository.Setup(z => z.FindBy(unitType)).Returns(org);

            //Act
            _organizationalService.Handle(deleteUnitTypeCommand);
        }

        /// <summary>
        /// کامند حذف یک نوع واحد سازمانی نباید اجرا شود وقتی که نوع واحد برای تعریف واحد‌های سازمان استفاده شده است.
        /// </summary>
        [TestMethod]
        [ExpectedException(typeof(UnitTypeIsUnderUsingException))]
        public void DeleteUnitTypeCommand_ShouldNot_Delete_When_UnitType_Exist_but_UsedForDefineOrganizationUnit()
        {
            //Arrange
            var unitTypeId = new Guid();
            var deleteUnitTypeCommand = new DeleteUnitTypeCommand { UnitTypeId = unitTypeId };
            var unitType = new UnitType("خوشه");
            var org = new List<OrganizationUnit>()
            {
                new OrganizationUnit("مدیریت یک", unitType, null),
                new OrganizationUnit("مدیریت دو", unitType, null)
            };
            _mockUnitTypeRepository.Setup(d => d.FindBy(deleteUnitTypeCommand.UnitTypeId)).Returns(unitType);
            _mockUnitTypeRepository.Setup(x => x.Remove(unitType));
            _mockOrganizationUnitRepository.Setup(z => z.FindBy(unitType)).Returns(org);

            //Act
            _organizationalService.Handle(deleteUnitTypeCommand);
        }
متد DeleteUnitTypeCommand_ShouldNot_Delete_When_UnitTypeId_NotExist همانطور که از نامش معلوم است بررسی میکند که نوع واحد سازمانی که ID آن برای حذف ارسال میشود در Database وجود دارد و اگر نباشد Exception مطلوب ما باید داده شود.
در متد DeleteUnitTypeCommand_ShouldNot_Delete_When_UnitType_Exist_but_UsedForDefineOrganizationUnit بررسی میشود که از این نوع واحد سازمانی برای تعریف واحد سازمانی استفاده شده است یا نه و صحت این مورد با الگوی Specification صورت گرفته است. استثنای مطلوب ما Assert و شرط درستی این متد تست، میباشد.
مطالب
متدهای الحاقی - Extension Methods
چقدر خوب می‌شد اگر،
 
نوع داده String دارای متدی جهت حذف تگ‌های HTML داشت:
string htmlStr = "<h1>.Net Tips</h1>";
htmlStr.ClearHtmlTags();
کلاس Image دارای متدی جهت تغییر اندازه (Resize) داشت:
image1.Resize(50, 80);
کنترل DropDownList متدی جهت انقیاد داده‌ها داشت:
dropDownList1.Bind((List<Category>)categories, "Name", "Id");
متدهای الحاقی به همین منظور متولد شده اند. در واقع هر زمان بدنه کلاسی (نوع داده، کنترل و تمام اشیاء دات نتی) در اختیار ما نباشد امکان اضافه کردن متدهای الحاقی به آنها وجود دارد. برای این منظور کافیست چند نکته را رعایت کنید:
  1. کلاس دربرگیرنده متد یا متدهای الحاقی باید Public و Static باشد.
  2. متد الحاقی باید Public و Static باشد.
  3. اولین پارامتر متد الحاقی باید با کلمه کلیدی this همراه باشد و این پارامتر اشاره به کلاسی دارد که متد جاری به آن الحاق (یا ضمیمه) خواهد شد.
یک مثال:
در این مثال متدالحاقی برای بهبود نوع داده String را خواهیم دید. وظیفه‌ی این متد شمارش تعداد کلمات موجود در رشته است.
public static class StringExtensions
{

        /// <summary>
        /// Count all words in a given string
        /// </summary>
        /// <param name="input">string to begin with</param>
        /// <returns>int</returns>
        public static int WordCount(this string input)
        {
            var count = 0;
            try
            {
                // Exclude whitespaces, Tabs and line breaks
                var re = new Regex(@"[^\s]+");
                var matches = re.Matches(input);
                count = matches.Count;
            }
            catch (Exception)
            {
                return -1;
            }
            return count;
        }
}
نحوه استفاده:
var s = "i Love Dot Net Tips.";
var wordCount = s.WordCount();
در ضمن وب سایتی جهت به اشتراک گذاری این متدها به عنوان یکی از بهترین مراجع در دسترس است: http://extensionmethod.net 
با توجه به این مطلب توسعه پروژه ای در همین سایت با عنوان "متدهای الحاقی " آغاز شده است. در این پروژه ضمن پوشش متدهای الحاقی پرکاربرد سعی به توسعه متدهای الحاقی داریم که بیشتر در برنامه‌های فارسی کاربرد دارند.
مطالب
ساخت یک بارکدخوان با استفاده از OpenCV و ZXing.Net
فرض کنید می‌خواهیم بارکد این قبض را یافته و سپس عدد متناظر با آن‌را در برنامه بخوانیم.


مراحل کار به این صورت هستند:


بارگذاری تصویر و چرخش آن در صورت نیاز

ابتدا تصویر بارکد دار را بارگذاری کرده و آن‌را تبدیل به یک تصویر سیاه و سفید می‌کنیم:
// load the image and convert it to grayscale
var image = new Mat(fileName);
 
if (rotation != 0)
{
    rotateImage(image, image, rotation, 1);
}
 
if (debug)
{
    Cv2.ImShow("Source", image);
    Cv2.WaitKey(1); // do events
}
 
var gray = new Mat();
var channels = image.Channels();
if (channels > 1)
{
    Cv2.CvtColor(image, gray, ColorConversion.BgrToGray);
}
else
{
    image.CopyTo(gray);
}
در این بین ممکن است بارکد موجود در تصویر، دقیقا در زاویه‌ای که در تصویر ابتدای بحث قرار گرفته‌است، وجود نداشته باشد؛ مثلا منهای 90 درجه، چرخیده باشد. به همین جهت می‌توان از متد چرخش تصویر مطلب «تغییر اندازه، و چرخش تصاویر» ارائه شده در قسمت نهم این سری استفاده کرد.


تشخیص گرادیان‌های افقی و عمودی

یکی از روش‌های تشخیص بارکد، استفاده از روشی است که در تشخیص خودرو قسمت 16 بیان شد. تعداد زیادی تصویر بارکد را تهیه و سپس آن‌ها را به الگوریتم‌های machine learning جهت تشخیص و یافتن محدوده‌ی بارکد موجود در یک تصویر، ارسال کنیم. هرچند این روش جواب خواهد داد، اما در این مورد خاص، قسمت بارکد، شبیه به گرادیانی از رنگ‌ها است. کتابخانه‌ی OpenCV برای یافتن این نوع گرادیان‌ها دارای متدی است به نام Sobel :
// compute the Scharr gradient magnitude representation of the images
// in both the x and y direction
var gradX = new Mat();
Cv2.Sobel(gray, gradX, MatType.CV_32F, xorder: 1, yorder: 0, ksize: -1);
//Cv2.Scharr(gray, gradX, MatType.CV_32F, xorder: 1, yorder: 0);
 
var gradY = new Mat();
Cv2.Sobel(gray, gradY, MatType.CV_32F, xorder: 0, yorder: 1, ksize: -1);
//Cv2.Scharr(gray, gradY, MatType.CV_32F, xorder: 0, yorder: 1);
 
// subtract the y-gradient from the x-gradient
var gradient = new Mat();
Cv2.Subtract(gradX, gradY, gradient);
Cv2.ConvertScaleAbs(gradient, gradient);
 
if (debug)
{
    Cv2.ImShow("Gradient", gradient);
    Cv2.WaitKey(1); // do events
}


ابتدا درجه‌ی شدت گرادیان‌ها در جهت‌های x و y محاسبه می‌شوند. سپس این شدت‌ها از هم کم خواهند شد تا بیشترین شدت گرادیان موجود در محور x حاصل شود. این بیشترین شدت‌ها، بیانگر نواحی خواهند بود که احتمال وجود بارکدهای افقی در آن‌ها بیشتر است.


کاهش نویز و یکی کردن نواحی تشخیص داده شده

در ادامه می‌خواهیم با استفاده از متدهای تشخیص کانتور (قسمت 12)، نواحی با بیشترین شدت گرادیان افقی را پیدا کنیم. اما تصویر حاصل از قسمت قبل برای اینکار مناسب نیست. به همین جهت با استفاده از متدهای کار با مورفولوژی تصاویر، این نواحی گرادیانی را یکی می‌کنیم (قسمت 8).
// blur and threshold the image
var blurred = new Mat();
Cv2.Blur(gradient, blurred, new Size(9, 9));
 
var threshImage = new Mat();
Cv2.Threshold(blurred, threshImage, thresh, 255, ThresholdType.Binary);
 
if (debug)
{
    Cv2.ImShow("Thresh", threshImage);
    Cv2.WaitKey(1); // do events
}
 
 
// construct a closing kernel and apply it to the thresholded image
var kernel = Cv2.GetStructuringElement(StructuringElementShape.Rect, new Size(21, 7));
var closed = new Mat();
Cv2.MorphologyEx(threshImage, closed, MorphologyOperation.Close, kernel);
 
if (debug)
{
    Cv2.ImShow("Closed", closed);
    Cv2.WaitKey(1); // do events
}
 
 
// perform a series of erosions and dilations
Cv2.Erode(closed, closed, null, iterations: 4);
Cv2.Dilate(closed, closed, null, iterations: 4);
 
if (debug)
{
    Cv2.ImShow("Erode & Dilate", closed);
    Cv2.WaitKey(1); // do events
}
این سه مرحله را در تصاویر ذیل مشاهده می‌کنید:


ابتدا با استفاده از متد Threshold، تصویر را به یک تصویر باینری تبدیل خواهیم کرد. در این تصویر تمام نقاط دارای شدت رنگ کمتر از مقدار thresh، به مقدار حداکثر 255 تنظیم می‌شوند.
سپس با استفاده از متدهای تغییر مورفولوژی تصویر، قسمت‌های مجاور به هم را می‌بندیم و یکی می‌کنیم. این مورد در یافتن اشیاء احتمالی که ممکن است بارکد باشند، بسیار مفید است.
متدهای Erode و Dilate در اینجا کار حذف نویزهای اضافی را انجام می‌دهند؛ تا بهتر بتوان بر روی نواحی بزرگتر یافت شده، تمرکز کرد.



یافتن بزرگترین ناحیه‌ی به هم پیوسته‌ی موجود در یک تصویر

تمام این مراحل را انجام دادیم تا بتوانیم بزرگترین ناحیه‌ی به هم پیوسته‌ای را که احتمال می‌رود بارکد باشد، در تصویر تشخیص دهیم. پس از این آماده سازی‌ها، اکنون با استفاده از متد یافتن کانتورها، تمام نواحی یکی شده را یافته و بزرگترین مساحت ممکن را به عنوان بارکد انتخاب می‌کنیم:
//find the contours in the thresholded image, then sort the contours
//by their area, keeping only the largest one
 
Point[][] contours;
HiearchyIndex[] hierarchyIndexes;
Cv2.FindContours(
    closed,
    out contours,
    out hierarchyIndexes,
    mode: ContourRetrieval.CComp,
    method: ContourChain.ApproxSimple);
 
if (contours.Length == 0)
{
    throw new NotSupportedException("Couldn't find any object in the image.");
}
 
var contourIndex = 0;
var previousArea = 0;
var biggestContourRect = Cv2.BoundingRect(contours[0]);
while ((contourIndex >= 0))
{
    var contour = contours[contourIndex];
 
    var boundingRect = Cv2.BoundingRect(contour); //Find bounding rect for each contour
    var boundingRectArea = boundingRect.Width * boundingRect.Height;
    if (boundingRectArea > previousArea)
    {
        biggestContourRect = boundingRect;
        previousArea = boundingRectArea;
    }
 
    contourIndex = hierarchyIndexes[contourIndex].Next;
}
 
 
var barcode = new Mat(image, biggestContourRect); //Crop the image
Cv2.CvtColor(barcode, barcode, ColorConversion.BgrToGray);
 
Cv2.ImShow("Barcode", barcode);
Cv2.WaitKey(1); // do events
حاصل این عملیات یافتن بزرگترین ناحیه‌ی گرادیانی به هم پیوسته‌ی موجود در تصویر است:


خواندن مقدار متناظر با بارکد یافت شده

خوب، تا اینجا موفق شدیم، محل قرارگیری بارکد را تصویر پیدا کنیم. مرحله‌ی بعد خواندن مقدار متناظر با این تصویر است. برای این منظور از کتابخانه‌ی سورس بازی به نام http://zxingnet.codeplex.com استفاده خواهیم کرد. این کتابخانه قادر است بارکد بسازد و همچنین تصاویر بارکدها را خوانده و مقادیر متناظر با آن‌ها را استخراج کند. برای نصب آن می‌توان از دستور ذیل استفاده کرد:
 PM> Install-Package ZXing.Net
پس از نصب این کتابخانه‌ی بارکدساز و بارکد خوان، اکنون تنها کاری که باید صورت گیرد، ارسال تصویر بارکد جدا شده‌ی توسط OpenCV به آن است:
private static string getBarcodeText(Mat barcode)
{
    // `ZXing.Net` needs a white space around the barcode
    var barcodeWithWhiteSpace = new Mat(new Size(barcode.Width + 30, barcode.Height + 30), MatType.CV_8U, Scalar.White);
    var drawingRect = new Rect(new Point(15, 15), new Size(barcode.Width, barcode.Height));
    var roi = barcodeWithWhiteSpace[drawingRect];
    barcode.CopyTo(roi);
 
    Cv2.ImShow("Enhanced Barcode", barcodeWithWhiteSpace);
    Cv2.WaitKey(1); // do events
 
    return decodeBarcodeText(barcodeWithWhiteSpace.ToBitmap());
}
 
private static string decodeBarcodeText(System.Drawing.Bitmap barcodeBitmap)
{
    var source = new BitmapLuminanceSource(barcodeBitmap);
 
    // using http://zxingnet.codeplex.com/
    // PM> Install-Package ZXing.Net
    var reader = new BarcodeReader(null, null, ls => new GlobalHistogramBinarizer(ls))
    {
        AutoRotate = true,
        TryInverted = true,
        Options = new DecodingOptions
        {
            TryHarder = true,
            //PureBarcode = true,
            /*PossibleFormats = new List<BarcodeFormat>
                    {
                        BarcodeFormat.CODE_128
                        //BarcodeFormat.EAN_8,
                        //BarcodeFormat.CODE_39,
                        //BarcodeFormat.UPC_A
                    }*/
        }
    };
 
    //var newhint = new KeyValuePair<DecodeHintType, object>(DecodeHintType.ALLOWED_EAN_EXTENSIONS, new Object());
    //reader.Options.Hints.Add(newhint);
 
    var result = reader.Decode(source);
    if (result == null)
    {
        Console.WriteLine("Decode failed.");
        return string.Empty;
    }
 
    Console.WriteLine("BarcodeFormat: {0}", result.BarcodeFormat);
    Console.WriteLine("Result: {0}", result.Text);
 
 
    var writer = new BarcodeWriter
    {
        Format = result.BarcodeFormat,
        Options = { Width = 200, Height = 50, Margin = 4},
        Renderer = new ZXing.Rendering.BitmapRenderer()
    };
    var barcodeImage = writer.Write(result.Text);
    Cv2.ImShow("BarcodeWriter", barcodeImage.ToMat());
 
    return result.Text;
}
چند نکته را باید در مورد کار با ZXing.Net بخاطر داشت؛ وگرنه جواب نمی‌گیرید:
الف) این کتابخانه حتما نیاز دارد تا تصویر بارکد، در یک حاشیه‌ی سفید در اختیار او قرار گیرد. به همین جهت در متد getBarcodeText، ابتدا تصویر بارکد یافت شده، به میانه‌ی یک مستطیل سفید رنگ بزرگ‌تر کپی می‌شود.
ب) برای تبدیل Mat به Bitmap مورد نیاز این کتابخانه می‌توان از متد الحاقی ToBitmap استفاده کرد (قسمت 7).
ج) پس از آن وهله‌ای از کلاس BarcodeReader آماده شده و در آن پارامترهایی مانند بیشتر سعی کن (TryHarder) و اصلاح درجه‌ی چرخش تصویر (AutoRotate) تنظیم شده‌اند.
د) بارکدهای موجود در قبض‌های ایران عموما بر اساس فرمت CODE_128 ساخته می‌شوند. بنابراین برای خواندن سریعتر آ‌نها می‌توان PossibleFormats را مقدار دهی کرد. اگر این مقدار دهی صورت نگیرد، تمام حالت‌های ممکن بررسی می‌شوند.

در آخر کار این متد، از متد Writer آن نیز برای تولید بارکد مشابهی استفاده شده‌است تا بتوان بررسی کرد این دو تا چه اندازه به هم شبیه هستند.


همانطور که مشاهده می‌کنید، عدد تشخیص داده شده، با عدد شناسه‌ی قبض و شناسه‌ی پرداخت تصویر ابتدای بحث یکی است.


بهبود تصویر، پیش از ارسال آن به متد Decode کتابخانه‌ی ZXing.Net

در تصویر قبلی، سطر decode failed را هم ملاحظه می‌کنید. علت اینجا است که اولین سعی انجام شده، موفق نبوده است؛ چون تصویر تشخیص داده شده، بیش از اندازه نویز و حاشیه‌ی خاکستری دارد. می‌توان این حاشیه‌ی خاکستری را با دوبار اعمال متد Threshold از بین برد:
var barcodeClone = barcode.Clone();
var barcodeText = getBarcodeText(barcodeClone);
 
if (string.IsNullOrWhiteSpace(barcodeText))
{
    Console.WriteLine("Enhancing the barcode...");
    //Cv2.AdaptiveThreshold(barcode, barcode, 255,
        //AdaptiveThresholdType.GaussianC, ThresholdType.Binary, 9, 1);
    //var th = 119;
    var th = 100;
    Cv2.Threshold(barcode, barcode, th, 255, ThresholdType.ToZero);
    Cv2.Threshold(barcode, barcode, th, 255, ThresholdType.Binary);
    barcodeText = getBarcodeText(barcode);
}
 
Cv2.Rectangle(image,
    new Point(biggestContourRect.X, biggestContourRect.Y),
    new Point(biggestContourRect.X + biggestContourRect.Width, biggestContourRect.Y + biggestContourRect.Height),
    new Scalar(0, 255, 0),
    2);
 
if (debug)
{
    Cv2.ImShow("Segmented Source", image);
    Cv2.WaitKey(1); // do events
}
 
Cv2.WaitKey(0);
Cv2.DestroyAllWindows();


اعداد یافت شده، دقیقا از روی تصویر بهبود یافته‌ی توسط متدهای Threshold خوانده شده‌اند و نه تصویر ابتدایی یافت شده. بنابراین به این موضوع نیز باید دقت داشت.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
مطالب
تبدیل تعدادی تصویر به یک فایل PDF

صورت مساله:
تعدادی تصویر داریم، می‌خواهیم این‌ها را تبدیل به فایل PDF کنیم به این شرط که هر تصویر در یک صفحه مجزا قرار داده شود.
در ادامه برای این منظور از کتابخانه‌ی iTextSharp استفاده خواهیم کرد.

iTextSharp چیست؟
iTextSharp کتابخانه‌ی سورس باز و معروفی جهت تولید فایل‌های PDF ، توسط برنامه‌های مبتنی بر دات نت است. آن را از آدرس زیر می‌توان دریافت کرد:


کتابخانه iTextSharp نیز جزو کتابخانه‌هایی است که از جاوا به دات نت تبدیل شده‌اند. نام کتابخانه اصلی iText است و اگر کمی جستجو کنید می‌توانید کتاب 617 صفحه‌ای iText in Action از انتشارات MANNING را در این مورد نیز بیابید. هر چند این کتاب برای برنامه نویس‌های جاوا نوشته شده اما نام کلاس‌ها و متدها در iTextSharp تفاوتی با iText اصلی ندارند و مطالب آن برای برنامه نویس‌‌های دات نت هم قابل استفاده است.

مجوز استفاده از iTextSharp کدام است؟
مجوز این کتابخانه GNU Affero General Public License است. به این معنا که شما موظفید، تغییری در قسمت تهیه کننده خواص فایل PDF تولیدی که به صورت خودکار به نام کتابخانه تنظیم می‌شود، ندهید. اگر می‌خواهید این قسمت را تغییر دهید باید هزینه کنید. همچنین با توجه به اینکه این مجوز، GPL است یعنی زمانیکه از آن استفاده کردید باید کار خود را به صورت سورس باز ارائه دهید؛ درست خوندید! بله! مثل مجوز استفاده از نگارش عمومی و رایگان MySQL و اگر نمی‌خواهید اینکار را انجام دهید، در اینجا تاکید شده که باید کتابخانه را خریداری کنید.

نحوه استفاده از کتابخانه iTextSharp
در ابتدا کد تبدیل تصاویر به فایل PDF را در ذیل مشاهده خواهید کرد. فرض بر این است که ارجاعی را به اسمبلی itextsharp.dll اضافه کرده‌اید:
using System.Collections.Generic;
using System.Drawing.Imaging;
using System.IO;
using iTextSharp.text;
using iTextSharp.text.pdf;

namespace iTextSharpTests
{
public class ImageToPdf
{
public iTextSharp.text.Rectangle PdfPageSize { set; get; }
public ImageFormat ImageCompressionFormat { set; get; }
public bool FitImagesToPage { set; get; }

public void ExportToPdf(IList<string> imageFilesPath, string outPdfPath)
{
using (var pdfDoc = new Document(PdfPageSize))
{
PdfWriter.GetInstance(pdfDoc, new FileStream(outPdfPath, FileMode.Create));
pdfDoc.Open();

foreach (var file in imageFilesPath)
{
var pngImg = iTextSharp.text.Image.GetInstance(file);

if (FitImagesToPage)
{
pngImg.ScaleAbsolute(pdfDoc.PageSize.Width, pdfDoc.PageSize.Height);
}
pngImg.SetAbsolutePosition(0, 0);

//add to page
pdfDoc.Add(pngImg);
//start a new page
pdfDoc.NewPage();
}
}
}
}
}
توضیحات:
استفاده از کتابخانه‌ی iTextSharp همیشه شامل 5 مرحله است. ابتدا شیء Document ایجاد می‌شود. سپس وهله‌ای از PdfWriter ساخته شده و Document جهت نوشتن در آن گشوده خواهد شد. در طی یک سری مرحله محتویات مورد نظر به Document اضافه شده و نهایتا این شیء بسته خواهد شد. البته در اینجا چون کلاس Document اینترفیس IDisposable را پیاده سازی کرده، بهترین روش استفاده از آن بکارگیری واژه کلیدی using جهت مدیریت منابع آن است. به این ترتیب کامپایلر به صورت خودکار قطعه try/finally مرتبط را جهت پاکسازی منابع، تشکیل خواهد داد.
اندازه صفحات توسط سازنده‌ی شیء Document مشخص خواهند شد. این شیء از نوع iTextSharp.text.Rectangle است؛ اما مقدار دهی آن توسط کلاس iTextSharp.text.PageSize صورت می‌گیرد که انواع و اقسام اندازه صفحات استاندارد در آن تعریف شده‌اند.
متد iTextSharp.text.Image.GetInstance که در این مثال جهت دریافت اطلاعات تصاویر مورد استفاده قرار گرفت، 15 overload دارد که از آدرس مستقیم یک فایل تا استریم مربوطه تا Uri یک آدرس وب را نیز می‌پذیرد و از این لحاظ بسیار غنی است.

مثالی در مورد نحوه استفاده از کلاس فوق:
using System.Collections.Generic;
using System.Drawing.Imaging;

namespace iTextSharpTests
{
class Program
{
static void Main(string[] args)
{
new ImageToPdf
{
FitImagesToPage = true,
ImageCompressionFormat = ImageFormat.Jpeg,
PdfPageSize = iTextSharp.text.PageSize.A4
}.ExportToPdf(
imageFilesPath: new List<string>
{
@"D:\3.jpg",
@"D:\4.jpg"
},
outPdfPath: @"D:\tst.pdf"
);
}
}
}

مطالب
درخت‌ها و گراف‌ها قسمت اول
در این مقاله یکی از ساختارهای داده را به نام ساختارهای درختی و گراف‌ها معرفی کردیم و در این مقاله قصد داریم این نوع ساختار را بیشتر بررسی نماییم. این ساختارها برای بسیاری از برنامه‌های مدرن و امروزی بسیار مهم هستند. هر کدام از این ساختارهای داده به حل یکی از مشکلات دنیای واقعی می‌پردازند. در این مقاله قصد داریم به مزایا و معایب هر کدام از این ساختار‌ها اشاره کنیم و اینکه کی و کجا بهتر است از کدام ساختار استفاده گردد. تمرکز ما بر درخت هایی دودویی، درخت‌های جست و جوی دو دویی و درخت‌های جست و جوی دو دویی متوازن خواهد بود. همچنین ما به تشریح گراف و انواع آن خواهیم پرداخت. اینکه چگونه آن را در حافظه نمایش دهیم و اینکه گراف‌ها در کجای زندگی واقعی ما یا فناوری‌های کامپیوتری استفاده می‌شوند.

ساختار درختی
در بسیاری از مواقع ما با گروهی از اشیاء یا داده‌هایی سر و کار داریم که هر کدام از آن‌ها به گروهی دیگر مرتبط هستند. در این حالت از ساختار خطی نمی‌توانیم برای توصیف این ارتباط استفاده کنیم. پس بهترین ساختار برای نشان دادن این ارتباط ساختار شاخه ای Branched Structure است.
یک ساختار درختی یا یک ساختار شاخه‌ای شامل المان‌هایی به اسم گره Node است. هر گره می‌تواند به یک یا چند گره دیگر متصل باشد و گاهی اوقات این اتصالات مشابه یک سلسه مراتب hierarchically می‌شوند.
درخت‌ها در برنامه نویسی جایگاه ویژه‌ای دارند به طوری که استفاده‌ی از آن‌ها در بسیاری از برنامه‌ها وجود دارد و بسیاری از مثال‌های واقعی پیرامون ما را پشتیبانی می‌کنند.
در نمودار زیر مثالی وجود دارد که در آن یک تیم نرم افزاری نمایش داده شده‌است. در اینجا هر یک از بخش‌ها وظایف و مسئولیت‌هایی را بر دوش خود دارند که این مسئولیت‌ها به صورت سلسله مراتبی در تصویر زیر نمایش داده شده‌اند.

ما در ساختار بالا متوجه می‌شویم که چه بخشی زیر مجموعه‌ی چه بخشی است و سمت بالاتر هر بخش چیست. برای مثال ما متوجه شدیم که مدیر توسعه دهندگان، "سرپرست تیم" است که خود نیز مادون "مدیر پروژه" است و این را نیز متوجه می‌شویم که مثلا توسعه دهنده‌ی شماره یک هیچ مادونی ندارد و مدیر پروژه در راس همه است و هیچ مدیر دیگری بالای سر او قرار ندارد.

اصطلاحات درخت
برای اینکه بیشتر متوجه روابط بین اشیا در این ساختار بشویم، به شکل زیر خوب دقت کنید:

در شکل بالا دایره‌هایی برای هر بخش از اطلاعت کشیده شده و ارتباط هر کدام از آن‌ها از طریق یک خط برقرار شده است. اعداد داخل هر دایره تکراری نیست و همه منحصر به فرد هستند. پس وقتی از اعداد اسم ببریم متوجه می‌شویم که در مورد چه چیزی صحبت می‌کنیم.

در شکل بالا به هر یک از دایره‌ها یک گره Node می‌گویند و به هر خط ارتباط دهنده بین گره‌ها لبه Edge گفته می‌شود. گره‌های 19 و 21 و 14 زیر گره‌های گره 7 محسوب می‌شوند. گره‌هایی که به صورت مستقیم به زیر گره‌های خودشان اشاره می‌کنند را گره‌های والد Parent می‌گویند و زیرگره‌های 7 را گره‌های فرزند ChildNodes. پس با این حساب می‌توانیم بگوییم گره‌های 1 و 12 و 31 را هم فرزند گره 19 هستند و گره 19 والد آن هاست. همچنین گره‌های یک والد را مثل 19 و 21 و 14 که والد مشترک دارند، گره‌های خواهر و برادر یا حتی همنژاد Sibling می‌گوییم. همچنین ارتباط بین گره 7 و گره‌های سطح دوم  و الی آخر یعنی 1 و 12 و 31 و 23 و 6 را که والد بودن آن به صورت غیر مستقیم است را جد یا ancestor می‌نامیم و نوه‌ها و نتیجه‌های آن‌ها را نسل descendants.

ریشه Root: به گره‌ای می‌گوییم که هیچ والدی ندارد و خودش در واقع اولین والد محسوب می‌شود؛ مثل گره 7.

برگ  Leaf: به گره‌هایی که هیچ فرزندی ندارند، برگ می‌گوییم. مثال گره‌های 1 و12 و 31 و 23 و 6

گره‌های داخلی Internal Nodes: گره هایی که نه برگ هستند و نه ریشه. یعنی حداقل یک فرزند دارند و خودشان یک گره فرزند محسوب می‌شوند؛ مثل گره‌های 19 و 14.

مسیر Path: راه رسیدن از یک گره به گره دیگر را مسیر می‌گویند. مثلا گره‌های 1 و 19 و 7 و 21 به ترتیب یک مسیر را تشکیل می‌دهند ولی گره‌های 1 و 19 و 23 از آن جا که هیچ جور اتصالی بین آن‌ها نیست، مسیری را تشکیل نمی‌دهند.

طول مسیر Length of Path: به تعداد لبه‌های یک مسیر، طول مسیر می‌گویند که می‌توان از تعداد گره‌ها -1 نیز آن را به دست آورد. برای نمونه : مسیر 1 و19 و 7 و 21 طول مسیرشان 3 هست.

عمق Depth: طول مسیر یک گره از ریشه تا آن گره را عمق درخت می‌گویند. عمق یک ریشه همیشه صفر است و برای مثال در درخت بالا، گره 19 در عمق یک است و برای گره 23 عمق آن 2 خواهد بود.

تعریف خود درخت Tree: درخت یک ساختار داده برگشتی recursive است که شامل گره‌ها و لبه‌ها، برای اتصال گره‌ها به یکدیگر است.

جملات زیر در مورد درخت صدق می‌کند:

  • هر گره می‌تواند فرزند نداشته باشد یا به هر تعداد که می‌خواهد فرزند داشته باشد.
  • هر گره یک والد دارد و تنها گره‌ای که والد ندارد، گره ریشه است (البته اگر درخت خالی باشد هیچ گره ای وجود ندارد).
  • همه گره‌ها از ریشه قابل دسترسی هستند و برای دسترسی به گره مورد نظر باید از ریشه تا آن گره، مسیری را طی کرد.
ار تفاع درخت Height: به حداکثر عمق یک درخت، ارتفاع درخت می‌گویند.
درجه گره Degree: به تعداد گره‌های فرزند یک گره، درجه آن گره می‌گویند. در درخت بالا درجه گره‌های 7 و 19 سه است. درجه گره 14 دو است و درجه برگ‌ها صفر است.
ضریب انشعاب Branching Factor: به حداکثر درجه یک گره در یک درخت، ضریب انشعاب آن درخت گویند.

پیاده سازی درخت

برای پیاده سازی یک درخت، از دو کلاس یکی جهت ساخت گره که حاوی اطلاعات است <TreeNode<T و دیگری جهت ایجاد درخت اصلی به همراه کلیه متدها و خاصیت هایش <Tree<T کمک می‌‌گیریم.

public class TreeNode<T>
{
    // شامل مقدار گره است
    private T value;
 
    // مشخص می‌کند که آیا گره والد دارد یا خیر
    private bool hasParent;
 
    // در صورت داشتن فرزند ، لیست فرزندان را شامل می‌شود
    private List<TreeNode<T>> children;
 
    /// <summary>سازنده کلاس </summary>
    /// <param name="value">مقدار گره</param>
    public TreeNode(T value)
    {
        if (value == null)
        {
            throw new ArgumentNullException(
                "Cannot insert null value!");
        }
        this.value = value;
        this.children = new List<TreeNode<T>>();
    }
 
    /// <summary>خاصیتی جهت مقداردهی گره</summary>
    public T Value
    {
        get
        {
            return this.value;
        }
        set
        {
            this.value = value;
        }
    }
 
    /// <summary>تعداد گره‌های فرزند را بر میگرداند</summary>
    public int ChildrenCount
    {
        get
        {
            return this.children.Count;
        }
    }
 
    /// <summary>به گره یک فرزند اضافه می‌کند</summary>
    /// <param name="child">آرگومان این متد یک گره است که قرار است به فرزندی گره فعلی در آید</param>
    public void AddChild(TreeNode<T> child)
    {
        if (child == null)
        {
            throw new ArgumentNullException(
                "Cannot insert null value!");
        }
 
        if (child.hasParent)
        {
            throw new ArgumentException(
                "The node already has a parent!");
        }
 
        child.hasParent = true;
        this.children.Add(child);
    }
 
    /// <summary>
    /// گره ای که اندیس آن داده شده است بازگردانده می‌شود
    /// </summary>
    /// <param name="index">اندیس گره</param>
    /// <returns>گره بازگشتی</returns>
    public TreeNode<T> GetChild(int index)
    {
        return this.children[index];
    }
}
 
/// <summary>این کلاس ساختار درخت را به کمک کلاس گره‌ها که در بالا تعریف کردیم میسازد</summary>
/// <typeparam name="T">نوع مقادیری که قرار است داخل درخت ذخیره شوند</typeparam>
public class Tree<T>
{
    // گره ریشه
    private TreeNode<T> root;
 
    /// <summary>سازنده کلاس</summary>
    /// <param name="value">مقدار گره اول که همان ریشه می‌شود</param>
    public Tree(T value)
    {
        if (value == null)
        {
            throw new ArgumentNullException(
                "Cannot insert null value!");
        }
 
        this.root = new TreeNode<T>(value);
    }
 
    /// <summary>سازنده دیگر برای کلاس درخت</summary>
    /// <param name="value">مقدار گره ریشه مثل سازنده اول</param>
    /// <param name="children">آرایه ای از گره‌ها که فرزند گره ریشه می‌شوند</param>
    public Tree(T value, params Tree<T>[] children)
        : this(value)
    {
        foreach (Tree<T> child in children)
        {
            this.root.AddChild(child.root);
        }
    }
 
    /// <summary>
    /// ریشه را بر میگرداند ، اگر ریشه ای نباشد نال بر میگرداند
    /// </summary>
    public TreeNode<T> Root
    {
        get
        {
            return this.root;
        }
    }
 
    /// <summary>پیمودن عرضی و نمایش درخت با الگوریتم دی اف اس </summary>
    /// <param name="root">ریشه (گره ابتدایی) درختی که قرار است پیمایش از آن شروع شود</param>
    /// <param name="spaces">یک کاراکتر جهت جداسازی مقادیر هر گره</param>
    private void PrintDFS(TreeNode<T> root, string spaces)
    {
        if (this.root == null)
        {
            return;
        }
 
        Console.WriteLine(spaces + root.Value);
 
        TreeNode<T> child = null;
        for (int i = 0; i < root.ChildrenCount; i++)
        {
            child = root.GetChild(i);
            PrintDFS(child, spaces + "   ");
        }
    }
 
    /// <summary>متد پیمایش درخت به صورت عمومی که تابع خصوصی که در بالا توضیح دادیم را صدا می‌زند</summary>
    public void TraverseDFS()
    {
        this.PrintDFS(this.root, string.Empty);
    }
}
 
/// <summary>
/// کد استفاده از ساختار درخت
/// </summary>
public static class TreeExample
{
    static void Main()
    {
        // Create the tree from the sample
        Tree<int> tree =
            new Tree<int>(7,
                new Tree<int>(19,
                    new Tree<int>(1),
                    new Tree<int>(12),
                    new Tree<int>(31)),
                new Tree<int>(21),
                new Tree<int>(14,
                    new Tree<int>(23),
                    new Tree<int>(6))
            );
 
        // پیمایش درخت با الگوریتم دی اف اس یا عمقی
        tree.TraverseDFS();
 
        // خروجی
        // 7
        //       19
        //        1
        //        12
        //        31
        //       21
        //       14
        //        23
        //        6
    }
}
کلاس TreeNode وظیفه‌ی ساخت گره را بر عهده دارد و با هر شیء‌ایی که از این کلاس می‌سازیم، یک گره ایجاد می‌کنیم که با خاصیت Children و متد AddChild آن می‌توانیم هر تعداد گره را که می‌خواهیم به فرزندی آن گره در آوریم که باز خود آن گره می‌تواند در خاصیت Children یک گره دیگر اضافه شود. به این ترتیب با ساخت هر گره و ایجاد رابطه از طریق خاصیت children هر گره درخت شکل می‌گیرد. سپس گره والد در ساختار کلاس درخت Tree قرار می‌گیرد و این کلاس شامل متدهایی است که می‌تواند روی درخت، عملیات پردازشی چون پیمایش درخت را انجام دهد.


پیمایش درخت به روش عمقی (DFS (Depth First Search

هدف از پیمایش درخت ملاقات یا بازبینی (تهیه لیستی از همه گره‌های یک درخت) تنها یکبار هر گره در درخت است. برای این کار الگوریتم‌های زیادی وجود دارند که ما در این مقاله تنها دو روش DFS و BFS را بررسی می‌کنیم.

روش DFS: هر گره‌ای که به تابع بالا بدهید، آن گره برای پیمایش، گره ریشه حساب خواهد شد و پیمایش از آن آغاز می‌گردد. در الگوریتم DFS روش پیمایش بدین گونه است که ما از گره ریشه آغاز کرده و گره ریشه را ملاقات می‌کنیم. سپس گره‌های فرزندش را به دست می‌آوریم و یکی از گره‌ها را انتخاب کرده و دوباره همین مورد را رویش انجام می‌دهیم تا نهایتا به یک برگ برسیم. وقتی که به برگی می‌رسیم یک مرحله به بالا برگشته و این کار را آنقدر تکرار می‌کنیم تا همه‌ی گره‌های آن ریشه یا درخت پیمایش شده باشند.

همین درخت را در نظر بگیرید:


 پیمایش درخت را از گره 7 آغاز می‌کنیم و آن را به عنوان ریشه در نظر می‌گیریم. حتی می‌توانیم پیمایش را از گره مثلا 19 آغاز کنیم و آن را برای پیمایش ریشه در نظر بگیریم ولی ما از همان 7 پیمایش را آغاز می‌کنیم:

ابتدا گره 7 ملاقات شده و آن را می‌نویسیم. سپس فرزندانش را بررسی می‌کنیم که سه فرزند دارد. یکی از فرزندان مثل گره 19 را انتخاب کرده و آن را ملاقات می‌کنیم (با هر بار ملاقات آن را چاپ می‌کنیم) سپس فرزندان آن را بررسی می‌کنیم و یکی از گره‌ها را انتخاب می‌کنیم و ملاقاتش می‌کنیم؛ برای مثال گره 1. از آن جا که گره یک، برگ است و فرزندی ندارد یک مرحله به سمت بالا برمی‌گردیم و برگ‌های 12 و 31 را هم ملاقات می‌کنیم. حالا همه‌ی فرزندان گره 19 را بررسی کردیم، بر می‌گردیم یک مرحله به سمت بالا و گره 21 را ملاقات می‌کنیم و از آنجا که گره 21 برگ است و فرزندی ندارد به بالا باز می‌گردیم و بعد گره 14 و فرزندانش 23 و 6 هم بررسی می‌شوند. پس ترتیب چاپ ما اینگونه می‌شود:

7-19-1-12-31-21-14-23-6


پیمایش درخت به روش (BFS (Breadth First Search 

در این روش (پیمایش سطحی) گره والد ملاقات شده و سپس همه گره‌های فرزندش ملاقات می‌شوند. بعد از آن یک گره انتخاب شده و همین پیمایش مجددا روی آن انجام می‌شود تا آن سطح کاملا پیمایش شده باشد. سپس به همین مرحله برگشته و فرزند بعدی را پیمایش می‌کنیم و الی آخر. نمونه‌ی این پیمایش روی درخت بالا به صورت زیر نمایش داده می‌شود:

7-19-21-14-1-12-31-23-6

اگر خوب دقت کنید می‌بینید که پیمایش سطحی است و هر سطح به ترتیب ملاقات می‌شود. به این الگوریتم، پیمایش موجی هم می‌گویند. دلیل آن هم این است که مثل سنگی می‌ماند که شما برای ایجاد موج روی دریاچه پرتاب می‌کنید.

برای این پیمایش از صف کمک گرفته می‌شود که مراحل زیر روی صف صورت می‌گیرد:

  • ریشه  وارد صف Q می‌شود.
  • دو مرحله زیر مرتبا تکرار می‌شوند:
  1. اولین گره صف به نام V را از Q در یافت می‌کنیم و آن را چاپ می‌کنیم.
  2. فرزندان گره V  را به صف اضافه می‌کنیم.
این نوع پیمایش، پیاده سازی راحتی دارد و همیشه نزدیک‌ترین گره‌ها به ریشه را می‌خواند و در هر مرحله گره‌هایی که می‌خواند از ریشه دورتر و دورتر می‌شوند.
نظرات مطالب
استفاده ازExpressionها جهت ایجاد Strongly typed view در ASP.NET MVC
در نهایت این متد به این شکل اصلاح شود:
        /// <summary>
        /// 
        /// </summary>
        /// <typeparam name="T"></typeparam>
        /// <param name="expression"></param>
        /// <returns></returns>
        public static string PropertyName<T>(this Expression<Func<T, object>> expression)
        {
            return new PropertyHelper().GetNestedPropertyName(expression);
        }
مطالب
کلاس کمکی جهت مشاهده آیتم های موجود در حافظه کش و حذف آنها
مواقع بسیاری پیش می‌آید که در زمان کار با یک نرم افزار تحت وب زمان اشکال زدایی پیش می‌آید که به دلیل موجود بودن داده در حافظه کش برنامه نویس نمی‌تواند داده‌های واقعی را ببیند و داده‌های موجود در حافظه کش را مشاهده می‌کند (بیشتر مواقعی که از طریق بانک اطلاعاتی مستقیما اقدام به حذف و اضافه داده می‌کنیم) در این بخش یک کلاس آماده کرده ام که همیشه خودم در نرم افزار هایم استفاده می‌کنم.

شما می‌توانید این کلاس را به یک GridView یا کنترل‌های دیگر بایند کرده و کلید‌های موجود در حافظه کش را مشاهده کنید، و در صورتی که خواستید یک کلید خاص را از حافظه کش حذف نمایید (البته این کلاس بیشتر برای مدیر نرم فزار کاربرد دارد).

  می‌توانید فایل مورد نظر را از طریق لینک کلاس کمکی جهت مشاهده آیتم‌های موجود در حافظه کش و حذف آنها دانلود نمایید.
در کلاس زیر هر کدام از قسمت‌ها را شرح می‌دهیم.
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Web;
using System.Web.Caching;

namespace PWS.BLL
{
    /// <summary>
    /// کلاس  آیتم‌های حافظه کش
    /// </summary>
    [DataObject(true)]
    public class CacheItems
    {
#region Constructors (2) 

        /// <summary>
        /// سازنده اصلی
        /// </summary>
        /// <param name="cacheItem">عنوان آیتم ذخیره شده در حافظه کش</param>
        public CacheItems(String cacheItem)
        {
            CacheItem = cacheItem;
        }

        /// <summary>
        /// سازنده پیش فرض
        /// </summary>
        public CacheItems(){}

#endregion Constructors 

#region Properties (2) 

        /// <summary>
        /// کش کانتکست جاری
        /// </summary>
        /// <value>
        /// The cache.
        /// </value>
        private static Cache Cache
        {
            get {return HttpContext.Current.Cache; }
        }

        /// <summary>
        /// عنوان آیتم ذخیره شده در حافظه کش
        /// </summary>
        public String CacheItem{ get; set;}

#endregion Properties 

#region Methods (4) 

// Public Methods (3) 

        /// <summary>
        /// لیست تمام آیتم‌های ذخیره شده در حافظه کش
        /// </summary>
        /// <returns></returns>
        public List<CacheItems> GetCaches()
        {
            var items = new List<CacheItems>();
            //بازیابی کل کلید‌های موجود در حافظه کش و اضافه کردن آن به لیست مربوطه
            var enumerator = Cache.GetEnumerator();
            while (enumerator.MoveNext())
            {
                 items.Add(new CacheItems(enumerator.Key.ToString()));
            }
            return items;
        }

        /// <summary>
        /// حذف آیتم جاری از حافظه کش
        /// </summary>
        public void RemoveItemFromCache()
        {
            RemoveItemFromCache(CacheItem);
        }

        /// <summary>
        /// حذف کردن یک آیتم از حافظه کش
        /// </summary>
        /// <param name="key">کلید ذخیره شده در حافظه کش</param>
        public static void RemoveItemFromCache(string key)
        {
            PurgeCacheItems(key);
        }
// Private Methods (1) 

        /// <summary>
        /// حذف کردن یک ایتم از حافظه کش با پشوند وارد شده
        /// </summary>
        /// <param name="prefix">پیشوندی از کلید موجود در حافظه کش</param>
        private static void PurgeCacheItems(String prefix)
        {
            prefix = prefix.ToLower();
            var itemsToRemove = new List<String>();
           //لیست آیتم‌های موجود در حافظه کش
            var enumerator = Cache.GetEnumerator();
            while (enumerator.MoveNext())
            {
//در صورتی که کلید مورد نظر با پارامتر وارد شده شروع شده باشد آن را به یک لیست اضافه می‌کنیم
 if (enumerator.Key.ToString().ToLower().StartsWith(prefix)) itemsToRemove.Add(enumerator.Key.ToString()); } //لیست مورد نظر را پیمایش کرده و گزینه‌های آن را از حافظه کش حذف می‌کنیم foreach (var itemToRemove in itemsToRemove) Cache.Remove(itemToRemove); } #endregion Methods  } }
موفق وموید باشید
مطالب
OpenCVSharp #18
ساخت یک OCR ساده تشخیص اعداد انگلیسی به کمک OpenCV

این مطلب را می‌توان به عنوان جمع بندی مطالبی که تاکنون بررسی شدند درنظر گرفت و در اساس مطلب جدیدی ندارد و صرفا ترکیب یک سری تکنیک است؛ برای مثال:
چطور یک تصویر را به نمونه‌ی سیاه و سفید آن تبدیل کنیم؟
کار با متد Threshold جهت بهبود کیفیت یک تصویر جهت تشخیص اشیاء
تشخیص کانتورها (Contours) و اشیاء موجود در یک تصویر
آشنایی با نحوه‌ی گروه بندی تصاویر مشابه و مفاهیمی مانند برچسب‌های تصاویر که بیانگر یک گروه از تصاویر هستند.


تهیه تصاویر اعداد انگلیسی جهت آموزش دادن به الگوریتم CvKNearest

در اینجا نیز از یکی دیگر از الگوریتم‌های machine learning موجود در OpenCV به نام CvKNearest برای تشخیص اعداد انگلیسی استفاده خواهیم کرد. این الگوریتم نزدیک‌ترین همسایه‌ی اطلاعاتی مفروض را در گروهی از داده‌های آموزش داده شده‌ی به آن پیدا می‌کند. خروجی آن شماره‌ی این گروه است. بنابراین نحوه‌ی طبقه‌ی بندی اطلاعات در اینجا چیزی شبیه به شکل زیر خواهد بود:


مجموعه‌ای از تصاویر 0 تا 9 را جمع آوری کرده‌ایم. هر کدام از پوشه‌ها، بیانگر اعدادی از یک خانواده هستند. این تصویر را با فرمت ذیل جمع آوری می‌کنیم:
public class ImageInfo
{
    public Mat Image { set; get; }
    public int ImageGroupId { set; get; }
    public int ImageId { set; get; }
}
به این ترتیب
public IList<ImageInfo> ReadTrainingImages(string path, string ext)
{
    var images = new List<ImageInfo>();
 
    var imageId = 1;
    foreach (var dir in new DirectoryInfo(path).GetDirectories())
    {
        var groupId = int.Parse(dir.Name);
        foreach (var imageFile in dir.GetFiles(ext))
        {
            var image = processTrainingImage(new Mat(imageFile.FullName, LoadMode.GrayScale));
            if (image == null)
            {
                continue;
            }
 
            images.Add(new ImageInfo
            {
                Image = image,
                ImageId = imageId++,
                ImageGroupId = groupId
            });
        }
    }
 
    return images;
}
در متد خواندن تصاویر آموزشی، ابتدا پوشه‌های اصلی مسیر Numbers تصویر ابتدای بحث دریافت می‌شوند. سپس نام هر پوشه، شماره‌ی گروه تصاویر موجود در آن پوشه را تشکیل خواهد داد. به این نام در الگوریتم‌های machine leaning، کلاس هم گفته می‌شود. سپس هر تصویر را با فرمت سیاه و سفید بارگذاری کرده و به لیست تصاویر موجود اضافه می‌کنیم. در اینجا از متد processTrainingImage نیز استفاده شده‌است. هدف از آن بهبود کیفیت تصویر دریافتی جهت کار تشخیص اشیاء است:
private static Mat processTrainingImage(Mat gray)
{
    var threshImage = new Mat();
    Cv2.Threshold(gray, threshImage, Thresh, ThresholdMaxVal, ThresholdType.BinaryInv); // Threshold to find contour
 
    Point[][] contours;
    HiearchyIndex[] hierarchyIndexes;
    Cv2.FindContours(
        threshImage,
        out contours,
        out hierarchyIndexes,
        mode: ContourRetrieval.CComp,
        method: ContourChain.ApproxSimple);
 
    if (contours.Length == 0)
    {
        return null;
    }
 
    Mat result = null;
 
    var contourIndex = 0;
    while ((contourIndex >= 0))
    {
        var contour = contours[contourIndex];
 
        var boundingRect = Cv2.BoundingRect(contour); //Find bounding rect for each contour
        var roi = new Mat(threshImage, boundingRect); //Crop the image
 
        //Cv2.ImShow("src", gray);
        //Cv2.ImShow("roi", roi);
        //Cv.WaitKey(0);
 
        var resizedImage = new Mat();
        var resizedImageFloat = new Mat();
        Cv2.Resize(roi, resizedImage, new Size(10, 10)); //resize to 10X10
        resizedImage.ConvertTo(resizedImageFloat, MatType.CV_32FC1); //convert to float
        result = resizedImageFloat.Reshape(1, 1);
 
        contourIndex = hierarchyIndexes[contourIndex].Next;
    }
 
    return result;
}
عملیات صورت گرفته‌ی در این متد را با تصویر ذیل بهتر می‌توان توضیح داد:


ابتدا تصویر اصلی بارگذاری می‌شود؛ همان تصویر سمت چپ. سپس با استفاده از متد Threshold، شدت نور نواحی مختلف آن یکسان شده و آماده می‌شود برای تشخیص کانتورهای موجود در آن. در ادامه با استفاده از متد FindContours، شیء مرتبط با عدد جاری یافت می‌شود. سپس متد Cv2.BoundingRect مستطیل دربرگیرنده‌ی این شیء را تشخیص می‌دهد (تصویر سمت راست). بر این اساس می‌توان تصویر اصلی ورودی را به یک تصویر کوچکتر که صرفا شامل ناحیه‌ی عدد مدنظر است، تبدیل کرد. در ادامه برای کار با الگوریتم  CvKNearest نیاز است تا این تصویر بهبود یافته را تبدیل به یک ماتریس یک بعدی کردی که روش انجام کار توسط متد Reshape مشاهده می‌کنید.
از همین روش پردازش و بهبود تصویر ورودی، جهت پردازش اعداد یافت شده‌ی در یک تصویر با تعداد زیادی عدد نیز استفاده خواهیم کرد.


آموزش دادن به الگوریتم CvKNearest

تا اینجا تصاویر گروه بندی شده‌ای را خوانده و لیستی از آن‌ها را مطابق فرمت الگوریتم CvKNearest تهیه کردیم. مرحله‌ی بعد، معرفی این لیست به متد Train این الگوریتم است:
public CvKNearest TrainData(IList<ImageInfo> trainingImages)
{
    var samples = new Mat();
    foreach (var trainingImage in trainingImages)
    {
        samples.PushBack(trainingImage.Image);
    }
 
    var labels = trainingImages.Select(x => x.ImageGroupId).ToArray();
    var responses = new Mat(labels.Length, 1, MatType.CV_32SC1, labels);
    var tmp = responses.Reshape(1, 1); //make continuous
    var responseFloat = new Mat();
    tmp.ConvertTo(responseFloat, MatType.CV_32FC1); // Convert  to float
 
 
    var kNearest = new CvKNearest();
    kNearest.Train(samples, responseFloat); // Train with sample and responses
    return kNearest;
}
متد Train دو ورودی دارد. ورودی اول آن یک تصویر است که باید از طریق متد PushBack کلاس Mat تهیه شود. بنابراین لیست تصاویر اصلی را تبدیل به لیستی از Matها خواهیم کرد.
سپس نیاز است لیست گروه‌های متناظر با تصاویر اعداد را تبدیل به فرمت مورد انتظار متد Train کنیم. در اینجا صرفا لیستی از اعداد صحیح را داریم. این لیست نیز باید تبدیل به یک Mat شود که روش انجام آن در متد فوق بیان شده‌است. کلاس Mat سازنده‌ی مخصوصی را جهت تبدیل لیست اعداد، به همراه دارد. این Mat نیز باید تبدیل به یک ماتریس یک بعدی شود که برای این منظور از متد Reshape استفاده شده‌است.


انجام عملیات OCR نهایی

پس از تهیه‌ی لیستی از تصاویر و آموزش دادن آن‌ها به الگوریتم CvKNearest، تنها کاری که باید انجام دهیم، یافتن اعداد در تصویر نمونه‌ی مدنظر و سپس معرفی آن به متد FindNearest الگوریتم CvKNearest است. روش انجام اینکار بسیار شبیه است به روش معرفی شده در متد processTrainingImage که پیشتر بررسی شد:
public void DoOCR(CvKNearest kNearest, string path)
{
    var src = Cv2.ImRead(path);
    Cv2.ImShow("Source", src);
 
    var gray = new Mat();
    Cv2.CvtColor(src, gray, ColorConversion.BgrToGray);
 
    var threshImage = new Mat();
    Cv2.Threshold(gray, threshImage, Thresh, ThresholdMaxVal, ThresholdType.BinaryInv); // Threshold to find contour
 
 
    Point[][] contours;
    HiearchyIndex[] hierarchyIndexes;
    Cv2.FindContours(
        threshImage,
        out contours,
        out hierarchyIndexes,
        mode: ContourRetrieval.CComp,
        method: ContourChain.ApproxSimple);
 
    if (contours.Length == 0)
    {
        throw new NotSupportedException("Couldn't find any object in the image.");
    }
 
    //Create input sample by contour finding and cropping
    var dst = new Mat(src.Rows, src.Cols, MatType.CV_8UC3, Scalar.All(0));
 
    var contourIndex = 0;
    while ((contourIndex >= 0))
    {
        var contour = contours[contourIndex];
 
        var boundingRect = Cv2.BoundingRect(contour); //Find bounding rect for each contour
 
        Cv2.Rectangle(src,
            new Point(boundingRect.X, boundingRect.Y),
            new Point(boundingRect.X + boundingRect.Width, boundingRect.Y + boundingRect.Height),
            new Scalar(0, 0, 255),
            2);
 
        var roi = new Mat(threshImage, boundingRect); //Crop the image
 
        var resizedImage = new Mat();
        var resizedImageFloat = new Mat();
        Cv2.Resize(roi, resizedImage, new Size(10, 10)); //resize to 10X10
        resizedImage.ConvertTo(resizedImageFloat, MatType.CV_32FC1); //convert to float
        var result = resizedImageFloat.Reshape(1, 1);
 
 
        var results = new Mat();
        var neighborResponses = new Mat();
        var dists = new Mat();
        var detectedClass = (int)kNearest.FindNearest(result, 1, results, neighborResponses, dists);
 
        //Console.WriteLine("DetectedClass: {0}", detectedClass);
        //Cv2.ImShow("roi", roi);
        //Cv.WaitKey(0);
 
        //Cv2.ImWrite(string.Format("det_{0}_{1}.png",detectedClass, contourIndex), roi);
 
        Cv2.PutText(
            dst,
            detectedClass.ToString(CultureInfo.InvariantCulture),
            new Point(boundingRect.X, boundingRect.Y + boundingRect.Height),
            0,
            1,
            new Scalar(0, 255, 0),
            2);
 
        contourIndex = hierarchyIndexes[contourIndex].Next;
    }
 
    Cv2.ImShow("Segmented Source", src);
    Cv2.ImShow("Detected", dst);
 
    Cv2.ImWrite("dest.jpg", dst);
 
    Cv2.WaitKey();
}
این عملیات به صورت خلاصه در تصویر ذیل مشخص شده‌است:


ابتدا تصویر اصلی که قرار است عملیات OCR روی آن صورت گیرد، بارگذاری می‌شود. سپس کانتورها و اعداد موجود در آن تشخیص داده می‌شوند. مستطیل‌های قرمز رنگ در برگیرنده‌ی این اعداد را در تصویر دوم مشاهده می‌کنید. سپس این کانتور‌های یافت شده را که شامل یکی از اعداد تشخیص داده شده‌است، تبدیل به یک ماتریس یک بعدی کرده و به متد FindNearest ارسال می‌کنیم. خروجی آن نام گروه یا پوشه‌ای است که این عدد در آن قرار دارد. در همینجا این خروجی را تبدیل به یک رشته کرده و در تصویر سوم با رنگ سبز رنگ نمایش می‌دهیم.
بنابراین در این تصویر، پنجره‌ی segmented image، همان اشیاء تشخیص داده شده‌ی از تصویر اصلی هستند.
پنجره‌ی با زمینه‌ی سیاه رنگ، نتیجه‌ی نهایی OCR است که نسبتا هم دقیق عمل کرده‌است.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
مطالب
مشکل فایل‌های ANSI-Windows-1256 با VS.Net در ویندوز 7

در ویندوز XP زمانیکه زبان سیستم و همچنین کشور جاری به ایران تنظیم شود، VS.Net فایل‌های ANSI را از نوع ANSI-Windows-1256 (یا همان ANSI-Arabic) در نظر می‌گیرد و مشکلی هم برای ذخیره داده‌های یونیکد در این نوع فایل‌های ANSI ویژه نخواهد بود (الزامی وجود ندارد که این فایل‌ها حتما به فرمت UTF8 ذخیره شوند). اما در ویندوز 7 با همان تنظیمات، VS.Net این فایل‌ها را با encoding از نوع windows-1252 تشخیص می‌دهد و پس از کامپایل برنامه‌ای که قبلا مشکل نداشت، این‌بار همه چیز به همه ریخته خواهد بود. شاید اینطور به نظر برسد که این فایل‌ها خراب شده‌اند، ولی خیر. مشکلی وجود ندارد؛ فقط فرمت encoding خواندن آن‌ها باید windows-1256 باشد (و نه 1252) و گرنه تخریب شده به نظر می‌رسند.

تعداد فایل‌ها هم زیاد است و نیاز به یک روش سریع برای رفع این مشکل وجود داشت.
بنابراین سه عملیات باید صورت گیرد:
لیست کردن تمام فایل‌های مورد نظر (فایل‌های cs و aspx و امثال آن فقط)
پیدا کردن encoding جاری فایل‌ها : کدامیک از آن‌ها با فرمت UTF-8 ذخیره نشده‌اند؟
تبدیل به یونیکد: خواندن این فایل‌های غیر یونیکد یافت شده با فرمت windows-1256 و سپس ذخیره مجدد با فرمت UTF-8

که خلاصه روش انجام کار به صورت زیر است:

الف) آیا فایل جاری مورد نظر با فرمت UTF-8 with signature ذخیره شده است؟
این signature در مورد فایل‌های UTF-8 به سه بایت اول فایل بر می‌گردد که اصطلاحا byte-order mark یا BOM گفته می‌شود و باید مساوی EFBBBF باشد. چون فایل‌های ANSI این امضا را ندارند، در یک سیستم ممکن است 1256 خوانده شوند و در یک سیستم دیگر 1252 یا نوع‌های ANSI دیگر بسته به تنظیمات جاری سیستم و مشکل اصلی از VS.Net نیست.

/// <summary>
/// آیا فایل مورد نظر با فرمت یونیکد دارای امضا ذخیره شده است؟
/// </summary>
/// <param name="filePath">فایل ورودی</param>
/// <returns>بله یا خیر</returns>
public static bool IsUTF8(string filePath)
{
using (FileStream file = new FileStream(filePath,
FileMode.Open, FileAccess.Read, FileShare.Read))
{
if (file.CanSeek)
{
byte[] bom = new byte[4]; // Get the byte-order mark, if there is one
file.Read(bom, 0, 4);
if ((bom[0] == 0xef && bom[1] == 0xbb && bom[2] == 0xbf)) // utf-8
{
return true;
}
else
{
return false;
}
}
else
{
//احتمالا فایل بایناری است
return false;
}
}
}

ب) خواندن یک فایل ANSI عربی با فرمت windows-1256 بدون تخریب اطلاعات آن و سپس ذخیره سازی با فرمت UTF-8

/// <summary>
/// تبدیل یک فایل انسی عربی به یونیکد دارای امضاء
/// </summary>
/// <param name="path">مسیر ورودی</param>
public static void FixWindows1256(string path)
{
try
{
//باز کردن فایل با فرمت انسی عربی و تبدیل به یونیکد
string data = File.ReadAllText(path, Encoding.GetEncoding("windows-1256"));
//نوشتن حاصل یونیکد در جای قبلی با فرمت مربوطه
File.WriteAllText(path, data, Encoding.UTF8);
}
catch (Exception ex)
{
//دسترسی وجود ندارد یا امثال آن
Console.WriteLine(ex.ToString());
}
}


پ.ن.
جالب اینجا است که این نوع فایل‌های ANSI عربی در وب زیاد پیدا می‌شوند. برای مثال اینجا کلیک کنید. تمام این نوع فایل‌ها را با متد فوق می‌توان بدون تخریب اطلاعات به فرمت UTF-8 دارای امضاء اصلاح کرد.