مطالب
Blazor 5x - قسمت ششم - مبانی Blazor - بخش 3 - چرخه‌های حیات کامپوننت‌ها
در این قسمت می‌خواهیم انواع رویدادهای چرخه‌ی حیات یک کامپوننت را بررسی کنیم. به همین جهت ابتدا دو کامپوننت جدید Lifecycle.razor و Lifecycle‍Child.razor را به مثالی که تا این قسمت تکمیل کرده‌ایم، اضافه کرده و آن‌ها‌را به صورت زیر جهت نمایش رویدادهای چرخه‌ی حیات، تغییر می‌دهیم:

کدهای کامل کامپوننت Pages\LearnBlazor\Lifecycle.razor
@page "/lifecycle"
@using System.Threading

<div class="border">
    <h3>Lifecycles Parent Component</h3>

    <div class="border">
        <LifecycleChild CountValue="CurrentCount"></LifecycleChild>
    </div>

    <p>Current count: @CurrentCount</p>

    <button class="btn btn-primary" @onclick="IncrementCount">Click me</button>
    <br /><br />
    <button class="btn btn-primary" @onclick=StartCountdown>Start Countdown</button> @MaxCount
</div>

@code
{
    int CurrentCount = 0;
    int MaxCount = 5;

    private void IncrementCount()
    {
        CurrentCount++;
        Console.WriteLine("Parnet - IncrementCount is called");
    }

    protected override void OnInitialized()
    {
        Console.WriteLine("Parnet - OnInitialized is called");
    }

    protected override async Task OnInitializedAsync()
    {
        await Task.Delay(100);
        Console.WriteLine("Parnet - OnInitializedAsync is called");
    }

    protected override void OnParametersSet()
    {
        Console.WriteLine("Parnet - OnParameterSet is called");
    }

    protected override async Task OnParametersSetAsync()
    {
        await Task.Delay(100);
        Console.WriteLine("Parnet - OnParametersSetAsync is called");
    }

    protected override void OnAfterRender(bool firstRender)
    {
        if (firstRender)
        {
            Console.WriteLine("Parnet - OnAfterRender(firstRender == true) is called");
            CurrentCount = 111;
        }
        else
        {
            CurrentCount = 999;
            Console.WriteLine("Parnet - OnAfterRender(firstRender == false) is called");
        }
    }

    protected override async Task OnAfterRenderAsync(bool firstRender)
    {
        await Task.Delay(100);
        Console.WriteLine("Parnet - OnAfterRenderAsync is called");
    }

    protected override bool ShouldRender()
    {
        Console.WriteLine("Parnet - ShouldRender is called");
        return true;
    }

    void StartCountdown()
    {
        Console.WriteLine("Parnet - StartCountdown()");
        var timer = new Timer(TimeCallBack, null, 1000, 1000);
    }

    void TimeCallBack(object state)
    {
        if (MaxCount > 0)
        {
            MaxCount--;
            Console.WriteLine("Parnet - InvokeAsync(StateHasChanged)");
            InvokeAsync(StateHasChanged);
        }
    }
}

و کدهای کامل کامپوننت Pages\LearnBlazor\LearnBlazor‍Components\Lifecycle‍Child.razor
<h3 class="ml-3 mr-3">Lifecycles Child Componenet</h3>

@code
{
    [Parameter]
    public int CountValue { get; set; }

    protected override void OnInitialized()
    {
        Console.WriteLine("  Child - OnInitialized is called");
    }

    protected override async Task OnInitializedAsync()
    {
        await Task.Delay(100);
        Console.WriteLine("  Child - OnInitializedAsync is called");
    }

    protected override void OnParametersSet()
    {
        Console.WriteLine("  Child - OnParameterSet is called");
    }

    protected override async Task OnParametersSetAsync()
    {
        await Task.Delay(100);
        Console.WriteLine("  Child - OnParametersSetAsync is called");
    }

    protected override void OnAfterRender(bool firstRender)
    {
        if (firstRender)
        {
            Console.WriteLine("  Child - OnAfterRender(firstRender == true) is called");
        }
        else
        {
            Console.WriteLine("  Child - OnAfterRender(firstRender == false) is called");
        }
    }

    protected override async Task OnAfterRenderAsync(bool firstRender)
    {
        await Task.Delay(100);
        Console.WriteLine("  Child - OnAfterRenderAsync is called");
    }

    protected override bool ShouldRender()
    {
        Console.WriteLine("  Child - ShouldRender is called");
        return true;
    }
}
و همچنین برای دسترسی به آن‌ها، مدخل منوی زیر را به کامپوننت Shared\NavMenu.razor اضافه می‌کنیم:
<li class="nav-item px-3">
    <NavLink class="nav-link" href="lifecycle">
        <span class="oi oi-list-rich" aria-hidden="true"></span> Lifecycles
    </NavLink>
</li>
با توجه به اینکه برنامه‌ی جاری از نوع Blazor Server است، Console.WriteLine‌های آن، در صفحه‌ی کنسول اجرای برنامه ظاهر می‌شوند و نه در developer tools مرورگر:





رویدادهای OnInitialized و OnInitializedAsync

@code
{
    protected override void OnInitialized()
    {
        Console.WriteLine("Parnet - OnInitialized is called");
    }

    protected override async Task OnInitializedAsync()
    {
        await Task.Delay(100);
        Console.WriteLine("Parnet - OnInitializedAsync is called");
    }
همانطور که در تصویر فوق نیز ملاحظه می‌کنید، اولین رویدادی که فراخوانی می‌شود، OnInitialized نام دارد و پس از آن نمونه‌ی async آن به نام OnInitializedAsync. این رویدادها زمانیکه یک کامپوننت و اجزای UI آن کاملا بارگذاری شده‌اند، فراخوانی می‌شوند. مهم‌ترین کاربرد آن‌ها، دریافت اطلاعات از سرویس‌های برنامه‌است.
در کامپوننت Lifecycle.razor، یک کامپوننت دیگر نیز به نام Lifecycle‍Child.razor فراخوانی شده‌است. در این حالت ابتدا OnInitialized کامپوننت والد فراخوانی شده‌است و پس از آن بلافاصله فراخوانی OnInitialized کامپوننت فرزند را مشاهده می‌کنیم.


رویدادهای OnParametersSet و OnParametersSetAsync

این رویدادها یکبار در زمان بارگذاری اولیه‌ی کامپوننت و بار دیگر هر زمانیکه کامپوننت فرزند، پارامتر جدیدی را از طریق کامپوننت والد دریافت می‌کند، فراخوانی می‌شوند. برای نمونه کامپوننت LifecycleChild، پارامتر CurrentCount را از والد خود دریافت می‌کند:
<LifecycleChild CountValue="CurrentCount"></LifecycleChild>
هرچند این پارامتر در UI کامپوننت فرزند مثال تهیه شده استفاده نمی‌شود، اما مقدار دهی آن از طرف والد، سبب بروز رویدادهای OnParametersSet و OnParametersSetAsync خواهد شد. برای آزمایش آن اگر بر روی دکمه‌ی click me در کامپوننت والد کلیک کنیم، این رویدادهای جدید را مشاهده خواهیم کرد:
Parnet - IncrementCount is called
Parnet - ShouldRender is called
  Child - OnParameterSet is called
  Child - ShouldRender is called
Parnet - OnAfterRender(firstRender == false) is called
  Child - OnAfterRender(firstRender == false) is called
  Child - OnParametersSetAsync is called
  Child - ShouldRender is called
  Child - OnAfterRender(firstRender == false) is called
  Child - OnAfterRenderAsync is called
Parnet - OnAfterRenderAsync is called
  Child - OnAfterRenderAsync is called
ابتدا متد IncrementCount کامپوننت والد فراخوانی شده‌است که سبب تغییر مقدار پارامتر CurrentCount ارسالی به کامپوننت Lifecycle‍Child می‌شود و پس از آن، رویداد OnParameterSet کامپوننت فرزند را مشاهده می‌کنید که عکس العملی است به این تغییر مقدار. یکی از کاربردهای آن، دریافت مقدار جدید پارامترهای کامپوننت و سپس به روز رسانی قسمت خاصی از UI بر اساس آن‌ها است.



رویدادهای OnAfterRender و OnAfterRenderAsync

پس از هر بار رندر کامپوننت، این متدها فراخوانی می‌شوند. در این مرحله کار بارگذاری کامپوننت، دریافت اطلاعات و نمایش آن‌ها به پایان رسیده‌است. یکی از کاربردهای آن، آغاز کامپوننت‌های جاوا اسکریپتی است که برای کار، نیاز به DOM را دارند؛ مانند نمایش یک modal بوت استرپی.

یک نکته: هر تغییری که در مقادیر فیلدها در این رویدادها صورت گیرند، به UI اعمال نمی‌شوند؛ چون در مرحله‌ی آخر رندر UI قرار دارند.

@code
{
    protected override void OnAfterRender(bool firstRender)
    {
        if (firstRender)
        {
            Console.WriteLine("Parnet - OnAfterRender(firstRender == true) is called");
            CurrentCount = 111;
        }
        else
        {
            CurrentCount = 999;
            Console.WriteLine("Parnet - OnAfterRender(firstRender == false) is called");
        }
    }

    protected override async Task OnAfterRenderAsync(bool firstRender)
    {
        await Task.Delay(100);
        Console.WriteLine("Parnet - OnAfterRenderAsync is called");
    }
}
در مثال‌های فوق، پارامتر firstRender را نیز مشاهده می‌کنید. یک کامپوننت چندین بار می‌تواند رندر شود. برای مثال هربار که توسط رویدادگردانی مقدار فیلدی را که در UI استفاده می‌شود، تغییر دهیم، کامپوننت مجددا رندر می‌شود. برای نمونه با کلیک بر روی دکمه‌ی click me، سبب تغییر مقدار فیلد CurrentCount می‌شویم. این تغییر و فراخوانی ضمنی StateHasChanged در پایان کار متد و در پشت صحنه، سبب رندر مجدد UI شده و در نتیجه‌ی آن، مقدار جدیدی را در صفحه مشاهده می‌کنیم. در اینجا اگر خواستیم بدانیم که رندر انجام شده برای بار اول است که صورت می‌گیرد یا خیر، می‌توان از پارامتر firstRender استفاده کرد.

سؤال: با توجه به مقدار دهی‌های 111 و 999 صورت گرفته‌ی در متد OnAfterRender، در اولین بار نمایش کامپوننت، چه عددی به عنوان CurrentCount نمایش داده می‌شود؟
در اولین بار نمایش صفحه، لحظه‌ای عدد 111 و سپس عدد 999 نمایش داده می‌شود. عدد 111 را در بار اول رندر و عدد 999 را در بار دوم رندر که پس از مقدار دهی پارامتر کامپوننت فرزند است، می‌توان مشاهده کرد.
اما ... اگر پس از نمایش اولیه‌ی صفحه، چندین بار بر روی دکمه‌ی click me کلیک کنیم، همواره عدد 1000 مشاهده می‌شود. علت اینجا است که تغییرات مقادیر فیلدها در متد OnAfterRender، به UI اعمال نمی‌شوند؛ چون در این مرحله، رندر UI به پایان رسیده‌است. در اینجا فقط مقدار فیلد CurrentCount به 999 تغییر می‌کند و به همین صورت باقی می‌ماند. دفعه‌ی بعدی که بر روی دکمه‌ی click me کلیک می‌کنیم، یک واحد به آن اضافه شده و اکنون است که کار رندر UI، مجددا شروع خواهد شد (در واکشن به یک رخ‌داد و فراخوانی ضمنی StateHasChanged در پشت صحنه) و اینبار حاصل 999+1 را در UI مشاهده می‌کنیم و باز هم در پایان کار رندر، مجددا مقدار CurrentCount به 999 تغییر می‌کند که ... دیگر به UI منعکس نمی‌شود تا زمان کلیک بعدی و همینطور الی آخر.


رویدادهای StateHasChanged و ShouldRender

- اگر خروجی رویداد ShouldRender مساوی true باشد، اجازه‌ی اعمال تغییرات به UI داده خواهد شد و برعکس. بنابراین اگر حالت UI تغییر کند و خروجی این متد false باشد، این تغییرات نمایش داده نخواهند شد.
- اگر رویداد StateHasChanged فراخوانی شود، به معنای درخواست رندر مجدد UI است. کاربرد آن در مکان‌هایی است که نیاز به اطلاع رسانی دستی تغییرات UI وجود دارد؛ درست پس از زمانیکه رندر UI به پایان رسیده‌است. برای آزمایش این مورد و فراخوانی دستی StateHasChanged، کدهای تایمر زیر تهیه شده‌اند:
@page "/lifecycle"
@using System.Threading

button class="btn btn-primary" @onclick=StartCountdown>Start Countdown</button> @MaxCount

@code
{
    int MaxCount = 5;

    void StartCountdown()
    {
        Console.WriteLine("Parnet - StartCountdown()");
        var timer = new Timer(TimeCallBack, null, 1000, 1000);
    }

    void TimeCallBack(object state)
    {
        if (MaxCount > 0)
        {
            MaxCount--;
            Console.WriteLine("Parnet - InvokeAsync(StateHasChanged)");
            InvokeAsync(StateHasChanged);
        }
    }
}
تایمر تعریف شده، یک thread timer است. یعنی callback آن بر روی یک ترد جدید و مجزای از ترد UI اجرا می‌شود. در این حالت اگر StateHasChanged را جهت اطلاع رسانی تغییر حالت UI فراخوانی نکنیم، در حین کار تایمر، هیچ تغییری را در UI مشاهده نخواهیم کرد.


یک نکته: متدهای رویدادگردان در Blazor، می‌توانند sync و یا async باشند؛ مانند متدهای OnClick و OnClickAsync زیر که هر دو پس از پایان متدها، سبب فراخوانی ضمنی StateHasChanged نیز می‌شوند (به این دلیل است که با کلیک بر روی دکمه‌ای، UI هم به روز رسانی می‌شود). البته متدهای رویدادگردان async، دوبار سبب فراخوانی ضمنی StateHasChanged می‌شوند؛ یکبار زمانیکه قسمت sync متد به پایان می‌رسد و یکبار هم زمانیکه کار فراخوانی کلی متد به پایان خواهد رسید:
<button @onclick="OnClick">Synchronous</button>
<button @onclick="OnClickAsync">Asynchronous</button>
@code{
    void OnClick()
    {
    } // StateHasChanged is called after the method

    async Task OnClickAsync()
    {
        text = "click1";
        // StateHasChanged is called here as the synchronous part of the method ends

        await Task.Delay(1000);
        await Task.Delay(2000);
        text = "click2";
    } // StateHasChanged is called after the method
}
بنابراین یکی دیگر از دلایل نیاز به فراخوانی صریح InvokeAsync(StateHasChanged) در callback تایمر تعریف شده، عدم فراخوانی خودکار آن، در پایان کار رویداد callback تایمر است.


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: Blazor-5x-Part-06.zip
نظرات مطالب
امکان ساخت برنامه‌های دسکتاپ چندسکویی Blazor در دات نت 6
این مورد AuthenticationStateProvider یکی از سرویس‌های توکار بلیزور میباشد که  AddServerSideBlazor موجب افزوده شدن آن به سیستم میشود. در این حالت هم اگر بخواهیم حتی این متد را هم صدا بزنیم باز موجب خطاهای دیگری هم میشود.
بعضی از سرویس‌ها هم مثل اتصال به دیتابیس به عنوان مثال از رشته اتصال موجود در فایل‌های appSettings خوانده میشوند که نیاز به کلاس Configuration هم دارند.
نظرات مطالب
Blazor 5x - قسمت ششم - مبانی Blazor - بخش 3 - چرخه‌های حیات کامپوننت‌ها
یک نکته‌ی تکمیلی: امکان اجرای دوباره  OnInitialized{Async} در برنامه‌های Blazor Server
در برنامه‌های Blazor Server اگر حالت رندر شدن به Server Prerendered تنظیم شده باشد، کامپوننت ابتدا یکبار به صورت استاتیک رندر می‌شود و زمانیکه اتصال SignalR برقرار می‌شود، بار دیگر نیز رندر خواهد شد (هدف این است که پیش از دریافت کامل برنامه‌ی Blazor بتوان محتوایی را نمایش داد). بنابراین در این حالت متد رویدادگردان OnInitialized{Async} حتما دوبار اجرا می‌شود (ماخذ).
اگر می‌خواهید این رفتار را تغییر دهید، به فایل Host.cshtml_ برنامه‌های Blazor Server مراجعه کرده و "render-mode="ServerPrerendered پیش‌فرض را به "render-mode="Server تغییر دهید؛ یا کدهای OnInit را به OnAfterRenderAsync انتقال داده و وضعیت وجود اتصال SignalR را بررسی کنید:
@page "/"
@using Microsoft.JSInterop
@inject IComponentContext ComponentContext
@inject IJSRuntime jsRuntime

<p>Navigate to the counter component.</p>

@code{

    protected override async Task OnAfterRenderAsync(bool firstRender)
    {
        if (!ComponentContext.IsConnected) return;

         UriHelper.NavigateTo("/counter");
    }
}
مطالب
امکان رمزنگاری اطلاعات شخصی کاربران در ASP.NET Core Identity 2.1
از نگارش ASP.NET Core Identity 2.1 به بعد، ویژگی جدید ProtectedPersonalData در تعاریف موجودیت کاربران سیستم مشاهده می‌شود:
public class IdentityUser<TKey> where TKey : IEquatable<TKey>
{
    [ProtectedPersonalData]
    public virtual string UserName { get; set; }

    [ProtectedPersonalData]
    public virtual string Email { get; set; }
این ویژگی در حقیقت یک نشانه‌گذار است. کار آن اعلام نیاز به ذخیره سازی رمزنگاری شده‌ی اینگونه اطلاعات در بانک اطلاعاتی، جهت محافظت از اطلاعات شخصی کاربران سیستم، در حین دسترسی‌های غیرمجاز می‌باشد.


روش فعالسازی ذخیره سازی رمزنگاری شده‌ی اطلاعات شخصی کاربران

اگر برنامه‌ی پیشین خود را به نگارش‌های جدیدتر ASP.NET Core Identity ارتقاء داده باشید، احتمالا متوجه وجود یک چنین قابلیتی نشده‌اید؛ چون به صورت پیش‌فرض غیرفعال است. برای فعالسازی آن، می‌توان به صورت زیر عمل کرد:
services.AddIdentity<IdentityUser, IdentityRole>(options =>
{
   options.Stores.ProtectPersonalData = true;
   // ...
})


ویژگی ProtectedPersonalData چگونه به صورت خودکار پردازش می‌شود؟

پیشنیاز درک نحوه‌ی پردازش ویژگی ProtectedPersonalData، مطلب «رمزنگاری خودکار فیلدها توسط Entity Framework Core» است. در اینجا نیز دقیقا یک «تبدیلگر مقدار» برای رمزنگاری و رمزگشایی خودکار فیلدهای مزین به ProtectedPersonalData تدارک دیده شده‌است:
private class PersonalDataConverter : ValueConverter<string, string>
{
  public PersonalDataConverter(IPersonalDataProtector protector) :
      base(s => protector.Protect(s), s => protector.Unprotect(s), default)
      { }
}

سپس در IdentityUserContext تعریف شده و متد OnModelCreating آن، ابتدا بررسی می‌کند که آیا پیشتر ProtectPersonalData را به true تنظیم کرده‌اید یا خیر؟ اگر بله، تمام خواصی را که با ویژگی ProtectedPersonalDataAttribute مزین شده‌اند، یافته و سپس توسط متد HasConversion به آن‌ها تبدیلگر مقداری از نوع PersonalDataConverter را اضافه می‌کند:
        protected override void OnModelCreating(ModelBuilder builder)
        {
            var encryptPersonalData = storeOptions?.ProtectPersonalData ?? false;

            builder.Entity<TUser>(b =>
            {
                if (encryptPersonalData)
                {
                    converter = new PersonalDataConverter(this.GetService<IPersonalDataProtector>());
                    var personalDataProps = typeof(TUser).GetProperties().Where(
                                    prop => Attribute.IsDefined(prop, typeof(ProtectedPersonalDataAttribute)));
                    foreach (var p in personalDataProps)
                    {
                        if (p.PropertyType != typeof(string))
                        {
                            throw new InvalidOperationException(Resources.CanOnlyProtectStrings);
                        }
                        b.Property(typeof(string), p.Name).HasConversion(converter);
                    }
                }
// ...


سرویس پیش‌فرض IPersonalDataProtector در ASP.NET Core Identity

اگر در کدهای فوق، به جائیکه new PersonalDataConverter نوشته شده دقت کنید؛ یک سرویس از نوع IPersonalDataProtector را دریافت می‌کند که توسط آن دو متد Protect و Unprotect به کلاس خصوصی PersonalDataConverter تزریق می‌شوند:
public interface IPersonalDataProtector
{
   string Protect(string data);
   string Unprotect(string data);
}
 پیاده سازی پیش‌فرض این سرویس رمزنگاری را در اینجا می‌توانید مشاهده کنید.


تاثیر فعالسازی ProtectPersonalData بر روی سایر سرویس‌های ASP.NET Core Identity

اگر options.Stores.ProtectPersonalData را به true تنظیم کنید، سرویس UserManager اینبار انتظار خواهد داشت که IUserStore ای که به آن تزریق می‌شود، از نوع جدید IProtectedUserStore باشد؛ در غیراینصورت یک استثناء را صادر می‌کند:
if (Options.Stores.ProtectPersonalData)
 {
     if (!(Store is IProtectedUserStore<TUser>))
     {
         throw new InvalidOperationException(Resources.StoreNotIProtectedUserStore);
     }
     if (services.GetService<ILookupProtector>() == null)
     {
         throw new InvalidOperationException(Resources.NoPersonalDataProtector);
     }
 }
که البته اگر از UserStore ای با امضای زیر استفاده می‌کنید، IProtectedUserStore را هم پیاده سازی کرده‌است:
 public class UserStore<TUser, TRole, TContext, TKey, TUserClaim, TUserRole, TUserLogin, TUserToken, TRoleClaim> : ...

همچنین تمام متدهای سرویس UserManager که با خواص مزین شده‌ی به [ProtectedPersonalData] کار می‌کنند، جهت استفاده‌ی از متد ProtectPersonalData به روز رسانی شده‌اند:
public virtual async Task UpdateNormalizedUserNameAsync(TUser user)
{
    var normalizedName = NormalizeName(await GetUserNameAsync(user));
    normalizedName = ProtectPersonalData(normalizedName);
    await Store.SetNormalizedUserNameAsync(user, normalizedName, CancellationToken);
}


چگونه می‌توان بجای DefaultPersonalDataProtector پیش‌فرض، از یک نمونه‌ی سفارشی استفاده کرد؟

برای انجام اینکار نیاز است ILookupProtector خودتان را نوشته و به سیستم معرفی کنید. یک نمونه از پیاده سازی سفارشی آن‌را در پروژه‌ی AspNetCoreIdentityEncryption می‌توانید مشاهده نمائید.
مطالب
Globalization در ASP.NET MVC - قسمت پنجم
در قسمت قبل راجع به مدل پیش‌فرض پرووایدر منابع در ASP.NET بحث نسبتا مفصلی شد. در این قسمت تولید یک پرووایدر سفارشی برای استفاده از دیتابیس به جای فایل‌های resx. به عنوان منبع نگهداری داده‌ها بحث می‌شود.
قبلا هم اشاره شده بود که در پروژه‌های بزرگ ذخیره تمام ورودی‌های منابع درون فایل‌های resx. بازدهی مناسبی نخواهد داشت. هم‌چنین به مرور زمان و با افزایش تعداد این فایل‌ها، کار مدیریت آن‌ها بسیار دشوار و طاقت‌فرسا خواهد شد. درضمن به‌دلیل رفتار سیستم کشینگ این منابع در ASP.NET، که محتویات کل یک فایل را بلافاصله پس از اولین درخواست یکی از ورودی‌های آن در حافظه سرور کش می‌کند، در صورت وجود تعداد زیادی فایل منبع و با ورودی‌های بسیار، با گذشت زمان بازدهی کلی سایت به شدت تحت تاثیر قرار خواهد گرفت.
بنابراین استفاده از یک منبع مثل دیتابیس برای چنین شرایطی و نیز کنترل مدیریت دسترسی به ورودی‌های آن به صورت سفارشی، می‌تواند به بازدهی بهتر برنامه کمک زیادی کند. درضمن فرایند به‌روزرسانی مقادیر این ورودی‌ها در صورت استفاده از یک دیتابیس می‌تواند ساده‌تر از حالت استفاده از فایل‌های resx. انجام شود.
 
تولید یک پرووایدر منابع دیتابیسی - بخش اول
در بخش اول این مطلب با نحوه پیاده‌سازی کلاس‌های اصلی و اولیه موردنیاز آشنا خواهیم شد. مفاهیم پیشرفته‌تر (مثل کش‌کردن ورودی‌ها و عملیات fallback) و نیز ساختار مناسب جدول یا جداول موردنیاز در دیتابیس و نحوه ذخیره ورودی‌ها برای انواع منابع در دیتابیس در مطلب بعدی آورده می‌شود.
با توجه به توضیحاتی که در قسمت قبل داده شد، می‌توان از طرح اولیه‌ای به صورت زیر برای سفارشی‌سازی یک پرووایدر منابع دیتابیسی استفاده کرد:


اگر مطالب قسمت قبل را خوب مطالعه کرده باشید، پیاده سازی اولیه طرح بالا نباید کار سختی باشد. در ادامه یک نمونه از پیاده‌سازی‌های ممکن نشان داده شده است.
برای آغاز کار ابتدا یک پروژه ClassLibrary جدید مثلا با نام DbResourceProvider ایجاد کنید و ریفرنسی از اسمبلی System.Web به این پروژه اضافه کنید. سپس کلاس‌هایی که در ادامه شرح داده شده‌اند را به آن اضافه کنید.

کلاس DbResourceProviderFactory
همه چیز از یک ResourceProviderFactory شروع می‌شود. نسخه سفارشی نشان داده شده در زیر برای منابع محلی و کلی از کلاس‌های پرووایدر سفارشی استفاده می‌کند که در ادامه آورده شده‌اند.
using System.Web.Compilation;
namespace DbResourceProvider
{
  public class DbResourceProviderFactory : ResourceProviderFactory
  {
    #region Overrides of ResourceProviderFactory
    public override IResourceProvider CreateGlobalResourceProvider(string classKey)
    {
      return new GlobalDbResourceProvider(classKey);
    }
    public override IResourceProvider CreateLocalResourceProvider(string virtualPath)
    {
      return new LocalDbResourceProvider(virtualPath);
    }
    #endregion
  }
}
درباره اعضای کلاس ResourceProviderFactory در قسمت قبل توضیحاتی داده شد. در نمونه سفارشی بالا دو متد این کلاس برای برگرداندن پرووایدرهای سفارشی منابع محلی و کلی بازنویسی شده‌اند. سعی شده است تا نمونه‌های سفارشی در اینجا رفتاری همانند نمونه‌های پیش‌فرض در ASP.NET داشته باشند، بنابراین برای پرووایدر منابع کلی (GlobalDbResourceProvider) نام منبع درخواستی (className) و برای پرووایدر منابع محلی (LocalDbResourceProvider) مسیر مجازی درخواستی (virtualPath) به عنوان پارامتر کانستراکتور ارسال می‌شود.
 
نکته: برای استفاده از این کلاس به جای کلاس پیش‌فرض ASP.NET باید یکسری تنظیمات در فایل کانفیگ برنامه مقصد اعمال کرد که در ادامه آورده شده است.

کلاس BaseDbResourceProvider
برای پیاده‌سازی راحت‌تر کلاس‌های موردنظر، بخش‌های مشترک بین دو پرووایدر محلی و کلی در یک کلاس پایه به صورت زیر قرار داده شده است. این طرح دقیقا مشابه نمونه پیش‌فرض ASP.NET است.
using System.Globalization;
using System.Resources;
using System.Web.Compilation;
namespace DbResourceProvider
{
  public abstract class BaseDbResourceProvider : IResourceProvider
  {
    private DbResourceManager _resourceManager;
    protected abstract DbResourceManager CreateResourceManager();
    private void EnsureResourceManager()
    {
      if (_resourceManager != null) return;
      _resourceManager = CreateResourceManager();
    }
    #region Implementation of IResourceProvider
    public object GetObject(string resourceKey, CultureInfo culture)
    {
      EnsureResourceManager();
      if (_resourceManager == null) return null;
      if (culture == null) culture = CultureInfo.CurrentUICulture;
      return _resourceManager.GetObject(resourceKey, culture);
    }
    public virtual IResourceReader ResourceReader { get { return null; } }
    #endregion
  }
}
کلاس بالا چون یک کلاس صرفا پایه است بنابراین به صورت abstract تعریف شده است. در این کلاس، از نمونه سفارشی DbResourceManager برای بازیابی داده‌ها از دیتابیس استفاده شده است که در ادامه شرح داده شده است.
در اینجا، از متد CreateResourceManager برای تولید نمونه مناسب از کلاس DbResourceManager استفاده می‌شود. این متد به صورت abstract و protected تعریف شده است بنابراین پیاده‌سازی آن باید در کلاس‌های مشتق شده که در ادامه آورده شده‌اند انجام شود.
در متد EnsureResourceManager کار بررسی نال نبودن resouceManager_ انجام می‌شود تا درصورت نال بودن آن، بلافاصله نمونه‌ای تولید شود.

نکته: ازآنجاکه نقطه آغازین فرایند یعنی تولید نمونه‌ای از کلاس DbResourceProviderFactory توسط خود ASP.NET انجام خواهد شد، بنابراین مدیریت تمام نمونه‌های ساخته شده از کلاس‌هایی که در این مطلب شرح داده می‌شوند درنهایت عملا برعهده ASP.NET است. در ASP.NET درطول عمر یک برنامه تنها یک نمونه از کلاس Factory تولید خواهد شد، و متدهای موجود در آن در حالت عادی تنها یکبار به ازای هر منبع درخواستی (کلی یا محلی) فراخوانی می‌شوند. درنتیجه به ازای هر منبع درخواستی (کلی یا محلی) هر یک از کلاس‌های پرووایدر منابع تنها یک‌بار نمونه‌سازی خواهد شد. بنابراین بررسی نال نبودن این متغیر و تولید نمونه‌ای جدید تنها در صورت نال بودن آن، کاری منطقی است. این نمونه بعدا توسط ASP.NET به ازای هر منبع یا صفحه درخواستی کش می‌شود تا در درخواست‌های بعدی تنها از این نسخه کش‌شده استفاده شود.

در متد GetObject نیز کار استخراج ورودی منابع انجام می‌شود. ابتدا با استفاده از متد EnsureResourceManager از وجود نمونه‌ای از کلاس DbResourceManager اطمینان حاصل می‌شود. سپس درصورتی‌که مقدار این کلاس همچنان نال باشد مقدار نال برگشت داده می‌شود. این حالت وقتی پیش می‌آید که نتوان با استفاده از داده‌های موجود نمونه‌ای مناسب از کلاس DbResourceManager تولید کرد.
سپس مقدار کالچر ورودی بررسی می‌شود و درصورتی‌که نال باشد مقدار کالچر UI ثرد جاری که در CultureInfo.CurrentUICulture قرار دارد برای آن درنظر گرفته می‌شود. درنهایت با فراخوانی متد GetObject از DbResourceManager تولیدی برای کلید و کالچر مربوطه کار استخراج ورودی درخواستی پایان می‌پذیرد.
پراپرتی ResourceReader در این کلاس به صورت virtual تعریف شده است تا بتوان پیاده‌سازی مناسب آن را در هر یک از کلاس‌های مشتق‌شده اعمال کرد. فعلا برای این کلاس پایه مقدار نال برگشت داده می‌شود.

کلاس GlobalDbResourceProvider
برای پرووایدر منابع کلی از این کلاس استفاده می‌شود. نحوه پیاده‌سازی آن نیز دقیقا همانند طرح نمونه پیش‌فرض ASP.NET است.
using System;
using System.Resources;
namespace DbResourceProvider
{
  public class GlobalDbResourceProvider : BaseDbResourceProvider
  {
    private readonly string _classKey;
    public GlobalDbResourceProvider(string classKey)
    {
      _classKey = classKey;
    }
    #region Implementation of BaseDbResourceProvider
    protected override DbResourceManager CreateResourceManager()
    {
      return new DbResourceManager(_classKey);
    }
    public override IResourceReader ResourceReader
    {
      get { throw new NotSupportedException(); }
    }
    #endregion
  }
}
GlobalDbResourceProvider از کلاس پایه‌ای که در بالا شرح داده شد مشتق شده است. بنابراین تنها بخش‌های موردنیاز یعنی متد CreateResourceManager و پراپرتی ResourceReader در این کلاس پیاده‌سازی شده است.
در اینجا نمونه مخصوص کلاس ResourceManager (همان DbResourceManager) با توجه به نام فایل مربوط به منبع کلی تولید می‌شود. نام فایل در اینجا همان چیزی است که در دیتابیس برای نام منبع مربوطه ذخیره می‌شود. ساختار آن بعدا بحث می‌شود.
همان‌طور که می‌بینید برای پراپرتی ResourceReader خطای عدم پشتیبانی صادر می‌شود. دلیل آن در قسمت قبل و نیز به‌صورت کمی دقیق‌تر در ادامه آورده شده است.

کلاس LocalDbResourceProvider
برای منابع محلی نیز از طرحی مشابه نمونه پیش‌فرض ASP.NET که در قسمت قبل نشان داده شد، استفاده شده است.
using System.Resources;
namespace DbResourceProvider
{
  public class LocalDbResourceProvider : BaseDbResourceProvider
  {
    private readonly string _virtualPath;
    public LocalDbResourceProvider(string virtualPath)
    {
      _virtualPath = virtualPath;
    }
    #region Implementation of BaseDbResourceProvider
    protected override DbResourceManager CreateResourceManager()
    {
      return new DbResourceManager(_virtualPath);
    }
    public override IResourceReader ResourceReader
    {
      get { return new DbResourceReader(_virtualPath); }
    }
    #endregion
  }
}
این کلاس نیز از کلاس پایه‌ای BaseDbResourceProvider مشتق شده و پیاده‌سازی‌های مخصوص منابع محلی برای متد CreateResourceManager و پراپرتی ResourceReader در آن انجام شده است.
در متد CreateResourceManager کار تولید نمونه‌ای از DbResourceManager با استفاده از مسیر مجازی صفحه درخواستی انجام می‌شود. این فرایند شبیه به پیاده‌سازی پیش‌فرض ASP.NET است. در واقع در پیاده‌سازی جاری، نام منابع محلی همنام با مسیر مجازی متناظر آن‌ها در دیتابیس ذخیره می‌شود. درباره ساختار جدول دیتابیس بعدا بحث می‌شود.
در این کلاس کار بازخوانی کلیدهای موجود برای پراپرتی‌های موجود در یک صفحه از طریق نمونه‌ای از کلاس DbResourceReader انجام شده است. شرح این کلاس در ادامه آمده است. 

نکته: همانطور که در قسمت قبل هم اشاره کوتاهی شده بود، از خاصیت ResourceReader در پرووایدر منابع برای تعیین تمام پراپرتی‌های موجود در منبع استفاده می‌شود تا کار جستجوی کلیدهای موردنیاز در عبارات بومی‌سازی ضمنی برای رندر صفحه وب راحت‌تر انجام شود. بنابراین از این پراپرتی تنها در پرووایدر منابع محلی استفاده می‌شود. ازآنجاکه در عبارات بومی‌سازی ضمنی تنها قسمت اول نام کلید ورودی منبع آورده می‌شود، بنابراین قسمت دوم (و یا قسمت‌های بعدی) کلید موردنظر که همان نام پراپرتی کنترل متناظر است از جستجو میان ورودی‌های یافته شده توسط این پراپرتی بدست می‌آید تا ASP.NET بداند که برای رندر صفحه چه پراپرتی‌هایی نیاز به رجوع به پرووایدر منبع محلی مربوطه دارد (برای آشنایی بیشتر با عبارت بومی‌سازی ضمنی رجوع شود به قسمت قبل).

نکته: دقت کنید که پس از اولین درخواست، خروجی حاصل از enumerator این ResourceReader کش می‌شود تا در درخواست‌های بعدی از آن استفاده شود. بنابراین در حالت عادی، به ازای هر صفحه تنها یکبار این پراپرتی فراخوانده می‌شود. درباره این enumerator در ادامه بحث شده است.

کلاس DbResourceManager
کار اصلی مدیریت و بازیابی ورودی‌های منابع از دیتابیس از طریق کلاس DbResourceManager انجام می‌شود. نمونه‌ای بسیار ساده و اولیه از این کلاس را در زیر مشاهده می‌کنید:
using System.Globalization;
using DbResourceProvider.Data;
namespace DbResourceProvider
{
  public class DbResourceManager
  {
    private readonly string _resourceName;
    public DbResourceManager(string resourceName)
    {
      _resourceName = resourceName;
    }
    public object GetObject(string resourceKey, CultureInfo culture)
    {
      var data = new ResourceData();
      return data.GetResource(_resourceName, resourceKey, culture.Name).Value;
    }
  }
}
کار استخراج ورودی‌های منابع با استفاده از نام منبع درخواستی در این کلاس مدیریت خواهد شد. این کلاس با استفاده نام منیع درخواستی به عنوان پارامتر کانستراکتور ساخته می‌شود. با استفاده از متد GetObject که نام کلید ورودی موردنظر و کالچر مربوطه را به عنوان پارامتر ورودی دریافت می‌کند فرایند استخراج انجام می‌شود.
برای کپسوله‌سازی عملیات از کلاس جداگانه‌ای (ResourceData) برای تبادل با دیتابیس استفاده شده است. شرح بیشتر درباره این کلاس و نیز پیاده سازی کامل‌تر کلاس DbResourceManager به همراه مدیریت کش ورودی‌های منابع و نیز عملیات fallback در مطلب بعدی آورده می‌شود.

کلاس DbResourceReader
این کلاس که درواقع پیاده‌سازی اینترفیس IResourceReader است برای یافتن تمام کلیدهای تعریف شده برای یک منبع به‌کار می‌رود، پیاده‌سازی آن نیز به صورت زیر است:
using System.Collections;
using System.Resources;
using System.Security;
using DbResourceProvider.Data;
namespace DbResourceProvider
{
  public class DbResourceReader : IResourceReader
  {
    private readonly string _resourceName;
    private readonly string _culture;
    public DbResourceReader(string resourceName, string culture = "")
    {
      _resourceName = resourceName;
      _culture = culture;
    }
    #region Implementation of IResourceReader
    public void Close() { }
    public IDictionaryEnumerator GetEnumerator()
    {
      return new DbResourceEnumerator(new ResourceData().GetResources(_resourceName, _culture));
    }
    #endregion
    #region Implementation of IEnumerable
    IEnumerator IEnumerable.GetEnumerator()
    {
      return GetEnumerator();
    }
    #endregion
    #region Implementation of IDisposable
    public void Dispose()
    {
      Close();
    }
    #endregion
  }
}
این کلاس تنها با استفاده از نام منبع و عنوان کالچر موردنظر کار بازخوانی ورودی‌های موجود را انجام می‌دهد.
تنها نکته مهم در کد بالا متد GetEnumerator است که نمونه‌ای از اینترفیس IDictionaryEnumerator را برمی‌گرداند. در اینجا از کلاس DbResourceEnumerator که برای کار با دیتابیس طراحی شده، استفاده شده است. همانطور که قبلا هم اشاره شده بود، هر یک از اعضای این enumerator از نوع DictionaryEntry هستند که یک struct است. این کلاس در ادامه شرح داده شده است.
متد Close برای بستن و از بین بردن منابعی است که در تهیه enumerator موردبحث نقش داشته‌اند. مثل منایع شبکه‌ای یا فایلی که باید قبل از اتمام کار با این کلاس به صورت کامل بسته شوند. هرچند در نمونه جاری چنین موردی وجود ندارد و بنابراین این متد بلااستفاده است.
در کلاس فوق نیز برای دریافت اطلاعات از ResourceData استفاده شده است که بعدا به همراه ساختار مناسب جدول دیتابیس شرح داده می‌شود.
 
نکته: دقت کنید که در پیاده‌سازی نشان داده شده برای کلاس LocalDbResourceProvider برای یافتن ورودی‌های موجود از مقدار پیش‌فرض (یعنی رشته خالی) برای کالچر استفاده شده است تا از ورودی‌های پیش‌فرض که در حالت عادی باید شامل تمام موارد تعریف شده موجود هستند استفاده شود (قبلا هم شرح داده شد که منبع اصلی و پیش‌فرض یعنی همانی که برای زبان پیش‌فرض برنامه درنظر گرفته می‌شود و بدون نام کالچر مربوطه است، باید شامل حداکثر ورودی‌های تعریف شده باشد. منابع مربوطه به سایر کالچرها می‌توانند همه این ورودی‌های تعریف‌شده در منبع اصلی و یا قسمتی از آن را شامل شوند. عملیات fallback تضمین می‌دهد که درنهایت نزدیک‌ترین گزینه متناظر با درخواست جاری را برگشت دهد).
 
کلاس DbResourceEnumerator
کلاس دیگری که در اینجا استفاده شده است، DbResourceEnumerator است. این کلاس در واقع پیاده سازی اینترفیس IDictionaryEnumerator است. محتوای این کلاس در زیر آورده شده است:
using System.Collections;
using System.Collections.Generic;
using DbResourceProvider.Models;
namespace DbResourceProvider
{
  public sealed class DbResourceEnumerator : IDictionaryEnumerator
  {
    private readonly List<Resource> _resources;
    private int _dataPosition;
    public DbResourceEnumerator(List<Resource> resources)
    {
      _resources = resources;
      Reset();
    }
    public DictionaryEntry Entry
    {
      get
      {
        var resource = _resources[_dataPosition];
        return new DictionaryEntry(resource.Key, resource.Value);
      }
    }
    public object Key { get { return Entry.Key; } }
    public object Value { get { return Entry.Value; } }
    public object Current { get { return Entry; } }
    public bool MoveNext()
    {
      if (_dataPosition >= _resources.Count - 1) return false;
      ++_dataPosition;
      return true;
    }
    public void Reset()
    {
      _dataPosition = -1;
    }
  }
}
تفاوت این اینترفیس با اینترفیس IEnumerable در سه عضو اضافی است که برای استفاده در سیستم مدیریت منابع ASP.NET نیاز است. همان‌طور که در کد بالا مشاهده می‌کنید این سه عضو عبارتند از پراپرتی‌های Entry و Key و Value. پراپرتی Entry که ورودی جاری در enumerator را مشخص می‌کند از نوع DictionaryEntry است. پراپرتی‌های Key و Value هم که از نوع object تعریف شده‌اند برای کلید و مقدار ورودی جاری استفاده می‌شوند.
این کلاس لیستی از Resource به عنوان پارامتر کانستراکتور برای تولید enumerator دریافت می‌کند. کلاس Resource مدل تولیدی از ساختار جدول دیتابیس برای ذخیره ورودی‌های منابع است که در مطلب بعدی شرح داده می‌شود. بقیه قسمت‌های کد فوق هم پیاده‌سازی معمولی یک enumerator است.

نکته: به جای تعریف کلاس جداگانه‌ای برای enumerator اینترفیس IResourceProvider می‌توان از enumerator کلاس‌هایی که IDictionary را پیاده‌سازی کرده‌اند نیز استفاده کرد، مانند کلاس <Dictionary<object,object یا ListDictionary.
 
تنظیمات فایل کانفیگ
برای اجبار کردن ASP.NET به استفاده از Factory موردنظر باید تنظیمات زیر را در فایل web.config اعمال کرد:
<system.web>
    ...
    <globalization resourceProviderFactoryType=" نام کامل اسمبلی مربوطه ,نام پرووایدر فکتوری به همراه فضای نام آن " />
    ...
</system.web>
روش نشان داده شده در بالا حالت کلی تعریف و تنظیم یک نوع داده در فایل کانفیگ را نشان می‌دهد. درباره نام کامل اسمبلی در اینجا شرح داده شده است.
مثلا برای پیاده‌سازی نشان داده شده در این مطلب خواهیم داشت:
<globalization resourceProviderFactoryType="DbResourceProvider.DbResourceProviderFactory, DbResourceProvider" />

در مطلب بعدی درباره ساختار مناسب جدول یا جداول دیتابیس برای ذخیره ورودهای منابع و نیز پیاده‌سازی کامل‌تر کلاس‌های مورداستفاده بحث خواهد شد.

منابع:
مطالب دوره‌ها
لغو اعمال غیرهمزمان
دات نت 4.5 روش عمومی را جهت لغو اعمال غیرهمزمان طولانی اضافه کرده‌است. برای مثال اگر نیاز است تا چندین عمل با هم انجام شوند تا کار مشخصی صورت گیرد و یکی از آن‌ها با شکست مواجه شود، ادامه‌ی عملیات با سایر وظایف تعریف شده، بی‌حاصل است. لغو اعمال در برنامه‌های دارای رابط کاربری نیز حائز اهمیت است. برای مثال یک کاربر ممکن است تصمیم بگیرد تا عملیاتی طولانی را لغو کند.


مدل لغو اعمال

پایه لغو اعمال، توسط مکانیزمی به نام CancellationToken پیاده سازی شده‌است و آن‌را به عنوان یکی از آرگومان‌های متدهایی که لغو اعمال را پشتیبانی می‌کنند، مشاهده خواهید کرد. به این ترتیب یک عمل خاص می‌تواند دریابد چه زمانی لغو آن درخواست شده‌است. البته باید دقت داشت که این عملیات بر مبنای ایده‌ی ‌همه یا هیچ است. به این معنا که یک درخواست لغو را بار دیگر نمی‌توان لغو کرد.


یک مثال استفاده از CancellationToken

کدهای زیر، یک فایل حجیم را از مکانی به مکانی دیگر کپی می‌کنند. برای این منظور از متد CopyToAsync که در دات نت 4.5 اضافه شده‌است، استفاده کرده‌ایم؛ زیرا از مکانیزم لغو عملیات پشتیبانی می‌کند.
using System;
using System.IO;
using System.Threading;

namespace Async08
{
    class Program
    {
        static void Main(string[] args)
        {
            var source = @"c:\dir\file.bin";
            var target = @"d:\dir\file.bin";
            using (var inStream = File.OpenRead(source))
            {
                using (var outStream = File.OpenWrite(target))
                {
                    using (var cts = new CancellationTokenSource())
                    {
                        var task = inStream.CopyToAsync(outStream, bufferSize: 4059, cancellationToken: cts.Token);
                        Console.WriteLine("Press 'c' to cancel.");
                        var key = Console.ReadKey().KeyChar;
                        if (key == 'c')
                        {
                            Console.WriteLine("Cancelling");
                            cts.Cancel();
                        }
                        Console.WriteLine("Wating...");
                        task.ContinueWith(t => { }).Wait();
                        Console.WriteLine("Status: {0}", task.Status);
                    }
                }
            }
        }
    }
}
کار با تعریف CancellationTokenSource شروع می‌شود. چون از نوع IDisposable است، نیاز است توسط عبارت using، جهت پاکسازی منابع آن، محصور گردد. سپس در اینجا اگر کاربر کلید c را فشار دهد، متد لغو توکن تعریف شده فراخوانی خواهد شد. این توکن نیز به عنوان آرگومان به متد CopyToAsync ارسال شده‌است.
علت استفاده از ContinueWith در اینجا این است که اگر یک task لغو شود، فراخوانی متد Wait بر روی آن سبب بروز استثناء می‌گردد. به همین جهت توسط ContinueWith یک Task خالی ایجاد شده و سپس بر روی آن Wait فراخوانی گردیده‌است.
همچنین باید دقت داشت که سازنده‌ی CancellationTokenSource امکان دریافت زمان timeout عملیات را نیز دارد. به علاوه متد CancelAfter نیز برای آن طراحی شده‌است. نمونه‌ی دیگری از تنظیم timeout را در قسمت قبل با معرفی متد Task.Delay و استفاده از آن با Task.WhenAny مشاهده کردید.


لغو ظاهری وظایفی که لغو پذیر نیستند

فرض کنید متدی به نام GetBitmapAsync با پارامتر cancellationToken طراحی نشده‌است. در این حالت کاربر قصد دارد با کلیک بر روی دکمه‌ی لغو، عملیات را خاتمه دهد. یک روش حل این مساله، استفاده از متد ذیل است:
    public static class CancellationTokenExtensions
    {
        public static async Task UntilCompletionOrCancellation(Task asyncOp, CancellationToken ct)
        {
            var tcs = new TaskCompletionSource<bool>();
            using (ct.Register(() => tcs.TrySetResult(true)))
            {
                await Task.WhenAny(asyncOp, tcs.Task);
            }
        }
    }
در اینجا از روش Task.WhenAny استفاده شده‌است که در آن دو task ترکیب شده‌اند. Task اول همان وظیفه‌ای اصلی است و task دوم، از یک TaskCompletionSource حاصل شده‌است. اگر کاربر دستور لغو را صادر کند، callback ثبت شده توسط این توکن، اجرا خواهد شد. بنابراین در اینجا TrySetResult به true تنظیم شده و یکی از دو Task معرفی شده در WhenAny خاتمه می‌یابد.
این مورد هر چند task اول را واقعا لغو نمی‌کند، اما سبب خواهد شد تا کدهای پس از await UntilCompletionOrCancellation اجرا شوند.


طراحی متدهای غیرهمزمان لغو پذیر

کلاس زیر را در نظر بگیرید:
    public class CancellationTokenTest
    {
        public static void Run()
        {
            var cts = new CancellationTokenSource();
            Task.Run(async () => await test(), cts.Token);
            Console.ReadLine();
            cts.Cancel();
            Console.WriteLine("Cancel...");
            Console.ReadLine();
        }

        private static async Task test()
        {
            while (true)
            {
                await Task.Delay(1000);
                Console.WriteLine("Test...");
            }
        }
    }
در اینجا cancellationToken متد Task.Run تنظیم شده‌است. همچنین پس از فراخوانی آن، اگر کاربر کلیدی را فشار دهد، متد Cancel این توکن فراخوانی خواهد شد. اما .... خروجی برنامه به صورت زیر است:
Test...
Test...
Test...
 
Cancel...
Test...
Test...
Test...
Test...
بله. وظیفه‌ی شروع شده، لغو شده‌است اما متد test آن هنوز مشغول به کار است.
روش اول حل این مشکل، معرفی پارامتر CancellationToken به متد test و سپس بررسی مداوم خاصیت IsCancellationRequested آن می‌باشد:
public class CancellationTokenTest
    {
        public static void Run()
        {
            var cts = new CancellationTokenSource();
            Task.Run(async () => await test(cts.Token), cts.Token);
            Console.ReadLine();
            cts.Cancel();
            Console.WriteLine("Cancel...");
            Console.ReadLine();
        }

        private static async Task test(CancellationToken ct)
        {
            while (true)
            {
                await Task.Delay(1000, ct);
                Console.WriteLine("Test...");

                if (ct.IsCancellationRequested)
                {
                    break;
                }
            }
            Console.WriteLine("Test cancelled");
        }
    }
در اینجا اگر متد cts.Cancel فراخوانی شود، مقدار خاصیت ct.IsCancellationRequested مساوی true شده و حلقه خاتمه می‌یابد.
روش دوم لغو عملیات، استفاده از متد Register است. هر زمان که توکن لغو شود، callback آن فراخوانی خواهد شد:
        private static async Task test2(CancellationToken ct)
        {
            bool isRunning = true;

            ct.Register(() =>
            {
                isRunning = false;
                Console.WriteLine("Query cancelled");
            });

            while (isRunning)
            {
                await Task.Delay(1000, ct);
                Console.WriteLine("Test...");
            }
            Console.WriteLine("Test cancelled");
        }
این روش خصوصا برای حالت‌هایی مفید است که در آن‌ها از متدهایی استفاده می‌شود که خودشان امکان لغو شدن را نیز دارند. به این ترتیب دیگر نیازی نیست مدام بررسی کرد که آیا مقدار IsCancellationRequested مساوی true شده‌است یا خیر. هر زمان که callback ثبت شده در متد Register فراخوانی شد، یعنی عملیات باید خاتمه یابد.
مطالب
امن سازی برنامه‌های ASP.NET Core توسط IdentityServer 4x - قسمت پنجم - پیاده سازی ورود و خروج از سیستم
پس از راه اندازی IdentityServer، نوبت به امن سازی برنامه‌ی Mvc Client توسط آن می‌رسد و اولین قسمت آن، ورود به سیستم و خروج از آن می‌باشد.


بررسی اجزای Hybrid Flow

در قسمت سوم در حین «انتخاب OpenID Connect Flow مناسب برای یک برنامه‌ی کلاینت از نوع ASP.NET Core» به این نتیجه رسیدیم که Flow مناسب یک برنامه‌ی Mvc Client از نوع Hybrid است. در اینجا هر Flow، شروع به ارسال درخواستی به سمت Authorization Endpoint می‌کند؛ با یک چنین قالبی:
https://idpHostAddress/connect/authorize? 
client_id=imagegalleryclient 
&redirect_uri=https://clientapphostaddress/signin-oidcoidc 
&scope=openid profile 
&response_type=code id_token 
&response_mode=form_post
&nonce=63626...n2eNMxA0
- در سطر اول، Authorization Endpoint مشخص شده‌است. این آدرس از discovery endpoint که یک نمونه تصویر محتوای آن‌را در قسمت قبل مشاهده کردید، استخراج می‌شود.
- سپس client_id جهت تعیین برنامه‌ای که درخواست را ارسال می‌کند، ذکر شده‌است؛ از این جهت که یک IDP جهت کار با چندین نوع کلاینت مختلف طراحی شده‌است.
- redirect_uri همان Redirect Endpoint است که در سطح برنامه‌ی کلاینت تنظیم می‌شود.
- در مورد scope در قسمت قبل در حین راه اندازی IdentityServer توضیح دادیم. در اینجا برنامه‌ی کلاینت، درخواست scopeهای openid و profile را داده‌است. به این معنا که نیاز دارد تا Id کاربر وارد شده‌ی به سیستم و همچنین Claims منتسب به او را در اختیار داشته باشد.
- response_type نیز به code id_token تنظیم شده‌است. توسط response_type، نوع Flow مورد استفاده مشخص می‌شود. ذکر code به معنای بکارگیری Authorization code flow است. ذکر id_token و یا id_token token هر دو به معنای استفاده‌ی از implicit flow است. اما برای مشخص سازی Hybrid flow یکی از سه مقدار code id_token و یا code token و یا code id_token token با هم ذکر می‌شوند:


- در اینجا response_mode مشخص می‌کند که اطلاعات بازگشتی از سمت IDP که توسط response_type مشخص شده‌اند، با چه قالبی به سمت کلاینت بازگشت داده شوند که می‌تواند از طریق Form POST و یا URI باشد.


در Hybrid flow با response_type از نوع code id_token، ابتدا کلاینت یک درخواست Authentication را به Authorization Endpoint ارسال می‌کند (با همان قالب URL فوق). سپس در سطح IDP، کاربر برای مثال با ارائه‌ی کلمه‌ی عبور و نام کاربری، تعیین اعتبار می‌شود. همچنین در اینجا IDP ممکن است رضایت کاربر را از دسترسی به اطلاعات پروفایل او نیز سؤال بپرسد (تحت عنوان مفهوم Consent). سپس IDP توسط یک Redirection و یا Form POST، اطلاعات authorization code و identity token را به سمت برنامه‌ی کلاینت ارسال می‌کند. این همان اطلاعات مرتبط با response_type ای است که درخواست کرد‌ه‌ایم. سپس برنامه‌ی کلاینت این اطلاعات را تعیین اعتبار کرده و در صورت موفقیت آمیز بودن این عملیات، اکنون درخواست تولید توکن هویت را به token endpoint ارسال می‌کند. برای این منظور کلاینت سه مشخصه‌ی authorization code ،client-id و client-secret را به سمت token endpoint ارسال می‌کند. در پاسخ یک identity token را دریافت می‌کنیم. در اینجا مجددا این توکن تعیین اعتبار شده و سپس Id کاربر را از آن استخراج می‌کند که در برنامه‌ی کلاینت قابل استفاده خواهد بود. این مراحل را در تصویر زیر می‌توانید ملاحظه کنید.
البته اگر دقت کرده باشید، یک identity token در همان ابتدای کار از Authorization Endpoint دریافت می‌شود. اما چرا از آن استفاده نمی‌کنیم؟ علت اینجا است که token endpoint نیاز به اعتبارسنجی client را نیز دارد. به این ترتیب یک لایه‌ی امنیتی دیگر نیز در اینجا بکار گرفته می‌شود. همچنین access token و refresh token نیز از همین token endpoint قابل دریافت هستند.




تنظیم IdentityServer جهت انجام عملیات ورود به سیستم بر اساس جزئیات Hybrid Flow

برای افزودن قسمت لاگین به برنامه‌ی MVC قسمت دوم، نیاز است تغییراتی را در برنامه‌ی کلاینت و همچنین IDP اعمال کنیم. برای این منظور کلاس Config پروژه‌ی IDP را که در قسمت قبل ایجاد کردیم، به صورت زیر تکمیل می‌کنیم:
namespace DNT.IDP
{
    public static class Config
    {
        public static IEnumerable<Client> GetClients()
        {
            return new List<Client>
            {
                new Client
                {
                    ClientName = "Image Gallery",
                    ClientId = "imagegalleryclient",
                    AllowedGrantTypes = GrantTypes.Hybrid,
                    RedirectUris = new List<string>
                    {
                        "https://localhost:5001/signin-oidc"
                    },
                    PostLogoutRedirectUris = new List<string>
                    {
                        "https://localhost:5001/signout-callback-oidc"
                    },
                    AllowedScopes =
                    {
                        IdentityServerConstants.StandardScopes.OpenId,
                        IdentityServerConstants.StandardScopes.Profile
                    },
                    ClientSecrets =
                    {
                        new Secret("secret".Sha256())
                    }
                }
             };
        }
    }
}
در اینجا بجای بازگشت لیست خالی کلاینت‌ها، یک کلاینت جدید را تعریف و تکمیل کرده‌ایم.
- ابتدا نام کلاینت را مشخص می‌کنیم. این نام و عنوان، در صفحه‌ی لاگین و Consent (رضایت دسترسی به اطلاعات پروفایل کاربر)، ظاهر می‌شود.
- همچنین نیاز است یک Id دلخواه را نیز برای آن مشخص کنیم؛ مانند imagegalleryclient در اینجا.
- AllowedGrantTypes را نیز به Hybrid Flow تنظیم کرده‌ایم. علت آن‌را در قسمت سوم این سری بررسی کردیم.
- با توجه به اینکه Hybrid Flow از Redirectها استفاده می‌کند و اطلاعات نهایی را به کلاینت از طریق Redirection ارسال می‌کند، به همین جهت آدرس RedirectUris را به آدرس برنامه‌ی Mvc Client تنظیم کرده‌ایم (که در اینجا بر روی پورت 5001 کار می‌کند). قسمت signin-oidc آن‌را در ادامه تکمیل خواهیم کرد.
- در قسمت AllowedScopes، لیست scopeهای مجاز قابل دسترسی توسط این کلاینت مشخص شده‌اند که شامل دسترسی به ID کاربر و Claims آن است.
- به ClientSecrets نیز جهت client authenticating نیاز داریم.


تنظیم برنامه‌ی MVC Client جهت انجام عملیات ورود به سیستم بر اساس جزئیات Hybrid Flow

برای افزودن قسمت لاگین به سیستم، کلاس آغازین پروژه‌ی MVC Client را به نحو زیر تکمیل می‌کنیم:
namespace ImageGallery.MvcClient.WebApp
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.AddAuthentication(options =>
            {
                options.DefaultScheme = "Cookies";
                options.DefaultChallengeScheme = "oidc";
            }).AddCookie("Cookies")
              .AddOpenIdConnect("oidc", options =>
              {
                  options.SignInScheme = "Cookies";
                  options.Authority = "https://localhost:6001";
                  options.ClientId = "imagegalleryclient";
                  options.ResponseType = "code id_token";
                  //options.CallbackPath = new PathString("...")
                  //options.SignedOutCallbackPath = new PathString("...")
                  options.Scope.Add("openid");
                  options.Scope.Add("profile");
                  options.SaveTokens = true;
                  options.ClientSecret = "secret";
                  options.GetClaimsFromUserInfoEndpoint = true;
              });
این قسمت تنظیمات، سمت کلاینت OpenID Connect Flow را مدیریت می‌کند.

- ابتدا با فراخوانی AddAuthentication، کار تنظیمات میان‌افزار استاندارد Authentication برنامه‌های ASP.NET Core انجام می‌شود. در اینجا DefaultScheme آن به Cookies تنظیم شده‌است تا عملیات Sign-in و Sign-out سمت کلاینت را میسر کند. سپس DefaultChallengeScheme به oidc تنظیم شده‌است. این مقدار با Scheme ای که در ادامه آن‌را تنظیم خواهیم کرد، تطابق دارد.

- سپس متد AddCookie فراخوانی شده‌است که authentication-Scheme را به عنوان پارامتر قبول می‌کند. به این ترتیب cookie based authentication در برنامه میسر می‌شود. پس از اعتبارسنجی توکن هویت دریافتی و تبدیل آن به Claims Identity، در یک کوکی رمزنگاری شده برای استفاده‌های بعدی ذخیره می‌شود.

- در آخر تنظیمات پروتکل OpenID Connect را ملاحظه می‌کنید. به این ترتیب مراحل اعتبارسنجی توسط این پروتکل در اینجا که Hybrid flow است، پشتیبانی خواهد شد.  اینجا است که کار درخواست Authorization، دریافت و اعتبارسنجی توکن هویت صورت می‌گیرد. اولین پارامتر آن authentication-Scheme است که به oidc تنظیم شده‌است. به این ترتیب اگر قسمتی از برنامه نیاز به Authentication داشته باشد، OpenID Connect به صورت پیش‌فرض مورد استفاده قرار می‌گیرد. به همین جهت DefaultChallengeScheme را نیز به oidc تنظیم کردیم. در اینجا SignInScheme به Cookies تنظیم شده‌است که با DefaultScheme اعتبارسنجی تطابق دارد. به این ترتیب نتیجه‌ی موفقیت آمیز عملیات اعتبارسنجی در یک کوکی رمزنگاری شده ذخیره خواهد شد. مقدار خاصیت Authority به آدرس IDP تنظیم می‌شود که بر روی پورت 6001 قرار دارد. تنظیم این مسیر سبب خواهد شد تا این میان‌افزار سمت کلاینت، به discovery endpoint دسترسی یافته و بتواند مقادیر سایر endpoints برنامه‌ی IDP را به صورت خودکار دریافت و استفاده کند. سپس ClientId تنظیم شده‌است که باید با مقدار تنظیم شده‌ی آن در سمت IDP یکی باشد و همچنین مقدار ClientSecret در اینجا نیز باید با ClientSecrets سمت IDP یکی باشد. ResponseType تنظیم شده‌ی در اینجا با AllowedGrantTypes سمت IDP تطابق دارد که از نوع Hybrid است. سپس دو scope درخواستی توسط این برنامه‌ی کلاینت که openid و profile هستند در اینجا اضافه شده‌اند. به این ترتیب می‌توان به مقادیر Id کاربر و claims او دسترسی داشت. مقدار CallbackPath در اینجا به RedirectUris سمت IDP اشاره می‌کند که مقدار پیش‌فرض آن همان signin-oidc است. با تنظیم SaveTokens به true امکان استفاده‌ی مجدد از آن‌ها را میسر می‌کند.

پس از تکمیل قسمت ConfigureServices و انجام تنظیمات میان‌افزار اعتبارسنجی، نیاز است این میان‌افزار را نیز به برنامه افزود که توسط متد UseAuthentication انجام می‌شود:
namespace ImageGallery.MvcClient.WebApp
{
    public class Startup
    {
        public void Configure(IApplicationBuilder app, IHostingEnvironment env)
        {
            app.UseAuthentication();

پس از این تنظیمات، با اعمال ویژگی Authorize، دسترسی به کنترلر گالری برنامه‌ی MVC Client را صرفا محدود به کاربران وارد شده‌ی به سیستم می‌کنیم:
namespace ImageGallery.MvcClient.WebApp.Controllers
{
    [Authorize]
    public class GalleryController : Controller
    {
    // .... 
   
        public async Task WriteOutIdentityInformation()
        {
            var identityToken = await HttpContext.GetTokenAsync(OpenIdConnectParameterNames.IdToken);
            Debug.WriteLine($"Identity token: {identityToken}");

            foreach (var claim in User.Claims)
            {
                Debug.WriteLine($"Claim type: {claim.Type} - Claim value: {claim.Value}");
            }
        }
در اینجا علاوه بر اعمال فیلتر Authorize به کل اکشن متدهای این کنترلر، یک اکشن متد جدید دیگر را نیز به انتهای آن اضافه کرده‌ایم تا صرفا جهت دیباگ برنامه، اطلاعات دریافتی از IDP را در Debug Window، برای بررسی بیشتر درج کند. البته این روش با Debug Window مخصوص Visual Studio کار می‌کند. اگر می‌خواهید آن‌را در صفحه‌ی کنسول dotnet run مشاهده کنید، بجای Debug باید از ILogger استفاده کرد.

فراخوانی متد GetTokenAsync با پارامتر IdToken، همان Identity token دریافتی از IDP را بازگشت می‌دهد. این توکن با تنظیم SaveTokens به true در تنظیمات AddOpenIdConnect که پیشتر انجام دادیم، قابل استخراج از کوکی اعتبارسنجی برنامه شده‌است.
این متد را در ابتدای اکشن متد Index فراخوانی می‌کنیم:
        public async Task<IActionResult> Index()
        {
            await WriteOutIdentityInformation();
            // ....


اجرای برنامه جهت آزمایش تنظیمات انجام شده

برای اجرای برنامه:
- ابتدا به پوشه‌ی src\WebApi\ImageGallery.WebApi.WebApp وارد شده و dotnet_run.bat آن‌را اجرا کنید تا WebAPI برنامه راه اندازی شود.
- سپس به پوشه‌ی src\IDP\DNT.IDP مراجعه کرده و و dotnet_run.bat آن‌را اجرا کنید تا برنامه‌ی IDP راه اندازی شود.
- در آخر به پوشه‌ی src\MvcClient\ImageGallery.MvcClient.WebApp وارد شده و dotnet_run.bat آن‌را اجرا کنید تا MVC Client راه اندازی شود.

اکنون که هر سه برنامه با هم در حال اجرا هستند، مرورگر را گشوده و مسیر https://localhost:5001 را درخواست کنید:


در این حالت چون فیلتر Authorize به کل اکشن متدهای کنترلر گالری اعمال شده، میان‌افزار Authentication که در فایل آغازین برنامه‌ی کلاینت MVC تنظیم شده‌است، وارد عمل شده و کاربر را به صفحه‌ی لاگین سمت IDP هدایت می‌کند (شماره پورت آن 6001 است). لاگ این اعمال را هم در برگه‌ی network مرورگر می‌تواند مشاهده کنید.

در اینجا نام کاربری و کلمه‌ی عبور اولین کاربر تعریف شده‌ی در فایل Config.cs برنامه‌ی IDP را که User 1 و password است، وارد می‌کنیم. پس از آن صفحه‌ی Consent ظاهر می‌شود:


در اینجا از کاربر سؤال می‌پرسد که آیا به برنامه‌ی کلاینت اجازه می‌دهید تا به Id و اطلاعات پروفایل و یا همان Claims شما دسترسی پیدا کند؟
فعلا گزینه‌ی remember my design را انتخاب نکنید تا همواره بتوان این صفحه را در دفعات بعدی نیز مشاهده کرد. سپس بر روی گزینه‌ی Yes, Allow کلیک کنید.
اکنون به صورت خودکار به سمت برنامه‌ی MVC Client هدایت شده و می‌توانیم اطلاعات صفحه‌ی اول سایت را کاملا مشاهده کنیم (چون کاربر اعتبارسنجی شده‌است، از فیلتر Authorize رد خواهد شد).


همچنین در اینجا اطلاعات زیادی نیز جهت دیباگ برنامه لاگ می‌شوند که در آینده جهت عیب یابی آن می‌توانند بسیار مفید باشند:


با دنبال کردن این لاگ می‌توانید مراحل Hybrid Flow را مرحله به مرحله با مشاهده‌ی ریز جزئیات آن بررسی کنید. این مراحل به صورت خودکار توسط میان‌افزار Authentication انجام می‌شوند و در نهایت اطلاعات توکن‌های دریافتی به صورت خودکار در اختیار برنامه برای استفاده قرار می‌گیرند. یعنی هم اکنون کوکی رمزنگاری شده‌ی اطلاعات اعتبارسنجی کاربر در دسترس است و به اطلاعات آن می‌توان توسط شیء this.User، در اکشن متدهای برنامه‌ی MVC، دسترسی داشت.


تنظیم برنامه‌ی MVC Client جهت انجام عملیات خروج از سیستم

ابتدا نیاز است یک لینک خروج از سیستم را به برنامه‌ی کلاینت اضافه کنیم. برای این منظور به فایل Views\Shared\_Layout.cshtml مراجعه کرده و لینک logout را در صورت IsAuthenticated بودن کاربر جاری وارد شده‌ی به سیستم، نمایش می‌دهیم:
<div class="navbar-collapse collapse">
    <ul class="nav navbar-nav">
        <li><a asp-area="" asp-controller="Gallery" asp-action="Index">Home</a></li>
        <li><a asp-area="" asp-controller="Gallery" asp-action="AddImage">Add an image</a></li>
        @if (User.Identity.IsAuthenticated)
        {
            <li><a asp-area="" asp-controller="Gallery" asp-action="Logout">Logout</a></li>
        }
    </ul>
</div>


شیء this.User، هم در اکشن متدها و هم در Viewهای برنامه، جهت دسترسی به اطلاعات کاربر اعتبارسنجی شده، در دسترس است.
این لینک به اکشن متد Logout، در کنترلر گالری اشاره می‌کند که آن‌را به صورت زیر تکمیل خواهیم کرد:
namespace ImageGallery.MvcClient.WebApp.Controllers
{
    [Authorize]
    public class GalleryController : Controller
    {
        public async Task Logout()
        {
            // Clears the  local cookie ("Cookies" must match the name of the scheme)
            await HttpContext.SignOutAsync("Cookies");
            await HttpContext.SignOutAsync("oidc");
        }
در اینجا ابتدا کوکی Authentication حذف می‌شود. نامی که در اینجا انتخاب می‌شود باید با نام scheme انتخابی مرتبط در فایل آغازین برنامه یکی باشد.
سپس نیاز است از برنامه‌ی IDP نیز logout شویم. به همین جهت سطر دوم SignOutAsync با پارامتر oidc را مشاهده می‌کنید. بدون وجود این سطر، کاربر فقط از برنامه‌ی کلاینت logout می‌شود؛ اما اگر به IDP مجددا هدایت شود، مشاهده خواهد کرد که در آن سمت، هنوز نام کاربری او توسط IDP شناسایی می‌شود.


بهبود تجربه‌ی کاربری Logout

پس از logout، بدون انجام یکسری از تنظیمات، کاربر مجددا به برنامه‌ی کلاینت به صورت خودکار هدایت نخواهد شد و در همان سمت IDP متوقف می‌شد. برای بهبود این وضعیت و بازگشت مجدد به برنامه‌ی کلاینت، اینکار را یا توسط مقدار دهی خاصیت SignedOutCallbackPath مربوط به متد AddOpenIdConnect می‌توان انجام داد و یا بهتر است مقدار پیش‌فرض آن‌را به تنظیمات IDP نسبت داد که پیشتر در تنظیمات متد GetClients آن‌را ذکر کرده بودیم:
PostLogoutRedirectUris = new List<string>
{
     "https://localhost:5001/signout-callback-oidc"
},
با وجود این تنظیم، اکنون IDP می‌داند که پس از logout، چه آدرسی را باید به کاربر جهت بازگشت به سیستم قبلی ارائه دهد:


البته هنوز یک مرحله‌ی انتخاب و کلیک بر روی لینک بازگشت وجود دارد. برای حذف آن و خودکار کردن Redirect نهایی آن، می‌توان کدهای IdentityServer4.Quickstart.UI را که در قسمت قبل به برنامه‌ی IDP اضافه کردیم، اندکی تغییر دهیم. برای این منظور فایل src\IDP\DNT.IDP\Quickstart\Account\AccountOptions.cs را گشوده و سپس فیلد AutomaticRedirectAfterSignOut را که false است، به true تغییر دهید.

 
تنظیمات بازگشت Claims کاربر به برنامه‌ی کلاینت

به صورت پیش‌فرض، Identity Server اطلاعات Claims کاربر را ارسال نمی‌کند و Identity token صرفا به همراه اطلاعات Id کاربر است. برای تنظیم آن می‌توان در سمت تنظیمات IDP، در متد GetClients، زمانیکه new Client صورت می‌گیرد، خاصیت AlwaysIncludeUserClaimsInIdToken هر کلاینت را به true تنظیم کرد؛ اما ایده خوبی نیست. Identity token از طریق Authorization endpoint دریافت می‌شود. در اینجا اگر این اطلاعات از طریق URI دریافت شود و Claims به Identity token افزوده شوند، به مشکل بیش از حد طولانی شدن URL نهایی خواهیم رسید و ممکن است از طرف وب سرور یک چنین درخواستی برگشت بخورد. به همین جهت به صورت پیش‌فرض اطلاعات Claims به Identity token اضافه نمی‌شوند.
در اینجا برای دریافت Claims، یک endpoint دیگر در IDP به نام UserInfo endpoint درنظر گرفته شده‌است. در این حالت برنامه‌ی کلاینت، مقدار Access token دریافتی را که به همراه اطلاعات scopes متناظر با Claims است، به سمت UserInfo endpoint ارسال می‌کند. باید دقت داشت زمانیکه Identity token دوم از Token endpoint دریافت می‌شود (تصویر ابتدای بحث)، به همراه آن یک Access token نیز صادر و ارسال می‌گردد. اینجا است که میان‌افزار oidc، این توکن دسترسی را به سمت UserInfo endpoint ارسال می‌کند تا user claims را دریافت کند:


در تنظیمات سمت کلاینت AddOpenIdConnect، درخواست openid و profile، یعنی درخواست Id کاربر و Claims آن وجود دارند:
options.Scope.Add("openid");
options.Scope.Add("profile");
برای بازگشت آن‌ها به سمت کلاینت، درخواست دریافت claims از UserInfo Endpoint را در سمت کلاینت تنظیم می‌کنیم:
options.GetClaimsFromUserInfoEndpoint = true;
همین اندازه تنظیم میان‌افزار oidc، برای انجام خودکار کل گردش کاری یاد شده کافی است.



کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید.
برای اجرای برنامه:
- ابتدا به پوشه‌ی src\WebApi\ImageGallery.WebApi.WebApp وارد شده و dotnet_run.bat آن‌را اجرا کنید تا WebAPI برنامه راه اندازی شود.
- سپس به پوشه‌ی src\IDP\DNT.IDP مراجعه کرده و و dotnet_run.bat آن‌را اجرا کنید تا برنامه‌ی IDP راه اندازی شود.
- در آخر به پوشه‌ی src\MvcClient\ImageGallery.MvcClient.WebApp وارد شده و dotnet_run.bat آن‌را اجرا کنید تا MVC Client راه اندازی شود.
اکنون که هر سه برنامه با هم در حال اجرا هستند، مرورگر را گشوده و مسیر https://localhost:5001 را درخواست کنید. در صفحه‌ی login نام کاربری را User 1 و کلمه‌ی عبور آن‌را password وارد کنید.
مطالب دوره‌ها
نحوه برقراری ارتباطات بین صفحات، سیستم راهبری و ViewModelها در قالب پروژه WPF Framework
هدف از قالب پروژه WPF Framework ایجاد یک پایه، برای شروع سریع یک برنامه تجاری WPF جدید است. بنابراین فرض کنید که این قالب، هم اکنون در اختیار شما است و قصد دارید یک صفحه جدید، مثلا تغییر مشخصات کاربری را به آن اضافه کنید. کدهای کامل این قابلیت هم اکنون در قالب پروژه موجود است و به این ترتیب توضیح جزئیات روابط آن در اینجا ساده‌تر خواهد بود.

1) ایجاد صفحه تغییر مشخصات کاربر
کلیه Viewهای برنامه، در پروژه ریشه، ذیل پوشه Views اضافه خواهند شد. همچنین چون در آینده تعداد این فایل‌ها افزایش خواهند یافت، بهتر است جهت مدیریت آن‌ها، به ازای هر گروه از قابلیت‌ها، یک پوشه جدید را ذیل پوشه Views اضافه کرد.


همانطور که ملاحظه می‌کنید در اینجا پوشه UserInfo به همراه یک فایل جدید XAML به نام ChangeProfile.xaml، ذیل پوشه Views پروژه ریشه اصلی اضافه شده‌اند.
ChangeProfile.xaml از نوع Page است؛ از این جهت که اگر به فایل MainWindow.xaml که سیستم راهبری برنامه در آن تعبیه شده است مراجعه کنید، یک چنین تعریفی را ملاحظه خواهید نمود:
<CustomControls:FrameFactory
                    x:Name="ActiveScreen"            
                    HorizontalContentAlignment="Stretch"
                    VerticalContentAlignment="Stretch"     
                    NavigationUIVisibility="Hidden"            
                    Grid.Column="1" 
                    Margin="0" />
سورس کامل کنترل سفارشی FrameFactory.cs را در پروژه Infrastructure برنامه می‌توانید مشاهده کنید. FrameFactory در حقیقت یک کنترل Frame استاندارد است که مباحث تزریق وابستگی‌ها و همچنین راهبری خودکار سیستم در آن تعریف شده‌اند.
مرحله بعد، تعریف محتویات فایل ChangeProfile.xaml است. در این فایل اطلاعات انقیاد داده‌ها از ViewModel مرتبط که در ادامه توضیح داده خواهد شد دریافت می‌گردد. مثلا مقدار خاصیت ChangeProfileData.Password، از ViewModel به صورت خودکار تغذیه خواهد شد.
در این فایل یک سری DynamicResource را هم برای تعریف دکمه‌های سبک مترو ملاحظه می‌کنید. کلیدهای متناظر با آن در فایل Icons.xaml که در فایل App.xaml برای کل برنامه ثبت شده است، تامین می‌گردد.


2) تنظیم اعتبارسنجی صفحه اضافه شده
پس از اینکه صفحه جدید اضافه شد، نیاز است وضعیت دسترسی به آن مشخص شود:
/// <summary>
/// تغییر مشخصات کاربر جاری
/// </summary>
[PageAuthorization(AuthorizationType.FreeForAuthenticatedUsers)]
public partial class ChangeProfile
برای این منظور به فایل code behind این صفحه یعنی ChangeProfile.xaml.cs مراجعه و تنها، ویژگی فوق را به آن اضافه خواهیم کرد. ویژگی PageAuthorization به صورت خودکار توسط فریم ورک تهیه شده خوانده و اعمال خواهد شد. برای نمونه در اینجا کلیه کاربران اعتبارسنجی شده در سیستم می‌توانند مشخصات کاربری خود را تغییر دهند.
در مورد نحوه تعیین نقش‌های متفاوت در صورت نیاز، در قسمت قبل بحث گردید.


3) تغییر منوی برنامه جهت اشاره به صفحه جدید
خوب، ما تا اینجا یک صفحه جدید را تهیه کرده‌ایم. در مرحله بعد باید مدخلی را در منوی برنامه جهت اشاره به آن تهیه کنیم.
منوی برنامه در فایل MainMenu.xaml قرار دارد. اطلاعات متناظر با دکمه ورود به صفحه تغییر مشخصات کاربری نیز به شکل ذیل تعریف شده است:
                <Button Style="{DynamicResource MetroCircleButtonStyle}"
                        Height="55" Width="55"  
                        Command="{Binding DoNavigate}"
                        CommandParameter="\Views\UserInfo\ChangeProfile.xaml"
                        Margin="2">
                    <Rectangle Width="28" Height="17.25">
                        <Rectangle.Fill>
                            <VisualBrush Stretch="Fill" Visual="{StaticResource appbar_user_tie}" />
                        </Rectangle.Fill>
                    </Rectangle>
                </Button>
به ازای هر صفحه جدیدی که تعریف می‌شود تنها کافی است CommandParameter ایی مساوی مسیر فایل XAML مورد نظر، در فایل منوی برنامه قید شود. منوی اصلی دارای ViewModel ایی است به نام MainMenuViewModel.cs که در پروژه Infrastructure پیشتر تهیه شده است.
در این ViewModel تعاریف DoNavigate و پردازش پارامتر دریافتی به صورت خودکار صورت خواهد گرفت و سورس کامل آن در اختیار شما است. بنابراین تنها کافی است CommandParameter را مشخص کنید، DoNavigate کار هدایت به آن‌را انجام خواهد داد.


4) ایجاد ViewModel متناظر با صفحه
مرحله آخر افزودن یک صفحه، تعیین ViewModel متناظر با آن است. عنوان شد که اطلاعات مورد نیاز جهت عملیات Binding در این فایل قرار می‌گیرند و اگر به فایل ChangeProfileViewModel.cs مراجعه کنید (نام آن مطابق قرارداد، یک کلمه ViewModel را نسبت به نام View متناظر بیشتر دارد)، چنین خاصیت عمومی را در آن خواهید یافت.


مطابق قراردادهای توکار قالب تهیه شده:
- نیاز است ViewModel تعریف شده از کلاس پایه BaseViewModel مشتق شود تا علاوه بر تامین یک سری کدهای تکراری مانند:
 public abstract class BaseViewModel : DataErrorInfoBase, INotifyPropertyChanged, IViewModel
سبب شناسایی این کلاس به عنوان ViewModel و برقرار تزریق وابستگی‌های خودکار در سازنده آن نیز گردد.
- پس از اضافه شدن کلاس پایه BaseViewModel نیاز است تکلیف خاصیت public override bool ViewModelContextHasChanges را نیز مشخص کنید. در اینجا به سیستم راهبری اعلام می‌کنید که آیا در ViewModel جاری تغییرات ذخیره نشده‌ای وجود دارند؟ فقط باید true یا false را بازگردانید. برای مثال خاصیت uow.ContextHasChanges برای این منظور بسیار مناسب است و از طریق پیاده سازی الگوی واحد کار به صورت خودکار چنین اطلاعاتی را در اختیار برنامه قرار می‌دهد.

در ViewModelها هرجایی که نیاز به اطلاعات کاربر وارد شده به سیستم داشتید، از اینترفیس IAppContextService در سازنده کلاس ViewModel جاری استفاده کنید. اینترفیس IUnitOfWork امکانات ذخیره سازی اطلاعات و همچنین مشخص سازی وضعیت Context جاری را در اختیار شما قرار می‌دهد.
کلیه کدهای کار کردن با یک موجودیت باید در کلاس سرویس متناظر با آن قرار گیرند و این کلاس سرویس توسط اینترفیس آن مانند IUsersService در اینجا باید توسط سازنده کلاس در اختیار ViewModel قرار گیرد.
تزریق وابستگی‌ها در اینجا خودکار بوده و تنظیمات آن در فایل IocConfig.cs پروژه Infrastructure قرار دارد. این کلاس آنچنان نیازی به تغییر ندارد؛ اگر پیش فرض‌های نامگذاری آن‌را مانند کلاس‌های Test و اینترفیس‌های ITest، در لایه سرویس برنامه رعایت شوند.
مطالب
ذخیره‌ی سوابق کامل تغییرات یک رکورد در یک فیلد توسط Entity framework Core
در این مقاله، نوشته‌ی ایمان محمدی، ذخیره‌ی اطلاعات نظارتی هر Entity توسط دو فیلد CreatedSources و ModifiedSources به صورت JSON انجام می‌شود که در هر کدام از این فیلدها، اطلاعات مختلفی مانند ip کاربر، شناسه دستگاه، HostName، ClientName و یک سری اطلاعات دیگر ذخیره می‌شوند. بیایید به این اطلاعات متادیتا بگوییم. در این حالت اگر رکورد، چندین بار تغییر کند، متادیتای آخرین تغییرات در فیلد ModifiedSources ذخیره می‌شود. حالا اگر ما بخواهیم اطلاعات متادیتای همه‌ی تغییرات را داشته باشیم چه؟ اگر بخواهیم علاوه بر اطلاعات بالا، اینکه چه کسی و در چه زمانی این تغییرات را انجام داده است، نیز داشته باشیم چطور؟ اگر بخواهیم حتی اطلاعات متادیتای حذف یک رکورد را داشته باشیم چطور (در حالت soft-delete که رکورد واقعا پاک نمی‌شود)؟ سوال جالبتر اینکه اگر بخواهیم تمام تاریخچه‌ی مقادیر مختلف یک رکورد را از ابتدای ایجاد شدن داشته باشیم چطور؟ در این مقاله قصد داریم به همه‌ی این موارد اضافی برسیم؛ آن هم فقط با یک ستون در Entityهایمان، به اسم Audit!

ابتدا کلاس پایه موجودیت‌هایمان را تعریف می‌کنیم؛ تا بر روی Entityهایمان بتوانیم فیلد نظارتی Audit را اعمال کنیم:
public class BaseEntity : IBaseEntity
{
   [JsonIgnore]
   int Id { get; set; } 

   [JsonIgnore] 
    string? Audit { get; set; }
}
ویژگی [JsonIgnore]  به این منظور استفاده شده است تا از serialize کردن این فیلدها هنگام ایجاد Audit، جلوگیری شود؛ تا در نهایت حجم جیسن Audit کاهش یابد. با مطالعه‌ی ادامه‌ی مقاله، متوجه این قضیه خواهید شد.

دقیقا مانند مقاله‌ی اشاره شده (که خواندن آن توصیه می‌شود)، کلاس AuditSourceValues را ایجاد می‌کنیم:
public class AuditSourceValues
{
    [JsonProperty("hn")]
    public string? HostName { get; set; }

    [JsonProperty("mn")]
    public string? MachineName { get; set; }

    [JsonProperty("rip")]
    public string? RemoteIpAddress { get; set; }

    [JsonProperty("lip")]
    public string? LocalIpAddress { get; set; }

    [JsonProperty("ua")]
    public string? UserAgent { get; set; }

    [JsonProperty("an")]
    public string? ApplicationName { get; set; }

    [JsonProperty("av")]
    public string? ApplicationVersion { get; set; }

    [JsonProperty("cn")]
    public string? ClientName { get; set; }

    [JsonProperty("cv")]
    public string? ClientVersion { get; set; }

    [JsonProperty("o")]
    public string? Other { get; set; }
}
با تعریف کردن نام برای فیلد‌های JSON و نادیده گرفتن مقادیر نال، سعی کردیم حجم خروجی JSON پایین باشد.

اکنون کلاس EntityAudit را ایجاد می‌کنیم که شامل تمامی اطلاعات مورد نیاز ما برای ثبت تاریخچه‌ی کامل هر موجودیت است:
public class EntityAudit<TEntity>
{
    [JsonProperty("type")]
    [JsonConverter(typeof(StringEnumConverter))]
    public EntityEventType EventType { get; set; }

    [JsonProperty("user", NullValueHandling = NullValueHandling.Include)]
    public int? ActorUserId { get; set; }

    [JsonProperty("at")]
    public DateTime ActDateTime { get; set; }

    [JsonProperty("sources")]
    public AuditSourceValues? AuditSourceValues { get; set; }

    [JsonProperty("newValues", NullValueHandling = NullValueHandling.Include)]
    public TEntity NewEntity { get; set; } = default!;

    public string? SerializeJson()
    {
        return JsonSerializer.Serialize(this, 
            options: new JsonSerializerOptions { WriteIndented = false, IgnoreNullValues = true }); 
    }
}

دقت کنید که این کلاس به صورت جنریک تعریف شده است تا اگر بعدا بخواهیم آن را Deserialize کنیم و مثلا از آن API بسازیم، یا استفاده‌ی خاصی را از آن داشته باشیم، به‌راحتی به Entity مد نظر تبدیل شود. در این مقاله فقط به ذخیره‌ی آن پرداخته می‌شود و استفاده از این فیلد که به راحتی و با کمک DbFunctionها در Entity Framework قابل انجام است به خواننده واگذار می‌شود. 

همچنین اینام EntityEventType که تعریف آن در زیر می‌آید دارای ویژگی [JsonConverter(typeof(StringEnumConverter))]  می‌باشد تا مقدار رشته‌ای آن را بجای مقدار عددی، در خروجی جیسن داشته باشیم. این اینام، شامل  تمامی عملیاتی است که بر روی یک رکورد قابل انجام است و به این صورت تعریف می‌شود:
public enum EntityEventType
{
    Create = 0,
    Update = 1,
    Delete = 2
}

تامین اطلاعات کلاس AuditSourceValues به همان صورت است که در مقاله‌ی اشاره شده آمده‌است؛ ابتدا تعریف اینترفیس IAuditSourcesProvider و سپس ایجاد کلاس AuditSourcesProvider:
public interface IAuditSourcesProvider
{
    AuditSourceValues GetAuditSourceValues();
}
public class AuditSourcesProvider : IAuditSourcesProvider
{
    protected readonly IHttpContextAccessor HttpContextAccessor;

    public AuditSourcesProvider(IHttpContextAccessor httpContextAccessor)
    {
        HttpContextAccessor = httpContextAccessor;
    }

    public virtual AuditSourceValues GetAuditSourceValues()
    {
        var httpContext = HttpContextAccessor.HttpContext;

        return new AuditSourceValues
        {
            HostName = GetHostName(httpContext),
            MachineName = GetComputerName(httpContext),
            LocalIpAddress = GetLocalIpAddress(httpContext),
            RemoteIpAddress = GetRemoteIpAddress(httpContext),
            UserAgent = GetUserAgent(httpContext),
            ApplicationName = GetApplicationName(httpContext),
            ClientName = GetClientName(httpContext),
            ClientVersion = GetClientVersion(httpContext),
            ApplicationVersion = GetApplicationVersion(httpContext),
            Other = GetOther(httpContext)
        };
    }

    protected virtual string? GetUserAgent(HttpContext httpContext)
    {
        return httpContext.Request?.Headers["User-Agent"].ToString();
    }

    protected virtual string? GetRemoteIpAddress(HttpContext httpContext)
    {
        return httpContext.Connection?.RemoteIpAddress?.ToString();
    }

    protected virtual string? GetLocalIpAddress(HttpContext httpContext)
    {
        return httpContext.Connection?.LocalIpAddress?.ToString();
    }

    protected virtual string GetHostName(HttpContext httpContext)
    {
        return httpContext.Request.Host.ToString();
    }

    protected virtual string GetComputerName(HttpContext httpContext)
    {
        return Environment.MachineName;
    }
    protected virtual string? GetApplicationName(HttpContext httpContext)
    {
        return Assembly.GetEntryAssembly()?.GetName().Name;
    }

    protected virtual string? GetApplicationVersion(HttpContext httpContext)
    {
        return Assembly.GetEntryAssembly()?.GetName().Version.ToString();
    }

    protected virtual string? GetClientVersion(HttpContext httpContext)
    {
        return httpContext.Request?.Headers["client-version"];
    }
    protected virtual string? GetClientName(HttpContext httpContext)
    {
        return httpContext.Request?.Headers["client-name"];
    }

    protected virtual string? GetOther(HttpContext httpContext)
    {
        return null;
    }
}

حالا برای تامین اطلاعات کلاس EntityAudit کار مشابهی می‌کنیم. ابتدا اینترفیس IEntityAuditProvider را به صورت زیر تعریف می‌کنیم: 
public interface IEntityAuditProvider
{
    string? GetAuditValues(EntityEventType eventType, object? entity, string? previousJsonAudit = null);
}

  و سپس کلاس EntityAuditProvider را ایجاد می‌کنیم:
public class EntityAuditProvider : IEntityAuditProvider
{
    private readonly IHttpContextAccessor _httpContextAccessor;
    private readonly IAuditSourcesProvider _auditSourcesProvider;

    #region Constructor Injections

    public EntityAuditProvider(IHttpContextAccessor httpContextAccessor, IAuditSourcesProvider auditSourcesProvider)
    {
        _httpContextAccessor = httpContextAccessor;
        _auditSourcesProvider = auditSourcesProvider;
    }

    #endregion

    public virtual string? GetAuditValues(EntityEventType eventType, object? newEntity, string? previousJsonAudit = null)
    {
        var httpContext = _httpContextAccessor.HttpContext;
        int? userId;

        var user = httpContext.User;

        if (!user.Identity.IsAuthenticated)
            userId = null;
        else
            userId = user.Claims.Where(x => x.Type == "UserID").Select(x => x.Value).First().ToInt();

        var auditSourceValues = _auditSourcesProvider.GetAuditSourceValues();

        var auditJArray = new JArray();

        // Update & Delete
        if (eventType == EntityEventType.Update || eventType == EntityEventType.Delete)
        {
            auditJArray = JArray.Parse(previousJsonAudit!);
        }

        // Delete => No NewValues
        if (eventType == EntityEventType.Delete)
        {
            newEntity = null;
        }

        JObject newAuditJObject = JObject.FromObject(new EntityAudit<object?>
        {
            EventType = eventType,
            ActorUserId = userId,
            ActDateTime = DateTime.Now,
            AuditSourceValues = auditSourceValues,
            NewEntity = newEntity
        }, new JsonSerializer
        {
            NullValueHandling = NullValueHandling.Ignore,
            Formatting = Formatting.None
        });

        auditJArray.Add(newAuditJObject);

        return auditJArray.SerializeToJson(true);
    }
}
در این کلاس برای اینکه به جیسن قبلی Audit که تاریخچه‌ی قبلی رکورد می‌باشد یک آیتم را اضافه کنیم، از JArray و JObject پکیج Newtonsoft استفاده کرد‌ه‌ایم.

حالا همه چیز آماده است. مانند مقاله‌ی اشاره شده، از مفهوم Interceptor استفاده می‌کنیم. کلاس AuditSaveChangesInterceptor را که از کلاس SaveChangesInterceptor مشتق می‌شود، به صورت زیر ایجاد می‌کنیم: 
public class AuditSaveChangesInterceptor : SaveChangesInterceptor
{
    private readonly IEntityAuditProvider _entityAuditProvider;

    #region Constructor Injections

    public AuditSaveChangesInterceptor(IEntityAuditProvider entityAuditProvider)
    {
        _entityAuditProvider = entityAuditProvider;
    }

    #endregion

    public override InterceptionResult<int> SavingChanges(DbContextEventData eventData, InterceptionResult<int> result)
    {
        ApplyAudits(eventData.Context.ChangeTracker);
        return base.SavingChanges(eventData, result);
    }

    public override ValueTask<InterceptionResult<int>> SavingChangesAsync(DbContextEventData eventData, InterceptionResult<int> result,
        CancellationToken cancellationToken = new CancellationToken())
    {
        ApplyAudits(eventData.Context.ChangeTracker);
        return base.SavingChangesAsync(eventData, result, cancellationToken);
    }

    private void ApplyAudits(ChangeTracker changeTracker)
    {
        ApplyCreateAudits(changeTracker);
        ApplyUpdateAudits(changeTracker);
        ApplyDeleteAudits(changeTracker);
    }

    private void ApplyCreateAudits(ChangeTracker changeTracker)
    {
        var addedEntries = changeTracker.Entries()
            .Where(x => x.State == EntityState.Added);

        foreach (var addedEntry in addedEntries)
        {
            if (addedEntry.Entity is IBaseEntity entity)
            {              
                entity.Audit = _entityAuditProvider.GetAuditValues(EntityEventType.Create, entity);
            }
        }
    }

    private void ApplyUpdateAudits(ChangeTracker changeTracker)
    {
        var modifiedEntries = changeTracker.Entries()
            .Where(x => x.State == EntityState.Modified);

        foreach (var modifiedEntry in modifiedEntries)
        {
            if (modifiedEntry.Entity is IBaseEntity entity)
            {
                var eventType = entity.IsArchived ? EntityEventType.Delete : EntityEventType.Update; // Maybe Soft Delete
                entity.Audit = _entityAuditProvider.GetAuditValues(eventType, entity, entity.Audit);
            }
        }
    }

    private void ApplyDeleteAudits(ChangeTracker changeTracker)
    {
        var deletedEntries = changeTracker.Entries()
            .Where(x => x.State == EntityState.Deleted);

        foreach (var modifiedEntry in deletedEntries)
        {
            if (modifiedEntry.Entity is IBaseEntity entity)
            {
                entity.Audit = _entityAuditProvider.GetAuditValues(EntityEventType.Delete, entity, entity.Audit);
            }
        }
    }

}


و سپس آن را به سیستم معرفی می‌کنیم:

services.AddDbContext<ATADbContext>((serviceProvider, options) =>
{
    options
        .UseSqlServer(...)

    // Interceptors
    var entityAuditProvider = serviceProvider.GetRequiredService<IEntityAuditProvider>();
    options.AddInterceptors(new AuditSaveChangesInterceptor(entityAuditProvider));

});

یادمان باشد همه‌ی سرویس‌ها را باید در برنامه رجیستر کنیم تا بتوانیم از تزریق وابستگی‌ها مانند کدهای بالا استفاده نماییم. 

نمونه‌ی نتیجه‌ای را که از این روش بدست می‌آید، در این تصویر می‌بینید. اگر بخواهید به صورت نرم‌افزاری یا کدی از این دیتا استفاده کنید، باید آن را Deserialize کنید که همانطور که گفته شد با امکاناتی که SQL Server برای خواندن فیلدهای JSON دارد و معرفی آن به EF، قابل انجام است. در غیر اینصورت استفاده از این دیتا به صورت چشمی یا استفاده از Json Formatterها به‌راحتی امکان پذیر است. 

 
نمونه‌ی کامل فیلد Audit که در JsonFormatter قرار داده شده است، بعد از ایجاد شدن و یکبار آپدیت و سپس حذف نرم رکورد:
[
   {
      "type":"Create",
      "user":1,
      "at":"2020-11-24T23:05:54.2692711+03:30",
      "sources":{
         "hn":"localhost:44398",
         "mn":"DESKTOP-N1GAV2U",
         "rip":"::1",
         "lip":"::1",
         "ua":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36",
         "an":"Server.Api",
         "av":"1.0.0.0"
      },
      "newValues":{               
         "Name":"Farshad"
      }
   },
   {
      "type":"Update",
      "user":1,
      "at":"2020-11-24T23:06:20.0838188+03:30",
      "sources":{
         "hn":"localhost:44398",
         "mn":"DESKTOP-N1GAV2U",
         "rip":"::1",
         "lip":"::1",
         "ua":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36",
         "an":"Server.Api",
         "av":"1.0.0.0"
      },
      "newValues":{                 
         "Name":"Edited Farshad"
      }
   },
   {
      "type":"Delete",
      "user":null,
      "at":"2020-11-24T23:06:28.601837+03:30",
      "sources":{
         "hn":"localhost:44398",
         "mn":"DESKTOP-N1GAV2U",
         "rip":"::1",
         "lip":"::1",
         "ua":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36",
         "an":"Server.Api",
         "av":"1.0.0.0"
      },
      "newValues":null
   }
]

یک روش مرسوم داشتن تاریخچه‌ی تغییرات رکورد که با جستجو در اینترنت نیز می‌توان به آن رسید، داشتن یک جدول جداگانه به اسم Audit است که با هر بار تغییر هر Entity، یک رکورد در آن ایجاد می‌شود. ساختار آن مانند تصاویر زیر است:


ولی روش گفته شده در این مقاله، همین عملیات را به صورت کاملتری و فقط بر روی یک ستون همان جدول انجام می‌دهد که باعث ذخیره‌ی دیتای کمتر، یکپارچگی بهتر و دسترسی‌پذیری و راحتی استفاده از آن می‌شود.

نظرات مطالب
اعتبارسنجی مبتنی بر JWT در ASP.NET Core 2.0 بدون استفاده از سیستم Identity
تابع createAccessTokenAsync در کلاس TokenStoreService  زمانی که از Claim دارید یک شی ایجاد می‌کنید ، تاریخ را به ToUnixEpochDate تبدیل می‌کنید. علت این تبدیل چیست ؟
new Claim(JwtRegisteredClaimNames.Iat, DateTime.UtcNow.ToUnixEpochDate().ToString(), ClaimValueTypes.Integer64),