مطالب
شروع به کار با EF Core 1.0 - قسمت 14 - لایه بندی و تزریق وابستگی‌ها
در مورد «امکانات توکار تزریق وابستگی‌ها در ASP.NET Core» پیشتر بحث شد. همچنین «نحوه‌ی تعریف Context، تزریق سرویس‌های EF Core و تنظیمات رشته‌ی اتصالی آن» را نیز بررسی کردیم. به علاوه مباحث «به روز رسانی ساختار بانک اطلاعاتی» و «انتقال مهاجرت‌ها به یک اسمبلی دیگر» نیز مرور شدند. بنابراین در این قسمت برای لایه بندی برنامه‌های EF Core، صرفا یک مثال را مرور خواهیم کرد که این قسمت‌ها را در کنار هم قرار می‌دهد و عملا نکته‌ی اضافه‌تری را ندارد.


تزریق مستقیم کلاس Context برنامه، تزریق وابستگی‌ها نام ندارد!

در همان قسمت اول سری شروع به کار با EF Core 1.0، مشاهده کردیم که پس از انجام تنظیمات اولیه‌ی آن در کلاس آغازین برنامه:
public void ConfigureServices(IServiceCollection services)
{    
   services.AddDbContext<ApplicationDbContext>(ServiceLifetime.Scoped);
Context برنامه را در تمام قسمت‌های آن می‌توان تزریق کرد و کار می‌کند:
    public class TestDBController : Controller
    {
        private readonly ApplicationDbContext _ctx;

        public TestDBController(ApplicationDbContext ctx)
        {
            _ctx = ctx;
        }

        public IActionResult Index()
        {
            var name = _ctx.Persons.First().FirstName;
            return Json(new { firstName = name });
        }
    }
این روشی است که در بسیاری از مثال‌های گوشه و کنار اینترنت قابل مشاهده‌است. یا کلاس Context را مستقیما در سازنده‌ی کنترلرها تزریق می‌کنند و از آن استفاده می‌کنند (روش فوق) و یا لایه‌ی سرویسی را ایجاد کرده و مجددا همین تزریق مستقیم را در آنجا انجام می‌دهند و سپس اینترفیس‌های آن سرویس را در کنترلرهای برنامه تزریق کرده و استفاده می‌کنند. به این نوع تزریق وابستگی‌ها، تزریق concrete types و یا concrete classes می‌گویند.
مشکلاتی را که تزریق مستقیم کلاس‌ها و نوع‌ها به همراه دارند به شرح زیر است:
- اگر نام این کلاس تغییر کند، باید این نام، در تمام کلاس‌هایی که به صورت مستقیم از آن استفاده می‌کنند نیز تغییر داده شود.
- اگر سازنده‌ای به آن اضافه شد و یا امضای سازنده‌ی موجود آن، تغییر کرد، باید نحوه‌ی وهله سازی این کلاس را در تمام کلاس‌های وابسته نیز اصلاح کرد.
- یکی از مهم‌ترین دلایل استفاده‌ی از تزریق وابستگی‌ها، بالابردن قابلیت تست پذیری برنامه است. زمانیکه از اینترفیس‌ها استفاده می‌شود، می‌توان در مورد نحوه‌ی تقلید (mocking) رفتار کلاسی خاص، مستقلا تصمیم گیری کرد. اما هنگامیکه یک کلاس را به همان شکل اولیه‌ی آن تزریق می‌کنیم، به این معنا است که همواره دقیقا همین پیاده سازی خاص مدنظر ما است و این مساله، نوشتن آزمون‌های واحد را با مشکل کردن mocking آن‌ها، گاهی از اوقات غیرممکن می‌کند. هرچند تعدادی از فریم ورک‌های پیشرفته‌ی mocking گاهی از اوقات امکان تقلید رفتار کلاس‌ها و نوع‌ها را نیز فراهم می‌کنند، اما با این شرط که تمام خواص و متدهای آن‌ها را virtual تعریف کنید؛ تا بتوانند متدهای اصلی را با نمونه‌های مدنظر شما بازنویسی (override) کنند.

به همین جهت در ادامه، به همان طراحی EF Code First #12 با نوشتن اینترفیس IUnitOfWork خواهیم رسید. یعنی کلاس Context برنامه را با این اینترفیس نشانه گذاری می‌کنیم (در انتهای لیست تمام اینترفیس‌های دیگری که ممکن است در اینجا ذکر شده باشند):
 public class ApplicationDbContext :  IUnitOfWork
و سپس اینترفیس IUnitOfWork را به لایه سرویس برنامه و یا هر لایه‌ی دیگری که به Context آن نیاز دارد، تزریق خواهیم کرد.


طراحی اینترفیس IUnitOfWork

برای اینکه دیگر با کلاس ApplicationDbContext مستقیما کار نکرده و وابستگی به آن‌را در تمام قسمت‌های برنامه پخش نکنیم، اینترفیسی را ایجاد می‌کنیم که تنها قسمت‌های مشخصی از DbContext را عمومی کند:
public interface IUnitOfWork : IDisposable
{
    DbSet<TEntity> Set<TEntity>() where TEntity : class;
 
    void AddRange<TEntity>(IEnumerable<TEntity> entities) where TEntity : class;
    void RemoveRange<TEntity>(IEnumerable<TEntity> entities) where TEntity : class;
 
    EntityEntry<TEntity> Entry<TEntity>(TEntity entity) where TEntity : class;
    void MarkAsChanged<TEntity>(TEntity entity) where TEntity : class;
 
    void ExecuteSqlCommand(string query);
    void ExecuteSqlCommand(string query, params object[] parameters);
 
    int SaveAllChanges();
    Task<int> SaveAllChangesAsync();
}
توضیحات
- در این طراحی شاید عنوان کنید که DbSet، اینترفیس نیست. تعریف DbSet در EF Core به صورت زیر است و در حقیقت همانند اینترفیس‌ها یک abstraction به حساب می‌آید:
 public abstract class DbSet<TEntity> : IQueryable<TEntity>, IEnumerable<TEntity>, IEnumerable, IQueryable, IAsyncEnumerableAccessor<TEntity>, IInfrastructure<IServiceProvider> where TEntity : class
علت اینکه در پروژه‌های بزرگی مانند EF، تمایل زیادی به استفاده‌ی از کلاس‌های abstract وجود دارد (بجای اینترفیس‌ها) این است که اگر این نوع پرکاربرد را به صورت اینترفیس تعریف کنند، با تغییر متدی در آن، باید تمام کدهای خود را به اجبار بازنویسی کنید. اما در حالت استفاده‌ی از کلاس‌های abstract، می‌توان پیاده سازی پیش فرضی را برای متدهایی که قرار است در آینده اضافه شوند، ارائه داد (یکی از تفاوت‌های مهم آن‌ها با اینترفیس‌ها)، بدون اینکه تمام استفاده کنندگان از این کتابخانه، با ارتقاء نگارش EF خود، دیگر نتوانند برنامه‌ی خود را کامپایل کنند.
- این اینترفیس به عمد به صورت IDisposable تعریف شده‌است. این مساله به IoC Containers کمک خواهد کرد که بتوانند پاکسازی خودکار نوع‌های IDisposable را در انتهای هر درخواست انجام دهند و برنامه مشکلی نشتی حافظه را پیدا نکند.
- اصل کار این اینترفیس، تعریف DbSet و متدهای SaveChanges است. سایر متدهایی را که مشاهده می‌کنید، صرفا جهت بیان اینکه چگونه می‌توان قابلیتی از DbContext را بدون عمومی کردن خود کلاس DbContext، در کلاس‌هایی که از اینترفیس IUnitOfWork استفاده می‌کنند، میسر کرد.

پس از اینکه این اینترفیس تعریف شد، اعمال آن به کلاس Context برنامه به صورت ذیل خواهد بود:
public class ApplicationDbContext : DbContext, IUnitOfWork
{
    private readonly IConfigurationRoot _configuration;
 
    public ApplicationDbContext(IConfigurationRoot configuration)
    {
        _configuration = configuration;
    }
 
    //public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options) : base(options)
    //{
    //}
 
    public virtual DbSet<Blog> Blog { get; set; }

 
    protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
    {
        optionsBuilder.UseSqlServer(
            _configuration["ConnectionStrings:ApplicationDbContextConnection"]
            , serverDbContextOptionsBuilder =>
             {
                 var minutes = (int)TimeSpan.FromMinutes(3).TotalSeconds;
                 serverDbContextOptionsBuilder.CommandTimeout(minutes);
             }
            );
    }
 
    protected override void OnModelCreating(ModelBuilder modelBuilder)
    {
 
        base.OnModelCreating(modelBuilder);
    }
 
    public void AddRange<TEntity>(IEnumerable<TEntity> entities) where TEntity : class
    {
        base.Set<TEntity>().AddRange(entities);
    }
 
    public void RemoveRange<TEntity>(IEnumerable<TEntity> entities) where TEntity : class
    {
        base.Set<TEntity>().RemoveRange(entities);
    }
 
    public void MarkAsChanged<TEntity>(TEntity entity) where TEntity : class
    {
        base.Entry(entity).State = EntityState.Modified; // Or use ---> this.Update(entity);
    }
 
    public void ExecuteSqlCommand(string query)
    {
        base.Database.ExecuteSqlCommand(query);
    }
 
    public void ExecuteSqlCommand(string query, params object[] parameters)
    {
        base.Database.ExecuteSqlCommand(query, parameters);
    }
 
    public int SaveAllChanges()
    {
        return base.SaveChanges();
    }
 
    public Task<int> SaveAllChangesAsync()
    {
        return base.SaveChangesAsync();
    }
}
در ابتدا اینترفیس IUnitOfWork به کلاس Context برنامه اعمال شده‌است:
 public class ApplicationDbContext : DbContext, IUnitOfWork
و سپس متدهای آن منهای پیاده سازی اینترفیس IDisposable اعمالی به IUnitOfWork :
 public interface IUnitOfWork : IDisposable
پیاده سازی شده‌اند. علت اینجا است که چون کلاس پایه DbContext از همین اینترفیس مشتق می‌شود، دیگر نیاز به پیاده سازی اینترفیس IDisposable نیست.
در مورد تزریق IConfigurationRoot به سازنده‌ی کلاس Context برنامه، در مطلب اول این سری در قسمت «یک نکته: امکان تزریق IConfigurationRoot به کلاس Context برنامه» پیشتر بحث شده‌است.


ثبت تنظیمات تزریق وابستگی‌های IUnitOfWork

پس از تعریف و پیاده سازی اینترفیس IUnitOfWork، اکنون نوبت به معرفی آن به سیستم تزریق وابستگی‌های ASP.NET Core است:
public void ConfigureServices(IServiceCollection services)
{
  services.AddSingleton<IConfigurationRoot>(provider => { return Configuration; });
  services.AddDbContext<ApplicationDbContext>(ServiceLifetime.Scoped);
  services.AddScoped<IUnitOfWork, ApplicationDbContext>();
در اینجا هم ApplicationDbContext و هم IUnitOfWork با طول عمر Scoped به تنظیمات IoC Container مربوط به ASP.NET Core اضافه شده‌اند. به این ترتیب هر زمانیکه وهله‌ای از نوع IUnitOfWork درخواست شود، تنها یک وهله از ApplicationDbContext در طول درخواست وب جاری، در اختیار مصرف کننده قرار می‌گیرد و همچنین مدیریت Dispose این وهله‌ها نیز خودکار است. به همین جهت اینترفیس IUnitOfWork را با IDisposable علامتگذاری کردیم.


استفاده از IUnitOfWork در لایه سرویس‌های برنامه

اکنون لایه سرویس برنامه و فایل project.json آن چنین شکلی را پیدا می‌کند:
{
  "version": "1.0.0-*",
 
    "dependencies": {
        "Core1RtmEmptyTest.DataLayer": "1.0.0-*",
        "Core1RtmEmptyTest.Entities": "1.0.0-*",
        "Core1RtmEmptyTest.ViewModels": "1.0.0-*",
        "Microsoft.Extensions.Configuration.Abstractions": "1.0.0",
        "Microsoft.Extensions.Options": "1.0.0",
        "NETStandard.Library": "1.6.0"
    },
 
  "frameworks": {
    "netstandard1.6": {
      "imports": "dnxcore50"
    }
  }
}
در اینجا ارجاعاتی را به اسمبلی‌های موجودیت‌ها و DataLayer برنامه مشاهده می‌کنید. در مورد این اسمبلی‌ها در مطلب «شروع به کار با EF Core 1.0 - قسمت 3 - انتقال مهاجرت‌ها به یک اسمبلی دیگر» پیشتر بحث شد.
پس از تنظیم وابستگی‌های این اسمبلی، اکنون یک کلاس نمونه از لایه سرویس برنامه، به شکل زیر خواهد بود: 
namespace Core1RtmEmptyTest.Services
{
    public interface IBlogService
    {
        IReadOnlyList<Blog> GetPagedBlogsAsNoTracking(int pageNumber, int recordsPerPage);
    }
 
    public class BlogService : IBlogService
    {
        private readonly IUnitOfWork _uow;
        private readonly DbSet<Blog> _blogs;
 
        public BlogService(IUnitOfWork uow)
        {
            _uow = uow;
            _blogs = _uow.Set<Blog>();
        }
 
        public IReadOnlyList<Blog> GetPagedBlogsAsNoTracking(int pageNumber, int recordsPerPage)
        {
            var skipRecords = pageNumber * recordsPerPage;
            return _blogs
                        .AsNoTracking()
                        .Skip(skipRecords)
                        .Take(recordsPerPage)
                        .ToList();
        }
    }
}
در اینجا اکنون می‌توان IUnitOfWork را به سازنده‌ی کلاس سرویس Blog تنظیم کرد و سپس به نحو متداولی از امکانات EF Core استفاده نمود.


استفاده از امکانات لایه سرویس برنامه، در دیگر لایه‌های آن

خروجی لایه سرویس، توسط اینترفیس‌هایی مانند IBlogService در قسمت‌های دیگر برنامه قابل استفاده و دسترسی می‌شود.
به همین جهت نیاز است مشخص کنیم، این اینترفیس را کدام کلاس ویژه قرار است پیاده سازی کند. برای این منظور همانند قبل در متد ConfigureServices کلاس آغازین برنامه این تنظیم را اضافه خواهیم کرد:
public void ConfigureServices(IServiceCollection services)
{
  services.AddSingleton<IConfigurationRoot>(provider => { return Configuration; });
  services.AddDbContext<ApplicationDbContext>(ServiceLifetime.Scoped);
  services.AddScoped<IUnitOfWork, ApplicationDbContext>();
  services.AddScoped<IBlogService, BlogService>();
پس از آن، امضای سازنده‌ی کلاس کنترلری که در ابتدای بحث عنوان شد، به شکل زیر تغییر پیدا می‌کند:
public class TestDBController : Controller
{
    private readonly IBlogService _blogService;
    private readonly IUnitOfWork _uow;
 
    public TestDBController(IBlogService blogService, IUnitOfWork uow)
    {
        _blogService = blogService;
        _uow = uow;
    }
در اینجا کنترلر برنامه تنها با اینترفیس‌های IUnitOfWork و IBlogService کار می‌کند و دیگر ارجاع مستقیمی را به کلاس ApplicationDbContext ندارد.
مطالب
استفاده از لنگر (anchor) برای اسکرول به قسمت خاصی از صفحه در Blazor Server
فرض کنید کدی مانند زیر را در یک کامپوننت داریم و انتظار این است که با کلیک بر روی Section2، به بخش مورد نظر اسکرول شویم:
@page "/test"

<nav>
    <!-- یک روش -->
    <a href="#section2">Section2</a>

    <!-- روش دیگر -->
    <NavLink href="#section2">Section2</NavLink>    
</nav>

@* ... *@


<h2 id="section2">It's Section2.</h2>
@* ... *@
اما متاسفانه در Blazor Server تا نسخه فعلی آن (نسخه هفت)، این کار ساده به راحتی امکان‌پذیر نیست. همانطور که ملاحظه می‌کنید، به دو روش، نویگیشن انجام شده‌است؛ اما هیچ‌یک ما را به هدف نمی‌رسانند. دلیل این موضوع، رفتار Blazor Server در بارگذاری صفحات می‌باشد. در حقیقت المان‌ها موقع بارگذاری، هنوز در صفحه وجود ندارند. در واقع ابتدا نیاز است که اتصال SignalR برقرار شود و سپس داده‌ها از سرور دریافت شوند (مگر در حالت pre-rendered که مشکلات خاص خود را در پی دارد).
برای انجام این کار دو روش وجود دارد؛ یکی بر پایه‌ی جاوااسکریپت است و دیگری توسط توابع داخلی Blazor JS.


روش جاوااسکریپتی

ابتدا یک کامپوننت را به نام AnchorNavigation ایجاد می‌نماییم:
@inject IJSRuntime JSRuntime
@inject NavigationManager NavigationManager
@implements IDisposable
@code {
    protected override void OnInitialized()
    {
        NavigationManager.LocationChanged += OnLocationChanged;
    }

    protected override async Task OnAfterRenderAsync(bool firstRender)
    {
        await ScrollToFragment();
    }

    public void Dispose()
    {
        NavigationManager.LocationChanged -= OnLocationChanged;
    }

    private async void OnLocationChanged(object sender, LocationChangedEventArgs e)
    {
        await ScrollToFragment();
    }

    private async Task ScrollToFragment()
    {
        var uri = new Uri(NavigationManager.Uri, UriKind.Absolute);
        var fragment = uri.Fragment;
        if (fragment.StartsWith('#'))
        {
            // Handle text fragment (https://example.org/#test:~:text=foo)
            // https://github.com/WICG/scroll-to-text-fragment/
            var elementId = fragment.Substring(1);
            var index = elementId.IndexOf(":~:", StringComparison.Ordinal);
            if (index > 0)
            {
                elementId = elementId.Substring(0, index);
            }

            if (!string.IsNullOrEmpty(elementId))
            {
                await JSRuntime.InvokeVoidAsync("BlazorScrollToId", elementId);
            }
        }
    }
}
سپس کد جاوا اسکریپتی زیر را در جایی قبل از فراخوانی <script src="_framework/blazor.server.js"></script> قرار می‌دهیم (برای مثال اگر می‌خواهیم در اکثر صفحات از آن بهره ببریم، آن را در layout.cshtmlـ قرار می‌دهیم).
function BlazorScrollToId(id) {
            const element = document.getElementById(id);
            if (element instanceof HTMLElement) {
                element.scrollIntoView({
                    behavior: "smooth",
                    block: "start",
                    inline: "nearest"
                });
            }
        }
حال در هر کامپوننتی که نیاز به استفاده از لنگر (anchor) داریم، به شکل زیر عمل می‌کنیم:
@page "/"

<PageTitle>Index</PageTitle>

<a href="#section2">
    <h1>Section2</h1>
</a>

<SurveyPrompt Title="How is Blazor working for you?" />

<div style="height: 2000px">

</div>

<div id="section2">
    <h2>It's Section2. </h2>
</div>

<AnchorNavigation />


روش استفاده از توابع داخلی Blazor JS 

می توان از ElementReference و FocusAsync که در حقیقت مربوط به خود Blazor JS می‌باشند استفاده نمود. اینبار کدهای کامپوننت AnchorNavigation را به شکل زیر تغییر می‌دهیم:
using Microsoft.AspNetCore.Components;
using Microsoft.AspNetCore.Components.Rendering;
using Microsoft.AspNetCore.Components.Routing;
using System.Diagnostics.CodeAnalysis;

namespace TestAnchorNavigation;

public class AnchorNavigation: ComponentBase, IDisposable
{
    private bool _setFocus;

    [Inject] private NavigationManager NavManager { get; set; } = default!;
    [Parameter] public RenderFragment? ChildContent { get; set; }
    [Parameter] public string? BookmarkName { get; set; }
    [DisallowNull] public ElementReference? Element { get; private set; }

    protected override void BuildRenderTree(RenderTreeBuilder builder)
    {
        builder.OpenElement(0, "span");
        builder.AddAttribute(2, "tabindex", "-1");
        builder.AddContent(3, this.ChildContent);
        builder.AddElementReferenceCapture(4, this.SetReference);
        builder.CloseElement();
    }

    protected override void OnInitialized()
        => NavManager.LocationChanged += this.OnLocationChanged;

    protected override void OnParametersSet()
        => _setFocus = this.IsMe();

    private void SetReference(ElementReference reference)
        => this.Element = reference;

    private void OnLocationChanged(object? sender, LocationChangedEventArgs e)
    {
        if (this.IsMe())
        {
            _setFocus = true;
            this.StateHasChanged();
        }
    }

    protected async override Task OnAfterRenderAsync(bool firstRender)
    {
        if (_setFocus)
            await this.Element!.Value.FocusAsync(false);

        _setFocus = false;
    }

    private bool IsMe()
    {
        string? elementId = null;

        var uri = new Uri(this.NavManager.Uri, UriKind.Absolute);
        if (uri.Fragment.StartsWith('#'))
        {
            elementId = uri.Fragment.Substring(1);
            return elementId == BookmarkName;
        }
        return false;
    }

    public void Dispose()
        => NavManager.LocationChanged -= this.OnLocationChanged;
}
و پیرو آن، صفحه‌ی موردنظر برای استفاده از لنگر نیز به شکل زیر تغییر خواهد کرد:
@page "/"

<PageTitle>Index</PageTitle>

<NavLink href="#section2">
    <h1>Section2</h1>
</NavLink>

<SurveyPrompt Title="How is Blazor working for you?" />

<div style="height: 2000px">

</div>

<AnchorNavigation BookmarkName="section2">
      <h2>It's Section2. </h2>
</AnchorNavigation>
مطالب
مقداردهی خودکار Created Date و Updated Date برای تمام رکوردهای موجودیت‌های یک پروژه توسط Entity Framework Core
فرض کنید می‌خواهید برای یک پروژه، امکانی را درنظر بگیرید که بتوان برای تمامی رکوردهای موجودیت‌های (Entity) آن پروژه، زمان ساخته شدن و به روزرسانی، به صورت خودکار ثبت شود.
کار با تعریف یک کلاس پایه به شکل زیر شروع می‌شود:
public class BaseEntity
    {
        public DateTimeOffset CreatedDate { get; set; }
        public DateTimeOffset UpdatedDate { get; set; }
    }
سپس برای اینکه کار مقداردهی، به صورت خودکار انجام گیرد، باید متدهای SaveChanges و SaveChangesAsync به شکل زیر در ApplicationDbContext پروژه override شوند:
//override because we need add created and updated date to some entities
        public override async Task<int> SaveChangesAsync(
            CancellationToken cancellationToken = default(CancellationToken))
        {
            AddCreatedUpdatedDate();
            return (await base.SaveChangesAsync(true, cancellationToken));
        }

        //override because we need add created and updated date to some entities
        public override int SaveChanges()
        {
            AddCreatedUpdatedDate();
            return base.SaveChanges();
        }
تابع AddCreatedUpdatedDate نیز به شکل زیر تعریف خواهد شد:
 /// <summary>
        /// Add created and updated date to any entities that
        /// inherit from BaseEntity class
        /// </summary>
        public void AddCreatedUpdatedDate()
        {
            var entries = ChangeTracker
                .Entries()
                .Where(e => e.Entity is BaseEntity && (
                    e.State == EntityState.Added
                    || e.State == EntityState.Modified));

            foreach (var entityEntry in entries)
            {
                ((BaseEntity)entityEntry.Entity).UpdatedDate = DateTimeOffset.UtcNow;

                if (entityEntry.State == EntityState.Added)
                {
                    ((BaseEntity)entityEntry.Entity).CreatedDate = DateTimeOffset.UtcNow;
                }
            }
        }
همانطور که ملاحظه می‌نمایید از ChangeTracker استفاده شده‌است که پیشتر مطلب کاملی در سایت در رابطه با آن منتشر شده‌است. در حقیقت لیستی از رکوردهای موجودیت‌هایی را که از BaseEntity ارث بری کرده باشند و در حال اضافه شدن یا ویرایش شدن هستند، در entries قرار می‌دهیم و سپس بررسی می‌کنیم که اگر این رکورد در حال اضافه شدن برای اولین بار است، آنگاه مقدار برابری را برای CreatedDate و UpdatedDate آن درنظر می‌گیریم؛ اما اگر این رکورد در حال ویرایش شدن باشد، آنگاه فقط مقدار UpdatedDate را به‌روزرسانی می‌کنیم.
حال برای اینکه موجودیتی دارای این قابلیت شود که برای هر رکورد آن، تاریخ ساخت و به روز رسانی به صورت خودکار ثبت شود، باید از کلاس پایه BaseEntity ارث بری نماید. برای مثال:
public class Student: BaseEntity
{
    public int StudentID { get; set; }
    public string StudentName { get; set; }
    public DateTimeOffset? DateOfBirth { get; set; }
    public decimal Height { get; set; }
    public float Weight { get; set; }
}
نظرات اشتراک‌ها
اطلاعات خود در مورد ارث‌بری را محک بزنید
وقتی که Default Implementation قرار دهیم برای متد‌ها در اینترفیس و موقع نمونه سازی از کلاس مربوطه، object reference آن را در یک متغیر از جنس اینترفیسی که پیاده سازی کرده است قرار دهیم، همان پیاده سازی‌های پیشفرض اجرا میشوند.
در اصل به صورت Explicit Cast کار میکند ( برای مثال فرخوانی یک متد Virtual از کلاس پدر با وجود اینکه همان متد را خودمان یکبار override ) کرده ایم.
مطالب
سفارشی‌سازی PasswordValidator در ASP.NET Identity
همانطور که می‌دانید Identity، فریمورک نسبتا جدیدی هست که مایکروسافت برای مدیریت کاربران و احراز هویت آن‌ها معرفی کرده و پیشرفت چشمگیری داشته است. در قسمت IdentityConfig (قسمتی که برای کانفیگ‌کردن Identity استفاده می‌شود) بخشی قابل تنظیم برای کانفیگ‌کردن سیاست‌های تعیین پسورد وجود دارد. به‌طور مثال : تعیین حداقل تعداد حروف برای کلمه‌ی عبور، ضرورت کوچک و بزرگ بودن حروف، الزام وجود کاراکتر ویژه. 
این نیاز وجود دارد که PasswordValidator موجود در Identity را برای پروژه‌های مختلف سفارشی‌سازی کرد و این امکان فراهم شود که بتوان سیاست‌های کاری شرکت و پروژه را در قالب PasswordValidator اعمال کرد. به عنوان مثال بررسی کنیم اگر پسورد کاربر عدد 12345 وارد شده است، خطا صادر کنیم و اجازه انتساب آن را برای کاربر ندهیم یا منطق‌های دیگری که نیاز داریم. پس در اینجا به وجود یک CustomPasswordValidator نیاز هست است.
public class CustomPasswordValidator : PasswordValidator
{
    public override async Task<IdentityResult> ValidateAsync(string pass)
    {
            IdentityResult result = await base.ValidateAsync(pass);
            if (pass.Contains("12345"))
           {
            var errors = result.Errors.ToList();
            errors.Add("Passwords cannot contain numeric sequences");
            result = new IdentityResult(errors);
           }
           return result;
    }
}
در قطعه کد بالا یک کلاس ایجاد شد با نام CustomPasswordValidator و از PasswordValidator موجود در فضای نام Microsoft.AspNet.Identity ارث‌بری شد تا ویژگی‌های اصلی این کلاس را به‌صورت ذاتی داشته باشیم و بتوانیم سفارشی‌سازی‌های خودمان را بر روی آن اعمال می‌کنیم. متد ValidateAsync موجود override شده و بر روی ورودی آن شرط‌های پروژه و سیاست‌ها بررسی شده‌اند و درصورت تخلف از قوانین خطا صادر شد.

نقطه‌ی پایان کار اینجاست که در داخل کلاس کانفیگ موجود برای Identity که درون فایل web.config مشخص شده است (در این مثال کلاس IdentityConfig) برای قسمت PasswordValidator ، حالا باید از کلاس CustomPasswordValidator، یک شیء جدید ساخته شود:

// Configure custom validation logic for passwords
manager.PasswordValidator = new CustomPasswordValidator
{
    RequiredLength = 6,
    RequireNonLetterOrDigit = false,
    RequireDigit = false,
    RequireLowercase = false,
    RequireUppercase = false,
};
مطالب
انجام کارهای پس زمینه در ASP.NET 4.5.2
دات نت 4.5.2 قابلیت توکاری را به نام در صف قرار دادن یک کار پس زمینه، اضافه کرده‌است که در ادامه خلاصه‌ای از آن‌را مرور خواهیم کرد.


روش متداول ایجاد کارهای پس زمینه

ساده‌ترین روش انجام کارهای پس زمینه در برنامه‌های دات نتی، استفاده از متدهایی هستند که یک ترد جدید را ایجاد می‌کنند مانند Task.Run, Task.Factory.StartNew, Delegate.BeginInvoke, ThreadPool.QueueUserWorkItem و امثال آن. اما ... این روش‌ها در برنامه‌های ASP.NET ایده‌ی خوبی نیستند!
از این جهت که موتور ASP.NET در این حالات اصلا نمی‌داند که شما کار پس زمینه‌ای را ایجاد کرده‌اید. به همین جهت اگر پروسه‌ی برنامه پس از مدتی recycle شود، تمام کارهای پس زمینه‌ی موجود نیز از بین خواهند رفت.


معرفی HostingEnvironment.QueueBackgroundWorkItem

متد HostingEnvironment.QueueBackgroundWorkItem به دات نت 4.5.2 اضافه شده‌است تا بتوان توسط آن یک کار پس زمینه را توسط موتور ASP.NET شروع کرد و نه مانند قبل، بدون اطلاع آن. البته باید دقت داشت که این کارهای پس زمینه مستقل از هر نوع درخواستی اجرا می‌شوند.
در این حالت چون موتور ASP.NET از وجود کار پس زمینه‌ی آغاز شده مطلع است، در صورت فرا رسیدن زمان recycle شدن برنامه، کل AppDomain را به یکباره نابود نخواهد کرد. البته این مورد فقط به این معنا است که در صورت فرا رسیدن زمان recycle شدن پروسه، با تنظیم یک CancellationToken، اطلاع رسانی خواهد کرد. در این حالت حداکثر 30 ثانیه فرصت خواهید داشت تا کارهای پس زمینه را بدون مشکل خاتمه دهید. اگر کار پس زمینه در این مدت به پایان نرسد، همانند قبل، کل AppDomain نابود خواهد شد.

این متد دو overload دارد و در هر دو حالت، تنظیم خودکار پارامتر CancellationToken توسط ASP.NET، بیانگر آغاز زمان خاتمه‌ی کل برنامه است:
 public static void QueueBackgroundWorkItem(Action<CancellationToken> workItem);
public static void QueueBackgroundWorkItem(Func<CancellationToken, Task> workItem);
در متد اول، یک متد معمولی از نوع void قابل پردازش است. در متد دوم، می‌توان متدهای async Task دار را که قرار است کارهای async را پردازش کنند، معرفی نمود.
علت استفاده از Action و Func در اینجا، امکان تعریف خلاصه و inline یک متد و ارسال پارامتری به آن از طرف برنامه است، بجای تعریف یک اینترفیس جدید، نیاز به پیاده سازی آن اینترفیس و بعد برای مثال ارسال یک مقدار از طرف برنامه به متد Stop آن (بجای تعریف یک اینترفیس تک متدی، از Action و یا Func نیز می‌توان استفاده کرد).

نمونه‌ای از نحوه‌ی فراخوانی این دو overload را در ذیل مشاهده می‌کنید:
 HostingEnvironment.QueueBackgroundWorkItem(cancellationToken =>
{
        //todo: ...
});

HostingEnvironment.QueueBackgroundWorkItem(async cancellationToken =>  
{
        //todo: ...
        await Task.Delay(20000, cancellationToken);
});


پشت صحنه‌ی HostingEnvironment.QueueBackgroundWorkItem

روش استاندارد ثبت و معرفی یک کار پس زمینه در ASP.NET، توسط پیاده سازی اینترفیسی به نام IRegisteredObject انجام می‌شود. سپس توسط متد HostingEnvironment.RegisterObject می‌توان این کلاس را به موتور ASP.NET معرفی کرد. در این حالت زمانیکه AppDomain قرار است خاتمه یابد، متد Stop اینترفیس IRegisteredObject کار اطلاع رسانی را انجام می‌دهد. توسط QueueBackgroundWorkItem دقیقا از همین روش به همراه فراخوانی  ThreadPool.QueueUserWorkItemجهت اجرای متد معرفی شده‌ی به آن استفاده می‌شود.
از مکانیزم IRegisteredObject در DNT Scheduler نیز استفاده شده‌است.


پیشنیازها

ابتدا نیاز است به خواص پروژه مراجعه کرده و Target framework را بر روی 5.4.2 قرار داد. اگر به روز رسانی دوم VS 2013 را نصب کرده باشید، این نگارش هم اکنون بر روی سیستم شما فعال است. اگر خیر، امکان دریافت و نصب آن، به صورت جداگانه نیز وجود دارد:
.NET Framework 4.5.2
Developer pack



محدودیت‌های QueueBackgroundWorkItem

- از آن در خارج از یک برنامه‌ی وب ASP.NET نمی‌توان استفاده کرد.
- توسط آن، خاتمه‌ی یک AppDomain تنها به مدت 30 ثانیه به تاخیر می‌افتد؛ تا فرصت داشته باشید کارهای در حال اجرا را با حداقل خسارت به پایان برسانید.
- یک work item، اطلاعاتی را از فراخوان خود دریافت نمی‌کند. به این معنا که مستقل از زمینه‌ی یک درخواست اجرا می‌شود.
- استفاده‌ی از آن الزاما به این معنا نیست که کار درخواستی شما حتما اجرا خواهد شد. زمانیکه که کار خاتمه‌ی AppDomain آغاز می‌شود، فراخوانی‌های QueueBackgroundWorkItem دیگر پردازش نخواهند شد.
- اگر برنامه به مقدار CancellationToken تنظیم شده توسط ASP.NET دقت نکند، جهت پایان یافتن کار در حال اجرا، صبر نخواهد شد.
مطالب
C# 8.0 - Async Streams
امکان تعریف نوع‌های شمارشی async در C# 8.0

فرض کنید قصد دارید یک متد async از نوع IEnumerable را که تعدادی yield return به تاخیر افتاده را به همراه دارد (yield return‌ها فقط زمانی اجرا می‌شوند که بر روی آن‌ها متدهایی مانند ToList و یا حلقه‌ی foreach اجرا شوند) و همچنین توسط await Task.Delay، دریافت اطلاعات به صورت async را نیز شبیه سازی می‌کند، تهیه کنید:
public struct Statement
{
    public int Id { get; }
    public string Description { get; }
    public Statement(int id, string description) => (Id, Description) = (id, description);
    public override string ToString() => Description;
}

public static async Task<IEnumerable<Statement>> GetStatements(bool error)
{
    if (error)
    {
       throw new Exception("Oops, we messed up 😬");
    }

    await Task.Delay(1000); //Simulate waiting for data to come through. 

    yield return new Statement(1, "C# is cool!");
    yield return new Statement(2, "C# orginally named COOL.");
    yield return new Statement(3, "More examples...");
}
این قطعه کد حتی در C# 8.0 نیز چنین خطای کامپایلری را به همراه دارد:
The body of 'AsyncStreams.GetStatements(bool)' cannot be an iterator block because
'Task<IEnumerable<AsyncStreams.Statement>>' is not an iterator interface type (CS1624)
عنوان می‌کند که برای دریافت اطلاعات متد GetStatements باید یک iterator تشکیل شود؛ اما Task IEnumerable از این نوع نیست.

برای رفع یک چنین مشکلی، اکنون در C# 8.0 می‌توان از اینترفیس جدید IAsyncEnumerable بجای Task IEnumerable استفاده کرد. به این ترتیب تنها تغییری که در قطعه کد فوق نیاز است، تغییر امضای آن به صورت زیر است:
static async IAsyncEnumerable<Statement> GetStatements(bool error)


امکان تعریف حلقه‌های async در C# 8.0

مرحله‌ی بعد، ایجاد حلقه‌ای بر روی متد GetStatements است. اکنون مشکل دیگری وجود دارد: حلقه‌ی foreach به خودی خود، یک حلقه‌ی synchronous است و اگر از آن برای کار با یک استریم async استفاده شود، هربار که اطلاعاتی از آن بازگشت داده می‌شود، پایان یک Task نیز گزارش داده خواهد شد که می‌توان سبب خاتمه‌ی حلقه شود. بنابراین انجام اینکار نیز پیش از C# 8.0 میسر نبود که اکنون با امکان تعریف await پیش از یک حلقه‌ی foreach، ممکن شده‌است:
static async IAsyncEnumerable<Statement> GetStatementsAsync(bool error)
{
    await foreach (var statement in GetStatements(error))
    {
      await Task.Delay(1000);
      yield return statement;
    }
}
تا پیش از C# 8.0، از واژه‌ی await تنها برای دریافت یک تک مقدار استفاده می‌شد؛ اما حالا می‌توان از آن برای دریافت استریمی از نتایج (async streams) نیز استفاده کرد.


اینترفیس IAsyncEnumerable چگونه تعریف شده‌است؟

 اینترفیس IAsyncEnumerable متد GetAsyncEnumerator را تعریف می‌کند که یک IAsyncEnumerator را بازگشت می‌دهد و آن نیز به همراه متد MoveNextAsync است. اگر دقت کنید در این حالت از نگارش async اینترفیس IDisposable به نام IAsyncDisposable استفاده کرده‌است:
using System.Threading;

namespace System.Collections.Generic
{
    public interface IAsyncEnumerable<out T>
    {
        IAsyncEnumerator<T> GetAsyncEnumerator(CancellationToken cancellationToken = default);
    }

    public interface IAsyncEnumerator<out T> : IAsyncDisposable
    {
        T Current { get; }

        ValueTask<bool> MoveNextAsync();
    }
}

namespace System
{
    public interface IAsyncDisposable
    {
        ValueTask DisposeAsync();
    }
}
اینترفیس‌های IAsyncDisposable و IAsyncEnumerator یک ValueTask را توسط متدهای DisposeAsync و MoveNextAsync بازگشت می‌دهند و این مورد به C# 7x باز می‌گردد که امکان await را نه تنها بر روی Task، بلکه بر روی هر نوعی که متد GetAwaiter را پیاده سازی می‌کند، میسر می‌کند و ValueTask نیز یکی از آن‌ها است. ValueTask به صورت یک نوع مقدار (value type) تعریف شده‌است؛ بجای نوع ارجاعی Task که سربار کمتری را به همراه دارد.


مثالی از IAsyncDisposable و روش Dispose خودکار آن

با معرفی IAsyncDisposable، اگر یک مثال ساده از پیاده سازی آن به صورت زیر باشد:
public class AwaitUsingTest : IAsyncDisposable
{
   public async ValueTask DisposeAsync()
   {
     await Task.CompletedTask;
   }

   public void Dummy() { }
}
روش فراخوانی using declaration بر روی آن به همراه واژه‌ی کلیدی await در C# 8.0، مانند مثال زیر است:
async Task FooBar()
{
   await using var test = new AwaitUsingTest();
   test.Dummy();
}
مطالب
امکان بررسی سلامت برنامه در ASP.NET Core 2.2
ASP.NET Core 2.2 به همراه تعدادی قابلیت جدید است که یکی از آن‌ها بررسی سلامت برنامه یا Health Check نام دارد. در بسیاری از اوقات ممکن است از سرویس‌های ping و یا درخواست مشاهده‌ی صفحات وب سایت در بازه‌های زمانی مشخصی، جهت اطمینان حاصل کردن از برپایی و سلامت آن استفاده کنید. اما این سرویس‌ها الزاما وضعیت سلامت برنامه را نمی‌توانند به خوبی گزارش کنند. به همین جهت امکان ارائه‌ی گزارش‌های دقیق‌تری توسط ویژگی Health Check به ASP.NET Core اضافه شده‌است.

پیاده سازی ویژگی Health Check بدون استفاده از قابلیت‌های ASP.NET Core 2.2

اگر بخواهیم در بررسی سلامت برنامه، وضعیت بانک اطلاعاتی آن‌را گزارش دهیم، می‌توان یک چنین اکشن متدی را طراحی کرد که در آن اتصالی به بانک اطلاعاتی باز شده و اگر در حین فراخوانی مسیر working/، استثنائی رخ داد، با بازگشت status code مساوی 503، عدم سلامت برنامه اعلام شود؛ کاری که سرویس‌های ping متداول نمی‌توانند آن‌را با این دقت انجام دهند:
[Route("working")]
public ActionResult Working()
{
    using (var connection = new SqlConnection(_connectionString))
    {
        try
        {
            connection.Open();
        }
        catch (SqlException)
        {
            return new HttpStatusCodeResult(503, "Generic error");
        }
    }
   return new EmptyResult();
}

بازنویسی قطعه کد فوق با ویژگی جدید Health Check در ASP.NET Core 2.2

اکنون اگر بخواهیم قطعه کد فوق را با کمک ویژگی‌های جدید ASP.NET Core 2.2 بازنویسی کنیم، روش کار به صورت زیر خواهد بود:
namespace MvcHealthCheckTest
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.AddHealthChecks()
                    .AddCheck("sql", () =>
                        {
                            using (var connection = new SqlConnection(Configuration["connectionString"]))
                            {
                                try
                                {
                                    connection.Open();
                                }
                                catch (SqlException)
                                {
                                    return HealthCheckResult.Unhealthy();
                                }
                            }
                            return HealthCheckResult.Healthy();
                        });
        }

        public void Configure(IApplicationBuilder app, IHostingEnvironment env)
        {
            app.UseHealthChecks("/working");
- ابتدا توسط متد services.AddHealthChecks، سرویس بررسی سلامت برنامه، ثبت و معرفی می‌شود.
- سپس توسط متد app.UseHealthChecks، بدون اینکه نیاز باشد کنترلر و اکشن متد جدیدی را جهت بازگشت وضعیت سلامت برنامه، تعریف کنیم، مسیر working/ قابل دسترسی خواهد شد.
تا اینجا اگر این مسیر را به سرویس بررسی uptime برنامه‌ی خود معرفی کنید، صرفا وضعیت قابل دسترسی بودن مسیر working/ را دریافت خواهید کرد. اگر نیاز به گزارش دقیق‌تری وجود داشت، می‌توان به کمک متد AddCheck، یک منطق سفارشی را نیز به آن افزود؛ همانند بررسی امکان اتصال به بانک اطلاعاتی، به روشی که ملاحظه می‌کنید. در اینجا اگر منطق مدنظر با موفقیت اجرا شد، HealthCheckResult.Healthy بازگشت داده می‌شود و یا HealthCheckResult.Unhealthy در صورت عدم موفقیت. هر کدام از این متدها می‌توانند توضیحات و یا اطلاعات بیشتری را نیز توسط پارامترهای خود ارائه دهند.


امکان تهیه سرویس‌های سفارشی بررسی سلامت برنامه

در مثال قبل، منطق بررسی سلامت برنامه را همانجا داخل متد ConfigureServices، به کمک متد services.AddHealthChecks().AddCheck معرفی کردیم. امکان انتقال این کدها به سرویس‌های سفارشی، با پیاده سازی اینترفیس IHealthCheck نیز وجود دارد:
    public class SqlServerHealthCheck : IHealthCheck
    {
        private readonly IConfiguration _configuration;

        public SqlServerHealthCheck(IConfiguration configuration)
        {
            _configuration = configuration;
        }

        public Task<HealthCheckResult> CheckHealthAsync(
            HealthCheckContext context, CancellationToken cancellationToken = default(CancellationToken))
        {
            using (var connection = new SqlConnection(_configuration["connectionString"]))
            {
                try
                {
                    connection.Open();
                }
                catch (SqlException)
                {
                    return Task.FromResult(HealthCheckResult.Unhealthy());
                }
            }
            return Task.FromResult(HealthCheckResult.Healthy());
        }
    }
در اینجا کدهای AddCheck را به متد CheckHealthAsync منتقل کردیم. پس از آن برای معرفی آن به سیستم می‌توان از روش زیر استفاده کرد:
namespace MvcHealthCheckTest
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.AddHealthChecks()
                    .AddCheck<SqlServerHealthCheck>("sql");
متد AddCheck، کلاس SqlServerHealthCheck را به صورت یک سرویس جدید با طول عمر Transient به سیستم تزریق وابستگی‌های NET Core. معرفی می‌کند (یعنی با هربار درخواست مسیر working/، یک وهله‌ی جدید از این کلاس ساخته شده و استفاده می‌شود) که امکان تزریق در سازنده‌ی کلاس آن نیز وجود دارد.


سفارشی سازی خروجی بررسی سلامت برنامه‌ها

تا اینجا از متدهای کلی Unhealthy و Healthy برای بازگشت وضعیت سلامت برنامه استفاده کردیم؛ خروجی‌های بهتری را نیز می‌توان ارائه داد:
public Task<HealthCheckResult> CheckHealthAsync(
            HealthCheckContext context,
            CancellationToken cancellationToken = default(CancellationToken))
        {
            using (var connection = new SqlConnection(_configuration["connectionString"]))
            {
                try
                {
                    connection.Open();
                }
                catch (SqlException)
                {
                    return Task.FromResult(new HealthCheckResult(
                                                   status: context.Registration.FailureStatus,
                                                   description: "It is dead!"));
                }
            }
            return Task.FromResult(HealthCheckResult.Healthy("Healthy as a horse"));
        }
در نهایت نیاز است خروجی از نوع HealthCheckResult بازگشت داده شود. این خروجی را یا می‌توان توسط متدهای Healthy و Unhealthy با پارامترهای مخصوص آن‌ها ایجاد کرد و یا مانند این مثال، توسط وهله سازی مستقیم آن.
روش دیگر سفارشی سازی خروجی آن، استفاده از پارامتر دوم متد app.UseHealthChecks است:
namespace MvcHealthCheckTest
{
    public class Startup
    {
        public void Configure(IApplicationBuilder app, IHostingEnvironment env)
        {
            app.UseHealthChecks("/working", new HealthCheckOptions
            {
                ResponseWriter = async (context, report) =>
                {
                    var result = JsonConvert.SerializeObject(new
                    {
                        status = report.Status.ToString(),
                        errors = report.Entries.Select(e =>
                        new
                        {
                            key = e.Key,
                            value = Enum.GetName(typeof(HealthStatus), e.Value.Status)
                        })
                    });
                    context.Response.ContentType = MediaTypeNames.Application.Json;
                    await context.Response.WriteAsync(result);
                }
            });
در اینجا یک خروجی JSON، از ریز خطاهای گزارش شده، تهیه شده و توسط context.Response.WriteAsync به فراخوان ارائه می‌شود.


معرفی کتابخانه‌ای از IHealthCheckهای سفارشی

از مخزن کد AspNetCore.Diagnostics.HealthChecks می‌توانید IHealthCheckهای سفارشی مخصوص SQL Server، MySQL و غیره را نیز دریافت و استفاده کنید.
مطالب
Minimal API's در دات نت 6 - قسمت پنجم - پیاده سازی الگوی CQRS
تا قسمت قبل موفق شدیم فایل Program.cs برنامه‌ی Minimal API's را خلوت کنیم و همچنین زیرساختی را برای توسعه‌ی مبتنی بر ویژگی‌ها، ارائه دهیم. اما ... هنوز endpoints ما چنین شکلی را دارند:
        endpoints.MapGet("/api/authors", async (MinimalBlogDbContext ctx) =>
        {
            var authors = await ctx.Authors.ToListAsync();
            return authors;
        });

        endpoints.MapPost("/api/authors", async (MinimalBlogDbContext ctx, AuthorDto authorDto) =>
        {
            var author = new Author();
            author.FirstName = authorDto.FirstName;
            author.LastName = authorDto.LastName;
            author.Bio = authorDto.Bio;
            author.DateOfBirth = authorDto.DateOfBirth;

            ctx.Authors.Add(author);
            await ctx.SaveChangesAsync();

            return author;
        });
 و یک چنین رویه‌ای جهت کار مستقیم با DbContext در اکشن متدهای MVC هیچگاه توصیه نمی‌شود. برای مثال به طور معمول، عملیاتی که در بدنه‌ی Lambda expressions فوق انجام شده، عموما به Repositories و Services محول شده و در نهایت از سرویس‌ها، در اکشن متدها استفاده می‌شود. در معماری جاری که در پیش گرفته‌ایم، دو لایه‌ی Repositories و Services حذف شده‌اند و دیگر خبری از آن‌ها نیست. در اینجا کار سرویس‌ها و مخازن، به هندلرهای معماری CQRS واگذار خواهند شد. هر هندلر نیز متکی به خود است و مستقل از سایر هندلرها طراحی می‌شود و این‌ها صرفا بر اساس نیازهای ویژگی جاری توسعه خواهند یافت و دقیقا در همان پوشه‌ی ویژگی مورد بررسی نیز قرار می‌گیرند؛ و نه پراکنده در لایه‌ای و یا پروژه‌ای دیگر. به این ترتیب درک یک ویژگی متکی به خود برنامه، ساده‌تر شده و در طول زمان، نگهداری و توسعه‌ی آن نیز ساده‌تر خواهد شد. مشکل داشتن سرویس‌هایی بزرگ که در معماری‌های متداول وجود دارند، استفاده‌ی از متدهای آن‌ها در چندین اکشن متد و چندین کنترلر مختلف است و اگر یکی از متدهای این سرویس بزرگ ما تغییر کند، بر روی چندین کنترلر تاثیر می‌گذارد که ممکن است سبب از کار افتادگی بعضی از آن‌ها شود؛ اما در اینجا هرکاری که انجام می‌شود و هر هندلری که توسعه می‌یابد، فقط مختص به یک کار و یک ویژگی مشخص است.


ایجاد Command و هندلر مخصوص ایجاد یک نویسنده‌ی جدید


در الگوی CQRS، یک دستور، کاری را بر روی بانک اطلاعاتی انجام می‌دهد. برای مثال در اینجا قرار است نویسنده‌ای را ثبت کند. در ادامه می‌خواهیم بدنه‌ی endpoints.MapPost فوق را با الگوی CQRS انطباق دهیم. به همین جهت به یک Command نیاز داریم:
using MediatR;
using MinimalBlog.Domain.Model;

namespace MinimalBlog.Api.Features.Authors;

public class CreateAuthorCommand : IRequest<Author>
{
    public AuthorDto AuthorDto { get; set; } = default!;
}
اینترفیس IRequest کتابخانه‌ی MediatR که در انتهای قسمت قبل به پروژه اضافه شد، چنین امضایی را دارد:
public interface IRequest<out TResponse> : IBaseRequest
یعنی <IRequest<Author به این معنا است که قرار است «خروجی» این عملیات، یک Author باشد و CreateAuthorCommand می‌تواند شامل تمام خواصی باشد که در جهت برآورده کردن این دستور مورد نیاز هستند؛ برای مثال کل اطلاعات شیء AuthorDto در اینجا.

سپس نیاز به یک هندلر است تا دستور رسیده را پردازش کند:
namespace MinimalBlog.Api.Features.Authors;

public class CreateAuthorCommandHandler : IRequestHandler<CreateAuthorCommand, Author>
{
    private readonly MinimalBlogDbContext _context;
    private readonly IMapper _mapper;

    public CreateAuthorCommandHandler(MinimalBlogDbContext context, IMapper mapper)
    {
        _context = context ?? throw new ArgumentNullException(nameof(context));
        _mapper = mapper ?? throw new ArgumentNullException(nameof(mapper));
    }

    public async Task<Author> Handle(CreateAuthorCommand request, CancellationToken cancellationToken)
    {
        if (request == null)
        {
            throw new ArgumentNullException(nameof(request));
        }

        var toAdd = _mapper.Map<Author>(request.AuthorDto);
        _context.Authors.Add(toAdd);
        await _context.SaveChangesAsync(cancellationToken);
        return toAdd;
    }
}
اینترفیس IRequestHandler چنین امضایی را دارد:
public interface IRequestHandler<in TRequest, TResponse> where TRequest : IRequest<TResponse>
که اولین آرگومان جنریک آن، همان Command ای است که قرار است پردازش کند و خروجی آن، اطلاعاتی است که قرار است بازگشت دهد. یعنی متد Handle فوق، قرار است عملیات endpoints.MapPost را پیاده سازی کند و در اینجا با استفاده از AutoMapper، انتساب‌های آن حذف و ساده شده‌اند و مابقی آن، با بدنه‌ی lambda expression مربوط به endpoints.MapPost، یکی است. این هندلر، معادل یک یا چند متد از متدهای یک سرویس بزرگ است که در اینجا به صورت اختصاصی جهت پردازش فرمانی در کنار هم قرار می‌گیرند و متکی به خود هستند.

پس از این تغییرات، بدنه‌ی lambda expression مربوط به endpoints.MapPost به صورت زیر تغییر کرده و ساده می‌شود:
endpoints.MapPost("/api/authors", async (IMediator mediator, AuthorDto authorDto) =>
{
     var command = new CreateAuthorCommand { AuthorDto = authorDto };
     var author = await mediator.Send(command);
     return author;
});
در اینجا تزریق وابستگی IMediator را مشاهده می‌کنید. با فراخوانی متد Send آن، شیء‌ای به هندلر متناظری ارسال شده، پردازش می‌شود و در نهایت شیءای را بازگشت خواهد داد. برای مثال در اینجا شیء Dto یک نویسنده به هندلر CreateAuthorCommandHandler ارسال و تبدیل به شیءای از نوع Author مربوط به دومین برنامه شده، سپس در بانک اطلاعاتی ذخیره می‌شود و در نهایت این نویسنده که اکنون به همراه یک Id نیز هست، بازگشت داده می‌شود. بنابراین هر هندلر یک object in و یک object out دارد که به عنوان آرگومان‌های جنریک IRequestHandler تعریف می‌شوند.



نکته 1: await داخل بدنه‌ی lambda expression مربوط به endpoints را فراموش نکنید. تمام متدهای IMediator از نوع aysnc هستند؛ هرچند روش نامگذاری SendAsync را رعایت نکرده‌اند و اگر این await فراموش شود، مشاهده خواهید کرد که برنامه در حین فراخوانی endpoints در مرورگر، در حالت هنگ و صبر کردن نامحدود قرار می‌گیرد، بدون اینکه کاری را انجام دهد و یا حتی استثنایی را صادر کند.


نکته 2: در پیاده سازی هندلر، استفاده از cancellationToken را نیز مشاهده می‌کنید. تقریبا تمام متدهای async مربوط به EF-Core به همراه پارامتری جهت دریافت cancellationToken هم هستند. اگر کاربری قصد لغو یک درخواست طولانی را داشته باشد و بر روی دکمه‌ی stop مرورگر کلیک کند و یا حتی صفحه را چندین بار ریفرش کند، این به معنای abort درخواست(های) رسیده‌است. وجود این cancellationTokenها، بار سرور را کاهش داده و عملیات در حال اجرای سمت سرور را در یک چنین حالت‌هایی متوقف می‌کند.
البته هندلری که در اینجا تعریف شده، این cancellationToken را باید از mediator دریافت کند که در کدهای endpoint فوق، چنین نیست. برای رفع این مشکل باید به صورت زیر عمل کرد:
endpoints.MapGet("/api/authors", async (IMediator mediator, CancellationToken ct) =>
        {
            var request = new GetAllAuthorsQuery();
            var authors = await mediator.Send(request, ct);
            return authors;
        });
این مورد را می‌توان به صورت یک best practice، به تمام endpoints اضافه کرد.


نکته 3: هندلرها عموما چیزی را بازگشت نمی‌دهند؛ صرف نظر از هندلر فوق که نیاز بوده تا Id شیء ذخیره شده را بازگشت دهد، عموما به همراه هیچ خروجی نیستند. به همین جهت در حین تعریف آن‌ها فقط کافی است در آرگومان‌های جنریک آن‌ها، نوع خروجی را ذکر نکنیم:
public class Handler : IRequestHandler<Command>
در یک چنین حالتی، امضای IRequestHandler به صورت خودکار به همراه خروجی از نوع Unit خواهد بود:
public interface IRequestHandler<in TRequest> : IRequestHandler<TRequest, Unit> where TRequest : IRequest<Unit>
که این Unit معادل Void در کتابخانه‌ی mediator است و به نحو زیر در هندلرها مدیریت می‌شود:
public async Task<Unit> Handle(Command request, CancellationToken cancellationToken)
{
   // ...
   return Unit.Value;
}
در یک چنین حالتی، تعریف یک Command نیز بر اساس اینترفیس IRequest انجام می‌شود:
public class Command : IRequest


ایجاد Query و هندلر مخصوص بازگشت لیست نویسنده‌‌ها

در الگوی CQRS، یک کوئری قرار است اطلاعاتی را بازگشت دهد و ... وضعیت بانک اطلاعاتی را تغییر نمی‌دهد. بنابراین در اینجا یک IRequest که قرار است لیستی از نویسندگان را بازگشت دهد، تعریف می‌کنیم. بدنه‌ی آن هم می‌تواند خالی باشد و یا به همراه خواصی مانند اطلاعات صفحه بندی و یا مرتب سازی گزارشگیری رسیده‌ی از درخواست:
using MediatR;
using MinimalBlog.Domain.Model;

namespace MinimalBlog.Api.Features.Authors;

public class GetAllAuthorsQuery : IRequest<List<Author>>
{
}
سپس نیاز به یک هندلر است تا درخواست رسیده را پردازش کند. این هندلر، کوئری فوق را دریافت کرده و لیست کاربران را بازگشت می‌دهد:
namespace MinimalBlog.Api.Features.Authors;

public class GetAllAuthorsHandler : IRequestHandler<GetAllAuthorsQuery, List<Author>>
{
    private readonly MinimalBlogDbContext _context;

    public GetAllAuthorsHandler(MinimalBlogDbContext context)
    {
        _context = context ?? throw new ArgumentNullException(nameof(context));
    }

    public Task<List<Author>> Handle(GetAllAuthorsQuery request, CancellationToken cancellationToken)
    {
        return _context.Authors.ToListAsync(cancellationToken);
    }
}
پس از این تغییرات، بدنه‌ی lambda expression مربوط به endpoints.MapGet به صورت زیر تغییر کرده و ساده می‌شود:
endpoints.MapGet("/api/authors", async (IMediator mediator) =>
{
   var request = new GetAllAuthorsQuery();
   var authors = await mediator.Send(request);
   return authors;
});
مزیت استفاده‌ی از الگوی CQRS، تنها به حذف لایه‌ی سرویس و رسیدن به ویژگی‌هایی مستقل و متکی به خود، منحصر نیست. با استفاده از این الگو می‌توان مقیاس پذیری برنامه را نیز افزایش داد. برای مثال یک بانک اطلاعاتی بهینه سازی شده را صرفا برای کوئری‌ها، درنظر گرفت و بانک اطلاعاتی دیگری را تنها برای اعمال Write که Commands بر روی آن اجرا می‌شوند و در اینجا تنها نیاز به همگام سازی اطلاعات بانک اطلاعاتی Write، با بانک اطلاعاتی Read است که در بسیاری از اوقات پرکارتر از بانک‌های اطلاعاتی دیگر است:


و یا حتی معماری CQRS با معماری Event store نیز قابل ترکیب است:


در اینجا بجای استفاده از بانک اطلاعاتی Write، از یک Event store استفاده می‌شود. کار event store، دریافت رویدادهای write است و سپس باز پخش آن‌ها به بانک اطلاعاتی Read؛ تا کار همگام سازی به این نحو صورت گیرد.


روشی برای نظم دادن به نحوه‌ی تعریف کلاس‌های الگوی CQRS

تا اینجا برای مثال کلاسCreateAuthorCommand  را در یک فایل مجزا و سپس هندلر آن‌را به نام CreateAuthorCommandHandler در یک فایل دیگر تعریف کردیم. می‌توان جهت بالابردن خوانایی برنامه، کاهش رفت و برگشت‌ها برای یافتن کلاس‌های مرتبط و همچنین سهولت یافتن هندلرهای مرتبط با هر متد mediator.Send، از روش زیر نیز استفاده کرد:
public static class CreateAuthor
{
    public class Command : IRequest<AuthorGetDto>
    {
        // ...
    }

    public class Handler : IRequestHandler<Command, AuthorGetDto>
    {
       // ...
    }
}
در اینجا از nested classes استفاده شده‌است. ابتدا نام اصلی Command و یا کوئری ذکر می‌شود؛ که نام کلاس دربرگیرنده‌ی اصلی را تشکیل می‌دهد. سپس دو کلاس بعدی فقط Command و Handler نام می‌گیرند و نه هیچ نام دیگری. به این ترتیب به یکسری نام یک دست در کل پروژه خواهیم رسید. زمانیکه قرار است mediator.Send فراخوانی شود، اینبار چنین شکلی را پیدا می‌کند که مزیت آن، سهولت یافتن هندلر مرتبط، فقط با پیگیری کلاس اصلی CreateAuthor است:
var command = new CreateAuthor.Command { AuthorDto = authorDto };
var author = await mediator.Send(command, ct);

در مورد کوئری‌ها هم می‌توان به قالب مشابهی رسید که در اینجا هم کوئری و هندلر آن، ذیل نام اصلی مدنظر قرار می‌گیرند:
public static class GetAllAuthors
{
    public class Query : IRequest<List<AuthorGetDto>>
    {
       //...
    }

    public class Handler : IRequestHandler<Query, List<AuthorGetDto>>
    {
       //...
    }
}
و اگر کدهای نهایی این سری را که از قسمت اول قابل دریافت است بررسی کنید، از همین ساختار یکدست، برای تعاریف دستورات و کوئری‌ها استفاده شده‌است.
نظرات مطالب
Blazor 5x - قسمت 33 - احراز هویت و اعتبارسنجی کاربران Blazor WASM - بخش 3- بهبود تجربه‌ی کاربری عدم دسترسی‌ها
یا اگر نمونه‌ی AuthorizationHandler سفارشی آن‌را نیاز داشتید، به صورت زیر است:
- ابتدا یک IAuthorizationRequirement و AuthorizationHandler سفارشی را ایجاد می‌کنیم که در هندلر آن دسترسی کاملی به اطلاعات کاربر وارد شده‌ی به سیستم وجود دارد:
public class UserCanSeeProjectRequirement : IAuthorizationRequirement
{
    public UserCanSeeProjectRequirement() { }

}


public class UserCanSeeProjectHandler : AuthorizationHandler<UserCanSeeProjectRequirement>
{
    protected override Task HandleRequirementAsync(AuthorizationHandlerContext context, 
                                                   UserCanSeeProjectRequirement requirement)
    {
        //claim-based validation
        if (context.User.HasClaim("permission.cansee", "CanSee"))
                context.Succeed(requirement);

        //role-based validation
        if (context.User.IsInRole("admin") || context.User.IsInRole("user"))
                context.Succeed(requirement);

        return Task.CompletedTask;
    }
}
سپس نیاز است این اطلاعات را به برنامه‌ی کلاینت معرفی کرد:
namespace BlazorWasm.Client
{
    public class Program
    {
        public static async Task Main(string[] args)
        {
            // ...

            services.AddScoped<IAuthorizationHandler, UserCanSeeProjectHandler>();
            services.AddAuthorizationCore(options => {
                options.AddPolicy("UserCanSeeProjectPolicy", policy => policy.Requirements.Add(new UserCanSeeProjectRequirement()));
            });

            // ...
        }
    }
}
و در نهایت می‌توان Policy جدید فوق را که با نام UserCanSeeProjectPolicy معرفی شده، یا به صورت زیر در ابتدای یک صفحه:
@attribute [Authorize(Policy = "UserCanSeeProjectPolicy")]
و یا در قسمتی از آن صفحه استفاده کرد:
<AuthorizeView Policy="UserCanSeeProjectPolicy">
    <NotAuthorized>
       <h2 class="mt-5">You are not authorized to view this page</h2>
    </NotAuthorized>
    <Authorized>
      <div class="container my-profile">
        --- Place here all the content you want your user to view ----
      </div>
    </Authorized>
</AuthorizeView>