مطالب
درخت‌ها و گراف‌ها قسمت اول
در این مقاله یکی از ساختارهای داده را به نام ساختارهای درختی و گراف‌ها معرفی کردیم و در این مقاله قصد داریم این نوع ساختار را بیشتر بررسی نماییم. این ساختارها برای بسیاری از برنامه‌های مدرن و امروزی بسیار مهم هستند. هر کدام از این ساختارهای داده به حل یکی از مشکلات دنیای واقعی می‌پردازند. در این مقاله قصد داریم به مزایا و معایب هر کدام از این ساختار‌ها اشاره کنیم و اینکه کی و کجا بهتر است از کدام ساختار استفاده گردد. تمرکز ما بر درخت هایی دودویی، درخت‌های جست و جوی دو دویی و درخت‌های جست و جوی دو دویی متوازن خواهد بود. همچنین ما به تشریح گراف و انواع آن خواهیم پرداخت. اینکه چگونه آن را در حافظه نمایش دهیم و اینکه گراف‌ها در کجای زندگی واقعی ما یا فناوری‌های کامپیوتری استفاده می‌شوند.

ساختار درختی
در بسیاری از مواقع ما با گروهی از اشیاء یا داده‌هایی سر و کار داریم که هر کدام از آن‌ها به گروهی دیگر مرتبط هستند. در این حالت از ساختار خطی نمی‌توانیم برای توصیف این ارتباط استفاده کنیم. پس بهترین ساختار برای نشان دادن این ارتباط ساختار شاخه ای Branched Structure است.
یک ساختار درختی یا یک ساختار شاخه‌ای شامل المان‌هایی به اسم گره Node است. هر گره می‌تواند به یک یا چند گره دیگر متصل باشد و گاهی اوقات این اتصالات مشابه یک سلسه مراتب hierarchically می‌شوند.
درخت‌ها در برنامه نویسی جایگاه ویژه‌ای دارند به طوری که استفاده‌ی از آن‌ها در بسیاری از برنامه‌ها وجود دارد و بسیاری از مثال‌های واقعی پیرامون ما را پشتیبانی می‌کنند.
در نمودار زیر مثالی وجود دارد که در آن یک تیم نرم افزاری نمایش داده شده‌است. در اینجا هر یک از بخش‌ها وظایف و مسئولیت‌هایی را بر دوش خود دارند که این مسئولیت‌ها به صورت سلسله مراتبی در تصویر زیر نمایش داده شده‌اند.

ما در ساختار بالا متوجه می‌شویم که چه بخشی زیر مجموعه‌ی چه بخشی است و سمت بالاتر هر بخش چیست. برای مثال ما متوجه شدیم که مدیر توسعه دهندگان، "سرپرست تیم" است که خود نیز مادون "مدیر پروژه" است و این را نیز متوجه می‌شویم که مثلا توسعه دهنده‌ی شماره یک هیچ مادونی ندارد و مدیر پروژه در راس همه است و هیچ مدیر دیگری بالای سر او قرار ندارد.

اصطلاحات درخت
برای اینکه بیشتر متوجه روابط بین اشیا در این ساختار بشویم، به شکل زیر خوب دقت کنید:

در شکل بالا دایره‌هایی برای هر بخش از اطلاعت کشیده شده و ارتباط هر کدام از آن‌ها از طریق یک خط برقرار شده است. اعداد داخل هر دایره تکراری نیست و همه منحصر به فرد هستند. پس وقتی از اعداد اسم ببریم متوجه می‌شویم که در مورد چه چیزی صحبت می‌کنیم.

در شکل بالا به هر یک از دایره‌ها یک گره Node می‌گویند و به هر خط ارتباط دهنده بین گره‌ها لبه Edge گفته می‌شود. گره‌های 19 و 21 و 14 زیر گره‌های گره 7 محسوب می‌شوند. گره‌هایی که به صورت مستقیم به زیر گره‌های خودشان اشاره می‌کنند را گره‌های والد Parent می‌گویند و زیرگره‌های 7 را گره‌های فرزند ChildNodes. پس با این حساب می‌توانیم بگوییم گره‌های 1 و 12 و 31 را هم فرزند گره 19 هستند و گره 19 والد آن هاست. همچنین گره‌های یک والد را مثل 19 و 21 و 14 که والد مشترک دارند، گره‌های خواهر و برادر یا حتی همنژاد Sibling می‌گوییم. همچنین ارتباط بین گره 7 و گره‌های سطح دوم  و الی آخر یعنی 1 و 12 و 31 و 23 و 6 را که والد بودن آن به صورت غیر مستقیم است را جد یا ancestor می‌نامیم و نوه‌ها و نتیجه‌های آن‌ها را نسل descendants.

ریشه Root: به گره‌ای می‌گوییم که هیچ والدی ندارد و خودش در واقع اولین والد محسوب می‌شود؛ مثل گره 7.

برگ  Leaf: به گره‌هایی که هیچ فرزندی ندارند، برگ می‌گوییم. مثال گره‌های 1 و12 و 31 و 23 و 6

گره‌های داخلی Internal Nodes: گره هایی که نه برگ هستند و نه ریشه. یعنی حداقل یک فرزند دارند و خودشان یک گره فرزند محسوب می‌شوند؛ مثل گره‌های 19 و 14.

مسیر Path: راه رسیدن از یک گره به گره دیگر را مسیر می‌گویند. مثلا گره‌های 1 و 19 و 7 و 21 به ترتیب یک مسیر را تشکیل می‌دهند ولی گره‌های 1 و 19 و 23 از آن جا که هیچ جور اتصالی بین آن‌ها نیست، مسیری را تشکیل نمی‌دهند.

طول مسیر Length of Path: به تعداد لبه‌های یک مسیر، طول مسیر می‌گویند که می‌توان از تعداد گره‌ها -1 نیز آن را به دست آورد. برای نمونه : مسیر 1 و19 و 7 و 21 طول مسیرشان 3 هست.

عمق Depth: طول مسیر یک گره از ریشه تا آن گره را عمق درخت می‌گویند. عمق یک ریشه همیشه صفر است و برای مثال در درخت بالا، گره 19 در عمق یک است و برای گره 23 عمق آن 2 خواهد بود.

تعریف خود درخت Tree: درخت یک ساختار داده برگشتی recursive است که شامل گره‌ها و لبه‌ها، برای اتصال گره‌ها به یکدیگر است.

جملات زیر در مورد درخت صدق می‌کند:

  • هر گره می‌تواند فرزند نداشته باشد یا به هر تعداد که می‌خواهد فرزند داشته باشد.
  • هر گره یک والد دارد و تنها گره‌ای که والد ندارد، گره ریشه است (البته اگر درخت خالی باشد هیچ گره ای وجود ندارد).
  • همه گره‌ها از ریشه قابل دسترسی هستند و برای دسترسی به گره مورد نظر باید از ریشه تا آن گره، مسیری را طی کرد.
ار تفاع درخت Height: به حداکثر عمق یک درخت، ارتفاع درخت می‌گویند.
درجه گره Degree: به تعداد گره‌های فرزند یک گره، درجه آن گره می‌گویند. در درخت بالا درجه گره‌های 7 و 19 سه است. درجه گره 14 دو است و درجه برگ‌ها صفر است.
ضریب انشعاب Branching Factor: به حداکثر درجه یک گره در یک درخت، ضریب انشعاب آن درخت گویند.

پیاده سازی درخت

برای پیاده سازی یک درخت، از دو کلاس یکی جهت ساخت گره که حاوی اطلاعات است <TreeNode<T و دیگری جهت ایجاد درخت اصلی به همراه کلیه متدها و خاصیت هایش <Tree<T کمک می‌‌گیریم.

public class TreeNode<T>
{
    // شامل مقدار گره است
    private T value;
 
    // مشخص می‌کند که آیا گره والد دارد یا خیر
    private bool hasParent;
 
    // در صورت داشتن فرزند ، لیست فرزندان را شامل می‌شود
    private List<TreeNode<T>> children;
 
    /// <summary>سازنده کلاس </summary>
    /// <param name="value">مقدار گره</param>
    public TreeNode(T value)
    {
        if (value == null)
        {
            throw new ArgumentNullException(
                "Cannot insert null value!");
        }
        this.value = value;
        this.children = new List<TreeNode<T>>();
    }
 
    /// <summary>خاصیتی جهت مقداردهی گره</summary>
    public T Value
    {
        get
        {
            return this.value;
        }
        set
        {
            this.value = value;
        }
    }
 
    /// <summary>تعداد گره‌های فرزند را بر میگرداند</summary>
    public int ChildrenCount
    {
        get
        {
            return this.children.Count;
        }
    }
 
    /// <summary>به گره یک فرزند اضافه می‌کند</summary>
    /// <param name="child">آرگومان این متد یک گره است که قرار است به فرزندی گره فعلی در آید</param>
    public void AddChild(TreeNode<T> child)
    {
        if (child == null)
        {
            throw new ArgumentNullException(
                "Cannot insert null value!");
        }
 
        if (child.hasParent)
        {
            throw new ArgumentException(
                "The node already has a parent!");
        }
 
        child.hasParent = true;
        this.children.Add(child);
    }
 
    /// <summary>
    /// گره ای که اندیس آن داده شده است بازگردانده می‌شود
    /// </summary>
    /// <param name="index">اندیس گره</param>
    /// <returns>گره بازگشتی</returns>
    public TreeNode<T> GetChild(int index)
    {
        return this.children[index];
    }
}
 
/// <summary>این کلاس ساختار درخت را به کمک کلاس گره‌ها که در بالا تعریف کردیم میسازد</summary>
/// <typeparam name="T">نوع مقادیری که قرار است داخل درخت ذخیره شوند</typeparam>
public class Tree<T>
{
    // گره ریشه
    private TreeNode<T> root;
 
    /// <summary>سازنده کلاس</summary>
    /// <param name="value">مقدار گره اول که همان ریشه می‌شود</param>
    public Tree(T value)
    {
        if (value == null)
        {
            throw new ArgumentNullException(
                "Cannot insert null value!");
        }
 
        this.root = new TreeNode<T>(value);
    }
 
    /// <summary>سازنده دیگر برای کلاس درخت</summary>
    /// <param name="value">مقدار گره ریشه مثل سازنده اول</param>
    /// <param name="children">آرایه ای از گره‌ها که فرزند گره ریشه می‌شوند</param>
    public Tree(T value, params Tree<T>[] children)
        : this(value)
    {
        foreach (Tree<T> child in children)
        {
            this.root.AddChild(child.root);
        }
    }
 
    /// <summary>
    /// ریشه را بر میگرداند ، اگر ریشه ای نباشد نال بر میگرداند
    /// </summary>
    public TreeNode<T> Root
    {
        get
        {
            return this.root;
        }
    }
 
    /// <summary>پیمودن عرضی و نمایش درخت با الگوریتم دی اف اس </summary>
    /// <param name="root">ریشه (گره ابتدایی) درختی که قرار است پیمایش از آن شروع شود</param>
    /// <param name="spaces">یک کاراکتر جهت جداسازی مقادیر هر گره</param>
    private void PrintDFS(TreeNode<T> root, string spaces)
    {
        if (this.root == null)
        {
            return;
        }
 
        Console.WriteLine(spaces + root.Value);
 
        TreeNode<T> child = null;
        for (int i = 0; i < root.ChildrenCount; i++)
        {
            child = root.GetChild(i);
            PrintDFS(child, spaces + "   ");
        }
    }
 
    /// <summary>متد پیمایش درخت به صورت عمومی که تابع خصوصی که در بالا توضیح دادیم را صدا می‌زند</summary>
    public void TraverseDFS()
    {
        this.PrintDFS(this.root, string.Empty);
    }
}
 
/// <summary>
/// کد استفاده از ساختار درخت
/// </summary>
public static class TreeExample
{
    static void Main()
    {
        // Create the tree from the sample
        Tree<int> tree =
            new Tree<int>(7,
                new Tree<int>(19,
                    new Tree<int>(1),
                    new Tree<int>(12),
                    new Tree<int>(31)),
                new Tree<int>(21),
                new Tree<int>(14,
                    new Tree<int>(23),
                    new Tree<int>(6))
            );
 
        // پیمایش درخت با الگوریتم دی اف اس یا عمقی
        tree.TraverseDFS();
 
        // خروجی
        // 7
        //       19
        //        1
        //        12
        //        31
        //       21
        //       14
        //        23
        //        6
    }
}
کلاس TreeNode وظیفه‌ی ساخت گره را بر عهده دارد و با هر شیء‌ایی که از این کلاس می‌سازیم، یک گره ایجاد می‌کنیم که با خاصیت Children و متد AddChild آن می‌توانیم هر تعداد گره را که می‌خواهیم به فرزندی آن گره در آوریم که باز خود آن گره می‌تواند در خاصیت Children یک گره دیگر اضافه شود. به این ترتیب با ساخت هر گره و ایجاد رابطه از طریق خاصیت children هر گره درخت شکل می‌گیرد. سپس گره والد در ساختار کلاس درخت Tree قرار می‌گیرد و این کلاس شامل متدهایی است که می‌تواند روی درخت، عملیات پردازشی چون پیمایش درخت را انجام دهد.


پیمایش درخت به روش عمقی (DFS (Depth First Search

هدف از پیمایش درخت ملاقات یا بازبینی (تهیه لیستی از همه گره‌های یک درخت) تنها یکبار هر گره در درخت است. برای این کار الگوریتم‌های زیادی وجود دارند که ما در این مقاله تنها دو روش DFS و BFS را بررسی می‌کنیم.

روش DFS: هر گره‌ای که به تابع بالا بدهید، آن گره برای پیمایش، گره ریشه حساب خواهد شد و پیمایش از آن آغاز می‌گردد. در الگوریتم DFS روش پیمایش بدین گونه است که ما از گره ریشه آغاز کرده و گره ریشه را ملاقات می‌کنیم. سپس گره‌های فرزندش را به دست می‌آوریم و یکی از گره‌ها را انتخاب کرده و دوباره همین مورد را رویش انجام می‌دهیم تا نهایتا به یک برگ برسیم. وقتی که به برگی می‌رسیم یک مرحله به بالا برگشته و این کار را آنقدر تکرار می‌کنیم تا همه‌ی گره‌های آن ریشه یا درخت پیمایش شده باشند.

همین درخت را در نظر بگیرید:


 پیمایش درخت را از گره 7 آغاز می‌کنیم و آن را به عنوان ریشه در نظر می‌گیریم. حتی می‌توانیم پیمایش را از گره مثلا 19 آغاز کنیم و آن را برای پیمایش ریشه در نظر بگیریم ولی ما از همان 7 پیمایش را آغاز می‌کنیم:

ابتدا گره 7 ملاقات شده و آن را می‌نویسیم. سپس فرزندانش را بررسی می‌کنیم که سه فرزند دارد. یکی از فرزندان مثل گره 19 را انتخاب کرده و آن را ملاقات می‌کنیم (با هر بار ملاقات آن را چاپ می‌کنیم) سپس فرزندان آن را بررسی می‌کنیم و یکی از گره‌ها را انتخاب می‌کنیم و ملاقاتش می‌کنیم؛ برای مثال گره 1. از آن جا که گره یک، برگ است و فرزندی ندارد یک مرحله به سمت بالا برمی‌گردیم و برگ‌های 12 و 31 را هم ملاقات می‌کنیم. حالا همه‌ی فرزندان گره 19 را بررسی کردیم، بر می‌گردیم یک مرحله به سمت بالا و گره 21 را ملاقات می‌کنیم و از آنجا که گره 21 برگ است و فرزندی ندارد به بالا باز می‌گردیم و بعد گره 14 و فرزندانش 23 و 6 هم بررسی می‌شوند. پس ترتیب چاپ ما اینگونه می‌شود:

7-19-1-12-31-21-14-23-6


پیمایش درخت به روش (BFS (Breadth First Search 

در این روش (پیمایش سطحی) گره والد ملاقات شده و سپس همه گره‌های فرزندش ملاقات می‌شوند. بعد از آن یک گره انتخاب شده و همین پیمایش مجددا روی آن انجام می‌شود تا آن سطح کاملا پیمایش شده باشد. سپس به همین مرحله برگشته و فرزند بعدی را پیمایش می‌کنیم و الی آخر. نمونه‌ی این پیمایش روی درخت بالا به صورت زیر نمایش داده می‌شود:

7-19-21-14-1-12-31-23-6

اگر خوب دقت کنید می‌بینید که پیمایش سطحی است و هر سطح به ترتیب ملاقات می‌شود. به این الگوریتم، پیمایش موجی هم می‌گویند. دلیل آن هم این است که مثل سنگی می‌ماند که شما برای ایجاد موج روی دریاچه پرتاب می‌کنید.

برای این پیمایش از صف کمک گرفته می‌شود که مراحل زیر روی صف صورت می‌گیرد:

  • ریشه  وارد صف Q می‌شود.
  • دو مرحله زیر مرتبا تکرار می‌شوند:
  1. اولین گره صف به نام V را از Q در یافت می‌کنیم و آن را چاپ می‌کنیم.
  2. فرزندان گره V  را به صف اضافه می‌کنیم.
این نوع پیمایش، پیاده سازی راحتی دارد و همیشه نزدیک‌ترین گره‌ها به ریشه را می‌خواند و در هر مرحله گره‌هایی که می‌خواند از ریشه دورتر و دورتر می‌شوند.
نظرات اشتراک‌ها
کمپین درخواست از github
نات فریمن  : «فعلا تونستیم کاری کنیم که افراد بتونن ریپازیتوری‌هاشون رو پابلیک کنن تا بهش دسترسی داشته باشن، طبق فهم ما از قانون فعلا نمی‌تونیم کار بیشتری کنیم...» 


اشتراک‌ها
افزونه محاسبه میزان ساعت کار بر روی پروژه در VSCode
  • محاسبه ساعت کارکرد به تفکیک ساعت و روز هفته
  • محاسبه زمان کار بر روی پروژه در محل کار و خارج از محل کار
  • محاسبه تعداد خط‌های اضافه شده و حدف شده
  • محاسبه سرعت کد نویسی و ...
  • گزارش به دو صورت فایل و پنل کاربری



افزونه محاسبه میزان ساعت کار بر روی پروژه در VSCode
مطالب
OpenCVSharp #13
تشخیص قسمت‌های مشابه تصاویر در OpenCV

در شکل زیر، دو تصویر سمت چپ و راست، اندکی با هم تفاوت دارند و در تصویر سوم، نقاط مشابه یافت شده‌ی توسط OpenCV ترسیم شده‌اند:


کدهای مثال فوق را در ذیل مشاهده می‌کنید:
var img1 = new Mat(@"..\..\Images\left.png", LoadMode.GrayScale);
Cv2.ImShow("Left", img1);
Cv2.WaitKey(1); // do events
 
var img2 = new Mat(@"..\..\Images\right.png", LoadMode.GrayScale);
Cv2.ImShow("Right", img2);
Cv2.WaitKey(1); // do events
 
 
// detecting keypoints
// FastFeatureDetector, StarDetector, SIFT, SURF, ORB, BRISK, MSER, GFTTDetector, DenseFeatureDetector, SimpleBlobDetector
// SURF = Speeded Up Robust Features
var detector = new SURF(hessianThreshold: 400); //SurfFeatureDetector
var keypoints1 = detector.Detect(img1);
var keypoints2 = detector.Detect(img2);
 
// computing descriptors, BRIEF, FREAK
// BRIEF = Binary Robust Independent Elementary Features
var extractor = new BriefDescriptorExtractor();
var descriptors1 = new Mat();
var descriptors2 = new Mat();
extractor.Compute(img1, ref keypoints1, descriptors1);
extractor.Compute(img2, ref keypoints2, descriptors2);
 
// matching descriptors
var matcher = new BFMatcher();
var matches = matcher.Match(descriptors1, descriptors2);
 
// drawing the results
var imgMatches = new Mat();
Cv2.DrawMatches(img1, keypoints1, img2, keypoints2, matches, imgMatches);
Cv2.ImShow("Matches", imgMatches);
Cv2.WaitKey(1); // do events
 
Cv2.WaitKey(0);
 
Cv2.DestroyAllWindows();
img1.Dispose();
img2.Dispose();
در ابتدا نیاز به یک تشخیص دهنده یا Detector داریم. در OpenCVSharp، الگوریتم‌ها و کلاس‌های FastFeatureDetector, StarDetector, SIFT, SURF, ORB, BRISK, MSER, GFTTDetector, DenseFeatureDetector, SimpleBlobDetector برای اینکار قابل استفاده هستند. برای مثال در اینجا از الگوریتم SURF آن استفاده شده‌است.
کار این تشخیص دهنده، تشخیص نقاط کلیدی تصاویر است. برای مثال تشخیص گوشه‌ها، لبه‌ها و غیره.
سپس اطلاعات نواحی اطراف هر نقطه‌ی کلیدی را تحت عنوان descriptors استخراج می‌کنیم.
بعد از محاسبه‌ی نقاط کلیدی هر تصویر، اینبار نیاز است این نقاط را بین دو تصویر با هم مقایسه کرد و مشابه‌ها را یافت. برای مثال الگوریتم BFMatcher یک Brute force matcher است که بر اساس اطلاعات نواحی اطراف هر نقطه‌ی کلیدی، سعی در یافتن نقاط مشابه می‌کند.
پس از یافتن نقاط مشابه، نیاز است بر اساس آن‌ها نگاشتی بین دو تصویر صورت گیرد و مشابه‌ها ترسیم شوند. متد DrawMatches این‌کار را انجام می‌شود.

اگر علاقمند هستید که با ریز جزئیات ریاضی الگوریتم‌های استفاده شده نیز آشنا شوید، سری مطالب descriptors را دنبال نمائید.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
مطالب
اجزاء معماری سیستم عامل اندروید :: بخش دوم
در مطلب قبلی در مورد سه ویژگی اصلی معماری اندروید توضیحاتی ارائه شد و در این مطلب ویژگی آخر از این معماری را توضیح خواهم داد:

Applications در معماری اندروید چه کاربردی دارد؟
اجزای یک اپلیکیشن در پلتفرم اندروید جزء اصلی ارائه به کاربر نهایی می‌باشد؛ بدین معنا که کاربر تنها با برنامه در ارتباط است و سیستم عامل، میزبان آن برنامه یا اپلیکیشن خواهد بود. اپلیکیشن جاییست که لیست تماس‌ها، شماره تلفن‌ها، پیام‌های کاربر و ... در آنجا قرار می‌گیرند و با دیگر اجزای نرم افزاری در ارتباط هستند!
بعنوان یک توسعه دهنده اندروید، محصول نهایی، در قالب یک اپلیکیشن با استفاده از API‌ها و کتابخانه‌ها و همچنین ماشین مجازی دال‌ویک اجرا می‌شوند. اگر شما بتوانید تغییراتی را در سیستم عامل اصلاح و ویرایش کنید، تنها در سطوح لایه‌های نرم افزاری اعمال میشود و شما بر روی امنیت برنامه یا اپلیکیشن درون هسته دسترسی لازم را ندارید و این یک معضل است و باید در لایه‌های اولیه برنامه، امنیت را بر روی برنامه اعمال کنید.
با این وجود اگر هسته یا دستگاه آسیب ببیند و مورد سوءاستفاده قرار بگیرد کاری از دست شما برنمی آید!


Security به معنای ایمنی یا امنیت در اندروید به چه معناست؟
ایمنی یا امنیت در اندروید، موضوع بسیار وسیعی است که در ابعاد مختلف این پلتفرم قابل بحث است. اول اجازه دهید هویت شما را تشخیص دهیم. آیا شما یک توسعه دهنده هستید؟ یا شاید شما یک کاربر عادی هستید که به حفاظت از خودتان از یک حمله اینترنتی علاقمندید! در هر صورت، شما در حال نوشتن یک برنامه هستید که به وسیله یک نفر دیگر و یا احتمالا هزاران نفر در هزاران مایل دورتر نصب خواهد شد.


از کاربر خود در یک برنامه محافظت کنید!
برنامه شما باید تلاش کند تا بهترین عملکرد ممکن را در زمان ارائه محصول نهایی داشته باشد. از داده‌های کاربران خود محافظت کنید، یعنی قبل از اینکه شروع به توسعه کنید، درباره امنیت محصول خود فکر کنید. ممکن است کاربری که در هزاران مایل دورتر از شما قرار دارد در خصوص امنیتی که شما بر روی برنامه خود اعمال کرده‌اید اطلاعاتی نداشته باشد و شما شاید امنیت داده‌های او را نقض کنید که این معادل عدم اطمینان همان شخص نسبت به شما خواهد بود! برنامه‌ریزی درباره امنیت، پیش از توسعه یک محصول می‌تواند باعث شود که شما از بررسی‌های بد و از دست دادن ضررهای بعد از آن جلوگیری کنید. پس یک برنامه برای حفاظت از داده‌های درون اپلیکیشن خود ایجاد کنید! برنامه‌ای که هم کاربردی باشد، هم از اطلاعات کاربران محافظت نماید.


خطرات امنیتی (Security Risks)  
کاربران دستگاه‌های تلفن همراه در مقایسه با کاربران دسکتاپ، با برخی مخاطرات منحصر به فردی مواجه هستند که نباید نادیده گرفته شود. صرف‌نظر از امکان از دست دادن تجهیزات سخت افزاری، اطلاعات، حریم خصوصی و داده‌های محرمانه شخصی کاربران دستگاه تلفن همراه را به خطر می‌اندازند. چرا این موضوع در پلتفرم جامع اندروید تا این حد پر اهمیت است؟ آیا شما بعنوان توسعه دهنده به این نکات دقت داشته‌اید؟
اول اینکه، کیفیت داده‌های ذخیره‌شده در دستگاه‌های تلفن همراه کاربر بیشتر شخصی می‌شود تا مواردی دیگر! به غیر از ایمیل، پیام‌های فوری، SMS / MMS ، لاگ تماس‌ها، عکس‌ها و پست صوتی وجود دارند که عموما توسعه دهندگان را دچار مشکل می‌کند. 

برخی از گزینه‌های فوق بر روی یک کامپیوتر رومیزی هم وجود دارند، ولی اهمیت این داده‌ها بر روی اندروید و اجزای آن اهمیت فوق العاده‌ای دارد. اطلاعات روی دستگاه موبایل شما به احتمال زیاد از ارزش بیشتری برخوردار خواهد بود، چرا که آن‌ها را در یک صفحه 4 - 5 اینچی به همراه خود حمل می‌کنید و با خود هر کجا می‌برید! این حالت، یک پلتفرم همگرا را بوجود می‌آورد؛ به این دلیل که سیستم رومیزی شما و تلفن همراه یک مجموعه غنی و کامل از اطلاعات حساس هستند که هردوی آنها شامل اطلاعات شخصی می‌باشند و برای شما اهمیت زیادی خواهند داشت. تصور کنید زمانیکه برای جلوگیری از نفوذ یا به سرقت رفتن شماره تلفن‌های خود، یک پشتیبان بر روی سیستم رو میزی خود تهیه می‌کنید و فایل پشتیبان شماره‌های تماس را بر روی سیستم شخصی نگه داری می‌کنید! آیا این همان پلتفرم همگرا نیست؟ آیا این دو سیستم مکمل هم نیستند؟حتی اگر همگام‌سازی را با یک مکان دوردست (Google Drive) انجام دهید، با این حال شما فقط در مقابل از دست دادن داده‌ها محافظت کرده‌اید و نه از دست دادن حریم خصوصی! 

همچنین در نظر بگیرید که فرمت داده‌های ذخیره‌شده در دستگاه‌های تلفن همراه، تعیین و مشخص شوند! این کار اطلاعات حساس شما را به مرز سرقت نزدیکتر می‌کند. هر تلفن همراه SMS / MMS ، تماس‌ها، و پست صوتی خواهد داشت. مکان‌های ذخیره شده از روی GPS و مواردی دیگر که قطعا اطلاع دارید، تمامی اینها جزء مواردی هستند که خطرات امنیتی را در سیستم عامل اندروید شامل می‌شود. حالا در نظر بگیرید که این اطلاعات تا چه حد مهم است؟ برای کاربرانی که هیچ گونه پشتیبانی از اطلاعاتی از خود ندارند، از دست دادن داده‌ها قابل تصور نیست!

خطرناکترین نوع حملات بر روی پلتفرم اندروید انجام می‌شوند، در سکوت کامل و چندین هزار مایل دروتر از شما و فرد مهاجم نیازی به دسترسی فیزیکی و لمس تلفن همراه شما نخواهد داشت! این نوع حملات در هر زمانی ممکن است رخ دهد و اغلب می‌تواند به دلیل امنیت ضعیف در جای دیگری بر روی دستگاه رخ دهد.

در مطلب بعدی پیرامون امنیت معماری اندروید صبحت خواهیم کرد...

مطالب
React 16x - قسمت 22 - ارتباط با سرور - بخش 1 - برپایی تنظیمات
هر برنامه‌ی وب، دارای یک frontend و یک backend است. تا اینجا، تمام تمرکز این سری، بر روی پیاده سازی frontend بود و هیچکدام از برنامه‌هایی را که تکمیل کردیم، تبادل اطلاعاتی را با وب سرویس‌های backend نداشتند؛ اما به عنوان یک توسعه دهنده‌ی React، نیاز است با نحوه‌ی ارتباط با سرور آشنایی داشت که در طی چند قسمت به آن می‌پردازیم.


ایجاد برنامه‌ی backend ارائه دهنده‌ی REST API

در اینجا یک برنامه‌ی ساده‌ی ASP.NET Core Web API را جهت تدارک سرویس‌های backend، مورد استفاده قرار می‌دهیم. هرچند این مورد الزامی نبوده و اگر علاقمند بودید که مستقل از آن کار کنید، حتی می‌توانید از سرویس آنلاین JSONPlaceholder نیز برای این منظور استفاده کنید که یک Fake Online REST API است. کار آن ارائه‌ی یک سری endpoint است که به صورت عمومی از طریق وب قابل دسترسی هستند. می‌توان به این endpintها درخواست‌های HTTP خود را مانند GET/POST/DELETE/UPDATE ارسال کرد و از آن اطلاعاتی را دریافت نمود و یا تغییر داد. به هر کدام از این endpointها یک API گفته می‌شود که جهت آزمایش برنامه‌ها بسیار مناسب هستند. برای نمونه در قسمت resources آن اگر به آدرس https://jsonplaceholder.typicode.com/posts مراجعه کنید، می‌توان لیستی از مطالب را با فرمت JSON مشاهده کرد. کار آن ارائه‌ی آرایه‌ای از اشیاء جاوا اسکریپتی قابل استفاده‌ی در برنامه‌های frontend است. بنابراین زمانیکه یک HTTP GET را به این endpoint ارسال می‌کنیم، آرایه‌ای از اشیاء مطالب را دریافت خواهیم کرد. همین endpoint، امکان تغییر این اطلاعات را توسط برای مثال HTTP Delete نیز میسر کرده‌است.

اگر علاقمندید بودید می‌توانید از JSONPlaceholder استفاده کنید و یا در ادامه دقیقا ساختار همین endpoint ارائه‌ی مطالب آن‌را با ASP.NET Core Web API نیز پیاده سازی می‌کنیم (برای مطالعه‌ی قسمت «ارتباط با سرور» اختیاری است و از هر REST API مشابهی که توسط nodejs یا PHP و غیره تولید شده باشد نیز می‌توان استفاده کرد):

مدل مطالب
namespace sample_22_backend.Models
{
    public class Post
    {
        public int Id { set; get; }
        public string Title { set; get; }
        public string Body { set; get; }

        public int UserId { set; get; }
    }
}
ساختار این مدل، با ساختار مدل مطالب JSONPlaceholder یکی درنظر گرفته شده‌است، تا مطلب قابلیت پیگیری بیشتری را پیدا کند.


منبع داده‌ی فرضی مطالب

برای ارائه‌ی ساده‌تر برنامه، یک منبع داده‌ی درون حافظه‌ای را به همراه یک سرویس، در اختیار کنترلر مطالب، قرار می‌دهیم:
using System;
using System.Collections.Generic;
using System.Linq;
using sample_22_backend.Models;

namespace sample_22_backend.Services
{
    public interface IPostsDataSource
    {
        List<Post> GetAllPosts();
        bool DeletePost(int id);
        Post AddPost(Post post);
        bool UpdatePost(int id, Post post);
        Post GetPost(int id);
    }

    /// <summary>
    /// هدف صرفا تهیه یک منبع داده آزمایشی ساده تشکیل شده در حافظه است
    /// </summary>
    public class PostsDataSource : IPostsDataSource
    {
        private readonly List<Post> _allPosts;

        public PostsDataSource()
        {
            _allPosts = createDataSource();
        }

        public List<Post> GetAllPosts()
        {
            return _allPosts;
        }

        public Post GetPost(int id)
        {
            return _allPosts.Find(x => x.Id == id);
        }

        public bool DeletePost(int id)
        {
            var item = _allPosts.Find(x => x.Id == id);
            if (item == null)
            {
                return false;
            }

            _allPosts.Remove(item);
            return true;
        }

        public Post AddPost(Post post)
        {
            var id = 1;
            var lastItem = _allPosts.LastOrDefault();
            if (lastItem != null)
            {
                id = lastItem.Id + 1;
            }

            post.Id = id;
            _allPosts.Add(post);
            return post;
        }

        public bool UpdatePost(int id, Post post)
        {
            var item = _allPosts
                .Select((pst, index) => new { Item = pst, Index = index })
                .FirstOrDefault(x => x.Item.Id == id);
            if (item == null || id != post.Id)
            {
                return false;
            }

            _allPosts[item.Index] = post;
            return true;
        }

        private static List<Post> createDataSource()
        {
            var list = new List<Post>();
            var rnd = new Random();
            for (var i = 1; i < 10; i++)
            {
                list.Add(new Post { Id = i, UserId = rnd.Next(1, 1000), Title = $"Title {i} ...", Body = $"Body {i} ..." });
            }
            return list;
        }
    }
}
در این سرویس، نیازمندی‌های کنترلر مطالب مانند ارائه لیست تمام مطالب، نمایش اطلاعات یک مطلب، به روز رسانی، ایجاد و حذف یک مطلب، تدارک دیده شده‌اند. سپس از این سرویس در کنترلر زیر استفاده می‌کنیم:


کنترلر Web API برنامه‌ی backend

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using sample_22_backend.Models;
using sample_22_backend.Services;

namespace sample_22_backend.Controllers
{
    [ApiController]
    [Route("api/[controller]")]
    public class PostsController : ControllerBase
    {
        private readonly IPostsDataSource _postsDataSource;

        public PostsController(IPostsDataSource postsDataSource)
        {
            _postsDataSource = postsDataSource;
        }

        [HttpGet]
        public ActionResult<List<Post>> GetPosts()
        {
            return _postsDataSource.GetAllPosts();
        }

        [HttpGet("{id}")]
        public ActionResult<Post> GetPost(int id)
        {
            var post = _postsDataSource.GetPost(id);
            if (post == null)
            {
                return NotFound();
            }
            return Ok(post);
        }

        [HttpDelete("{id}")]
        public ActionResult DeletePost(int id)
        {
            var deleted = _postsDataSource.DeletePost(id);
            if (deleted)
            {
                return Ok();
            }
            return NotFound();
        }

        [HttpPost]
        public ActionResult<Post> CreatePost([FromBody]Post post)
        {
            post = _postsDataSource.AddPost(post);
            return CreatedAtRoute(nameof(GetPost), new { post.Id }, post);
        }

        [HttpPut("{id}")]
        public ActionResult<Post> UpdatePost(int id, [FromBody]Post post)
        {
            var updated = _postsDataSource.UpdatePost(id, post);
            if (updated)
            {
                return Ok(post);
            }
            return NotFound();
        }
    }
}
این کنترلر که در مسیر شروع شده‌ی با https://localhost:5001/api قرار می‌گیرد، جهت پشتیبانی از افعال مختلف HTTP مانند Get/Post/Delete/Update طراحی شده‌است که در ادامه، در برنامه‌ی React خود از آن‌ها استفاده خواهیم کرد. پس از ایجاد این پروژه‌ی web api، یک نمونه خروجی آن در مسیر https://localhost:5001/api/posts، به صورت زیر خواهد بود:


البته نمایش فرمت شده‌ی JSON در مرورگر کروم، نیاز به نصب این افزونه را دارد.


ایجاد ساختار ابتدایی برنامه‌ی ارتباط با سرور

در اینجا برای بررسی کار با سرور، یک پروژه‌ی جدید React را ایجاد می‌کنیم:
> create-react-app sample-22-frontend
> cd sample-22-frontend
> npm start
در ادامه توئیتر بوت استرپ 4 را نیز نصب می‌کنیم. برای این منظور پس از باز کردن پوشه‌ی اصلی برنامه توسط VSCode، دکمه‌های ctrl+` را فشرده (ctrl+back-tick) و دستور زیر را در ترمینال ظاهر شده وارد کنید:
> npm install --save bootstrap
سپس برای افزودن فایل bootstrap.css به پروژه‌ی React خود، ابتدای فایل index.js را به نحو زیر ویرایش خواهیم کرد:
import "bootstrap/dist/css/bootstrap.css";
این import به صورت خودکار توسط webpack ای که در پشت صحنه کار bundling & minification برنامه را انجام می‌دهد، مورد استفاده قرار می‌گیرد.

سپس فایل app.js را به شکل زیر تکمیل می‌کنیم:
import "./App.css";

import React, { Component } from "react";

class App extends Component {
  state = {
    posts: []
  };

  handleAdd = () => {
    console.log("Add");
  };

  handleUpdate = post => {
    console.log("Update", post);
  };

  handleDelete = post => {
    console.log("Delete", post);
  };

  render() {
    return (
      <React.Fragment>
        <button className="btn btn-primary mt-1 mb-1" onClick={this.handleAdd}>
          Add
        </button>
        <table className="table">
          <thead>
            <tr>
              <th>Title</th>
              <th>Update</th>
              <th>Delete</th>
            </tr>
          </thead>
          <tbody>
            {this.state.posts.map(post => (
              <tr key={post.id}>
                <td>{post.title}</td>
                <td>
                  <button
                    className="btn btn-info btn-sm"
                    onClick={() => this.handleUpdate(post)}
                  >
                    Update
                  </button>
                </td>
                <td>
                  <button
                    className="btn btn-danger btn-sm"
                    onClick={() => this.handleDelete(post)}
                  >
                    Delete
                  </button>
                </td>
              </tr>
            ))}
          </tbody>
        </table>
      </React.Fragment>
    );
  }
}

export default App;
که حاصل آن، یک دکمه، برای افزودن مطلبی جدید، به همراه جدولی است از مطالب که قصد داریم در ادامه، اطلاعات آن‌را از سرور دریافت کرده و حذف و یا به روز رسانی کنیم:



نگاهی به انواع و اقسام HTTP Client‌های مهیا

در ادامه نیاز خواهیم داشت تا از طریق برنامه‌های React خود، درخواست‌های HTTP را به سمت سرور (یا همان برنامه‌ی backend) ارسال کنیم، تا بتوان اطلاعاتی را از آن دریافت کرد و یا تغییری را در اطلاعات موجود، ایجاد نمود. همانطور که پیشتر نیز در این سری عنوان شد، React برای این مورد نیز راه‌حل توکاری را به همراه ندارد و تنها کار آن، رندر کردن View و مدیریت DOM است. البته شاید این مورد یکی از مزایای کار با React نیز باشد! چون در این حالت می‌توانید از کتابخانه‌هایی که خودتان ترجیح می‌دهید، نسبت به کتابخانه‌هایی که به شما ارائه/تحمیل (!) می‌شوند (مانند برنامه‌های Angular) آزادی انتخاب کاملی را داشته باشید. برای مثال هرچند Angular به همراه یک HTTP Module توکار است، اما تاکنون چندین بار بازنویسی از ابتدا شده‌است! ابتدا با یک کتابخانه‌ی HTTP مقدماتی شروع کردند. بعدی آن‌را منسوخ شده اعلام و با یک ماژول جدید جایگزین کردند. بعد در نگارشی دیگر، چون این کتابخانه وابسته‌است به RxJS و خود RxJS نیز بازنویسی کامل شد، روش کار کردن با این HTTP Module نیز مجددا تغییر پیدا کرد! بنابراین اگر با Angular کار می‌کنید، باید کارها را آنگونه که Angular می‌پسندد، انجام دهید؛ اما در اینجا خیر و آزادی انتخاب کاملی برقرار است.
بنابراین اکنون این سؤال مطرح می‌شود که در React، برای برقراری ارتباط با سرور، چه باید کرد؟ در اینجا آزاد هستید برای مثال از Fetch API جدید مرورگرها و یا روش Ajax ای مبتنی بر XML قدیمی‌تر آن‌ها، استفاده کنید (اطلاعات بیشتر) و یا حتی اگر علاقمند باشید می‌توانید از محصور کننده‌های آن مانند jQuery Ajax استفاده کنید. بنابراین اگر با jQuery Ajax راحت هستید، به سادگی می‌توانید از آن در برنامه‌های React نیز استفاده کنید. اما ... ما در اینجا از یک کتابخانه‌ی بسیار محبوب و قدرتمند HTTP Client، به نام Axios (اکسیوس/ یک واژه‌ی یونانی به معنای «سودمند») استفاده خواهیم کرد که فقط تعداد بار دانلود هفتگی آن، 6 میلیون بار است!


نصب Axios در برنامه‌ی React این قسمت

برای نصب کتابخانه‌ی Axios، در ریشه‌ی پروژه‌ی React این قسمت، دستور زیر را در خط فرمان صادر کنید:
> npm install --save axios
پس از برپایی این مقدمات، ادامه‌ی مطلب «ارتباط با سرور» را در قسمت بعدی پیگیری می‌کنیم.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: sample-22-frontend-part-01.zip و sample-22-backend-part-01.zip
اشتراک‌ها
برنامه‌نویسی و محیط زیست
با پیشرفت فناوری و پررنگ شدن نقش رایانه‌ها و ابزارهای الکترونیک در زندگی روزمره، موضوعات جدیدی نیز باید به آن پرداخته شود. مصرف انرژی در ابزارهای الکترونیک مانند لپ‌تاپ، تبلت، موبایل و رایانه‌های شخصی از این موارد است.
برنامه‌نویسی و محیط زیست
نظرات مطالب
تبدیل HTML به PDF با استفاده از کتابخانه‌ی iTextSharp
از خدا برای شما بهترین ها را آرزو میکنم.امشب مشکل من را حل کردید.امیدوارم که ثمره آن را در زندگی تان ببینی.اگر روزی بدانم میتوانم برایتان کاری انجام بدم و در توانم باشد دریغ نخواهم کرد.همیشه پیروز باشید.

2011/10/21 Disqus <>
نظرات مطالب
وضعیت فناوری‌های مرتبط با دات نت از دیدگاه مرگ و زندگی!
سلام، من داخل ایران زندگی می‌کنم ولی در کل یک سری ویدیو در مورد ASP.NET MVC هست که اکثر تهیه کنندگان آن‌ها افرادی هستند که مشغول تولید نرم افزار برای دولت آمریکا هستند و الان کارشون رو به MVC ارتقاء دادند (از لابلای صحبت‌ها قابل استخراج است): (+)
نظرات نظرسنجی‌ها
آیا تحصیلات دانشگاهی بر روی تخصص و کار شما تاثیر داشته‌است؟
اگر نگاهی به رزومه افراد موفق بیندازیم، اکثر افراد موفق وابستگی به دانشگاه نداشتن و با پشتکار و تلاش خودشون به جایی رسیدن. این موضوع به صراحت در مصاحبات و سریال‌های تولید شده درباره زندگی این افراد بیان شده است.