نظرات مطالب
غیرمعتبر شدن کوکی‌های برنامه‌های ASP.NET Core هاست شده‌ی در IIS پس از ری‌استارت آن
در پروژه‌ی DNTIdentity از این روش استفاده شده‌است. اگر برنامه را اجرا کنید و داخل متدهای کلاس DataProtectionKeyService آن break point قرار دهید، پس از آغاز اولیه برنامه، دیگر فراخوانی نمی‌شوند. بنابراین تاثیر منفی بر روی کارآیی برنامه ندارد.
مطالب
Angular CLI - قسمت پنجم - ساخت و توزیع برنامه
ساخت و توزیع برنامه‌های Angular یکی از مهم‌ترین و بحث برانگیزترین قسمت‌های نگارش‌های جدید آن است و به ازای هر پروژه و قالبی که برای آن توسط گروه‌های مختلف ارائه شده‌است، روش‌های متفاوتی را شاهد خواهید بود. در ادامه روش توصیه شده‌ی توسط تیم Angular را که مبتنی است بر webpack و به صورت خودکار توسط Angular CLI مدیریت می‌شود، بررسی خواهیم کرد.


ساخت (Build) برنامه‌های Angular

Angular CLI کار ساخت و کامپایل برنامه را به صورت خودکار انجام داده و خروجی را در مسیری مشخص درج می‌کند. در اینجا می‌توان گزینه‌هایی را بر اساس نوع کامپایل مدنظر مانند کامپایل برای حالت توسعه و یا کامپایل برای حالت توزیع نهایی، انتخاب کرد. همچنین مباحث bundling و یکی کردن تعداد بالای ماژول‌های برنامه در آن لحاظ می‌شوند تا برنامه در حالت توزیع نهایی، سبب 100ها رفت و برگشت به سرور برای دریافت ماژول‌های مختلف آن نشود. به علاوه مباحث uglification (به نوعی obfuscation کدهای جاوا اسکریپتی نهایی) و tree-shaking (حذف کدهایی که در برنامه استفاده نشده‌اند؛ یا کدهای مرده) نیز پیاده سازی می‌شوند. با انجام tree-shaking‌، نه تنها اندازه‌ی توزیع نهایی به کاربر کاهش پیدا می‌کند، بلکه مرورگر نیز حجم کمتری از کدهای جاوااسکریپتی را باید تفسیر کند.
برای شروع می‌توان از دستور ذیل برای مشاهده‌ی تمام گزینه‌های مهیای ساخت برنامه استفاده کرد:
> ng build --help
ذکر تنهای دستور ng build‌، بدون هیچ گزینه‌ای، برای حالت «توسعه‌ی» برنامه بسیار ایده‌آل است (و دقیقا به معنای صدور دستور ng build --dev است). در این حالت خروجی کامپایل شده‌ی برنامه در پوشه‌ی dist تولید می‌شود. اگر از قسمت دوم این سری به خاطر داشته باشید، نام این پوشه‌ی خروجی، جزئی از تنظیمات فایل angular-cli.json. است:
"apps": [
{
   "outDir": "dist",
زمانیکه دستور ng build‌  صادر شود، این فایل‌ها را در پوشه‌ی dist خواهید یافت:

فایل 
توضیح 
 inline.bundle.js   WebPack runtime
از آن برای بارگذاری ماژول‌های برنامه و چسباندن قسمت‌های مختلف به یکدیگر استفاده می‌شود. 
 main.bundle.js   شامل تمام کدهای ما است. 
 polyfills.bundle.js   Polyfills - جهت پشتیبانی از مرورگرهای مختلف.
 styles.bundle.js    شامل بسته بندی تمام شیوه نامه‌های برنامه است 
vendor.bundle.js  کدهای کتابخانه‌های ثالث مورد استفاده و همچنین خود Angular، در اینجا بسته بندی می‌شوند. 
 

روشی برای بررسی محتوای bundleهای تولید شده

تولید bundleها در جهت کاهش رفت و برگشت‌های به سرور و بالا بردن کارآیی برنامه ضروری هستند؛ اما دقیقا این بسته بندی‌ها شامل چه اطلاعاتی می‌شوند؟ این اطلاعات را می‌توان از فایل‌های source map تولیدی استخراج کرد و برای این منظور می‌توان از برنامه‌ی source-map-explorer استفاده کرد.

روش نصب عمومی آن:
 > npm install -g source-map-explorer
روش اجرا:
 > source-map-explorer dist/main.bundle.js
پس از آن یک گزارش HTML ایی از محتوای bundle مدنظر تولید می‌شود.


یک مثال: ساخت برنامه‌ی مثال قسمت چهارم - تنظیمات مسیریابی در حالت dev

در ادامه، کار Build همان مثالی را که در قسمت قبل توضیح داده شد، بررسی می‌کنیم. برای این منظور از طریق خط فرمان به ریشه‌ی پوشه‌ی اصلی پروژه وارد شده و دستور ng build را صادر کنید. یک چنین خروجی را مشاهده خواهید کرد:
 D:\Prog\angular-routing>ng build
Hash: 123cae8bd8e571f44c31
Time: 33862ms
chunk {0} polyfills.bundle.js, polyfills.bundle.js.map (polyfills) 158 kB {4} [initial] [rendered]
chunk {1} main.bundle.js, main.bundle.js.map (main) 14.7 kB {3} [initial] [rendered]
chunk {2} styles.bundle.js, styles.bundle.js.map (styles) 9.77 kB {4} [initial] [rendered]
chunk {3} vendor.bundle.js, vendor.bundle.js.map (vendor) 2.34 MB [initial] [rendered]
chunk {4} inline.bundle.js, inline.bundle.js.map (inline) 0 bytes [entry] [rendered]
و اگر فایل index.html تولیدی آن‌را بررسی کنید، تنها الحاق همین 4 فایل js تولیدی را مشاهده می‌نمائید:
<!doctype html>
<html>
<head>
  <meta charset="utf-8">
  <title>AngularRouting</title>
  <base href="/">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body>
  <app-root>Loading...</app-root>
<script type="text/javascript" src="inline.bundle.js">
</script><script type="text/javascript" src="polyfills.bundle.js">
</script><script type="text/javascript" src="styles.bundle.js">
</script><script type="text/javascript" src="vendor.bundle.js">
</script><script type="text/javascript" src="main.bundle.js"></script>
</body>
</html>

یک نکته: زمانیکه دستور ng serve -o صادر می‌شود، در پشت صحنه دقیقا همین دستور ng build صادر شده و اطلاعات را درون حافظه تشکیل می‌دهد. اما اگر کار ng build را دستی انجام دهیم، اینبار ng serve -o اطلاعات را از پوشه‌ی dist دریافت می‌کند. بنابراین در حین کار با ng serve -o نیازی به build دستی پروژه نیست.

سؤال: چرا حجم فایل endor.bundle.js اینقدر بالا است و شامل چه اجزایی می‌شود؟
نکته‌ای که در اینجا وجود دارد، حجم بالای فایل vendor.bundle.js آن است که 2.34 MB می‌باشد:


چون دستور ng build بدون پارامتری ذکر شده‌است، برنامه را برای حالت توسعه Build می‌کند و به همین جهت هیچگونه بهینه سازی در این مرحله صورت نخواهد گرفت. برای بررسی محتوای این فایل می‌توان دستور ذیل را در ریشه‌ی اصلی پروژه صادر کرد:
 > source-map-explorer dist/vendor.bundle.js
پس از اجرای این دستور، بلافاصله مرورگر پیش فرض سیستم اجرا شده و گزارشی را ارائه می‌دهد.


همانطور که مشاهده می‌کنید، در حالت بهینه سازی نشده و Build برای توسعه، کامپایلر Angular حدود 41 درصد حجم فایل vendor.bundle.js را تشکیل می‌دهد. به علاوه ماژول‌ها و قسمت‌هایی را ملاحظه می‌کنید که اساسا برنامه‌ی فعلی مثال ما از آن‌ها استفاده نمی‌کند؛ مانند http، فرم‌ها و غیره.


سفارشی سازی Build برای محیط‌های مختلف

اگر به پروژه‌ی تولید شده‌ی توسط Angular CLI دقت کنید، حاوی پوشه‌ای است به نام src\environments


هدف از فایل‌های environment برای نمونه تغییر آدرس توزیع برنامه در حالت توسعه و ارائه نهایی است.
همچنین در اینجا می‌توان نحوه‌ی بهینه سازی فایل‌های تولیدی را توسط Build Targets مشخص کرد و اینکار توسط ذکر پرچم prod-- (مخفف production) صورت می‌گیرد.
در ادامه، تفاوت‌های دستورهای ng build و ng build --prod را ملاحظه می‌کنید:
- با اجرای ng build، از فایل environment.ts استفاده می‌شود؛ برخلاف حالت اجرای ng build --prod که از فایل environment.prod.ts استفاده می‌کند.
- Cache-busting در حالت ارائه‌ی نهایی، به تمام اجزای پروژه اعمال می‌شود؛ اما در حالت توسعه فقط برای تصاویر قید شده‌ی در فایل‌های css.
- فایل‌های source map فقط برای حالت توسعه تولید می‌شوند.
- در حالت توسعه، cssها داخل فایل‌های js تولیدی قرار می‌گیرند؛ اما در حالت ارائه‌ی نهایی به صورت فایل‌های css بسته بندی می‌شوند.
- در حالت توسعه برخلاف حالت ارائه‌ی نهایی، کار uglification انجام نمی‌شود.
- در حالت توسعه برخلاف حالت ارائه‌ی نهایی، کار tree-shaking یا حذف کدهای مرده و بدون ارجاع، انجام نمی‌شود.
- در حالت توسعه برخلاف حالت ارائه‌ی نهایی، کار AOT انجام نمی‌شود. در اینجا AOT به معنای Ahead of time compilation است.
- در هر دو حالت توسعه و ارائه‌ی نهایی کار bundling و دسته بندی فایل‌ها انجام خواهد شد.

به همین جهت است که ng build سریع است؛ اما حجم بالاتری را هم تولید می‌کند. چون بسیاری از بهینه سازی‌های حالت ارائه‌ی نهایی را به همراه ندارد.


دستورات build برای حالت توسعه و ارائه‌ی نهایی

برای حالت توسعه، هر 4 دستور ذیل یک مفهوم را دارند و به همین جهت مورد ng build متداول‌تر است:
>ng build --target=development --environment=dev
>ng build --dev -e=dev
>ng build --dev
>ng build

برای حالت ارائه‌ی نهایی، هر 3 دستور ذیل یک مفهوم را دارند و به همین جهت مورد ng build --prod متداول‌تر است:
>ng build --target=production --environment=prod
>ng build --prod -e=prod
>ng build --prod

همچنین هر کدام از این دستورات را توسط پرچم‌های ذیل نیز می‌توان سفارشی سازی کرد:

 پرچم  مخفف  توضیح
 sourcemap--  sm-  تولید سورس‌مپ
aot--    Ahead of Time compilation 
watch--  w-  تحت نظر قرار دادن فایل‌ها و ساخت مجدد
environment--  e-  محیط ساخت
 target--  t-  نوع ساخت
 dev--    مخفف نوع ساخت جهت توسعه
 prod--     مخفف نوع ساخت جهت ارائه نهایی

برای مثال در حالت prod، سورس‌مپ‌ها تولید نخواهند شد. اگر علاقمندید تا این فایل‌ها نیز تولید شوند، پرچم souremap را نیز ذکر کنید.
و یا اگر برای حالت dev می‌خواهید AOT را فعالسازی کنید، پرچم aot-- را در آنجا قید کنید.


یک مثال: ساخت برنامه‌ی مثال قسمت چهارم - تنظیمات مسیریابی در حالت prod

تا اینجا خروجی حالت dev ساخت برنامه‌ی قسمت چهارم را بررسی کردیم. در ادامه دستور ng build --prod را در ریشه‌ی پروژه صادر می‌کنیم:
 D:\Prog\angular-routing>ng build --prod
Hash: f5bd7fd555a85af8a86f
Time: 39932ms
chunk {0} polyfills.18173234f9641113b9fe.bundle.js (polyfills) 158 kB {4} [initial] [rendered]
chunk {1} main.c6958def7c5f51c45261.bundle.js (main) 50.3 kB {3} [initial] [rendered]
chunk {2} styles.d41d8cd98f00b204e980.bundle.css (styles) 69 bytes {4} [initial] [rendered]
chunk {3} vendor.b426ba6883193375121e.bundle.js (vendor) 1.37 MB [initial] [rendered]
chunk {4} inline.8cec210370dd3af5f1a0.bundle.js (inline) 0 bytes [entry] [rendered]


همانطور که ملاحظه می‌کنید، اینبار نه تنها حجم فایل‌ها به میزان قابل ملاحظه‌ای کاهش پیدا کرده‌اند، بلکه این نام‌ها به همراه یک سری hash هم هستند که کار cache-busting (منقضی کردن کش مرورگر، با ارائه‌ی نگارشی جدید) را انجام می‌دهند.

در ادامه اگر بخواهیم مجددا برنامه‌ی source-map-explorer را جهت بررسی محتوای فایل‌های js اجرا کنیم، به خطای عدم وجود sourcemapها خواهیم رسید (چون در حالت prod، به صورت پیش فرض غیرفعال هستند). به همین‌جهت برای این مقصود خاص نیاز است از پرچم فعالسازی موقت آن استفاده کرد:
> ng build --prod --sourcemap
> source-map-explorer dist/vendor.b426ba6883193375121e.bundle.js


همانطور که در تصویر نیز مشخص است، اینبار کامپایلر Angular به همراه تمام ماژول‌هایی که در برنامه ارجاعی به آن‌ها وجود نداشته‌است، حذف شده‌اند و کل حجم بسته‌ی Angular به 366 KB کاهش یافته‌است.


بررسی دستور ng serve

تا اینجا برای اجرای برنامه در حالت dev از دستور ng serve -o استفاده کرده‌ایم. کار ارائه‌ی برنامه توسط این دستور، از محتوای کامپایل شده‌ی درون حافظه با مدیریت webpack انجام می‌شود. به همین جهت بسیار سریع بوده و قابلیت live reload را ارائه می‌دهد (نمایش آنی تغییرات در مرورگر، با تغییر فایل‌ها).
همانند تمام دستورات دیگر، اطلاعات بیشتری را در مورد این دستور، از طریق راهنمای آن می‌توان به دست آورد:
 > ng serve --help

که شامل این موارد هستند (علاوه بر تمام مواردی را که در حالت ng build می‌توان مشخص کرد؛ مثلا ng serve --prod -o):

 پرچم مخفف
توضیح
 open-- o-
بازکردن خودکار مرورگر پیش فرض.
حالت پیش فرض آن گشودن مرورگر توسط خودتان است و سپس مراجعه‌ی دستی به آدرس برنامه. 
 port--  p-  تغییر پورت پیش فرض مانند ng server -p 8626 
 live-reload--  lr-   فعال است مگر اینکه آن‌را با false مقدار دهی کنید.
 ssl--    ارائه به صورت HTTPS
 proxy-config--  pc-  Proxy configuration file 


استخراج فایل تنظیمات webpack از Angular CLI

Angular CLI برای مدیریت build، در پشت صحنه از webpack استفاده می‌کند. فایل تنظیمات آن نیز جزئی از فایل‌های توکار این ابزار است و قرار نیست به صورت پیش فرض و مستقیم توسط پروژه‌ی جاری ویرایش شود. به همین جهت آن‌را در ساختار پروژه‌ی تولید شده، مشاهده نمی‌کنید.
اگر علاقمند به سفارشی سازی بیشتر این تنظیمات پیش فرض باشید، ابتدا باید آن‌را اصطلاحا eject کنید و سپس می‌توان آن‌را ویرایش کرد:
 > ng eject
Ejection was successful.

To run your builds, you now need to do the following commands:
- "npm run build" to build.
- "npm run test" to run unit tests.
- "npm start" to serve the app using webpack-dev-server.
- "npm run e2e" to run protractor.

Running the equivalent CLI commands will result in an error.
============================================
Some packages were added. Please run "npm install".
همانطور که مشاهده می‌کنید عنوان کرده‌است که از این پس خودتان باید بسیاری از مسایل را به صورت دستی مدیریت کنید و Angular CLI دیگر آن‌ها را به صورت خودکار مدیریت نمی‌کند و دیگر دستورات ng build و ng serve کار نخواهند کرد (این تغییرات در فایل package.json درج می‌شوند).
در این حالت است که فایل webpack.config.js به ریشه‌ی پروژه جهت سفارشی سازی شما اضافه خواهد شد. همچنین فایل‌های .angular-cli.json، package.json نیز جهت درج این تغییرات ویرایش می‌شوند.

و اگر در این لحظه پشیمان شده‌اید (!) فقط کافی است تا این مرحله‌ی جدید commit شده‌ی به مخزن کد را لغو کنید و باز هم به همان Angular CLI قبلی می‌رسید.
مطالب
آزمایش ساده‌تر Web APIs توسط strest
در سری کار با Postman، یک روش بسیار متداول آزمایش Web APIs را بررسی کردیم. اما ... برای کار آن با مدام نیاز است از این برگه به آن برگه مراجعه کرد و ارتباط دادن درخواست‌های متوالی در آن مشکل است. به همین منظور تابحال راه‌حل‌های زیادی برای جایگزین کردن postman ارائه شده‌اند که یکی از آن‌ها strest است. این ابزار خط فرمان:
- بسیار سبک ورزن است و تنها نیاز به نصب بسته‌ی npm آن‌را دارد.
- با فایل‌های متنی معمولی کار می‌کند که ویرایش و copy/paste در آن‌ها بسیار ساده‌است.
- قرار دادن فایل‌های نهایی متنی آن در ورژن کنترل بسیار ساده‌است.
- امکان نوشتن درخواست‌های به هم وابسته و آزمودن نتایج حاصل را دارا است.
- چون یک ابزار خط فرمان است، امکان استفاده‌ی از آن به سادگی در فرآینده‌های توسعه‌ی مداوم وجود دارد.
- ابزارهای npm، چندسکویی هستند.


نصب strest

در ادامه قصد داریم مطلب «آزمایش Web APIs توسط Postman - قسمت ششم - اعتبارسنجی مبتنی بر JWT» را با استفاده از strest بازنویسی کنیم. به همین جهت در ابتدا نیاز است بسته‌ی npm آن‌را به صورت سراسری نصب کنیم:
npm i -g @strest/cli
پس از آن فایل جدید JWT.strest.yml را در پوشه‌ای ایجاد کرده و آن‌را تکمیل می‌کنیم. برای اجرای فرامین موجود در آن تنها کافی است دستور strest JWT.strest.yml را درخط فرمان صادر کنیم.


مرحله 1: خاموش کردن بررسی مجوز SSL برنامه
مرحله 2: ایجاد درخواست login و دریافت توکن‌ها

مجوز SSL آزمایشی برنامه‌ی ASP.NET Core ما، از نوع خود امضاء شده‌است. به همین جهت اگر سعی در اجرای strest را با درخواست‌های ارسالی به آن داشته باشیم، باشکست مواجه خواهند شد. بنابراین در ابتدا، خاصیت allowInsecure را به true تنظیم می‌کنیم:
version: 2

variables:
  baseUrl: https://localhost:5001/api
  logResponse: false

allowInsecure: true
- این تنظیمات با فرمت yaml نوشته می‌شوند. به همین جهت در اینجا تعداد spaceها مهم است.
- همچنین در ابتدای این تنظیمات، روش تعریف متغیرها را نیز مشاهده می‌کنید که برای مثال توسط آن‌ها baseUrl تعریف شده‌است.
درست در سطر پس از این تنظیمات، دستور اجرا و اعتبارسنجی درخواست Login را می‌نویسیم:
requests:
  loginRequest:
    request:
      url: <$ baseUrl $>/account/login
      method: POST
      postData:
        mimeType: application/json
        text:
          username: "Vahid"
          password: "1234"
    log: <$ logResponse $>
    validate:
      - jsonpath: content.access_token
        type: [string]
      - jsonpath: content.refresh_token
        type: [string]
توضیحات:
- درخواست‌ها با requests شروع می‌شوند. سپس ذیل آن می‌توان نام چندین درخواست یا request را ذکر کرد که برای مثال نام درخواست تعریف شده‌ی در اینجا loginRequest است. این نام مهم است؛ از این جهت که با اشاره‌ی به آن می‌توان به فیلدهای خروجی response حاصل، در درخواست‌های بعدی، دسترسی یافت.
- سپس، آدرس درخواست مشخص شده‌است. در اینجا روش کار با متغیرها را نیز مشاهده می‌کنید.
- نوع درخواست POST است.
- در ادامه جزئیات اطلاعات ارسالی به سمت سرور باید مشخص شوند. برای مثال در اینجا با فرمت application/json قرار است یک شیء تشکیل شده‌ی از username و password ارسال شوند.
- در سطر بعدی، خاصیت log با متغیر logResponse مقدار دهی شده‌است. اگر به true تنظیم شود، اصل خروجی response را توسط برنامه‌ی خط فرمان strest می‌توان مشاهده کرد. اگر اینکار خروجی را شلوغ کرد، می‌توان آن‌را به false تنظیم کرد و این خروجی را در فایل strest_history.json نهایی که حاصل از اجرای آزمایش‌های تعریف شده‌است، در کنار فایل JWT.strest.yml خود یافت و مشاهده کرد.
- سپس به قسمت آزمودن نتیجه‌ی درخواست می‌رسیم. در اینجا انتظار داریم که درخواست حاصل که با فرمت json است، دارای دو خاصیت رشته‌ای access_token و refresh_token باشد.


 مرحله‌ی 3: ذخیره سازی توکن‌های دریافتی در متغیرهای سراسری
 مرحله‌ی 3: ذخیره سازی مراحل انجام شده
در حین کار با strest نیازی به ذخیره سازی نتیجه‌ی حاصل از response، در متغیرهای خاصی نیست. برای مثال اگر بخواهیم به نتیجه‌ی حاصل از عملیات لاگین فوق در درخواست‌های بعدی دسترسی پیدا کنیم، می‌توان نوشت <$ loginRequest.content.access_token $>
در اینجا درج متغیرها توسط <$ $> صورت می‌گیرد. سپس loginRequest به نام درخواست مرتبط اشاره می‌کند. خاصیت content.access_token نیز مقدار خاصیت access_token شیء response را بر می‌گرداند.

همچنین ذخیره سازی مراحل انجام شده نیز نکته‌ی خاصی را به همراه ندارد. یک تک فایل متنی JWT.strest.yml وجود دارد که آزمایش‌های ما در آن درج می‌شوند.


مرحله‌ی 4: دسترسی به منابع محافظت شده‌ی سمت سرور

در ادامه روش تعریف دو درخواست جدید دیگر را در فایل JWT.strest.yml مشاهده می‌کنید که از نوع Get هستند و به اکشن متدهای محافظت شده ارسال می‌شوند:
  myProtectedApiRequest:
    request:
      url: <$ baseUrl $>/MyProtectedApi
      method: GET
      headers:
        - name: Authorization
          value: Bearer <$ loginRequest.content.access_token $>
    log: <$ logResponse $>
    validate:
      - jsonpath: content.title
        expect: "Hello from My Protected Controller! [Authorize]"

  mProtectedAdminApiRequest:
    request:
      url: <$ baseUrl $>/MyProtectedAdminApi
      method: GET
      headers:
        - name: Authorization
          value: Bearer <$ loginRequest.content.access_token $>
    log: <$ logResponse $>
    validate:
      - jsonpath: content.title
        expect: "Hello from My Protected Admin Api Controller! [Authorize(Policy = CustomRoles.Admin)]"
دو نکته‌ی جدید در اینجا قابل مشاهده‌است:
- چون نیاز است به همراه درخواست خود، هدر اعتبارسنجی مبتنی بر JWT را که به صورت Bearer value است نیز به سمت سرور ارسال کنیم، خاصیت headers را توسط یک name/value مشخص کرده‌ایم. همانطور که عنوان شد در فایل‌های yaml، فاصله‌ها و تو رفتگی‌ها مهم هستند و حتما باید رعایت شوند.
- سپس دومین آزمون نوشته شده را نیز مشاهده می‌کنید. در قسمت validate، مشخص کرده‌ایم که خاصیت title دریافتی از response باید مساوی مقدار خاصی باشد.

دقیقا همین نکات برای درخواست دوم به MyProtectedAdminApi تکرار شده‌اند.


مرحله‌ی 5: ارسال Refresh token و دریافت یک سری توکن جدید

اکشن متد account/RefreshToken در سمت سرور، نیاز دارد تا یک شیء جی‌سون با خاصیت refreshToken را دریافت کند. مقدار این خاصیت از طریق response متناظر با درخواست نام‌دار loginRequest استخراج می‌شود که در قسمت postData مشخص شده‌است:
  refreshTokenRequest:
    request:
      url: <$ baseUrl $>/account/RefreshToken
      method: POST
      postData:
        mimeType: application/json
        text:
          refreshToken: <$ loginRequest.content.refresh_token $>
    log: <$ logResponse $>
    validate:
      - jsonpath: content.access_token
        type: [string]
      - jsonpath: content.refresh_token
        type: [string]
در آخر، به قسمت آزمودن نتیجه‌ی درخواست می‌رسیم. در اینجا انتظار داریم که درخواست حاصل که با فرمت json است، دارای دو خاصیت رشته‌ای access_token و refresh_token باشد که بیانگر صدور توکن‌های جدیدی هستند.


مرحله‌ی 6: آزمایش توکن جدید دریافتی از سرور

در قسمت قبل، توکن‌های جدیدی صادر شدند که اکنون برای کار با آن‌ها می‌توان از متغیر refreshTokenRequest.content.access_toke استفاده کرد:
  myProtectedApiRequestWithNewToken:
    request:
      url: <$ baseUrl $>/MyProtectedApi
      method: GET
      headers:
        - name: Authorization
          value: Bearer <$ refreshTokenRequest.content.access_token $>
    log: <$ logResponse $>
    validate:
      - jsonpath: content.title
        expect: "Hello from My Protected Controller! [Authorize]"
در اینجا با استفاده از توکن جدید درخواست نام‌دار refreshTokenRequest، آزمون واحد نوشته شده با موفقیت به پایان می‌رسد (یا باید برسد که اجرای نهایی آزمایش‌ها، آن‌را مشخص می‌کند).


مرحله‌ی 7: آزمایش منقضی شدن توکنی که در ابتدای کار پس از لاگین دریافت کردیم

اکنون که refresh token صورت گرفته‌است، دیگر نباید بتوانیم از توکن دریافتی پس از لاگین استفاده کنیم و برنامه باید آن‌را برگشت بزند:
  myProtectedApiRequestWithOldToken:
    request:
      url: <$ baseUrl $>/MyProtectedApi
      method: GET
      headers:
        - name: Authorization
          value: Bearer <$ loginRequest.content.access_token $>
    log: <$ logResponse $>
    validate:
      - jsonpath: status
        expect: 401
به همین جهت، درخواستی ارسال شده که به نتیجه‌ی درخواست نام‌دار loginRequest اشاره می‌کند. در این حالت برای آزمایش عملیات، اینبار status بازگشتی از سرور که باید 401 باشد، بررسی شده‌است.


مرحله‌ی 8: آزمایش خروج از سیستم

در اینجا نیاز است به آدرس account/logout، یک کوئری استرینگ را با کلید refreshToken و مقدار ریفرش‌توکن دریافتی از درخواست نام‌دار refreshTokenRequest، به سمت سرور ارسال کنیم:
  logoutRequest:
    request:
      url: <$ baseUrl $>/account/logout
      method: GET
      headers:
        - name: Authorization
          value: Bearer <$ refreshTokenRequest.content.access_token $>
      queryString:
        - name: refreshToken
          value: <$ refreshTokenRequest.content.refresh_token $>
    log: <$ logResponse $>
    validate:
      - jsonpath: content
        expect: true
خروجی آزمایش شده‌ی در اینجا، دریافت مقدار true از سمت سرور است.


مرحله‌ی 9: بررسی عدم امکان دسترسی به منابع محافظت شده‌ی سمت سرور، پس از logout

در مرحله‌ی قبل، از سیستم خارج شدیم. اکنون می‌خواهیم بررسی کنیم که آیا توکن دریافتی پیشین هنوز معتبر است یا خیر؟ آیا می‌توان هنوز هم به منابع محافظت شده دسترسی یافت یا خیر:
  myProtectedApiRequestWithNewTokenAfterLogout:
    request:
      url: <$ baseUrl $>/MyProtectedApi
      method: GET
      headers:
        - name: Authorization
          value: Bearer <$ refreshTokenRequest.content.access_token $>
    log: <$ logResponse $>
    validate:
      - jsonpath: status
        expect: 401
به همین جهت هدر Authorization را با اکسس‌توکنی که در مرحله‌ی ریفرش‌توکن دریافت کردیم (پیش از logout)، مقدار دهی می‌کنیم و سپس درخواستی را به یک منبع محافظت شده ارسال می‌کنیم. نتیجه‌ی حاصل باید status code ای مساوی 401 داشته باشد که به معنای برگشت خوردن آن است


مرحله‌ی 10: اجرای تمام آزمون‌های واحد نوشته شده

همانطور که در ابتدای بحث نیز عنوان شد فقط کافی است دستور strest JWT.strest.yml را در خط فرمان اجرا کنیم تا آزمون‌های ما به ترتیب اجرا شوند:


فایل نهایی این آزمایش را در اینجا می‌توانید مشاهده می‌کنید.
مطالب
اجرای وظایف زمان بندی شده با Quartz.NET - قسمت اول
مقدمه
اگر  قصد اجرای برخی کارها به صورت زمانبندی شده و در فواصل زمانی مشخص را دارید، این مقاله به شما کمک خواهد کرد تا به بهترین شکل ممکن آن را انجام دهید. کارهایی مانند ارسال خبرنامه، فرستادن SMS تبریک تولد یا هماهنگ سازی داده‌ها بین دو منبع داده از جمله اَعمالی هستند که باید به صورت زمانبندی شده انجام شوند.
کتابخانه‌ی Quartz.NET، از کتابخانه ای با نام Quartz و از زبان Java به NET. منتقل شده است. Quartz.NET، رایگان و باز متن است و از طریق آدرس http://quartznet.sourceforge.net در دسترس است. از طریق NuGet نیز می‌توانید با تایپ عبارت quartz در فرم مربوطه، این کتابخانه را نصب کنید. این کتابخانه را در برنامه‌های Desktop و Web (حتی یک Shared Server) تست کردم و به خوبی انجام وظیفه می‌کند.

شروع کار با Quartz.NET
ضمن در اختیار قرار دادن امکانات فوق العاده و انعطاف پذیری بسیار، کار با این کتابخانه آسان و از فرایندی منطقی تبعیت می‌کند. فرایند اجرای یک روال زمانبندی شده از طریق Quartz.NET، از چهار مرحله‌ی اصلی تشکیل شده است.
1) پیاده سازی اینترفیس IJob
2) مشخص کردن جزئیات روال با اینترفیس IJobDetail
3) مشخص کردن تنظیمات زمان با استفاده از اینترفیس ITrigger
4) مدیریت اجرا با استفاده از اینترفیس IScheduler

مثالی را بررسی می‌کنیم. در این مثال قصد داریم تا عبارتی را همراه با تاریخ و زمان جاری در یک فایل ذخیره کنیم. این پیغام باید 3 بار و در فواصل زمانی 10 ثانیه به فایل اضافه شود. در پایان، فایلی خواهیم داشت که در سه خط، یک عبارت، همراه با تاریخ و زمان‌های مختلف را که 10 ثانیه با یکدیگر اختلاف دارند در خود ذخیره کرده است. ابتدا کار زمانبندی شده را با ارائه‌ی پیاده سازی برای متد Execute اینترفیس IJob این کتابخانه ایجاد می‌کنیم. وارد کردن فضای نام Quartz را فراموش نکنید.
namespace SchedulerDemo.Jobs
{
    using System;
    using System.IO;
    using Quartz;

    public class HelloJob : IJob
    {
        public void Execute(IJobExecutionContext context)
        {
            // for web apps
            // string path = System.Web.Hosting.HostingEnvironment.MapPath("~/Data/Log.txt");
            
            // for desktop apps
            string path = @"C:\Log.txt";

            using (StreamWriter sw = new StreamWriter(path, true))
            {
                sw.WriteLine("Message from HelloJob " + DateTime.Now.ToString());
            }
        }
    }
}
در اینترفیس IJob در ASP.NET، به شی HttpContext دسترسی ندارید، بنابراین در صورتی که قصد داشته باشید از متدی مانند Server.MapPath استفاده کنید، توفیقی به دست نخواهید آورد. در عوض می‌توانید از متد System.Web.Hosting.HostingEnvironment.MapPath استفاده کنید.
حال، زمان انجام تنظیمات مختلف برای اجرای روال مربوطه است. بهتر است تا interfaceیی ایجاد و متدی با نام Run در آن داشته باشیم.
namespace SchedulerDemo.Interfaces
{
    public interface ISchedule
    {
        void Run();
    }
}

حال، پیاده سازی خود را برای این interface ارائه می‌دهیم.

namespace SchedulerDemo.Jobs
{
    using System;
    using Quartz;
    using Quartz.Impl;
    using SchedulerDemo.Interfaces;
    using SchedulerDemo.Jobs;

    public class HelloSchedule : ISchedule
    {
        public void Run()
        {
            //DateTimeOffset startTime = DateBuilder.NextGivenSecondDate(null, 2);
            DateTimeOffset startTime = DateBuilder.FutureDate(2, IntervalUnit.Second);

            IJobDetail job = JobBuilder.Create<HelloJob>()
                                       .WithIdentity("job1")
                                       .Build();

            ITrigger trigger = TriggerBuilder.Create()
                                             .WithIdentity("trigger1")
                                             .StartAt(startTime)
                                             .WithSimpleSchedule(x => x.WithIntervalInSeconds(10).WithRepeatCount(2))
                                             .Build();

            ISchedulerFactory sf = new StdSchedulerFactory();
            IScheduler sc = sf.GetScheduler();
            sc.ScheduleJob(job, trigger);

            sc.Start();
        }
    }
}

معرفی فضاهای نام Quartz و Quartz.Impl را فراموش نکنید.
از حالا، به روالی که قرار است به صورت زمانبندی شده اجرا شود، "وظیفه" می‌گوییم.
ابتدا باید مشخص کنیم که وظیفه در چه زمانی پس از اجرای برنامه شروع به اجرا کند. از آنجا که پایه و اساس زمانبندی، بر تاریخ و ساعت استوار است، کتابخانه‌ی Quartz.NET، روش‌ها و امکانات بسیاری را برای تعیین زمان در اختیار قرار می‌دهد. با بررسی تمامی آنها، ساده‌ترین و منعطف‌ترین را به شما معرفی می‌کنم. کلاس DateBuilder که همراه با Quartz.NET وجود دارد، امکان تعیین زمان را به اَشکال مختلف می‌دهد. در خط 14، از متد FutureDate این کلاس استفاده شده است که خوانایی بهتری نسبت به بقیه‌ی متدها دارد. پارامتر اول این متد، عدد، و پارامتر دوم، واحد زمانی را می‌پذیرد.

DateTimeOffset startTime = DateBuilder.FutureDate(2, IntervalUnit.Second);

در اینجا، زمان آغاز وظیفه را 2 ثانیه پس از آغاز برنامه تعریف کرده ایم. واحدهای زمانی دیگر شامل میلی ثانیه، دقیقه، ساعت، روز، ماه، هفته و سال هستند. کلاس DateBuilder، متدهای مختلفی برای تعیین زمان را در اختیار قرار می‌دهد. تعیین زمان آغاز به روش دیگر را به صورت کامنت شده در خط 13 مشاهده می‌کنید.
وظیفه‌ی ایجاد شده در خط 16 تا 18 معرفی شده است. 

IJobDetail job = JobBuilder.Create<HelloJob>()
                           .WithIdentity("job1")
                           .Build();

پشتیبانی Quartz.NET از سینتکس fluent، کدنویسی را ساده و لذت بخش می‌کند. با استفاده از متد Create کلاس JobBuilder، وظیفه را معرفی می‌کنیم. متد Create، یک متد Generic است که نام کلاسی که اینترفیس IJob را پیاده سازی کرده است می‌پذیرد. یک نام را با استفاده از متد WithIdentity به وظیفه نسبت می‌دهیم (البته این کار، اختیاری است) و در انتها، متد Build را فراخوانی می‌کنیم. خروجی متد Build، از نوع IJobDetail است.
و حالا نوبت به تنظیمات زمان رسیده است. در Quartz.NET، این مرحله، "ایجاد trigger" نام دارد. خطوط 20 تا 24 به این کار اختصاص دارند. 

ITrigger trigger = TriggerBuilder.Create()
                                 .WithIdentity("trigger1")
                                 .StartAt(startTime)
                                 .WithSimpleSchedule(x => x.WithIntervalInSeconds(10).WithRepeatCount(2))
                                 .Build();

ابتدا متد Create کلاس TriggerBuilder را فراخوانی می‌کنیم، سپس با استفاده از متد WithIdentity، یک نام به trigger اختصاص می‌دهیم (البته این کار، اختیاری است). با متد StartAt، زمان شروع وظیفه را که در ابتدا با استفاده از کلاس DateBuilder ایجاد کردیم تعیین می‌کنیم. مهمترین قسمت، تعیین دفعات و فواصل زمانی اجرای وظیفه است. همان طور که احتمالاً حدس زده اید، Quartz.NET مجموعه ای غنی از روش‌های مختلف برای تعیین بازه‌ی زمانی اجرا را در اختیار قرار می‌دهد. آسان‌ترین راه، استفاده از متد WithSimpleSchedule است. با استفاده از یک عبارت Lambda که ورودی آن از نوع کلاس SimpleScheduleBuilder است، دفعات و فواصل زمانی اجرا را تعیین می‌کنیم. متد WithIntervalInSeconds، برای تعیین فواصل زمانی در بازه‌ی ثانیه استفاده می‌شود. متد WithRepeatCount نیز برای تعیین دفعات اجرا است. وظیفه‌ی ما، 3 مرتبه و در فواصل زمانی 10 ثانیه اجرا می‌شود. مطمئن باشید اشتباه نکردم! بله، سه مرتبه. تعداد دفعات اجرا برابر است با عددی که برای متد WithRepeatCount تعیین می‌کنید، به علاوه‌ی یک. منطقی است، چون مرتبه‌ی اول اجرا زمانی است که با استفاده از متد StartAt تعیین کرده اید. در پایان، متد Build را فراخوانی می‌کنیم. خروجی متد Build، از نوع ITrigger است.
آخرین کار (خطوط 26 تا 30)، ایجاد شی از اینترفیس IScheduler، فراخوانی متد ScheduleJob آن، و پاس دادن اشیای job و trigger که در قسمت قبل ایجاد شده اند به این متد است. در انتها، متد ()Start را برای آغاز وظیفه فراخوانی می‌کنیم. 

ISchedulerFactory sf = new StdSchedulerFactory();
IScheduler sc = sf.GetScheduler();
sc.ScheduleJob(job, trigger);

sc.Start();

حال شما یک وظیفه تعریف کرده اید که در هر جای برنامه به صورت زیر، قابل فراخوانی است. 

ISchedule myTask = new HelloSchedule();
myTask.Run();

کتابخانه ای که با آن سر و کار داریم بسیار غنی است و امکانات بسیاری دارد. در قسمت بعد، با برخی امکانات دیگر این کتابخانه آشنا می‌شوید.

مطالب
آشنایی با CLR: قسمت چهاردهم
در ادامه قسمت قبلی روش‌های زیادی جهت اضافه شدن یک ماژول به یک اسمبلی وجود دارند. اگر شما از کامپایلر سی‌شارپ برای ساخت یک فایل PE با جدول مانیفست استفاده می‌کنید، می‌توانید از سوئیچ AddModule/ استفاده کنید. برای اینکه بدانیم چگونه می‌توان یک اسمبلی چند فایله ساخت بیاید فرض کنیم که دو فایل سورس کد با مشخصات زیر داریم:
RUT.cs: این سورس شامل کدهایی است که به ندرت در برنامه استفاده می‌شود.
FUT.cs: این سورس شامل کدهایی است که به طور مکرر مورد استفاده قرار می‌گیرد.

ابتدا به صورت زیر کد سورسی را که به ندرت استفاده می‌شود، به عنوان یک ماژول جداگانه کامپایل می‌کنم:
csc /t:module RUT.cs
اجرای این خط سبب ایجاد یک فایل به نام RUT.netmodule می‌گردد که یک DLL استاندارد است؛ ولی CLR به تنهایی توانایی بارگیری آن را ندارد. دفعه‌ی بعد سورس کدی را که مکرر استفاده می‌شود، به صورت یک ماژول کامپایل می‌کنیم و از آنجائیکه این ماژول استفاده‌ی زیادی دارد، آن را نگهدارنده‌ی جدول مانیفست معرفی می‌کنیم و به این دلیل که این ماژول نماینده‌ی کل اسمبلی است، نام خروجی آن را به جای FUT.dll به MultiFileLibrary.dll تغییر می‌دهیم:
csc /out:MultiFileLibrary.dll /t:library /addmodule:RUT.netmodule FUT.cs
خط بالا به علت سوئیچ t:library\ فایل MultiFileLibrary.dll را ایجاد می‌کند. این فایل شامل جدول متادیتای مانیفست می‌شود و سوئیچ به آن می‌گوید که باید ماژول RUT.netmodule را جزئی از اسمبلی بداند. این سوئیچ به کامپایلر اعلام می‌کند که ارجاع این فایل در جدول FileDef  و ExportedTypesDef ثبت شود.
بعد از اتمام عملیات کامپایل، مطابق شکل زیر دو فایل ایجاد می‌شود که فایل سمت راست شامل جدول مانیفست است. فایل RUT.netmodule شامل کد IL و جداول متادیتاهای مربوط به خواص و رویدادها و مواردی از این قبیل است که در این ماژول یافت می‌شود. فایل بعدی MultiFileLibrary.dll هست که شامل کد IL کد FUT.CS می‌شوذ بعلاوه جداول متادیتا مثل ماژول قبلی و جدول متادیتای مانیفست که باعث می‌شود به عنوان یک اسمبلی شناخته شود.



البته توجه داشته باشید که جدول مانیفست ارجاعی به نوع‌های عمومی استخراج شده داخل فایل خودش ندارد، زیرا که در جداول اختصاصی خودش موجود است و در ذخیره سازی صرفه جویی می‌گردد.
بعد از اینکه MultiFileLibrary.dll ساخته شد، به منظور آزمایش کردن جداول متادیتا می‌توانید از ابزار ILDasm.exe استفاده کنید تا ارجاع به فایل RUT.netmodule به شما ثابت شود. آنچه در زیر می‌بینید نمایی از جداول FileDef و ExportedTypesDef است:
File #1 (26000001)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Token: 0x26000001
Name : RUT.netmodule
HashValue Blob : e6 e6 df 62 2c a1 2c 59 97 65 0f 21 44 10 15 96 f2 7e db c2
Flags : [ContainsMetaData] (00000000)


ExportedType #1 (27000001)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Token: 0x27000001
Name: ARarelyUsedType
Implementation token: 0x26000001
TypeDef token: 0x02000002
Flags : [Public] [AutoLayout] [Class] [Sealed] [AnsiClass]
[BeforeFieldInit](00100101)
 
همانطور که در بالا می‌بینید فایل RUT.netmodule با شناسه‌ی (توکن) 0x26000001 به عنوان بخشی از اسمبلی شناخته می‌شود و به نوع کد IL آن اشاره می‌کند.

قابل توجه افراد کنجکاو: توکن‌های جداول متا، مقادیر 4 بایتی است که بایت پر ارزش آن اشاره می‌کند که برای یافتن آن باید به چه جدولی ارجاع کرد. مقادیر زیر این نکته را روشن می‌کند که هر کد ابتدایی به چه جدولی اشاره می‌کند:
 0x01
 TypeRef
 0x02
 TypeDef
 0x23
 AssemblyRef
 0x26
 File
file definition

 0x27
 ExportedType
برای دیدن لیست کاملی از این کدها فایل Corhdr.h را که به همراه فریم ورک دات نت نصب می‌شود، مطالعه فرمایید. سه بایت باقیمانده هم بر اساس جدولی که به آن ارجاع شده است مشخص می‌گردد؛ مثلا در مثال بالا کد 0x26000001  به اولین سطر جدول File اشاره می‌کند. برای اکثر جدول‌ها شماره گذاری سطرها از عدد 1 آغاز می‌شود نه صفر یا برای برای جداول TypeDef عموما از عدد 2 آغاز می‌شود. 

برای اجرای اسمبلی، کامپایلر نیاز دارد که همه‌ی فایل‌های اسمبلی، نصب شده و قابل دسترس باشند و در صورتیکه شما فایل RUT.netmodule را حذف کنید کامپایلر سی شارپ خطای زیر را صادر می‌کند:
fatal error CS0009: Metadata file 'C:\ MultiFileLibrary.dll' could not be opened—'Error importing module 'RUT.netmodule' of assembly 'C:\ MultiFileLibrary.dll'—The system cannot find the file specified'

و این خطا بدین معنی است که برای ساخت اسمبلی باید تمامی فایل‌ها حاضر و مهیا باشند. هر کد کلاینتی که اجرا می‌شود آن متد را صدا می‌زنند. موقعی که یک متد برای اولین بار فراخوانی می‌شود، CLR عملیات شناسایی جهت شناسایی ارجاعات آن در پارامترها، نوع خروجی متد و متغیرهای محلی آن اجرا می‌کند. سپس تلاش می‌کند تا فایل اسمبلی ارجاع شده را که شامل مانیفست هست، بار کند. اگر نوعی که لازم داریم در همین فایل متد وجود داشته باشد، اجرای عملیات را به سمت آن آغاز می‌کند ولی اگر جدول مانیفست ارجاع را به فایل دیگری بدهد، آن فایل در حافظه بار شده و سپس آن نوع را در دسترس قرار می‌دهد. 
خطوط بالا این نکته را روشن می‌کند که فایل‌های اسمبلی را تنها موقعی در حافظه بار میکند که ارجاعی از نوع موجود در آن صدا زده شده باشد؛ یعنی اینکه در زمان اجرای برنامه، لازم نیست که همه‌ی فایل‌ها حاضر و مهیا باشند.
نظرات مطالب
پیاده سازی Unobtrusive Ajax در ASP.NET Core 1.0
یک نکته‌ی تکمیلی: نحوه‌ی ارسال Anti forgery token توسط Action Link ای‌جکسی 

برای اینکار نیاز است متد Ajax begin آن‌را تکمیل کرد:
<a data-ajax="true" data-ajax-begin="onBegin"
در این حالت امضای متد onBegin به صورت ذیل خواهد بود:
<script type=text/javascript>
    function onBegin(xhr, settings) {
        var token = $('input[name=__RequestVerificationToken]').val();
        settings.data = settings.data + '&__RequestVerificationToken=' + token;
    }
</script>
مطالب
ارتقاء به ASP.NET Core 1.0 - قسمت 13 - معرفی View Components
روش رندر یک View در ASP.NET MVC، بر مبنای اطلاعاتی است که از کنترلر، در اختیار View آن قرار می‌گیرد. اما گاهی از اوقات نیاز است بعضی از قسمت‌های صفحه همواره نمایش داده شوند (مانند نمایش تعداد کاربران آنلاین، سخن روز، منوهای کنار صفحه و امثال آن). یک راه حل برای این مساله، اضافه کردن اطلاعات مورد نیاز View در ViewModel ارائه شده‌ی توسط کنترلر است. هرچند این روش کار می‌کند اما پس از مدتی به ViewModel هایی خواهیم رسید که تشکیل شده‌اند از چندین و چند خاصیت اضافی که الزاما مرتبط با تعریف آن ViewModel نیستند. راه حل بهتر، قرار دادن قسمت‌های مشترک صفحات در فایل layout برنامه است؛ اما فایل layout، به سادگی نمی‌تواند از دایرکتیو model@ برای مشخص سازی مدل و یا مدل‌های مورد نیاز خود استفاده کند (هر چند ممکن است؛ اما بیش از اندازه پیچیده خواهد شد).
در نگارش‌های پیشین ASP.NET MVC، یک چنین مسائلی را با معرفی Child Actionها
    public partial class SidebarMenuController : Controller
    {
        const int Min15 = 900;

        [ChildActionOnly]
        [OutputCache(Duration = Min15)]
        public virtual ActionResult Index()
        {
            return PartialView("_SidebarMenu");
        }
    }
و سپس نمایش آن‌ها توسط Html.RenderAction در فایل layout برنامه، حل می‌کنند. در ASP.NET Core، جایگزین Child Actionها، مفهوم جدیدی است به نام View Components.


یک مثال: تهیه‌ی اولین View Component

ساختار یک View Component، بسیار شبیه است به ساختار یک Controller، اما با عملکردی محدود. به همین جهت کار تعریف آن با افزودن یک کلاس سی‌شارپ شروع می‌شود و این کلاس را می‌توان در پوشه‌ای به نام ViewComponents در ریشه‌ی پروژه قرار داد (اختیاری).


سپس برای نمونه، کلاس ذیل را به این پوشه اضافه کنید:
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Core1RtmEmptyTest.Services;
 
namespace Core1RtmEmptyTest.ViewComponents
{
    public class SiteCopyright : ViewComponent
    {
        private readonly IMessagesService _messagesService;
 
        public SiteCopyright(IMessagesService messagesService)
        {
            _messagesService = messagesService;
        }
 
        public IViewComponentResult Invoke(int numberToTake)
        {
            var name = _messagesService.GetSiteName();
            return View(viewName: "Default", model: name);
        }
 
        //public async Task<IViewComponentResult> InvokeAsync(int numberToTake)
        //{
        //    return View();
        //}
    }
}
همانطور که پیشتر نیز عنوان شد، تزریق وابستگی‌ها در تمام قسمت‌های ASP.NET Core در دسترس هستند. در اینجا نیز از سرویس MessagesService بررسی شده‌ی در مطلب «ارتقاء به ASP.NET Core 1.0 - قسمت 6 - سرویس‌ها و تزریق وابستگی‌ها» برای نمایش نام سایت استفاده می‌کنیم.

ساختار کلی یک کلاس ViewComponent شامل دو جزء اصلی است:
الف) از کلاس پایه ViewComponent مشتق می‌شود. به این ترتیب توسط ASP.NET Core قابل شناسایی خواهد شد.
ب) دارای متد Invoke ایی است که بجای Html.RenderAction در نگارش‌های پیشین ASP.NET MVC، قابل فراخوانی است. این متد یک View را باز می‌گرداند.
ج) در اینجا امکان تعریف نمونه‌ی Async متد Invoke نیز وجود دارد (برای مثال جهت کار با متدهای Async بانک اطلاعاتی).
روش فراخوانی این متدها نیز به این صورت است: ابتدا به دنبال نمونه‌ی async می‌گردد. اگر یافت شد، همینجا کار خاتمه می‌یابد. اگر یافت نشد، نمونه‌ی sync یا معمولی آن فراخوانی می‌شود و اگر این هم یافت نشد، یک استثناء صادر خواهد شد.
د) متد Invoke می‌تواند دارای پارامترهای دلخواهی نیز باشد و حالت پیش فرض آن بدون پارامتر است.

روش یافتن یک view component توسط ASP.NET Core به این صورت است:
الف) این کلاس باید عمومی بوده و همچنین abstract نباشد.
ب) «یکی» از مشخصه‌های ذیل را داشته باشد:
1) نامش به ViewComponent ختم شده باشد.
2) از کلاس ViewComponent ارث بری کرده باشد.
3) با ویژگی ViewComponent مزین شده باشد.


نحوه و محل تعریف View یک View Component

پس از تعریف کلاس ViewComponent مورد نظر، اکنون نیاز است View آن‌را اضافه کرد. روش یافتن این Viewها توسط ASP.NET Core نیز بر این مبنا است که
الف) اگر این View Component عمومی و سراسری است، باید درون پوشه‌ی shared، پوشه‌ی جدیدی را به نام Components ایجاد کرده و سپس ذیل این پوشه، بر اساس نام کلاس ViewComponent، یک زیر پوشه‌ی دیگر را ایجاد و داخل آن، View مدنظر را اضافه کرد (تصویر ذیل).
 /Views/Shared/Components/[NameOfComponent]/Default.cshtml
ب) اگر این View Component تنها باید از طریق Viewهای یک کنترلر خاص قابل دسترسی باشند، زیر پوشه‌ی Component یاد شده را ذیل پوشه‌ی View همان کنترلر قرار دهید (و آن‌را از قسمت Shared خارج کنید).
 /Views/[CurrentController]/Components/[NameOfComponent]/Default.cshtml


یک نکته: اگر نام کلاسی به ViewComponent  ختم شده بود، نیازی نیست تا ViewComponent  را هم در حین ساخت پوشه‌ی آن ذکر کرد.


نحوه‌ی استفاده‌ی از View Component تعریف شده و ارسال پارامتر به آن

و در آخر برای استفاده‌ی از این View Component تعریف شده، به فایل layout برنامه مراجعه کرده و آن‌را به نحو ذیل فراخوانی کنید:
 <footer>
    <p>@await Component.InvokeAsync("SiteCopyright", new { numberToTake = 5 })</p>
</footer>
اولین پارامتر متد InvokeAsync، همان نام کلاس View Component است. اگر خواستید پارامتر(های) دلخواهی را به متد Invoke کلاس View Component ارسال کنید (مانند پارامتر int numberToTake در مثال فوق)، آن‌را در همینجا می‌توان ذکر کرد (با فرمت dictionary و یا  anonymous type).

یک نکته: متدهای قدیمی Component.Invoke و Component.Renderدر اینجا حذف شده‌اند (اگر مقالات پیش از RTM را مطالعه کردید) و روش توصیه شده‌ی در اینجا، کار با متدهای async است.


تفاوت‌های View Components با Child Actions نگارش‌های پیشین ASP.NET MVC

پارامترهای یک View Component از طریق یک HTTP Request تامین نمی‌شوند و همانطور که ملاحظه کردید در همان زمان فراخوانی آن‌ها به صورت مستقیم فراهم خواهند شد. بنابراین مباحث model binding در اینجا دیگر وجود خارجی ندارند. همچنین View Components جزئی از طول عمر یک کنترلر نیستند. بنابراین اکشن فیلترهای مختلف تعریف شده، تاثیری را بر روی آن‌ها نخواهند داشت (این مشکلی بود که با Child Actions در نگارش‌های قبلی مشاهده می‌شد). همچنین View Components به صورت مستقیم از طریق درخواست‌های HTTP قابل دسترسی نیستند. به علاوه Child actions قدیمی، از فراخوانی‌های async پشتیبانی نمی‌کنند.
زمانیکه کلاسی از کلاس پایه ViewComponent ارث بری می‌کند، تنها به این خواص عمومی از درخواست HTTP جاری دسترسی خواهد داشت:
[ViewComponent]
public abstract class ViewComponent
{
   protected ViewComponent();
   public HttpContext HttpContext { get; }
   public ModelStateDictionary ModelState { get; }
   public HttpRequest Request { get; }
   public RouteData RouteData { get; }
   public IUrlHelper Url { get; set; }
   public IPrincipal User { get; }

   [Dynamic]  
   public dynamic ViewBag { get; }
   [ViewComponentContext]
   public ViewComponentContext ViewComponentContext { get; set; }
   public ViewContext ViewContext { get; }
   public ViewDataDictionary ViewData { get; }
   public ICompositeViewEngine ViewEngine { get; set; }

   //...
}


فراخوانی Ajax ایی یک View Component

در ASP.NET Core، یک اکشن متد می‌تواند خروجی ViewComponent نیز داشته باشد و این تنها روشی است که می‌توان یک View Component را از طریق درخواست‌های HTTP، مستقیما قابل دسترسی کرد:
public IActionResult AddURLTest()
{
   return ViewComponent("AddURL");
}
در این حالت می‌توان این اکشن متد را به صورت Ajax ایی نیز بارگذاری و به صفحه اضافه کرد:
$(document).ready (function(){
    $("#LoadSignIn").click(function(){
         $('#UserControl').load("/Home/AddURLTest");
    });
});


امکان بارگذاری View Components از اسمبلی‌های دیگر نیز وجود دارد

در مطلب «ارتقاء به ASP.NET Core 1.0 - قسمت 10 - بررسی تغییرات Viewها» روش دسترسی به Viewهای برنامه را که در اسمبلی آن قرار گرفته بودند، بررسی کردیم. دقیقا همان روش در مورد view components نیز صادق است و کاربرد دارد. جهت یادآوری، این مراحل باید طی شوند:
الف) اسمبلی ثالث حاوی View Component‌های برنامه باید ارجاعاتی را به ASP.NET Core و قابلیت‌های Razor آن داشته باشد:
"dependencies": {
   "NETStandard.Library": "1.6.0",
   "Microsoft.AspNetCore.Mvc": "1.0.0",
   "Microsoft.AspNetCore.Razor.Tools": {
   "version": "1.0.0-preview2-final",
   "type": "build"
  }
},
"tools": {
   "Microsoft.AspNetCore.Razor.Tools": "1.0.0-preview2-final"
}
ب) محل قرارگیری viewهای این اسمبلی ثالث نیز همانند قسمت «نحوه و محل تعریف View یک View Component» مطلب جاری است و تفاوتی نمی‌کند. فقط برای  قرار دادن این Viewها در اسمبلی برنامه باید گزینه‌ی embed را مقدار دهی کرد:
"buildOptions": {
   "embed": "Views/**/*.cshtml"
}
ج) مرحله‌ی آخر هم معرفی این اسمبلی ثالث، به RazorViewEngineOptions به صورت یک EmbeddedFileProvider جدید است. در این مثال، ViewComponentLibrary نام فضای نام این اسمبلی است.
public void ConfigureServices(IServiceCollection services)
{
   services.AddMvc();
   //Get a reference to the assembly that contains the view components
   var assembly = typeof(ViewComponentLibrary.ViewComponents.SimpleViewComponent).GetTypeInfo().Assembly;
   //Create an EmbeddedFileProvider for that assembly
   var embeddedFileProvider = new EmbeddedFileProvider(assembly,"ViewComponentLibrary");
   //Add the file provider to the Razor view engine
   services.Configure<RazorViewEngineOptions>(options =>
   {
      options.FileProviders.Add(embeddedFileProvider);
   });
د) جهت رفع تداخلات احتمالی این اسمبلی با سایر اسمبلی‌ها بهتر است ویژگی ViewComponent را به همراه نامی مشخص ذکر کرد (در حین تعریف کلاس View Component):
 [ViewComponent(Name = "ViewComponentLibrary.Simple")]
public class SimpleViewComponent : ViewComponent
و در آخر فراخوانی این View Component بر اساس این نام صورت خواهد گرفت:
 @await Component.InvokeAsync("ViewComponentLibrary.Simple", new { number = 5 })
بازخوردهای دوره
استفاده از AOP Interceptors برای حذف کدهای تکراری کش کردن اطلاعات در لایه سرویس برنامه
با سلام.
حتی اگر از AOP بجای کش سطح دوم استفاده شود، ایجاد یک نمونه جدید از کلاس مربوط به لایه سرویس اجتناب ناپذیر خواهد بود. برای بهبود آن شما چه راه حلی پیشنهاد میکنید؟