مطالب
جایگزین کردن StructureMap با سیستم توکار تزریق وابستگی‌ها در ASP.NET Core 1.0
مدل برنامه زیر را در نظر بگیرید:
 public class Service
    {
        public int ServiceId { get; set; }
        public string ServiceName { get; set; }
    }
اینترفیس ICoreService عمل بازیابی اطلاعات کلاس بالا را بر عهده دارد:
 public interface ICoreService
    {
        Service LoadDefaultService();
    }
نتیجه تزریق وابستگی ICoreService برای کنترلر Home در یک پروژه ASP.NET Core 1.0/Asp.Net Mvc 6 چنین استثنایی بود:
An unhandled exception occurred while processing the request
  InvalidOperationException: Unable to resolve service for type 'WebApplication1.Models.ICoreService' while attempting to activate 'WebApplication1.Controllers.HomeController'
Microsoft.Extensions.Internal.ActivatorUtilities.GetService(IServiceProvider sp, Type type, Type requiredBy, Boolean isDefaultParameterRequired)
 
یعنی زمانیکه Activator میخواست کنترلر Home را فعالسازی کند، نتوانسته وابستگی ICoreService را برای کنترلر فراهم کند. این استثناء در Microsoft.Extensions.Internal.ActivatorUtilities.GetService اتفاق افتاده‌است.

در نسخه‌های قدیمی MVC (منظور نسخه‌های قبل از 6)، برای تزریق وابستگی‌ها از یک Controller Factory یا Dependency Resolver سفارشی استفاده می‌شد. اما در نسخه جدید MVC دیگری خبری از روشهای قدیمی نیست. چونکه یک سیستم تزریق وابستگی توکار، همراه با MVC یکپارچه شده‌است که عملیات تزریق وابستگی‌ها را انجام می‌دهد. سیستم تزریق وابستگی پیش فرض، تنها از 4 حالت عملیاتی پشتیبانی می‌کند:
1- Instance : در همه حال ، تنها یک نمونه خاص ارائه شده و شما مسئول وهله سازی آن هستید.
2- Transient : در هر بار (مثلا در هر درخواست) یک نمونه جدید ساخته میشود.
3- Singleton
4- Scoped : تنها یک نمونه در Scope فعلی ساخته می‌شود.

 تیم Asp.Net برای فراهم آوردن امکان تزریق وابستگی‌ها، تصمیم به انتزاعی کردن ویژگی‌های مشترک محبوبترین Ioc Containerها و اجازه دادن به میان افزارها، جهت ارتباط با این اینترفیس‌ها برای دستیابی به تزریق وابستگی بود.
حال بیایم نگاهی به این اینترفیس‌ها بیندازیم.
اگر به استثنای فوق نگاهی بیندازیم، می‌بینیم که متد GetService یک پارامتر از نوع IServiceProvider را میگیرد. پس اولین اینترفیس IServiceProvider می باشد. همانطور که از اسمش پیداست، کارش فرآهم آوردن سرویس می‌باشد. این اینترفیس فقط یک متد دارد، متد GetService. متد GetService مانند Container.GetInstance در StructureMap می‌باشد. تمام میان افزارها به 2 روش می‌توانند به نمونه‌ای از IServiceProvider دسترسی داشته باشند:
1- Application-Level : از طریق HttpContext.ApplicationServices برای میان افزار قابل دسترسی خواهد بود.
2- Request-Level : از طریق HttpContext.RequestServices. این Service Scope Provider توسط میان افزار در شروع هر Request Pipeline، برای هر درخواست ایجاد و در پایان درخواست توسط همان میان افزار نابود می‌گردد.
اینترفیس بعدی IServiceScope می‌باشد. همان طور که قبلا گفتیم RequestServices یک Scope Container را برای هر درخواست ساخته و در پایان همان درخواست، آن را نابود میکند. اما این کار چگونه مدیریت می‌شود؟ پاسخ، اینترفیس IServiceScope می باشد. این اینترفیس مانند یک Wrapper حول Scope Container عمل میکند و در پایان هر درخواست آن را نابود می‌کند. حال سوال اینجاست که چه کسی مسئول ساخت IServiceScope می‌باشد؟ پاسخ اینترفیس IServiceScopeFactory می‌باشد. این اینترفیس توسط متد CreateScope اقدام به ساخت یک نمونه از اینترفیس IserviceScope می‌نماید.
مورد بعدی ServiceLifeTime می‌باشد. یک Enum که حاوی سه مقدار زیر می‌باشد:
namespace Microsoft.Extensions.DependencyInjection
{
    //
    // Summary:
    //     Specifies the lifetime of a service in an Microsoft.Extensions.DependencyInjection.IServiceCollection.
    public enum ServiceLifetime
    {
        //
        // Summary:
        //     Specifies that a single instance of the service will be created.
        Singleton = 0,
        //
        // Summary:
        //     Specifies that a new instance of the service will be created for each scope.
        //
        // Remarks:
        //     In ASP.NET Core applications a scope is created around each server request.
        Scoped = 1,
        //
        // Summary:
        //     Specifies that a new instance of the service will be created every time it is
        //     requested.
        Transient = 2
    }
}
آخرین مورد کلاس ServiceDescriptor می‌باشد.  این کلاس اطلاعاتی را که Container برای رجیستر کردن سرویس به آنها نیاز دارد، در خود نگهداری می‌کند. این جمله را در نظر بگیرید : " هی Container، وقتی میخواهی این سرویس را رجیستر کنی، اطمینان حاصل کن که Singleton باشد و یک نمونه از نوع X را پیاده سازی کند." تمامی اطلاعات جمله قبل در ServiceDescriptor نگهداری می‌شود.
خوب! حال بیایم تا سرویس خود را رجیستر کنیم. در کلاس StartUp پروژه در متد ConfigurationServices خط زیر را اضافه می‌کنیم:
public void ConfigureServices(IServiceCollection services)
        {                        
            ServiceDescriptor descriptor = new ServiceDescriptor(typeof(ICoreService),typeof(CoreServise),ServiceLifetime.Transient);
            services.Add(descriptor);
            services.AddMvc();          
        }
حال اگر برنامه را اجرا کنیم مشکل برطرف شده است.

ساخت یک Service Descriptor و اضافه کردن آن به سرویسها، فلسفه وجودی میان افزارها را زیر سوال می‌برد. پس بجای ایجاد یک Service Descriptor، از متدهای الحاقی تدارک دیده شده استفاده میکنیم. مثلا بجای دو خط کد بالا می‌توان از کد زیر استفاده نمود:

services.AddTransient<ICoreService,CoreServise>();

حال که یک دید کلی از نحوه کار مکانیزم تزریق وابستگی بدست آوردیم، میخواهیم این مکانیزم را با StructureMap جایگزین کنیم. بدین منظور ابتدا پکیج StructureMap را نصب میکنم.

در مرحله اول باید کلاسهایی را تدارک ببینیم که اینترفیس‌های بالا را پیاده سازی نمایند. یعنی کلاسهای ما باید بتوانند همان کاری را انجام دهند که مکانیزم پیش فرض MVC انجام می‌دهد. 

اولین مورد، کلاس StructureMapServiceProvider می‌باشد.

internal class StructureMapServiceProvider : IServiceProvider
    {
        private readonly IContainer _container;

        public StructureMapServiceProvider(IContainer container, bool scoped = false)
        {            
            _container = container;
        }

        public object GetService(Type type)
        {
            try
            {
                return _container.GetInstance(type);
            }
            catch
            {
                return null;
            }
        }
    }

مورد دوم کلاس StructureMapServiceScope می‌باشد:

internal class StructureMapServiceScope : IServiceScope
    {
        private readonly IContainer _container;
        private readonly IContainer _childContainer;
        private IServiceProvider _provider;

        public StructureMapServiceScope(IContainer container)
        {
            _container = container;
            _childContainer = _container.GetNestedContainer();
            _provider = new StructureMapServiceProvider(_childContainer, true);
        }

        public IServiceProvider ServiceProvider => _provider;

        public void Dispose()
        {
            _provider = null;
            if (_childContainer != null)
                _childContainer.Dispose();
        }
    }

مورد سوم StructureMapServiceScopeFactory می‌باشد:

internal class StructureMapServiceScopeFactory : IServiceScopeFactory
    {
        private IContainer _container;

        public StructureMapServiceScopeFactory(IContainer container)
        {
            _container = container;
        }

        public IServiceScope CreateScope()
        {
            return new StructureMapServiceScope(_container);
        }
    }

مورد بعدی کلاس StructureMapPopulator می‌باشد. وظیفه این کلاس جمع آوری اطلاعات مربوط به سرویس‌ها می‌باشد.

internal class StructureMapPopulator
    {
        private IContainer _container;

        public StructureMapPopulator(IContainer container)
        {
            _container = container;
        }

        public void Populate(IEnumerable<ServiceDescriptor> descriptors)
        {
            _container.Configure(c =>
            {
                c.For<IServiceProvider>().Use(new StructureMapServiceProvider(_container));
                c.For<IServiceScopeFactory>().Use<StructureMapServiceScopeFactory>();

                foreach (var descriptor in descriptors)
                {
                    switch (descriptor.Lifetime)
                    {
                        case ServiceLifetime.Singleton:
                            Use(c.For(descriptor.ServiceType).Singleton(), descriptor);
                            break;
                        case ServiceLifetime.Transient:
                            Use(c.For(descriptor.ServiceType), descriptor);
                            break;
                        case ServiceLifetime.Scoped:
                            Use(c.For(descriptor.ServiceType), descriptor);
                            break;
                    }
                }
            });
        }

        private static void Use(GenericFamilyExpression expression, ServiceDescriptor descriptor)
        {
            if (descriptor.ImplementationFactory != null)
            {
                expression.Use(Guid.NewGuid().ToString(), context => { return descriptor.ImplementationFactory(context.GetInstance<IServiceProvider>()); });
            }
            else if (descriptor.ImplementationInstance != null)
            {
                expression.Use(descriptor.ImplementationInstance);
            }
            else if (descriptor.ImplementationType != null)
            {
                expression.Use(descriptor.ImplementationType);
            }
            else
            {
                throw new InvalidOperationException("IServiceDescriptor is invalid");
            }
        }
    }

و در آخر کلاس StructureMapRegistration می‌باشد:

public static class StructureMapRegistration
    {
        public static void Populate(this IContainer container, IEnumerable<ServiceDescriptor> descriptors)
        {
            var populator = new StructureMapPopulator(container);
            populator.Populate(descriptors);
        }
    }

نهایتاً باید متد ConfigurationServices در کلاس StartUp را اندکی تغییر دهیم.

public IServiceProvider ConfigureServices(IServiceCollection services)
        {
            services.AddMvc();
           
            var container = new Container();
            container.Configure(configure =>
            {
                configure.For<ICoreService>().Use<CoreServise>();
            });

            container.Populate(services);

            return container.GetInstance<IServiceProvider>();
        }

در کد بالا، متد ConfigurationServices به جای آنکه Void برگرداند، نمونه‌ای از اینترفیس IServiceProvider را برمی‌گرداند. حال اگر برنامه را اجرا کنیم، وابستگی‌ها توسط StructureMap تزریق شده و برنامه بدون هیچ مشکلی اجرا می‌شود.

نظرات اشتراک‌ها
کتاب حسابداری مختصر و مفید
سلام،
کسی آموزش حسابداری به زبان فارسی بصورت مختصر داره؟
برای شناخت و آنالیز برنامه حسابداری؟

ممنون
اشتراک‌ها
Localization در Blazor WASM

توی این پست به روش ساخت یک کامپوننت برای تغییر زبان و culture برنامه و ذخیره و فراخوانی از local storage در Blazor WASM میپردازد.


Localization در Blazor WASM
اشتراک‌ها
انتخاب یک زبان و فریم ورک وب برای یک دهه آینده
این مطلب از زبان یک برنامه نویس لینوکسی تهیه شده. بنابراین اثری از فناوری‌های غیر از آن سکوی کاری در آن نیست. ولی شاخص‌هایی را که در انتخاب زبان‌ها و فریم ورک‌ها بررسی کرده جالب هستند.
انتخاب یک زبان و فریم ورک وب برای یک دهه آینده
نظرات مطالب
ویدئوهای آموزشی Entity Framework با زیرنویس فارسی
@امیرحسین جلوداری، یکی از ویژگی‌های یک برنامه نویس خوب داشتن دانش زبان انگلیسی مناسب لااقل در زمینه خواندن، گوش دادن هست.
البته امیدوارم این نکته رو به عنوان نصیحتی دوستانه بپذیرید.
مطالب دوره‌ها
توابع(Function)
برنامه نویسی تابع گرا در یک جمله یعنی نوشتن توابع در پروژه و فراخوانی آن‌ها به همراه مقدار دهی به آرگومان‌های متناظر و دریافت خروجی در صورت نیاز. در #F پارامتر‌های یک تابع با پرانتز یا کاما از هم تمیز داده نمی‌شوند بلکه باید فقط از یک فضای خالی بین آن‌ها استفاده کنید.(البته می‌تونید برای خوانایی بهتر از پرانتز استفاده کنید)
let add x y = x + y
let result = add 4 5
printfn "(add 4 5) = %i" result
همان طور که می‌بینید تابعی به نام add داریم که دارای 2 پارامتر ورودی است به نام‌های x , y که فقط توسط یک فضای خالی از هم جدا شدند. حال به مثال دیگر توجه کنید.
let add x y = x + y
let result1 = add 4 5
let result2 = add 6 7
let finalResult = add result1 result2
در مثال بالا همان تابع add 2 بار فراخوانی شده است که یک بار مقدار خروجی تابع در یک شناسه به نام result1 و یک بار مقدار خروجی با مقادیر متفاوت در شناسه به نام result2 قرار گرفت. شناسه finalResult حاصل فراخوانی تابع add با مقادیر result1 , result2 است. می‌تونیم کد بالا رو به روش مناسب‌تری باز نویسی کنیم.
let add x y = x + y
let result =add (add 4 5) (add 6 7)
در اینجا برای خوانایی بهتر کد از پرانتز برای جداسازی مقدار پارامتر‌ها استفاده کردم.

  خروجی توابع
کامپایلر #F آخرین مقداری که در تابع، تعریف و استفاده می‌شود را به عنوان مقدار بازگشتی و نوع آن را نوع بازگشتی می‌شناسد.

let cylinderVolume radius length : float =
   
   let pi = 3.14159
   length * pi * radius * radius
در مثال بالا خروجی تابع مقدار ( length * pi * radius * radius ) است و نو ع آن float می‌باشد.
یک مثال دیگر:
let sign num =
    if num > 0 then "positive"
    elif num < 0 then "negative"
    else "zero"
خروجی تابع بالا از نوع string است و مقدار آن با توجه به ورودی تابع positive یا negative یا zero خواهد بود.

تعریف پارامترهای تابع با ذکر نوع به صورت صریح
اگر هنگام تعریف توابع مایل باشید که نوع پارامترها را به صورت صریح تعیین کنید از روش زیر استفاده می‌کنیم.
let replace(str: string) =
    str.Replace("A", "a")
تعریف تابع به همراه دو پارامتر و ذکر نوع فقط برای یکی از پارامتر‌ها :
let addu1 (x : uint32) y =
    x + y

Pipe-Forward Operator
در #F روشی دیگری برای تعریف توابع وجود دارد که به pipe-Forward معروف است. فقط کافیست از اپراتور (<|) به صورت زیر استفاده کنید.
let (|>) x f = f x
کد بالا به این معنی است که تابعی  یک پارامتر ورودی به نام x دارد و این پارامتر رو به تابع مورد نظر(هر تابعی که شما هنگام استفاده تعیین کنید) تحویل می‌دهد و خروجی را بر می‌گرداند. برای مثال
let result = 0.5 |> System.Math.Cos
یا
let add x y = x + y
let result = add 6 7 |> add 4 |> add 5
در مثال بالا ابتدا حاصل جمع 7 و 6 محاسبه می‌شود و نتیجه با 4 جمع می‌شود و دوباره نتیجه با 5 جمع می‌شود تا حاصل نهایی در result قرار گیرد. به نظر اکثر برنامه نویسان #F این روش نسبت به روش‌های قبلی خواناتر است. این روش همچنین مزایای دیگری نیز دارد که در مبحث Partial Function‌ها بحث خواهیم کرد.

Partial Fucntion Or Application
partial function به این معنی است که در هنگام فراخوانی یک تابع نیاز نیست که به تمام آرگومان‌های مورد نیاز مقدار اختصاص دهیم. برای نمونه در مثال بالا تابع add نیاز به 2 آرگومان ورودی داشت در حالی که فقط یک مقدار به آن پاس داده شد.
let result = add 6 7 |> add 4
دلیل برخورد #F با این مسئله این است که #F توابع رو به شکل مقدار در نظر می‌گیرد و اگر تمام مقادیر مورد نیاز یک تابع در هنگام فراخوانی تحویل داده نشود، از مقدار برگشت داده شده فراخوانی تابع قبلی استفاده خواهد کرد. البته این مورد همیشه خوشایند نیست. اما می‌تونیم با استفاده از پرانتز ر هنگام تعریف توابع مشخص کنیم که دقیقا نیاز به چند تا مقدار ورودی برای توابع داریم.
let sub (a, b) = a - b
let subFour = sub 4
کد بالا کامپایل نخواهد شد و خطای زیر رو مشاهده خواهید کرد.
prog.fs(15,19): error: FS0001: This expression has type
int
but is here used with type
'a * 'b
توابع بازگشتی
در مورد ماهیت توابع بازگشتی نیاز به توضیح نیست فقط در مورد نوع پیاده سازی اون در #F توضیح خواهم داد. برای تعریف توابع به صورت بازگشتی کافیست از کلمه rec بعد از let استفاده کنیم(زمانی که قصد فراخوانی تابع رو در خود تابع داشته باشیم). مثال پایین به خوبی مسئله را روشن خواهد کرد.(پیاده سازی تابع فیبو ناچی)
let rec fib x =
match x with
| 1 -> 1
| 2 -> 1
| x -> fib (x - 1) + fib (x - 2)
printfn "(fib 2) = %i" (fib 2) printfn "(fib 6) = %i" (fib 6) printfn "(fib 11) = %i" (fib 11) 
*درباره الگوی Matching در فصل بعد به صورت کامل توضیح خواهم داد.
خروجی برای مثال بالا به صورت خواهد شد.
(fib 2) = 1
(fib 6) = 8
(fib 11) = 89
توابع بازگشتی دو طرفه
گاهی اوقات توابع به صورت دوطرفه بازگشتی می‌شوند. یعنی فراخوانی توابع به صورت چرخشی انجام می‌شود. (فراخوانی یک تابع در تابع دیگر و بالعکس). به مثال زیر دقت کنید.
let rec Even x =
   if x = 0 then true 
   else Odd (x - 1)
and Odd x =
   if x = 1 then true 
   else Even (x - 1)
کاملا واضح است در تابع Even فراخوانی تابع Odd انجام می‌شود و در تابع Odd فراخوانی تابع Even. به این حالت mutual recursive می‌گویند.
ترکیب توابع
let firstFunction x = x + 1
let secondFunction x = x * 2
let newFunction = firstFunction >> secondFunction
let result = newFunction 100
در مثال بالا دو تابع به نام‌های firstFunction  و secondFunction داریم. بااستفاده از (<<) دو تابع را با هم ترکیب می‌کنیم. خروجی بدین صورت محاسبه می‌شود که ابتدا تابع firstFucntion مقدار x را محاسبه می‌کند و حاصل به تابع secondFucntion پاس داده می‌شود. در نهایت یک تابع جدید به نام newFunction خواهیم داشت که مقدار نهایی محاسبه خواهد شد. خروجی مثال بالا 202 است.

توابع تودرتو
در #F امکان تعریف توابع تودرتو وجود دارد. بعنی می‌تونیم یک تابع را در یک تابع دیگر تعریف کنیم. فقط نکته مهم در امر استفاده از توابع به این شکل این است که توابع تودرتو فقط در همون تابعی که تعریف می‌شوند قایل استفاده هستند و محدوده این توابع در خود همون تابع است.
let sumOfDivisors n =
    let rec loop current max acc =
//شروع تابع داخلی
 if current > max then acc else if n % current = 0 then loop (current + 1) max (acc + current) else loop (current + 1) max acc
//ادامه بدنه تابع اصلی
 let start = 2 let max = n / 2 (* largest factor, apart from n, cannot be > n / 2 *) let minSum = 1 + n (* 1 and n are already factors of n *) loop start max minSum printfn "%d" (sumOfDivisors 10)
در مثال بالا یک تابع تعریف کرده ایم به نام sumOfDivisors. در داخل این تابع یک تابع دیگر به نام loop داریم که از نوع بازگشتی است(به دلیل وجود rec بعد از let). بدنه تابع داخلی به صورت زیر است:
  if current > max then
            acc
        else
            if n % current = 0 then
                loop (current + 1) max (acc + current)
            else
                loop (current + 1) max acc
خروجی مثال بالا برای ورودی 10 عدد 18 می‌باشد. مجموع مقصوم علیه‌های عدد 10 (1 + 2 + 5 + 10 ).

آیا می‌توان توابع را Overload کرد؟
در #F امکان overloading برای یک تابع وجود ندارد. ولی متدها را می‌توان overload  کرد.(متد‌ها در فصل شی گرایی توضیح داده می‌شود).

do keyword
زمانی که قصد اجرای یک کد را بدون تعریف یک تابع داشته باشیم باید از do  استفاده کنیم. همچنین از do در انجام برخی عملیات پیش فرض در کلاس‌ها زیاد استفاده می‌کنیم.(در فصل شی گرایی با این مورد آشنا خواهید شد).
open System
open System.Windows.Forms

let form1 = new Form()
form1.Text <- "XYZ"

[<STAThread>]
do
   Application.Run(form1)