مطالب
React 16x - قسمت 1 - معرفی و شروع به کار
React یک کتابخانه‌ی جاوا اسکریپتی، برای ساخت رابط‌های کاربری سریع و تعاملی است. توسعه‌ی آن از سال 2011 در فیسبوک شروع شد و در حال حاضر محبوب‌ترین کتابخانه‌ی جاوا اسکریپتی در این رده‌است:


به همین جهت اگر می‌خواهید رزومه‌ی غنی‌تری را ارائه دهید، فراگیری React می‌تواند موقعیت‌های شغلی بیشتری را نصیب شما کند.


ساختار کلی یک برنامه‌ی React

کامپوننت‌ها (جزئی از یک رابط کاربری) قلب هر برنامه‌ی React ای را تشکیل می‌دهند. برای ساخت یک برنامه‌ی React، تعدادی کامپوننت مستقل را تهیه و با هم ترکیب می‌کنیم تا به رابط کاربری نهایی برسیم.
هر برنامه‌ی React، حداقل از یک کامپوننت تشکیل می‌شود که به آن Root component هم می‌گویند. این کامپوننت بیانگر کل برنامه‌است و دربرگیرنده‌ی مابقی Child components برنامه است. بنابراین ساختار هر برنامه‌ی React، شبیه به درختی از کامپوننت‌ها است. اگر با Angular 2 به بعد کار کرده باشید، این مفهوم برای شما آشنا است.
یک مثال: فرض کنید می‌خواهیم UI برنامه‌ای را به مانند رابط کاربری Twitter، ایجاد کنیم. هر قسمت یک صفحه‌ی توئیتر، به کامپوننت‌هایی شکسته می‌شود؛ مانند منوی راهبری، نمایش پروفایل شخص، نمایش لیست آخرین اخبار مورد علاقه‌ی شخص و نمایش فید. اگر بخواهیم این ساختار را توسط یک برنامه‌ی React شبیه سازی کنیم، در بالاترین سطح، کامپوننت root را خواهیم داشت که کار ترکیب و نمایش سایر کامپوننت‌های برنامه مانند nav bar ، trends ، profile و feed را انجام می‌دهد. اکنون در این ساختار ایجاد شده، برای مثال کامپوننت feed نیز می‌تواند از چندین کامپوننت مجزا تشکیل شود؛ مانند کامپوننت‌های tweet و like.
بنابراین هر کامپوننت، قسمتی از UI را تشکیل می‌دهد. هر کدام از آن‌ها به صورت مجزای از دیگری ساخته شده و سپس در کنار هم قرار می‌گیرند تا UI نهایی را شکل دهند:



هر کامپوننت در React به صورت یک کلاس ES6، با ساختاری که دارای یک شیء state و متد render است، تشکیل می‌شود:
class Tweet {
 state = {};
 
 render() {
 } 
}
state در اینجا همان اطلاعاتی است که قرار است در زمان نمایش این کامپوننت، رندر شود. کار متد render نیز همانطور که از نام آن نیز مشخص است، بیان نحوه‌ی تشکیل و رندر UI است. خروجی این متد، یک React Element است که در حقیقت یک شیء جاوا اسکریپتی خالص است و در نهایت به المان‌های DOM، نگاشت می‌شود. یک React Element، یک DOM Element واقعی نیست؛ بلکه تنها یک شیء جاوا اسکریپتی بیانگر DOM Element، در حافظه‌است. بنابراین یک برنامه‌ی React تشکیل شده‌است از لیستی از React Elementها در حافظه که به آن Virtual DOM هم گفته می‌شود.
مزیت کارکردن با Virtual DOM، سادگی ایجاد، تغییر و به روز رسانی آن در مقایسه با DOM واقعی است که در نهایت کار رندر عناصر UI را در مرورگر انجام می‌دهد. زمانیکه در state کامپوننتی تغییری رخ می‌دهد، یک React Element جدید تولید می‌شود. سپس React این شیء جدید را با نمونه‌ی قبلی آن مقایسه کرده و تغییرات رخ‌داده را محاسبه می‌کند. در آخر این تغییرات را به DOM واقعی اعمال می‌کند تا با Virtual DOM موجود هماهنگ شود.
بنابراین در حین کار با React، دیگر همانند کار با جاوا اسکریپت خالص و یا jQuery، مستقیما عناصر UI و DOM واقعی را تغییر نمی‌دهیم. در اینجا فقط state یک کامپوننت را تغییر می‌دهیم و سپس React، کار ایجاد شیء UI درون حافظه‌ای متناظر با آن و سپس اعمال آن‌را به UI نهایی قابل مشاهده‌ی در مرورگر، انجام می‌دهد. به همین جهت به این کتابخانه React می‌گویند! چون به تغییرات state کامپوننت‌ها واکنش نشان می‌دهد و سپس DOM واقعی را به روز می‌کند.


Angular یا React؟!

هر دوی React و Angular از لحاظ طراحی کامپوننت‌ها بسیار شبیه به هم هستند؛ اما Angular یک فریم‌ورک است و React تنها یک کتابخانه. تنها کاری را که React انجام می‌دهد، رندر View است و هماهنگ نگه داشتن آن با state کامپوننت‌ها. این تمام کاری است که React انجام می‌دهد؛ نه بیشتر و نه کمتر! بنابراین یادگیری React، بسیار سریع‌تر و ساده‌تر از Angular است. بدیهی است یک برنامه‌ی تک صفحه‌ای وب، از اجزای دیگری مانند مسیریابی و یا کار با سرویس‌های HTTP نیز تشکیل می‌شود. در React شما مختار هستید که کتابخانه‌های جانبی فراهم شده‌ی برای آن‌را خودتان انتخاب کرده و استفاده کنید؛ برخلاف روشی که در Angular مرسوم است و به صورت مشخص و ثابتی به همراه این فریم‌ورک ارائه می‌شوند.


برپایی محیط توسعه‌ی React

اولین برنامه‌ای را که برای کار با React باید نصب کنید، node.js است. البته ما در این سری قرار نیست با node.js کار کنیم؛ اما از یکی از اجزای آن به نام node package manager یا npm، برای نصب کتابخانه‌ی جاوا اسکریپتی ثالث، زیاد استفاده خواهیم کرد. پس از نصب آن، به خط فرمان مراجعه کرد و دستور زیر را صادر کنید:
> npm install -g npm@latest
این دستور npm قدیمی موجود بر روی سیستم را به روز رسانی می‌کند (اگر پیشتر یک node.js قدیمی را نصب و اکنون آن‌را به روز رسانی کرده‌اید).

اگر هم خیلی پیشترها node.js را نصب کرده‌اید (برای مثال چند سال قبل!)، نصب نگارش جدید آن احتمالا کار نخواهد کرد. حتی عزل و نصب مجدد آن نیز کارساز نیست. در این حالت باید پس از عزل آن، پوشه‌های قدیمی آن‌را یکی یکی یافته و دستی حذف کنید . سپس مجددا آن‌را نصب کنید.

در ادامه در خط فرمان و توسط npm، قالب create-react-app را نصب خواهیم کرد:
> npm i -g create-react-app
در اینجا سوئیچ i به معنای install است و g یعنی نصب global و سراسری بسته‌ی create-react-app. نصب سراسری یک بسته یعنی در هر پوشه‌ای می‌توان به امکانات آن دسترسی یافت و از آن استفاده کرد. اگر از سوئیچ g استفاده نمی‌شد، این بسته تنها در پوشه‌ی جاری و با سطح دید مختص به آن، نصب و قابل استفاده می‌شد.

ابزار دیگری که در این سری از آن استفاده خواهیم کرد، ادیتور بسیار معروف و محبوب VSCode است. پس از دریافت و نصب آن، چند افزونه‌ی زیر را نیز به آن اضافه خواهیم کرد:
برای نصب آن‌ها، پنل extensions را در VSCode، از نوار ابزار کنار صفحه‌ی آن، انتخاب کرده و نام‌های فوق را در آن جستجو و سپس نصب کنید.

و یا می‌توانید این فایل را اجرا کرده و تعدادی از افزونه‌های مفید VSCode را یکجا نصب کنید: install-addons.zip

همچنین قابلیت فرمت‌کردن پس از Save را نیز در VSCode فعال کنید تا پس از هربار Save، اعمال این افزونه‌ها به صورت خودکار صورت گیرد. برای این منظور گزینه‌ی file->preferences->settings را در VSCode انتخاب کرده و سپس save را جستجو کرده و Format On Save را انتخاب کنید:


علاوه بر این‌ها، جهت کار بهتر با VSCode، بهتر است بررسی کننده‌های کدهای جاوا اسکریپتی (static code analyzers) را نیز با اجرای دستور زیر نصب کنید:
> npm i -g typescript eslint tslint eslint-plugin-react-hooks

پس از این تغییرات، نیاز است یکبار VSCode را بسته و مجددا باز کنید. سپس مجددا گزینه‌ی file->preferences->settings را در VSCode انتخاب کرده و ابتدا eslint را در اینجا جستجو کنید. در صفحه‌ی نمایش تنظیمات آن، گزینه‌ی Auto fix on save آن‌را انتخاب نمائید. در آخر در همین قسمت settings، عبارت prettier را انتخاب کنید. در اینجا اگر گزینه‌ی قدیمی یکپارچگی با eslint آن هنوز وجود دارد، آن‌را از حالت انتخاب شده خارج کنید (به صورت قرمز و deprecated نمایش داده می‌شود) تا افزونه‌ی prettier بدون مشکل و خطا کار کند (disable Prettier ESLint integration).


ایجاد قالب اولین برنامه‌ی React

در ادامه برای ایجاد اولین برنامه‌ی React، از بسته‌ی create-react-app که پیشتر آن‌را نصب کردیم، استفاده می‌کنیم. برای این منظور در خط فرمان دستور زیر را صادر کنید:
> create-react-app sample-01
در اینجا sample-01 یک نام دلخواه است و در حین اجرای این دستور باید به اینترنت متصل باشید تا وابستگی‌های مرتبط با پروژه را نیز دریافت کند. برای بار اول، اجرای آن ممکن است کمی طول بکشد. اما از دفعات آتی، چون بسته‌های مرتبط را در npm-cache سیستم نیز ذخیره می‌کند، اجرای آن بسیار سریع خواهد بود.
این قالب نه تنها React را نصب می‌کند، بلکه یک development server را برای اجرا و مشاهده‌ی سریع برنامه، webpack را برای یکی کردن فایل‌ها (bundling & minification)، Babel را برای کامپایل کدهای فایل‌های JSX و ... نیز نصب می‌کند. بنابراین به این ترتیب، یک پروژه‌ی تنظیم شده و آماده‌ی استفاده و توسعه را شاهد خواهیم بود که نیازی به تنظیمات اولیه‌ی آن نیست.
پس ایجاد برنامه، وارد پوشه‌ی sample-01 شده و دستور npm start را صادر کنید:
> cd sample-01
> npm start
به این ترتیب برنامه بر روی پورت 3000، قابل دسترسی و مشاهده می‌شود:


development server آن، تغییرات فایل‌های برنامه را تحت نظر قرار می‌دهد و با هر تغییری، به صورت خودکار برنامه را در مرورگر بارگذاری مجدد خواهد کرد.


بررسی ساختار اولین پروژه‌ی React ایجاد شده

ساختار پوشه‌ها و فایل‌های مثال اولیه‌ی ایجاد شده توسط قالب create-react-app به صورت زیر است:


البته شما در این تصویر پوشه‌ی node_modules را که در کنار این پوشه‌ها قرار دارد، مشاهده نمی‌کنید. وجود یک چنین پوشه‌ی سنگینی با هزاران فایل داخل آن، کار نمایشی IDEها را با مشکل مواجه می‌کند (مصرف حافظه‌ی بالا، به همراه کند شدن شدید آن). اگر نمی‌خواهید این پوشه نمایش داده شود، در مسیر file->preferences->settings، عبارت npm را جستجو کرده و سپس در قسمت npm: exclude آن، بر روی لینک edit in settings.json کلیک کنید:


 و سپس در فایل باز شده، یک چنین تنظیمی را می‌توانید اضافه و یا ویرایش و تکمیل کنید:
  "files.exclude": {
    "**/.git": true,
    "**/.svn": true,
    "**/.hg": true,
    "**/CVS": true,
    "**/.DS_Store": true,
    "**/node_modules": true,
    "**/wwwroot": true,
    "**/bower_components": true,
    "**/**/bin": true,
    "**/**/obj": true,
    "**/packages": true
  },

در ادامه پوشه‌ی public این پروژه را مشاهده می‌کنید. تمام فایل‌هایی که قرار است به صورت عمومی توسط برنامه ارائه شوند، مانند favicon.ico و غیره، در این پوشه قرار می‌گیرند.
در این پوشه بر روی فایل index.html آن کلیک کنید تا بتوان محتوای آن‌را بهتر بررسی کرد. برای مثال در ابتدای آن، درج تعدادی متادیتا را که یکی از آن‌ها ذکر manifest.json است، مشاهده می‌کنید. کار فایل manifest.json، ارائه‌ی یک سری متادیتای خاص مخصوص دستگاه‌های موبایل است که در آن‌ها بجای favicon.ico، می‌توان از تصاویر و یا آیکن‌های بزرگتری مانند فایل‌های png موجود در پوشه‌ی public، استفاده کرد. در ادامه‌ی این فایل، به تنظیم زیر می‌رسیم:
  <body>
    <noscript>You need to enable JavaScript to run this app.</noscript>
    <div id="root"></div>
div با id مساوی root، محل ارائه‌ی کل برنامه‌ی React ما است.

در پوشه‌ی src و فایل App.js آن، شاهد یک کامپوننت ابتدایی هستید که کار رندر صفحه‌ی مشکی پیش‌فرض این قالب را انجام می‌دهد. در این فایل، شاهد بازگشت یک چنین تگ‌هایی هستیم:
  return (
    <div className="App">
      <header className="App-header">
       ... 
      </header>
    </div>
  );
احتمالا تابحال چنین return ای را در برنامه‌های جاوا اسکریپتی مشاهده نکرده‌اید؛ چون درج آن‌ها در فایل‌های js به این نحو، غیرمجاز است. این تگ‌ها نه رشته‌ای هستند و نه HTML خالص. به آن jsx گفته می‌شود که مخفف JavaScript XML می‌باشد. کار آن ارائه‌ی ساختار UI ای است که قرار است رندر شود. یک چنین کدی برای اینکه قابل تفسیر و اجرا باشد، از درون کامپایلر ویژه‌ای به نام Babel عبور می‌کند و تبدیل به کدهای جاوا اسکریپتی خالصی می‌شود که برای مرورگرها قابل درک و اجرا است.
برای درک بهتر آن به آدرس https://babeljs.io/repl مراجعه کنید. سپس در سمت چپ صفحه، یک قطعه کد jsx را به یک ثابت انتساب دهید:
const element = <h1>Hello World!</h1>;


همانطور که مشاهده می‌کنید، این قطعه کد jsx (که یک رشته‌ی معمولی نیست)، توسط Babel به یک قطعه کد کاملا جاوا اسکریپتی قابل درک برای مرورگر تبدیل شده‌است:
"use strict";

var element = React.createElement("h1", null, "Hello World!");

بدیهی است نوشتن کدهای jsx، ساده‌تر از نوشتن قطعه کد فوق است و درک آن نیز به علت شباهت آن به HTML، آسان‌تر است. به همین جهت در کدهای React، ما از jsx استفاده می‌کنیم و تفسیر آن‌را به Babel واگذار خواهیم کرد.

در پوشه‌ی src، فایل مهم دیگری که وجود دارد، index.js است. این فایل نقطه‌ی آغازین برنامه را مشخص می‌کند. در قسمت‌های بعدی، محتویات این فایل را بیشتر بررسی خواهیم کرد.
در اینجا فایل serviceWorker.js را نیز مشاهده می‌کنید. این فایل به صورت خودکار توسط قالب create-react-app ایجاد شده‌است و کار آن کمک به ارائه‌ی محلی برنامه، توسط development server آن است. بنابراین ما کاری با این فایل نخواهیم داشت.


نوشتن اولین برنامه‌ی React

به پوشه‌ی src ایجاد شده مراجعه کرده و تمام فایل‌های موجود و پیش‌فرض آن‌را حذف کنید. در ادامه خودمان آن‌ها را از صفر ایجاد خواهیم کرد. برای این منظور فایل جدید و خالی src\index.js را ایجاد می‌کنیم. در ابتدای کار نیاز است تعدادی ماژول React را import کنیم.
import React from "react";

const element = <h1>Hello World!</h1>;
console.log(element);
در اینجا شیء React از ماژول react دریافت شده و سپس یک ثابت را با یک عبارت jsx مقدار دهی کرده‌ایم. چون از jsx استفاده می‌کنیم، ذکر import ابتدای فایل الزامی است؛ از این جهت که Babel به کمک آن است که می‌تواند معادل React.createElement را تولید کند.
اگر هنوز برنامه توسط دستور npm start در حال اجرا است، هر بار که فایل index.js را ذخیره می‌کنیم، خروجی نهایی را در مرورگر نمایش می‌دهد (اگر هم آن‌را بسته‌اید، یکبار از طریق خط فرمان، دستور npm start را در ریشه‌ی پروژه، صادر کنید). به این قابلیت hot module reloading هم گفته می‌شود.
در این حالت اگر به مرورگر مراجعه کنید، یک صفحه‌ی سفید را مشاهده خواهید کرد. اکنون دکمه‌ی F12 را فشرده (و یا ctrl+shift+i) و developer console مرورگر را باز کنید.


شیءای را که در اینجا مشاهده می‌کنید، همان حاصل console.log کدهای فوق است؛ به عبارتی Babel، عبارت jsx ما را تبدیل به یک شیء جاوا اسکریپتی قابل فهم برای مرورگر کرده‌است که از دیدگاه React، جزئی از همان Virtual DOM ای است که پیشتر معرفی شد (نمایش درون حافظه‌ای DOM مختص React، جهت محاسبه‌ی تغییرات، با تغییر state هر کامپوننت و سپس اعمال آن‌ها به DOM اصلی در مرورگر).
اکنون می‌خواهیم این المان را در DOM اصلی، رندر کرده و نمایش دهیم:
import React from "react";
import ReactDOM from "react-dom";

const element = <h1>Hello World!</h1>;
console.log(element);

ReactDOM.render(element, document.getElementById("root"));
برای این منظور نیاز است از متد ReactDOM.render استفاده کرد. این شیء در ماژول react-dom قرار دارد؛ به همین جهت در ابتدای فایل import شده‌است. سپس در متد render آن، ابتدا المانی که قرار است رندر شود ذکر خواهد شد و سپس محل درج آن‌را مشخص می‌کنیم که دقیقا به همان div با id مساوی root در فایل public\index.html اشاره می‌کند.
اکنون پس از ذخیره سازی فایل index.js، اگر به مرورگر مراجعه کنید، عبارت Hello World! را مشاهده خواهید کرد:


همانطور که در این تصویر نیز مشخص است، المان h1 ما را داخل div ای با id مساوی root، درج کرده‌است.

هدف از این مثال ساده، نمایش نحوه‌ی کارکرد React، در پشت صحنه بود. در یک برنامه‌ی واقعی، بجای رندر یک المان ساده در DOM، کار رندر App component را انجام خواهیم داد. کامپوننت App، کامپوننت ریشه‌ای برنامه بوده و می‌تواند شامل درختی از کامپوننت‌ها که UI نهایی را تشکیل می‌دهند، شود.


نگاهی به تنظیمات پروژه‌ی ایجاد شده

اگر فایل package.json پروژه را باز کنید، یک چنین بسته‌هایی در آن درج شده‌است:
{
  "name": "sample-01",
  "version": "0.1.0",
  "private": true,
  "dependencies": {
    "react": "^16.11.0",
    "react-dom": "^16.11.0",
    "react-scripts": "3.2.0"
  },
  "scripts": {
    "start": "react-scripts start",
    "build": "react-scripts build",
    "test": "react-scripts test",
    "eject": "react-scripts eject"
  },
  "eslintConfig": {
    "extends": "react-app"
  },
  "browserslist": {
    "production": [
      ">0.2%",
      "not dead",
      "not op_mini all"
    ],
    "development": [
      "last 1 chrome version",
      "last 1 firefox version",
      "last 1 safari version"
    ]
  }
}
در اینجا صرفا سه بسته‌ی react، react-dom و react-scripts را در قسمت dependencies مشاهده می‌کنید که کل Importهای ما را تشکیل می‌دهند.
بسته‌ی react-scripts است که کار مدیریت چهار جزء قسمت scripts این فایل را انجام می‌دهد. برای نمونه دستور npm start ای که در اینجا تعریف شده، سبب اجرای react-scripts start می‌شود. در ادامه اگر دستور npm run build را اجرا کنیم، یک بسته‌ی نهایی بهینه سازی شده را تولید می‌کند.
آخرین دستور آن eject است. اگر دستور npm run eject را اجرا کنید، امکان سفارشی سازی پشت صحنه‌ی create-react-app را خواهید داشت؛ اما در نهایت به یک فایل package.json بسیار شلوغ خواهیم رسید (اینبار ارجاعات به Babel، Webpack و تمام ابزارهای دیگر نیز ظاهر می‌شوند). همچنین این عملیات نیز یک طرفه‌است. یعنی از این پس قرار است کنترل تمام این پشت صحنه، در اختیار ما باشد و به روز رسانی‌های بعدی create-react-app را با مشکل مواجه می‌کند. این گزینه صرفا مختص توسعه دهندگان پیشرفته‌ی React است.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: sample-01.zip

در قسمت بعد، پیشنیازهای جاوا اسکریپتی شروع به کار با React را بررسی می‌کنیم.
مطالب
آشنایی با NHibernate - قسمت سوم

در ادامه، تعاریف سایر موجودیت‌های سیستم ثبت سفارشات و نگاشت آن‌ها را بررسی خواهیم کرد.

کلاس Product تعریف شده در فایل جدید Product.cs در پوشه domain برنامه:

namespace NHSample1.Domain
{
public class Product
{
public int Id { get; set; }
public string Name { get; set; }
public decimal UnitPrice { get; set; }
public bool Discontinued { get; set; }
}
}
کلاس ProductMapping تعریف شده در فایل جدید ProductMapping.cs (توصیه شده است که به ازای هر کلاس یک فایل جداگانه در نظر گرفته شود)، در پوشه Mappings برنامه:

using FluentNHibernate.Mapping;
using NHSample1.Domain;

namespace NHSample1.Mappings
{
public class ProductMapping : ClassMap<Product>
{
public ProductMapping()
{
Not.LazyLoad();
Id(p => p.Id).GeneratedBy.HiLo("1000");
Map(p => p.Name).Length(50).Not.Nullable();
Map(p => p.UnitPrice).Not.Nullable();
Map(p => p.Discontinued).Not.Nullable();
}
}
}
همانطور که ملاحظه می‌کنید، روش تعریف آن‌ها همانند شیء Customer است که در قسمت‌های قبل بررسی شد و نکته جدیدی ندارد.
آزمون واحد بررسی این نگاشت نیز همانند مثال قبلی است.
کلاس ProductMapping_Fixture را در فایل جدید ProductMapping_Fixture.cs به پروژه UnitTests خود (که ارجاعات آن‌را در قسمت قبل مشخص کردیم) خواهیم افزود:

using NUnit.Framework;
using FluentNHibernate.Testing;
using NHSample1.Domain;

namespace UnitTests
{
[TestFixture]
public class ProductMapping_Fixture : FixtureBase
{
[Test]
public void can_correctly_map_product()
{
new PersistenceSpecification<Product>(Session)
.CheckProperty(p => p.Id, 1001)
.CheckProperty(p => p.Name, "Apples")
.CheckProperty(p => p.UnitPrice, 10.45m)
.CheckProperty(p => p.Discontinued, true)
.VerifyTheMappings();
}
}
}
و پس از اجرای این آزمون واحد، عبارات SQL ایی که به صورت خودکار توسط این ORM جهت بررسی عملیات نگاشت صورت خواهند گرفت به صورت زیر می‌باشند:

ProductMapping_Fixture.can_correctly_map_product : Passed
NHibernate: select next_hi from hibernate_unique_key
NHibernate: update hibernate_unique_key set next_hi = @p0 where next_hi = @p1;@p0 = 2, @p1 = 1
NHibernate: INSERT INTO "Product" (Name, UnitPrice, Discontinued, Id) VALUES (@p0, @p1, @p2, @p3);@p0 = 'Apples', @p1 = 10.45, @p2 = True, @p3 = 1001
NHibernate: SELECT product0_.Id as Id1_0_, product0_.Name as Name1_0_, product0_.UnitPrice as UnitPrice1_0_, product0_.Discontinued as Disconti4_1_0_ FROM "Product" product0_ WHERE product0_.Id=@p0;@p0 = 1001

در ادامه تعریف کلاس کارمند، نگاشت و آزمون واحد آن به صورت زیر خواهند بود:

using System;
namespace NHSample1.Domain
{
public class Employee
{
public int Id { set; get; }
public string LastName { get; set; }
public string FirstName { get; set; }
}
}


using NHSample1.Domain;
using FluentNHibernate.Mapping;

namespace NHSample1.Mappings
{
public class EmployeeMapping : ClassMap<Employee>
{
public EmployeeMapping()
{
Not.LazyLoad();
Id(e => e.Id).GeneratedBy.Assigned();
Map(e => e.LastName).Length(50);
Map(e => e.FirstName).Length(50);
}
}
}


using NUnit.Framework;
using NHSample1.Domain;
using FluentNHibernate.Testing;

namespace UnitTests
{
[TestFixture]
public class EmployeeMapping_Fixture : FixtureBase
{
[Test]
public void can_correctly_map_employee()
{
new PersistenceSpecification<Employee>(Session)
.CheckProperty(p => p.Id, 1001)
.CheckProperty(p => p.FirstName, "name1")
.CheckProperty(p => p.LastName, "lname1")
.VerifyTheMappings();
}
}
}
خروجی SQL حاصل از موفقیت آزمون واحد آن:

NHibernate: select next_hi from hibernate_unique_key
NHibernate: update hibernate_unique_key set next_hi = @p0 where next_hi = @p1;@p0 = 2, @p1 = 1
NHibernate: INSERT INTO "Employee" (LastName, FirstName, Id) VALUES (@p0, @p1, @p2);@p0 = 'lname1', @p1 = 'name1', @p2 = 1001
NHibernate: SELECT employee0_.Id as Id4_0_, employee0_.LastName as LastName4_0_, employee0_.FirstName as FirstName4_0_ FROM "Employee" employee0_ WHERE employee0_.Id=@p0;@p0 = 1001

همانطور که ملاحظه می‌کنید، این آزمون‌های واحد 4 مرحله را در یک سطر انجام می‌دهند:
الف) ایجاد یک وهله از کلاس Employee
ب) ثبت اطلاعات کارمند در دیتابیس
ج) دریافت اطلاعات کارمند در وهله‌ای جدید از شیء Employee
د) و در پایان بررسی می‌کند که آیا شیء جدید ایجاد شده با شیء اولیه مطابقت دارد یا خیر

اکنون در ادامه پیاده سازی سیستم ثبت سفارشات، به قسمت جالب این مدل می‌رسیم. قسمتی که در آن ارتباطات اشیاء و روابط one-to-many تعریف خواهند شد. تعاریف کلاس‌های OrderItem و OrderItemMapping را به صورت زیر در نظر بگیرید:

کلاس OrderItem تعریف شده در فایل جدید OrderItem.cs واقع شده در پوشه domain پروژه:
که در آن هر سفارش (order) دقیقا از یک محصول (product) تشکیل می‌شود و هر محصول می‌تواند در سفارشات متعدد و مختلفی درخواست شود.

namespace NHSample1.Domain
{
public class OrderItem
{
public int Id { get; set; }
public int Quantity { get; set; }
public Product Product { get; set; }
}
}
کلاس OrderItemMapping تعریف شده در فایل جدید OrderItemMapping.cs :

using FluentNHibernate.Mapping;
using NHSample1.Domain;

namespace NHSample1.Mappings
{
public class OrderItemMapping : ClassMap<OrderItem>
{
public OrderItemMapping()
{
Not.LazyLoad();
Id(oi => oi.Id).GeneratedBy.Assigned();
Map(oi => oi.Quantity).Not.Nullable();
References(oi => oi.Product).Not.Nullable();
}
}
}
نکته جدیدی که در این کلاس نگاشت مطرح شده است، واژه کلیدی References می‌باشد که جهت بیان این ارجاعات و وابستگی‌ها بکار می‌رود. این ارجاع بیانگر یک رابطه many-to-one بین سفارشات و محصولات است. همچنین در ادامه آن Not.Nullable ذکر شده است تا این ارجاع را اجباری نمائید (در غیر اینصورت سفارش غیر معتبر خواهد بود).
نکته‌ی دیگر مهم آن این مورد است که Id در اینجا به صورت یک کلید تعریف نشده است. یک آیتم سفارش داده شده، موجودیت به حساب نیامده و فقط یک شیء مقداری (value object) است و به خودی خود امکان وجود ندارد. هر وهله از آن تنها توسط یک سفارش قابل تعریف است. بنابراین id در اینجا فقط به عنوان یک index می‌تواند مورد استفاده قرار گیرد و فقط توسط شیء Order زمانیکه یک OrderItem به آن اضافه می‌شود، مقدار دهی خواهد شد.

اگر برای این نگاشت نیز آزمون واحد تهیه کنیم، به صورت زیر خواهد بود:

using NUnit.Framework;
using NHSample1.Domain;
using FluentNHibernate.Testing;

namespace UnitTests
{
[TestFixture]
public class OrderItemMapping_Fixture : FixtureBase
{
[Test]
public void can_correctly_map_order_item()
{
var product = new Product
{
Name = "Apples",
UnitPrice = 4.5m,
Discontinued = true
};

new PersistenceSpecification<OrderItem>(Session)
.CheckProperty(p => p.Id, 1)
.CheckProperty(p => p.Quantity, 5)
.CheckReference(p => p.Product, product)
.VerifyTheMappings();
}
}
}

مشکل! این آزمون واحد با شکست مواجه خواهد شد، زیرا هنوز مشخص نکرده‌ایم که دو شیء Product را که در قسمت CheckReference فوق برای این منظور معرفی کرده‌ایم، چگونه باید با هم مقایسه کرد. در مورد مقایسه نوع‌های اولیه و اصلی مانند int و string و امثال آن مشکلی نیست، اما باید منطق مقایسه سایر اشیاء سفارشی خود را با پیاده سازی اینترفیس IEqualityComparer دقیقا مشخص سازیم:

using System.Collections;
using NHSample1.Domain;

namespace UnitTests
{
public class CustomEqualityComparer : IEqualityComparer
{
public bool Equals(object x, object y)
{
if (ReferenceEquals(x, y)) return true;
if (x == null || y == null) return false;

if (x is Product && y is Product)
return (x as Product).Id == (y as Product).Id;

if (x is Customer && y is Customer)
return (x as Customer).Id == (y as Customer).Id;

if (x is Employee && y is Employee)
return (x as Employee).Id == (y as Employee).Id;

if (x is OrderItem && y is OrderItem)
return (x as OrderItem).Id == (y as OrderItem).Id;


return x.Equals(y);
}

public int GetHashCode(object obj)
{
//شاید وقتی دیگر
return obj.GetHashCode();
}
}
}
در اینجا فقط Id این اشیاء با هم مقایسه شده است. در صورت نیاز تمامی خاصیت‌های این اشیاء را نیز می‌توان با هم مقایسه کرد (یک سری از اشیاء بکار گرفته شده در این کلاس در ادامه بحث معرفی خواهند شد).
سپس برای بکار گیری این کلاس جدید، سطر مربوط به استفاده از PersistenceSpecification به صورت زیر تغییر خواهد کرد:

new PersistenceSpecification<OrderItem>(Session, new CustomEqualityComparer())

پس از این تغییرات و مشخص سازی نحوه‌ی مقایسه دو شیء سفارشی، آزمون واحد ما پاس شده و خروجی SQL تولید شده آن به صورت زیر می‌باشد:

NHibernate: select next_hi from hibernate_unique_key
NHibernate: update hibernate_unique_key set next_hi = @p0 where next_hi = @p1;@p0 = 2, @p1 = 1
NHibernate: INSERT INTO "Product" (Name, UnitPrice, Discontinued, Id) VALUES (@p0, @p1, @p2, @p3);@p0 = 'Apples', @p1 = 4.5, @p2 = True, @p3 = 1001
NHibernate: INSERT INTO "OrderItem" (Quantity, Product_id, Id) VALUES (@p0, @p1, @p2);@p0 = 5, @p1 = 1001, @p2 = 1
NHibernate: SELECT orderitem0_.Id as Id0_1_, orderitem0_.Quantity as Quantity0_1_, orderitem0_.Product_id as Product3_0_1_, product1_.Id as Id3_0_, product1_.Name as Name3_0_, product1_.UnitPrice as UnitPrice3_0_, product1_.Discontinued as Disconti4_3_0_ FROM "OrderItem" orderitem0_ inner join "Product" product1_ on orderitem0_.Product_id=product1_.Id WHERE orderitem0_.Id=@p0;@p0 = 1

قسمت پایانی کار تعاریف کلاس‌های نگاشت، مربوط به کلاس Order است که در ادامه بررسی خواهد شد.

using System;
using System.Collections.Generic;

namespace NHSample1.Domain
{
public class Order
{
public int Id { set; get; }
public DateTime OrderDate { get; set; }
public Employee Employee { get; set; }
public Customer Customer { get; set; }
public IList<OrderItem> OrderItems { get; set; }
}
}
نکته‌ی مهمی که در این کلاس وجود دارد استفاده از IList جهت معرفی مجموعه‌ای از آیتم‌های سفارشی است (بجای List و یا IEnumerable که در صورت استفاده خطای type cast exception در حین نگاشت حاصل می‌شد).

using NHSample1.Domain;
using FluentNHibernate.Mapping;

namespace NHSample1.Mappings
{
public class OrderMapping : ClassMap<Order>
{
public OrderMapping()
{
Not.LazyLoad();
Id(o => o.Id).GeneratedBy.GuidComb();
Map(o => o.OrderDate).Not.Nullable();
References(o => o.Employee).Not.Nullable();
References(o => o.Customer).Not.Nullable();
HasMany(o => o.OrderItems)
.AsList(index => index.Column("ListIndex").Type<int>());
}
}
}
در تعاریف نگاشت این کلاس نیز دو ارجاع به اشیاء کارمند و مشتری وجود دارد که با References مشخص شده‌اند.
قسمت جدید آن HasMany است که جهت تعریف رابطه one-to-many بکار گرفته شده است. یک سفارش رابطه many-to-one با یک مشتری و همچنین کارمندی که این رکورد را ثبت می‌کند، دارد. در اینجا مجموعه آیتم‌های یک سفارش به صورت یک لیست بازگشت داده می‌شود و ایندکس آن به ستونی به نام ListIndex در یک جدول دیتابیس نگاشت خواهد شد. نوع این ستون، int می‌باشد.

using System;
using System.Collections.Generic;
using NUnit.Framework;
using NHSample1.Domain;
using FluentNHibernate.Testing;

namespace UnitTests
{
[TestFixture]
public class OrderMapping_Fixture : FixtureBase
{
[Test]
public void can_correctly_map_an_order()
{
{
var product1 =
new Product
{
Name = "Apples",
UnitPrice = 4.5m,
Discontinued = true
};
var product2 =
new Product
{
Name = "Pears",
UnitPrice = 3.5m,
Discontinued = false
};

Session.Save(product1);
Session.Save(product2);

var items = new List<OrderItem>
{
new OrderItem
{
Id = 1,
Quantity = 100,
Product = product1
},
new OrderItem
{
Id = 2,
Quantity = 200,
Product = product2
}
};

var customer = new Customer
{
FirstName = "Vahid",
LastName = "Nasiri",
AddressLine1 = "Addr1",
AddressLine2 = "Addr2",
PostalCode = "1234",
City = "Tehran",
CountryCode = "IR"
};

var employee =
new Employee
{
FirstName = "name1",
LastName = "lname1"
};



var order = new Order
{
Customer = customer,
Employee = employee,
OrderDate = DateTime.Today,
OrderItems = items
};

new PersistenceSpecification<Order>(Session, new CustomEqualityComparer())
.CheckProperty(o => o.OrderDate, order.OrderDate)
.CheckReference(o => o.Customer, order.Customer)
.CheckReference(o => o.Employee, order.Employee)
.CheckList(o => o.OrderItems, order.OrderItems)
.VerifyTheMappings();
}
}
}
}
همانطور که ملاحظه می‌کنید در این متد آزمون واحد، نیاز به مشخص سازی منطق مقایسه اشیاء سفارش، مشتری و آیتم‌های سفارش داده شده نیز وجود دارد که پیشتر در کلاس CustomEqualityComparer معرفی شدند؛ درغیر اینصورت این آزمون واحد با شکست مواجه می‌شد.
متد آزمون واحد فوق کمی طولانی است؛ زیرا در آن باید تعاریف انواع و اقسام اشیاء مورد استفاده را مشخص نمود (و ارزش کار نیز دقیقا در همینجا مشخص می‌شود که بجای SQL نوشتن، با اشیایی که توسط کامپایلر تحت نظر هستند سر و کار داریم).
تنها نکته جدید آن استفاده از CheckList برای بررسی IList تعریف شده در قسمت قبل است.

خروجی SQL این آزمون واحد پس از اجرا و موفقیت آن به صورت زیر است:

OrderMapping_Fixture.can_correctly_map_an_order : Passed
NHibernate: select next_hi from hibernate_unique_key
NHibernate: update hibernate_unique_key set next_hi = @p0 where next_hi = @p1;@p0 = 2, @p1 = 1
NHibernate: select next_hi from hibernate_unique_key
NHibernate: update hibernate_unique_key set next_hi = @p0 where next_hi = @p1;@p0 = 3, @p1 = 2
NHibernate: INSERT INTO "Product" (Name, UnitPrice, Discontinued, Id) VALUES (@p0, @p1, @p2, @p3);@p0 = 'Apples', @p1 = 4.5, @p2 = True, @p3 = 1001
NHibernate: INSERT INTO "Product" (Name, UnitPrice, Discontinued, Id) VALUES (@p0, @p1, @p2, @p3);@p0 = 'Pears', @p1 = 3.5, @p2 = False, @p3 = 1002
NHibernate: INSERT INTO "Customer" (FirstName, LastName, AddressLine1, AddressLine2, PostalCode, City, CountryCode, Id) VALUES (@p0, @p1, @p2, @p3, @p4, @p5, @p6, @p7);@p0 = 'Vahid', @p1 = 'Nasiri', @p2 = 'Addr1', @p3 = 'Addr2', @p4 = '1234', @p5 = 'Tehran', @p6 = 'IR', @p7 = 2002
NHibernate: select next_hi from hibernate_unique_key
NHibernate: update hibernate_unique_key set next_hi = @p0 where next_hi = @p1;@p0 = 4, @p1 = 3
NHibernate: INSERT INTO "Employee" (LastName, FirstName, Id) VALUES (@p0, @p1, @p2);@p0 = 'lname1', @p1 = 'name1', @p2 = 3003
NHibernate: INSERT INTO "OrderItem" (Quantity, Product_id, Id) VALUES (@p0, @p1, @p2);@p0 = 100, @p1 = 1001, @p2 = 1
NHibernate: INSERT INTO "OrderItem" (Quantity, Product_id, Id) VALUES (@p0, @p1, @p2);@p0 = 200, @p1 = 1002, @p2 = 2
NHibernate: INSERT INTO "Order" (OrderDate, Employee_id, Customer_id, Id) VALUES (@p0, @p1, @p2, @p3);@p0 = 2009/10/10 12:00:00 ق.ظ, @p1 = 3003, @p2 = 2002, @p3 = 0
NHibernate: UPDATE "OrderItem" SET Order_id = @p0, ListIndex = @p1 WHERE Id = @p2;@p0 = 0, @p1 = 0, @p2 = 1
NHibernate: UPDATE "OrderItem" SET Order_id = @p0, ListIndex = @p1 WHERE Id = @p2;@p0 = 0, @p1 = 1, @p2 = 2
NHibernate: SELECT order0_.Id as Id1_2_, order0_.OrderDate as OrderDate1_2_, order0_.Employee_id as Employee3_1_2_, order0_.Customer_id as Customer4_1_2_, employee1_.Id as Id4_0_, employee1_.LastName as LastName4_0_, employee1_.FirstName as FirstName4_0_, customer2_.Id as Id2_1_, customer2_.FirstName as FirstName2_1_, customer2_.LastName as LastName2_1_, customer2_.AddressLine1 as AddressL4_2_1_, customer2_.AddressLine2 as AddressL5_2_1_, customer2_.PostalCode as PostalCode2_1_, customer2_.City as City2_1_, customer2_.CountryCode as CountryC8_2_1_ FROM "Order" order0_ inner join "Employee" employee1_ on order0_.Employee_id=employee1_.Id inner join "Customer" customer2_ on order0_.Customer_id=customer2_.Id WHERE order0_.Id=@p0;@p0 = 0
NHibernate: SELECT orderitems0_.Order_id as Order4_2_, orderitems0_.Id as Id2_, orderitems0_.ListIndex as ListIndex2_, orderitems0_.Id as Id0_1_, orderitems0_.Quantity as Quantity0_1_, orderitems0_.Product_id as Product3_0_1_, product1_.Id as Id3_0_, product1_.Name as Name3_0_, product1_.UnitPrice as UnitPrice3_0_, product1_.Discontinued as Disconti4_3_0_ FROM "OrderItem" orderitems0_ inner join "Product" product1_ on orderitems0_.Product_id=product1_.Id WHERE orderitems0_.Order_id=@p0;@p0 = 0

تا اینجای کار تعاریف اشیاء ، نگاشت آن‌ها و همچنین بررسی صحت این نگاشت‌ها به پایان می‌رسد.

نکته:
دیتابیس برنامه را جهت آزمون‌های واحد برنامه، از نوع SQLite ساخته شده در حافظه مشخص کردیم. اگر علاقمند باشید که database schema تولید شده توسط NHibernate را مشاهده نمائید، در متد SetupContext کلاس FixtureBase که در قسمت قبل معرفی شد، سطر آخر را به صورت زیر تغییر دهید، تا اسکریپت دیتابیس نیز به صورت خودکار در خروجی اس کیوال آزمون واحد لحاظ شود (پارامتر دوم آن مشخص می‌کند که schema ساخته شده، نمایش داده شود یا خیر):

SessionSource.BuildSchema(Session, true);
پس از این تغییر و انجام مجدد آزمون واحد، اسکریپت دیتابیس ما به صورت زیر خواهد بود (که جهت ایجاد یک دیتابیس SQLite می‌تواند مورد استفاده قرار گیرد):

drop table if exists "OrderItem"

drop table if exists "Order"

drop table if exists "Customer"

drop table if exists "Product"

drop table if exists "Employee"

drop table if exists hibernate_unique_key

create table "OrderItem" (
Id INTEGER not null,
Quantity INTEGER not null,
Product_id INTEGER not null,
Order_id INTEGER,
ListIndex INTEGER,
primary key (Id)
)

create table "Order" (
Id INTEGER not null,
OrderDate DATETIME not null,
Employee_id INTEGER not null,
Customer_id INTEGER not null,
primary key (Id)
)

create table "Customer" (
Id INTEGER not null,
FirstName TEXT not null,
LastName TEXT not null,
AddressLine1 TEXT not null,
AddressLine2 TEXT,
PostalCode TEXT not null,
City TEXT not null,
CountryCode TEXT not null,
primary key (Id)
)

create table "Product" (
Id INTEGER not null,
Name TEXT not null,
UnitPrice NUMERIC not null,
Discontinued INTEGER not null,
primary key (Id)
)

create table "Employee" (
Id INTEGER not null,
LastName TEXT,
FirstName TEXT,
primary key (Id)
)

create table hibernate_unique_key (
next_hi INTEGER
)
البته اگر مستندات SQLite را مطالعه کرده باشید می‌دانید که مفهوم کلید خارجی در این دیتابیس وجود دارد اما اعمال نمی‌شود! (برای اعمال آن باید تریگر نوشت) به همین جهت در این اسکریپت تولیدی خبری از کلید خارجی نیست.

برای اینکه از دیتابیس اس کیوال سرور استفاده کنیم، در همان متد SetupContext کلاس مذکور، سطر اول را به صورت زیر تغییر دهید (نوع دیتابیس اس کیوال سرور 2008 مشخص شده و سپس رشته اتصالی به دیتابیس ذکر گردیده است):

var cfg = Fluently.Configure().Database(
// SQLiteConfiguration.Standard.ShowSql().InMemory
MsSqlConfiguration
.MsSql2008
.ShowSql()
.ConnectionString("Data Source=(local);Initial Catalog=testdb2009;Integrated Security = true")
);

اکنون اگر مجددا آزمون واحد را اجرا نمائیم، اسکریپت تولیدی به صورت زیر خواهد بود (در اینجا مفهوم استقلال برنامه از نوع دیتابیس را به خوبی می‌توان درک کرد):

if exists (select 1 from sys.objects where object_id = OBJECT_ID(N'[FK3EF88858466CFBF7]') AND parent_object_id = OBJECT_ID('[OrderItem]'))
alter table [OrderItem] drop constraint FK3EF88858466CFBF7


if exists (select 1 from sys.objects where object_id = OBJECT_ID(N'[FK3EF888589F32DE52]') AND parent_object_id = OBJECT_ID('[OrderItem]'))
alter table [OrderItem] drop constraint FK3EF888589F32DE52


if exists (select 1 from sys.objects where object_id = OBJECT_ID(N'[FK3117099B1EBA72BC]') AND parent_object_id = OBJECT_ID('[Order]'))
alter table [Order] drop constraint FK3117099B1EBA72BC


if exists (select 1 from sys.objects where object_id = OBJECT_ID(N'[FK3117099BB2F9593A]') AND parent_object_id = OBJECT_ID('[Order]'))
alter table [Order] drop constraint FK3117099BB2F9593A


if exists (select * from dbo.sysobjects where id = object_id(N'[OrderItem]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table [OrderItem]

if exists (select * from dbo.sysobjects where id = object_id(N'[Order]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table [Order]

if exists (select * from dbo.sysobjects where id = object_id(N'[Customer]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table [Customer]

if exists (select * from dbo.sysobjects where id = object_id(N'[Product]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table [Product]

if exists (select * from dbo.sysobjects where id = object_id(N'[Employee]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table [Employee]

if exists (select * from dbo.sysobjects where id = object_id(N'hibernate_unique_key') and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table hibernate_unique_key

create table [OrderItem] (
Id INT not null,
Quantity INT not null,
Product_id INT not null,
Order_id INT null,
ListIndex INT null,
primary key (Id)
)

create table [Order] (
Id INT not null,
OrderDate DATETIME not null,
Employee_id INT not null,
Customer_id INT not null,
primary key (Id)
)

create table [Customer] (
Id INT not null,
FirstName NVARCHAR(50) not null,
LastName NVARCHAR(50) not null,
AddressLine1 NVARCHAR(50) not null,
AddressLine2 NVARCHAR(50) null,
PostalCode NVARCHAR(10) not null,
City NVARCHAR(50) not null,
CountryCode NVARCHAR(2) not null,
primary key (Id)
)

create table [Product] (
Id INT not null,
Name NVARCHAR(50) not null,
UnitPrice DECIMAL(19,5) not null,
Discontinued BIT not null,
primary key (Id)
)

create table [Employee] (
Id INT not null,
LastName NVARCHAR(50) null,
FirstName NVARCHAR(50) null,
primary key (Id)
)

alter table [OrderItem]
add constraint FK3EF88858466CFBF7
foreign key (Product_id)
references [Product]

alter table [OrderItem]
add constraint FK3EF888589F32DE52
foreign key (Order_id)
references [Order]

alter table [Order]
add constraint FK3117099B1EBA72BC
foreign key (Employee_id)
references [Employee]

alter table [Order]
add constraint FK3117099BB2F9593A
foreign key (Customer_id)
references [Customer]

create table hibernate_unique_key (
next_hi INT
)
که نکات ذیل در مورد آن جالب توجه است:
الف) جداول مطابق نام کلاس‌های ما تولید شده‌اند.
ب) نام فیلدها دقیقا مطابق نام خواص کلاس‌های ما تشکیل شده‌اند.
ج) Id ها به صورت primary key تعریف شده‌اند (از آنجائیکه ما در هنگام تعریف نگاشت‌ها، آن‌ها را از نوع identity مشخص کرده بودیم).
د) رشته‌ها به نوع nvarchar با اندازه 50 نگاشت شده‌اند.
ه) کلیدهای خارجی بر اساس نام جدول با پسوند _id تشکیل شده‌اند.




ادامه دارد ...


مطالب
یک نکته از ASP.NET 4.5 GridView
تا قبل از ASP.NET 4.5 ، هنگام کار با GridView رسم بر این بوده که به خاصیت DataSource ، یک منبع داده (مانند SqlDataSource و ...) را  Bind کرده و متد DataBind را صدا نموده و نتیجه نمایش داده می‌شد.
اما با استفاده از ویژگی‌های جدید اضافه شده(هر چند با تأخیر نسبت به Grid‌های پیشرفته دیگر ) کار با این کنترل راحت‌تر و خواناتر شده است. یکی از این ویژگی‌ها را با هم بررسی می‌کنیم:
با استفاده از ویژگی SelectMethod میتوان متدی را به GridView معرفی کرد که وظیفه منبع داده را انجام داده و هنگام Bind فراخوانی شده و گرید را پر کند:
مثال:
    <asp:GridView ID="gvCities"
                runat="server"
                AutoGenerateColumns="False"
                ItemType="WebApplication3.City"
                SelectMethod="GetAllCities">
                <Columns>
                    <asp:TemplateField HeaderText="نام">
                        <ItemTemplate><%#: Item.Name %></ItemTemplate>
                    </asp:TemplateField>
                </Columns>
     </asp:GridView>
نکته مهم در این کد ItemType است. با استفاده از این خاصیت به جای اینکه مانند قبل نام فیلدهایی که قرار است در گرید نمایش  داده شود را بصورت string معرفی کنیم (مثلا در اینجا ("Eval("Name ، اگر نام فیلد را غلط بنویسیم هنگام کامپایل خطایی صادر نمی‌شود)، آنرا بصورت  Strongly Type نوشته و از اشتباه جلوگیری می‌کنیم.( + )
کد متد:
 public IQueryable<City> GetAllCities()
        {
            var context = new EFContext();
            var q = from c in context.City
                    orderby c.Name
                    select c;
            return q;
        }
و سپس دستور زیر  را فراخوانی می‌کنیم:
 gvCities.DataBind();
اگر بخواهیم در گرید Paging داشته باشیم بصورت زیر عمل می‌کنیم:
   <asp:GridView ID="gvCities" 
                runat="server" 
                AutoGenerateColumns="False"
                AllowPaging="True" 
                PageSize="10" 
                ItemType="WebApplication3.City" 
                SelectMethod="GetAllCities">
                 <Columns>
                    <asp:TemplateField HeaderText="نام">
                        <ItemTemplate><%#: Item.Name %></ItemTemplate>
                    </asp:TemplateField>
                </Columns>
  </asp:GridView>
که در اینجا دو خصوصیت AllowPaging و PageSize را مقدار دهی کرده ایم. این خصوصیت‌ها اجازه صفحه بندی را به گرید می‌دهند.حال برای اینکه متد نیز برای صفحه بندی آماده شود باید سه آرگومان به آن اضافه کنیم:(نام پارامترها باید دقیقا موارد زیر باشد)
1- startRowIndex: نقطه شروع صفحه بندی را مشخص می‌کند.
2- maximumRows: تعداد سطرهایی که گرید باید نمایش دهد را مشخص می‌کند.
3- totalRowCount: این پارامتر  باید در تابع مقدار دهی شود (مانند مثال) تا مشخص شود نتیجه Query چند رکورد است و در نهایت گرید تعداد صفحات را بر این اساس نمایش می‌دهد.

 و برای اینکه صفحه بندی را در Query هم لحاظ کنیم از دو تا بع Skip و Take استفاده شده است.
 public IQueryable<City> GetAllCities(int startRowIndex, int maximumRows, out int totalRowCount)
 {
        var context = new EFContext();
        var q = from c in context.City
                    select c;

        totalRowCount = q.Count();

        return q.OrderBy(x=>x.Name).Skip(startRowIndex).Take(maximumRows);
 }

نکته مهم در این متد  IQueryable  بودن آن است که باعث واکشی داده‌ها بصورت صفحه به صفحه میشود.
دستورات SQL تولید شده در پروفایلر:

همانطور که مشاهده می‌کنید دو دستور SQL  تولید شده ، یکی برای بازگرداندن تعداد رکوردها و یکی هم برای واکشی داده‌ها به اندازه تعداد رکوردهای مجاز در هر صفحه.


مطالب دوره‌ها
بررسی مثال‌ها و جزئیات بیشتر تولید کدهای پویا توسط Reflection.Emit
نحوه معرفی متغیرهای محلی در Reflection.Emit

ابتدا مثال کامل ذیل را درنظر بگیرید:
using System;
using System.Reflection.Emit;

namespace FastReflectionTests
{
    class Program
    {
        static int Calculate(int a, int b, int c)
        {
            var result = a * b;
            return result - c;
        }

        static void Main(string[] args)
        {
            //روش متداول
            Console.WriteLine(Calculate(10, 2, 3));

            //تعریف امضای متد
            var myMethod = new DynamicMethod(
                                        name: "CalculateMethod",
                                        returnType: typeof(int),
                                        parameterTypes: new[] { typeof(int), typeof(int), typeof(int) },
                                        m: typeof(Program).Module);
            //تعریف بدنه متد
            var il = myMethod.GetILGenerator();

            il.Emit(opcode: OpCodes.Ldarg_0); // بارگذاری اولین آرگومان بر روی پشته ارزیابی 
            il.Emit(opcode: OpCodes.Ldarg_1); // بارگذاری دومین آرگومان بر روی پشته ارزیابی 
            il.Emit(opcode: OpCodes.Mul); // انجام عملیات ضرب
            il.Emit(opcode: OpCodes.Stloc_0); // ذخیره سازی نتیجه عملیات ضرب در یک متغیر محلی
            il.Emit(opcode: OpCodes.Ldloc_0); // متغیر محلی را بر روی پشته ارزیابی قرار می‌دهد تا در عملیات بعدی قابل استفاده باشد
            il.Emit(opcode: OpCodes.Ldarg_2); // آرگومان سوم را بر روی پشته ارزیابی قرار می‌دهد
            il.Emit(opcode: OpCodes.Sub); // انجام عملیات تفریق
            il.Emit(opcode: OpCodes.Ret); // بازگشت نتیجه

            //فراخوانی متد پویا
            var method = (Func<int, int, int, int>)myMethod.CreateDelegate(typeof(Func<int, int, int, int>));
            Console.WriteLine(method(10, 2, 3));

        }
    }
}
در این مثال سعی کرده‌ایم معادل متد Calculate را که در ابتدای برنامه ملاحظه می‌کنید، با کدهای IL تولید کنیم. روش کار مانند قسمت قبل است. ابتدا وهله‌ی جدیدی را از کلاس DynamicMethod جهت معرفی امضای متد پویای خود ایجاد می‌کنیم. در اینجا نوع خروجی را int و نوع سه پارامتر آن‌را به نحوی که مشخص شده است توسط آرایه‌ای از typeهای int معرفی خواهیم کرد. سپس محل قرارگیری کد تولیدی پویا مشخص می‌شود.
در ادامه توسط ILGenerator، آرگومان‌های دریافتی بارگذاری شده، در هم ضرب می‌شوند. سپس نتیجه در یک متغیر محلی ذخیره شده و سپس از آرگومان سوم کسر می‌گردد. در آخر هم این نتیجه بازگشت داده خواهد شد.
در اینجا روش سومی را برای کار با متدهای پویا مشاهده می‌کنید. بجای تعریف یک delegate به صورت صریح همانند قسمت قبل، از یک Func یا حتی Action نیز بنابر امضای متد مد نظر، می‌توان استفاده کرد. در اینجا از یک Func که سه پارامتر int را قبول کرده و خروجی int نیز دارد، استفاده شده است.
اگر برنامه را اجرا کنید ... کرش خواهد کرد! با استثنای ذیل:
 System.InvalidProgramException was unhandled
Message=Common Language Runtime detected an invalid program.
علت اینجا است که در حین کار با System.Reflection.Emit، نیاز است نوع متغیر محلی مورد استفاده را نیز مشخص نمائیم. اینکار را توسط فراخوانی متد DeclareLocal که باید پس از فراخوانی GetILGenerator، درج گردد، می‌توان انجام داد:
 il.DeclareLocal(typeof(int));
با این تغییر، برنامه بدون مشکل اجرا خواهد شد.


نحوه تعریف برچسب‌ها در Reflection.Emit

در ادامه قصد داریم یک مثال پیشرفته‌تر را بررسی کنیم.
        static int Calculate(int x)
        {
            int result = 0;
            for (int i = 0; i < 10; i++)
            {
                result += i * x;
            }
            return result;
        }
در اینجا می‌خواهیم کدهای معادل متد محاسباتی فوق را توسط امکانات System.Reflection.Emit و کدهای IL تولید کنیم.
using System;
using System.Reflection.Emit;

namespace FastReflectionTests
{
    class Program
    {
        static int Calculate(int x)
        {
            int result = 0;
            for (int i = 0; i < 10; i++)
            {
                result += i * x;
            }
            return result;
        }

        static void Main(string[] args)
        {
            //روش متداول
            Console.WriteLine(Calculate(10));

            //تعریف امضای متد
            var myMethod = new DynamicMethod(
                                        name: "CalculateMethod",
                                        returnType: typeof(int), // خروجی متد عدد صحیح است
                                        parameterTypes: new[] { typeof(int) }, // یک پارامتر عدد صحیح دارد
                                        m: typeof(Program).Module);
            //تعریف بدنه متد
            var il = myMethod.GetILGenerator();

            // از برچسب‌ها برای انتقال کنترل استفاده می‌شود
            // در اینجا به دو برچسب برای تعریف ابتدای حلقه
            // و همچنین برای پرش به جایی که متد خاتمه می‌یابد نیاز داریم
            var loopStart = il.DefineLabel();
            var methodEnd = il.DefineLabel();

            // variable 0; result = 0
            il.DeclareLocal(typeof(int)); //  برای تعریف متغیر محلی نتیجه عملیات
            il.Emit(OpCodes.Ldc_I4_0); // عدد ثابت صفر را بر روی پشته ارزیابی قرار می‌دهد
            il.Emit(OpCodes.Stloc_0); // و نهایتا این عدد ثابت به متغیر محلی انتساب داده خواهد شد

            // variable 1; i = 0
            il.DeclareLocal(typeof(int)); // در اینجا کار تعریف و مقدار دهی متغیر حلقه انجام می‌شود
            il.Emit(OpCodes.Ldc_I4_0); // عدد ثابت صفر را بر روی پشته ارزیابی قرار می‌دهد
            il.Emit(OpCodes.Stloc_1); // و نهایتا این عدد ثابت به متغیر حلقه در ایندکس یک انتساب داده خواهد شد

            // در اینجا کار تعریف بدنه حلقه شروع می‌شود
            il.MarkLabel(loopStart); // شروع حلقه را علامتگذاری می‌کنیم تا بعدا بتوانیم به این نقطه پرش نمائیم
            il.Emit(OpCodes.Ldloc_1); // در ادامه می‌خواهیم بررسی کنیم که آیا مقدار متغیر حلقه از عدد 10 کوچکتر است یا خیر
            il.Emit(OpCodes.Ldc_I4, 10); // عدد ثابت ده را بر روی پشته ارزیابی قرار می‌دهد
            // برای انجام بررسی‌های تساوی یا کوچکتر یا بزرگتر نیاز است ابتدا دو متغیر مدنظر بر روی پشته قرار گیرند
            il.Emit(OpCodes.Bge, methodEnd);  // اگر اینطور نیست و مقدار متغیر از 10 کمتر نیست، کنترل برنامه را به انتهای متد هدایت خواهیم کرد

            // i * x
            il.Emit(OpCodes.Ldloc_1); // مقدار متغیر حلقه را بر روی پشته قرار می‌دهد
            il.Emit(OpCodes.Ldarg_0); // مقدار اولین آرگومان متد را بر روی پشته قرار می‌دهد
            il.Emit(OpCodes.Mul); // انجام عملیات ضرب
            // نتیجه این عملیات اکنون بر روی پشته قرار گرفته است

            // result += 
            il.Emit(OpCodes.Ldloc_0); // متغیر نتیجه را بر روی پشته قرار می‌دهد
            il.Emit(OpCodes.Add); // اکنون عملیات جمع بر روی نتیجه ضرب قسمت قبل که بر روی پشته قرار دارد و همچنین متغیر نتیجه انجام می‌شود
            il.Emit(OpCodes.Stloc_0); // ذخیره سازی نتیجه در متغیر محلی

            // i++
            // در اینجا کار افزایش متغیر حلقه انجام می‌شود
            il.Emit(OpCodes.Ldloc_1); // مقدار متغیر حلقه بر روی پشته قرار می‌گیرد
            il.Emit(OpCodes.Ldc_I4_1); // عدد ثابت یک بر روی پشته قرار می‌گیرد
            il.Emit(OpCodes.Add); // سپس این دو عدد بارگذاری شده با هم جمع خواهند شد
            il.Emit(OpCodes.Stloc_1); // نتیجه در متغیر حلقه ذخیره خواهد شد

            // مرحله بعد شبیه سازی حلقه با پرش به ابتدای برچسب آن است
            il.Emit(OpCodes.Br, loopStart);

            //در اینجا انتهای متد علامتگذاری شده است
            il.MarkLabel(methodEnd);
            il.Emit(OpCodes.Ldloc_0); // مقدار نتیجه بر روی پشته قرار داده شده
            il.Emit(OpCodes.Ret); // و بازگشت داده می‌شود

            //فراخوانی متد پویا
            var method = (Func<int, int>)myMethod.CreateDelegate(typeof(Func<int, int>));
            Console.WriteLine(method(10));
        }
    }
}
کد کامل معادل را به همراه کامنت گذاری سطر به سطر آن، ملاحظه می‌کنید. در اینجا نکته‌های جدید، نحوه تعریف برچسب‌ها و انتقال کنترل برنامه به آن‌ها هستند؛ جهت شبیه سازی حلقه و همچنین خاتمه آن و انتقال کنترل به انتهای متد.


فراخوانی متدها توسط کدهای پویای Reflection.Emit

در ادامه کدهای کامل یک مثال متد پویا را که متد print را فراخوانی می‌کند، ملاحظه می‌کنید:
using System;
using System.Reflection.Emit;

namespace FastReflectionTests
{
    class Program
    {
        public static void print(int i)
        {
            Console.WriteLine("i: {0}", i);
        }

        static void Main(string[] args)
        {
            //روش متداول
            print(10);

            //تعریف امضای متد
            var myMethod = new DynamicMethod(
                                        name: "myMethod",
                                        returnType: typeof(void),
                                        parameterTypes: null, // پارامتری ندارد
                                        m: typeof(Program).Module);
            //تعریف بدنه متد
            var il = myMethod.GetILGenerator();
            il.Emit(OpCodes.Ldc_I4, 10); // عدد ثابت 10 را بر روی پشته قرار می‌دهد
            // اکنون این مقدار بر روی پشته است و از آن می‌توان برای فراخوانی متد پرینت استفاده کرد
            il.Emit(OpCodes.Call, typeof(Program).GetMethod("print"));
            il.Emit(OpCodes.Ret);


            //فراخوانی متد پویا
            var method = (Action)myMethod.CreateDelegate(typeof(Action));
            method();
        }
    }
}
در اینجا از OpCode مخصوص فراخوانی متدها به نام Call که در قسمت‌های قبل در مورد آن بحث شد، استفاده گردیده است. برای اینکه امضای دقیقی را در اختیار آن قرار دهیم، می‌توان از Reflection استفاده کرد که نمونه‌ای از آن‌را در اینجا ملاحظه می‌کنید.
به علاوه چون خروجی امضای متد ما از نوع void است، اینبار delegate تعریف شده را از نوع Action تعریف کرده‌ایم و نه از نوع Func.


فراخوانی متدهای پویای Reflection.Emit توسط سایر متدهای پویای Reflection.Emit

فراخوانی یک متد پویای مشخص از طریق متد‌های پویای دیگر نیز همانند مثال قبل است:
using System;
using System.Reflection.Emit;

namespace FastReflectionTests
{
    class Program
    {
        static void Main(string[] args)
        {
            //تعریف امضای متد
            var myMethod = new DynamicMethod(
                                        name: "mulMethod",
                                        returnType: typeof(int),
                                        parameterTypes: new[] { typeof(int) },
                                        m: typeof(Program).Module);
            //تعریف بدنه متد
            var il = myMethod.GetILGenerator();
            il.Emit(OpCodes.Ldarg_0); // اولین آرگومان متد را بر روی پشته قرار می‌دهد
            il.Emit(OpCodes.Ldc_I4, 42); // عدد ثابت 42 را بر روی پشته قرار می‌دهد
            il.Emit(OpCodes.Mul); // ضرب این دو در هم
            il.Emit(OpCodes.Ret); // بازگشت نتیجه

            //فراخوانی متد پویا
            var method = (Func<int, int>)myMethod.CreateDelegate(typeof(Func<int, int>));
            Console.WriteLine(method(10));

            // فراخوانی متد پویای فوق در یک متد پویای دیگر
            var callerMethod = new DynamicMethod(
                                        name: "callerMethod",
                                        returnType: typeof(int),
                                        parameterTypes: new[] { typeof(int), typeof(int) },
                                        m: typeof(Program).Module);
            //تعریف بدنه متد
            var callerMethodIL = callerMethod.GetILGenerator();
            callerMethodIL.Emit(OpCodes.Ldarg_0); // پارامتر اول متد را بر روی پشته قرار می‌دهد
            callerMethodIL.Emit(OpCodes.Ldarg_1); // پارامتر دوم متد را بر روی پشته قرار می‌دهد
            callerMethodIL.Emit(OpCodes.Mul); // ضرب این دو در هم
            //حاصل ضرب اکنون بر روی پشته است که در فراخوانی بعدی استفاده می‌شود
            callerMethodIL.Emit(OpCodes.Call, myMethod); // فراخوانی یک متد پویای دیگر
            callerMethodIL.Emit(OpCodes.Ret);

            //فراخوانی متد پویای جدید
            var method2 = (Func<int, int, int>)callerMethod.CreateDelegate(typeof(Func<int, int, int>));
            Console.WriteLine(method2(10, 2));
        }
    }
}
در مثال فوق ابتدا یک متد پویای ضرب را تعریف کرده‌ایم که عددی صحیح را دریافت و آن‌را در 42 ضرب می‌کند و نتیجه را بازگشت می‌دهد.
سپس متد پویای دومی تعریف شده است که دو عدد صحیح را دریافت و این دو را در هم ضرب کرده و سپس نتیجه را به عنوان پارامتر به متد پویای اول ارسال می‌کند.
هنگام فراخوانی OpCodes.Call، پارامتر دوم باید از نوع MethodInfo باشد. نوع یک DynamicMethod نیز همان MethodInfo است. بنابراین برای فراخوانی آن، کار خاصی نباید انجام شود و صرفا ذکر نام متغیر مرتبط با مد پویای مدنظر کفایت می‌کند.
مطالب
بررسی تغییرات Blazor 8x - قسمت سیزدهم - امکان تعریف Sections
اگر پیشتر با فناوری‌های مرتبط با خانواده‌ی ASP.NET کار کرده باشید، با مفاهیمی مانند ContentPlaceHolder در وب‌فرم‌ها و یا RenderSection در ASP.NET MVC، برخورد داشته‌اید. دقیقا یک چنین قابلیتی نیز به Blazor 8x تحت عنوان Sections اضافه شده‌است تا توسط آن بتوان محتوای قسمتی از قالب کلی صفحه را از طریق زیر کامپوننت‌های آن تغییر داد و کنترل کرد.


کامپوننت‌های جدید SectionOutlet و SectionContent در Blazor 8x

پیاده سازی Sections در Blazor 8x به کمک دو کامپوننت جدید SectionOutlet و SectionContent میسر شده‌است و برای دسترسی به آن‌ها نیاز است ابتدا به فایل Imports.razor_ پروژه، مراجعه کرد و using زیر را به آن اضافه نمود تا این اشیاء، در کامپوننت‌های برنامه قابل شناسایی و استفاده شوند:
@using Microsoft.AspNetCore.Components.Sections

SectionOutlet کامپوننتی است که محتوای ارائه شده‌ی توسط کامپوننت SectionContent را رندر می‌کند (این محتوا در اصل یک RenderFragment است). ارتباط بین این دو هم توسط خواص SectionName و یا SectionId‌های متناظر، برقرار می‌شود. اگر چندین SectionContent دارای نام و یا Id یکسانی باشند، محتوای آخرین آن‌ها در SectionOutlet متناظر، رندر می‌شود.

برای مثال در فایل MainLayout.razor، تغییر زیر را اعمال می‌کنیم:
<div class="top-row px-4">
    <SectionOutlet SectionName="before-top-row"/>
    <a href="https://learn.microsoft.com/aspnet/core/" target="_blank">About</a>
</div>
که در آن یک SectionOutlet، با نام before-top-row اضافه شده‌است و سبب درج محتوایی پیش از لینک About می‌شود. پس از این تعریف، اکنون در هر کامپوننتی از برنامه می‌توان محتوای این قسمت را به نحو زیر تامین کرد:
<SectionContent SectionName="before-top-row">
    <a href="/show-help" target="_blank">Help</a>
</SectionContent>
همانطور که مشخص است، این محتوا بر اساس نام ذکر شده‌ی متناظر با نام SectionOutlet، با آن ارتباط برقرار می‌کند.


روش تعریف یک محتوای پیش‌فرض

این محتوا، فقط زمانی تامین خواهد شد که کامپوننت در حال نمایش SectionContent، قابل مشاهده و فعال شده باشد. یعنی اگر از کامپوننت نمایش دهنده‌ی آن به صفحه‌ی دیگری رجوع کنیم، محتوای SectionOutlet مجددا خالی خواهد شد، تا زمانیکه به آدرس نمایش دهنده‌ی کامپوننت دربرگیرنده‌ی SectionContent متناظر با آن رجوع کنیم. به همین جهت اگر علاقمند به نمایش یک «محتوای پیش‌فرض» هستید، می‌توان به صورت زیر عمل کرد:
<div class="top-row px-4">
    <SectionOutlet SectionName="before-top-row" />
    <SectionContent SectionName="before-top-row">
        <a href="https://learn.microsoft.com/aspnet/core/" target="_blank">About</a>
    </SectionContent>
</div>
به این ترتیب حتی اگر در لحظه‌ی نمایش کامپوننت جاری، هیچ SectionContent متناظری یافت نشد، از همان SectionContent ذیل این SectionOutlet، برای تامین محتوای آن استفاده می‌شود و اگر کامپوننتی محتوای جدیدی را تعریف کرد، چون همیشه آخرین SectionContent رندر شده، محتوای نهایی را تامین می‌کند، این محتوای جدید، جایگزین نمونه‌ی پیش‌فرض خواهد شد.


تفاوت SectionId با SectionName

کامپوننت SectionOutlet، هم می‌تواند یک SectionName را دریافت کند و هم یک SectionId را. SectionNameها، رشته‌ای هستند و تغییرات آتی آن‌ها تحت نظارت کامپایلر نیست. به همین جهت اگر نیاز به Refactoring آن‌ها است، شاید بهتر باشد از خاصیت SectionId که یک Id از نوع strongly typed را مشخص می‌کند، استفاده کنیم.
برای نمونه می‌توان مثال قبلی را به صورت زیر با استفاده از یک SectionId، بازنویسی کرد:
<div class="top-row px-4">
    <SectionOutlet SectionId="BeforeTopRow" />
    <a href="https://learn.microsoft.com/aspnet/core/" target="_blank">About</a>
</div>

@code{

    public static SectionOutlet BeforeTopRow = new(); 
}
که در اینجا SectionId، یک فیلد استاتیک از نوع SectionOutlet است.
سپس هر کامپوننت دیگری که بخواهد از این Id استاتیک استفاده کند، روش کار آن به صورت زیر است:
<SectionContent SectionId="MainLayout.BeforeTopRow">
    <a href="/show-help" target="_blank">Help</a>
</SectionContent>
نظرات مطالب
تاریخ شمسی برای blogger !
سلام،
اگر کد را مستقیما کپی کردید یک سری شماره خط اضافه شده که باید پاک شود.
1.
2.
3.
...
25.
این‌ها اضافی است و نباید باشد.
مطالب
نگاهی به Latent Semantic Indexing
مقدمه ای بر Latent Semantic Indexing

هنگامیکه برای اولین بار، جستجو بر مبنای کلمات کلیدی (keyword search) بر روی مجموعه‌ای از متون، به دنیای بازیابی اطلاعات معرفی شد شاید فقط یک ذهنیت مطرح می‌شد و آن یافتن لغت در متن بود. به بیان دیگر در آن زمان تنها بدنبال متونی می‌گشتیم که دقیقا شامل کلمه کلیدی مورد جستجوی کاربر باشند. روال کار نیز بدین صورت بود که از دل پرس و جوی کاربر، کلماتی بعنوان کلمات کلیدی استخراج می‌شد. سپس الگوریتم جستجو در میان متون موجود بدنبال متونی می‌گشت که دقیقا یک یا تمامی کلمات کلیدی در آن آمده باشند. اگر متنی شامل این کلمات بود به مجموعه جواب‌ها اضافه می‌گردید و در غیر این صورت حذف می‌گشت. در پایان جستجو با استفاده از الگوریتمی، نتایج حاصل رتبه بندی می‌گشت و به ترتیب رتبه با کاربر نمایش داده می‌شد.
نکته مهمی که در این روش دیده می‌شود اینست که متون به تنهایی و بدون در نظر گرفتن کل مجموعه پردازش می‌شدند و اگر تصمیمی مبنی بر جواب بودن یک متن گرفته می‌شد، آن تصمیم کاملا متکی به همان متن و مستقل از متون دیگر گرفته می‌شد. در آن سال‌ها هیچ توجهی به وابستگی موجود بین متون مختلف و ارتباط بین آنها  نمی‌شد که این مسئله یکی از عوامل پایین بودن دقت جستجو‌ها بشمار می‌رفت.
در ابتدا بر اساس همین دیدگاه  الگوریتم‌ها و روش‌های اندیس گذاری (indexing) پیاده سازی می‌شدند که تنها مشخص می‌کردند یک لغت در یک سند (document) وجود دارد یا خیر. اما با گذشت زمان محققان متوجه ناکارآمدی این دیدگاه در استخراج اطلاعات شدند. به همین دلیل روشی بنام Latent Semantic Indexing که بر پایه Latent Semantic Analysis بنا شده بود به دنیای بازیابی و استخراج اطلاعات معرف شد. کاری که این روش انجام می‌داد این بود که گامی را به مجموعه مراحل موجود در پروسه اندیس گذاری اضافه می‌کرد. این روش بجای آنکه در اندیس گذاری تنها یک متن را در نظر بگیرد و ببیند چه لغاتی در آن آورده شده است، کل مجموعه اسناد را با هم و در کنار یکدیگر در نظر می‌گرفت تا ببیند که چه اسنادی لغات مشابه با لغات موجود در سند مورد بررسی را دارند. به بیان دیگر اسناد مشابه با سند فعلی را به نوعی مشخص می‌نمود.
بر اساس دیدگاه LSI اسناد مشابه با هم، اسنادی هستند که لغات مشابه یا مشترک بیشتری داشته باشند. توجه داشته باشید تنها نمی‌گوییم لغات مشترک بیشتری بلکه از  واژه لغات مشابه نیز استفاده می‌کنیم. چرا که بر اساس LSI دو سند ممکن است هیچ لغت مشترکی نداشته باشند (یعنی لغات یکسان نداشته باشند) اما لغاتی در آنها وجود داشته باشد که به لحاظی معنایی و مفهومی هم معنا و یا مرتبط به هم باشند. بعنوان مثال لغات شش و ریه دو لغت متفاوت اما مرتبط با یکدیگر هستند و اگر دو لغات در دوسند آورده شوند می‌توان حدس زد که ارتباط و شباهتی معنایی بین آنها وجود دارد. به روش هایی که بر اساس این دیدگاه ارائه می‌شوند روش‌های جستجوی معنایی نیز گفته می‌شود. این دیدگاه مشابه دیدگاه انسانی در مواجهه با متون نیز است. انسان هنگامی که دو متن را با یکدیگر مقایسه می‌کند تنها بدنبال لغات یکسان در آن‌ها نمی‌گردد بلکه شباهت‌های معنایی بین لغات را نیز در نظر می‌گیرد این اصل و نگرش پایه و اساس الگوریتم  LSI و همچنین حوزه ای از علم بازیابی اطلاعات بنام مدل سازی موضوعی (Topic Modeling) می‌باشد.
هنگامیکه شما پرس و جویی را بر روی مجموعه ای از اسناد (که بر اساس LSI اندیس گذاری شده‌اند) اجرا می‌کنید، موتور جستجو ابتدا بدنبال لغاتی می‌گردد که بیشترین شباهت را به کلمات موجود در پرس و جوی شما دارند. بعبارتی پرس و جوی شما را بسط می‌دهد (query expansion)، یعنی علاوه بر لغات موجود در پرس و جو، لغات مشابه آنها را نیز به پرس و جوی شما می‌افزاید. پس از بسط دادن پرس و جو، موتور جستجو مطابق روال معمول در سایر روش‌های جستجو، اسنادی که این لغات (پرس و جوی بسط داده شده) در آنها وجود دارند را بعنوان نتیجه به شما باز می‌گرداند. به این ترتیب ممکن است اسنادی به شما بازگردانده شوند که لغات پرس و جوی شما در آنها وجود نداشته باشد اما LSI بدلیل وجود ارتباطات معنایی، آنها را مشابه و مرتبط با جستجو تشخیص داده باشد.  توجه داشته باشید که الگوریتم‌های جستجوی معمولی و ساده، بخشی از اسناد را که مرتبط با پرس و جو هستند، اما شامل لغات مورد نظر شما نمی‌شوند، از دست می‌دهد (یعنی کاهش recall).

برای آنکه با دیدگاه LSI بیشتر آشنا شوید در اینجا مثالی از نحوه عملکرد آن می‌زنیم. فرض کنید می‌خواهیم بر روی مجموعه ای از اسناد در حوزه زیست شناسی اندیس گذاری کنیم. بر مبنای روش LSI چنانچه لغاتی مانند کروموزم، ژن و DNA در اسناد زیادی در کنار یکدیگر آورده شوند (یا بعبارتی اسناد مشترک باهم زیادی داشته باشند)، الگوریتم جستجو چنین برداشت می‌کند که به احتمال زیاد نوعی رابطه معنایی بین آنها وجود دارد. به همین دلیل اگر شما پرس و جویی را با کلمه کلیدی "کروموزوم" اجرا نمایید، الگوریتم علاوه بر مقالاتی که مستقیما واژه کروموزوم در آنها وجود دارد، اسنادی که شامل لغات "DNA" و  "ژن" نیز باشند را بعنوان نتیجه به شما باز خواهد گرداند. در واقع می‌توان گفت الگوریتم جستجو به پرس و جوی شما این دو واژه را نیز اضافه می‌کند که همان بسط دادن پرس و جوی شما است. دقت داشته باشید که الگوریتم جستجو هیچ اطلاع و دانشی از معنای لغات مذکور ندارد و تنها بر اساس تحلیل‌های ریاضی به این نتیجه می‌رسد که در بخش‌های بعدی چگونگی آن را برای شما بازگو خواهیم نمود. یکی از برتری‌های مهم LSI نسبت به روش‌های مبتنی بر کلمات کلیدی (keyword based) این است که در LSI، ما به recall بالاتری دست پیدا می‌کنیم، بدین معنی که از کل جواب‌های موجود برای پرس و جوی شما، جواب‌های بیشتری به کاربر نمایش داده خواهند شد.
یکی از مهمترین نقاط قوت LSI اینست که این روش تنها متکی بر ریاضیات است و هیچ نیازی به دانستن معنای لغات یا پردازش کلمات در متون ندارد. این مسئله باعث می‌شود بتوان این روش را بر روی هر مجموعه متنی و با هر زبانی بکار گرفت. علاوه بر آن می‌توان LSI را بصورت ترکیبی با الگوریتم‌های جستجوی دیگر استفاده نمود و یا تنها متکی بر آن موتور جستجویی را پیاده سازی کرد.
 

نحوه عملکرد Latent Semantic Indexing
در روش LSI مبنا وقوع همزمان لغات در اسناد می‌باشد. در اصطلاح علمی به این مسئله word co-occurrence گفته می‌شود. به بیان دیگر LSI بدنبال لغاتی می‌گردد که در اسناد بیشتری در با هم آورده می‌شوند. پیش از آنکه وارد مباحث ریاضی و محاسباتی LSI شویم بهتر است کمی بیشتر در مورد این مسوله به لحاظ نظری بحث کنیم.
 
لغات زائد
به نحوه صحبت کردن روز مره انسان‌ها دقت کنید. بسیاری از واژگانی که در طول روز و در محاوره‌ها از انها استفاده می‌کنیم، تاثیری در معنای سخن ما ندارند. این مسئله در نحوه نگارش ما نیز صادق است. خیلی از لغات از جمله حروف اضافه، حروف ربط، برخی از افعال پر استفاده و غیره در جملات دیده می‌شوند اما معنای سخن ما در آنها نهفته نمی‌باشد. بعنوان مثال به جمله "جهش در ژن‌ها می‌تواند منجر به بیماری سرطان شود" درقت کنید. در این جمله لغاتی که از اهمیت بالایی بر خوردار هستند و به نوعی بار معنایی جمله بر دوش آنهاست عبارتند از "جهش"، "ژن"، بیماری" و "سرطان". بنابراین می‌توان سایر لغات مانند "در"، "می تواند" و "به" را حذف نمود. به این لغات در اصطلاح علم بازیابی اطلاعات (Information Retrieval) لغات زائد (redundant) گفته می‌شود که در اکثر الگوریتم‌های جستجو یا پردازش زبان طبیعی (natural language processing) برای رسیدن به نتایج قابل قبول باید حذف می‌شوند.روش LSI نیز از این قاعده مستثنی نیست. پیش از اجرای آن بهتر است این لغات زائد حذف گردند. این مسئله علاوه بر آنکه بر روی کیفیت نتایج خروجی تاثیر مثبت دارد، تا حد قابل ملاحظه ای کار پردازش و محاسبات را نیز تسهیل می‌نماید.
 
 
مدل کردن لغات و اسناد
پس از آنکه لغات اضافی از مجموعه متون حذف شد باید بدنبال روشی برای مدل کردن داده‌های موجود در مجموعه اسناد بگردیم تا بتوان کاربر پردازش را با توجه به آن مدل انجام داد. روشی که در LSI برای مدلسازی بکار گرفته می‌شود استفاده از ماتریس لغت – سند (term-document matrix) است. این ماتریس یک گرید بسیار بزرگ است که هر سطر از آن نماینده یک سند و هر ستون از ان نماینده یک لغت در مجموعه متنی ما می‌باشد(البته این امکان وجود دارد که جای سطر و ستون‌ها عوض شود). هر سلول از این ماتریس بزرگ نیز به نوعی نشان دهنده ارتباط بین سند و لغت متناظر با آن سلول خواهد بود. بعنوان مثال در ساده‌ترین حات می‌توان گفت که اگر لغتی در سند یافت نشد خانه متناظر با انها در ماتریس لغت – سند خالی خواهد ماند و در غیر این صورت مقدار یک را خواهد گرفت. در برخی از روش‌ها سلول‌ها را با تعداد دفعات تکرار لغات در اسناد متناظر پر می‌کنند و در برخی دیگر از معیار‌های پیچیده‌تری مانند tf*idf استفاده می‌نمایند. شکل زیر نمونه از این ماتریس‌ها را نشان می‌دهد : 

برای ایجاد چنین ماتریسی باید تک تک اسناد و لغات موجود در مجموعه متنی را پردازش نمود و خانه‌های متناظر را در ماتریس لغت – سند مقدار دهی نمود.خروجی این کار ماتریسی مانند ماتریس شکل بالا خواهد شد (البته در مقیاسی بسیار بزرگتر) که بسیاری از خانه‌های ان صفر خواهند بود (مانند آنچه در شکل نیز مشاهده می‌کنید). به این مسئله تنک بودن (sparseness) ماتریس گفته می‌شود که یکی از مشکلات استفاده از مدل ماتریس لغت – سند محسوب می‌شود. 
این ماتریس، بازتابی از کل مجموعه متنی را به ما می‌دهد. بعنوان مثال اگر بخواهیم ببینیم در سند i چه لغاتی وجود دارد، تنها کافی است به سراغ سطر iام از ماتریس برویم (البته در صورتی که ماتریس ما سند – لغت باشد) وآن را بیرون بکشیم. به این سطر در اصطلاح بردار سند (document vector) گفته می‌شود. همین کار را در مورد لغات نیز می‌توان انجام داد. بعنوان مثال با رفتن به سراغ ستون j ام می‌توان دریافت که لغت j ام  در چه اسنادی آورده شده است. به ستون j ام نیز در ماتریس سند – لغت، بردار لغت (term vector) گفته می‌شود. توجه داشته باشید که این بردار‌ها در مباحث و الگوریتم‌های مربوط به بازیابی اطلاعات و پردازش زبان طبیعی بسیار پر کاربرد می‌باشند.
با داشتن ماتریس لغت – سند می‌توان یک الگوریتم جستجو را پیاده سازی نمود. بسیاری از روش‌های جستجویی که تا کنون پیشنهاد شده اند نیز بر پایه چنین ماتریس هایی بنا شده اند. فرض کنید می‌خواهیم پرس و جویی با کلمات کلیدی "کروموزوم‌های انسان" اجرا کنیم. برای این منظور کافیست ابتدا کلمات کلیدی موجود در پرس و جو را استخراج کرده (در این مثال کروموزوم و انسان دو کلمه کلیدی ما هستند) و سپس به سراغ بردار‌های هر یک برویم. همانطور که گفته شد با مراجعه به سطر یا ستون مربوط به لغات می‌توان بردار لغت مورد نظر را یافت. پس از یافتن بردار مربوط به کروموزوم و انسان می‌توان مشخص کرد که این لغات در چه اسناد و متونی اورده شده اند و آنها را استخراج و به کاربر نشان داد. این ساده‌ترین روش جستجو بر مبنای کلمات کلیدی می‌باشد. اما دقت داشته باشید که هدف نهایی در LSI چیزی فراتر از این است. بنابراین نیاز به انجام عملیاتی دیگر بر روی این ماتریس می‌باشد که بتوانیم بر اساس آن ارتباطات معنایی بین لغات و متون را تشخیص دهیم. برای این منظور LSI ماتری لغت – سند را تجزیه (decompose) می‌کند. برای این منظور نیز از تکنیک Singular Value Decomposition استفاده می‌نماید. پیش از پرداختن به این تکنیک ابتدا بهتر است کمی با فضای برداری چند بعدی (multi-dimensional vector space) آشنا شویم. برای این منظور به مثال زیر توجه کنید.
 
مثالی از فضای چند بعدی
فرض کنید قصد دارید تحقیقی در مورد اینکه مردم چه چیز هایی را معمولا برای صبحانه خود سفارش می‌دهند انجام دهید. برای این منظور در یک روز شلوغ به رستورانی در اطراف محل زندگی خود می‌روید و لیست سفارشات صبحانه را می‌گیرید. فرض کنید از بین اقلام متعدد، تمرکز شما تنها بر روی تخم مرغ (egg)، قهوه (coffee) و بیکن (bacon) است. در واقع قصد دارید ببینید چند نفر در سفارش خود این سه قلم را باهم درخواست کرده اند. برای این منظور سفارشات را تک تک بررسی می‌کنید و تعداد دفعات را ثبت می‌کنید.
پس از آنکه کار ثبت و جمع آوری داده‌ها به پایان رسید می‌توانید نتایج را در قالب نموداری نمایش دهید. یک روش برای اینکار رسم نموداری سه بعدی است که هر بعد آن مربوط به یکی از اقلام مذکور می‌باشد. بعنوان مثال در شکل زیر نموداری سه بعدی را که برای این منظور رسم شده است مشاهده می‌کنید. همانطور که در شکل نشان داده شده است محود x مربوط به "bacon"، محور y مربوط به "egg" و محور z نیز مربوط به "coffee" می‌باشد. از آنجایی که این نمودار سه بعدی است برای مشخص کردن نقاط بر روی آن به سه عدد (x ,y ,z)  نیاز مندیم. حال اطلاعات جمع اوری شده از صورت سفارشات را یکی یکی بررسی می‌کنیم و بر اساس تعداد دفعات سفارش داده شدن این سه قلم نقطه ای  را در این فضای سه بعدی رسم می‌کنیم. بعنوان مثال اگر در سفارشی 2 عدد تخم مرغ و یک قهوه سفارش داده شد بود، این سفارش با (0, 2, 1) در نمودار ما نمایش داده خواهد شد. به این ترتیب می‌توان محل قرار گرفتن این سفارش در فضای سه بعدی سفارشات صبحانه را یافت. این کار را برای تمامی سفارشات انجام می‌دهیم تا سر انجام نموداری مانند نمودار زیر بدست آید. 

دقت داشته باشید که اگر از هریک از نقطه آغازین نمودار (0, 0, 1) خطی را به هر یک از نقاط رسم شده بکشید، بردار هایی در فضای “bacon-eggs-coffee”بدست خواهد آمد. هر کدام از این بردار‌ها به ما نشان می‌دهند که در یک صبحانه خاص بیشتر از کدام یک از این سه قلم درخواست شده است. مجموع بردار‌ها در کنار یکدیگر نیز می‌توانند اطلاعات خوبی راجع به گرایش و علاقه مردم به اقلام مذکور در صبحانه‌های خود به ما دهد. به این نمودار نمودار فضای بردار (vector – space) می‌گویند.
حالا وقت آن است که مجددا به بحث مربوط به بازیابی اطلاعات (information retrieval) باز گردیم. همانطور که گفتیم اسناد در یک مجموعه را می‌توان در قالب بردار هایی بنام Term – vector نمایش داد. این بردار‌ها مشابه بردار مثال قبل ما هستند. با این تفاوت که به جای تعداد دفعات تکرار اقلام موجود در صبحانه افراد، تعداد دفعات تکرار لغات را در یک سند در خود دارند. از نظر اندازه نیز بسیار بزرگتر از مثال ما هستند. در یک مجموعه از اسناد ما هزاران هزار لغت داریم که باید بردار‌های ما به اندازه تعداد کل لغات منحصر به فرد ما باشند. بعنوان مثال اگر در یک مجموعه ما هزار لغات غیر تکراری داریم بردار‌های ما باید هزار بعد داشته باشند. نموداری که اطلاعات را در ان نمایش خواهیم داد نیز بجای سه بعد (در مثال قبل) می‌بایست هزار بعد (یا محور) داشته باشد که البته چنین فضایی قابل نمایش نمی‌باشد.

به مثال صبحانه توجه کنید. همانطور که می‌بینید برخی از نقاط بر روی نمودار نسبت به بقیه به یکدیگر نز دیکتر هستند و ابری از نقاط را در قسمتی از نمودار ایجاد کردند. این نقاط نزدیک به هم باعث می‌شوند که بردار‌های آنها نیز با فاصله نزدیک به هم در فضای برداری مثال ما قرار گیرند. علت نزدیک بودن این بردار‌ها اینست که تعداد دفعات تکرار bacon، eggs و coffee در انها مشابه به هم بوده است. بنابراین می‌توان گفت که این نقاط (یا سفارشات مربوط به انها) به یکدیگر شبیه می‌باشند. در مورد فضای برداری مجموعه از اسناد نیز وضع به همین ترتیب است. اسنادی که لغات مشترک بیشتری با یک دیگر دارند بردار‌های مربوط به انها در فضای برداری در کنار یکدیگر قرار خواهند گرفت. هر چه این مشترکات کمتر باشد منجر به فاصله گرفتن بردار‌ها از یکدیگر می‌گردد. بنابراین می‌بینید که با داشتن فضای برداری و مقایسه بردار‌ها با یکدیگر می‌توان نتیجه گرفت که دو سند چقدر به یکدیگر شباهت دارند.
در بسیاری از روش‌های جستجو از چنین بردار هایی برای یافتن اسناد مرتبط به پرس و جوی کاربران استفاده می‌کنند. برای ان منظور تنها کافی اس پرس و جوی کاربر را بصورت برداری در فضای برداری مورد نظر نگاشت دهیم و سپس بردار حاصل را با بردار‌های مربوط به اسناد مقایسه کنیم و در نهایت آنهایی که بیشترین شباهت را دارند باز به کاربر بازگردانیم. این روش یکی از ساده‌ترین روش‌های مطرح شده در بازیابی اطلاعات است.
خوب حالا بیایید به Latent Semantic Indexing باز گردیم. روش LSI برمبنای همین فضای برداری عمل می‌کند با این تفاوت که فضای برداری را که دارای هزاران هزار بعد می‌باشد به فضای کوچکتری با ابعاد کمتر (مثلا 300 بعد) تبدیل می‌کند. به این کار در اصطلاح عملی کاهش ابعاد (dimensionality reduction) گفته می‌شود. دقت داشته باشید که هنگامیکه این عمل انجام می‌گیرد لغاتی که شباهت و یا ارتباط زیادی به لحاظ معنایی با یکدیگر دارند بجای اینکه هریک در قالب یک بعد نمایش داده شوند، همگی بصورت یک بعد در می‌آیند. بعنوان مثال لغات کروموزم و ژن از نظر معنایی با یکدیگر در ارتباط هستند. در فضای برداری اصلی این دو لغت در قالب دو بعد مجزا نمایش داده می‌شوند اما با اعمال کاهش ابعاد به ازای هر دوی آنها تنها یک بعد خواهیم داشت. مزیت این کار اینست که اسنادی که لغات مشترکی ندارند اما به لحاظ معنایی با یکدیگر ارتباط دارند در فاضی برداری کاهش یافته نزدیکی بیشتری به یکدیگر خواهند داشت.
 
روش‌های مختلفی برای اعمال کاهش ابعاد وجود دارد. در LSI از روش Singular Value Decompistion استفاده می‌شود که در بحث بعدی در مورد آن صحبت خواهیم نمود.
 
 
Singular Value Decomposition
پیشتر گفتیم که در LSI برای مدل کردن مجموعه اسناد موجود از ماتریس بزرگی بنام ماتریس لغت – سند استفاده می‌شود. این ماتریس در واقع نمایشی از مدل فضای برداری است که در بخش قبلی به آن اشاره شد. دقت داشته باشید که ما در دنیای واقعی در یک سیستم بزرگ تقریبا چیزی در حدود یک ملیون سند داریم که در مجموع این اسناد تقریبا صد هزار لغت غیر تکراری و منحصر به فرد یافت می‌شود. بنابراین می‌توان گفت میزان تنک بودن ماتریس ما تقریبا برابر با 0.1 درصد خواهد بود. یعنی از کل ماتریس تنها 0.1 درصد آن دارای اطلاعات است و اکثر سلول‌های ماتریس ما خالی می‌باشد. این مسئله را در شکل زیر می‌توانید مشاهده کنید. 

در Latent Semantic Indexing با استفاده از روش Singular Value Decomposition این ماتریس را کوچک می‌کنند. به بیان بهتر تقریبی از ماتریس اصلی را ایجاد می‌کنند که ابعاد کوچکتری خواهد داشت. این کار مزایایی را بدنبال دارد. اول آنکه سطر‌ها و ستون هایی (لغات و اسناد) که اهمیت کمی در مجموعه اسناد ما دارند را حذف می‌کند. علاوه بر آن این کار باعث می‌شود که ارتباطات معنایی بین لغات هم معنی یا مرتبط کشف شود. یافتن این ارتباطات معنایی بسیار در پاسخ به پرس و جو‌ها مفید خواهد بود. چرا که مردم معمولا در پرس و جو‌های خود از دایره لغات متفاوتی استفاده می‌کنند. بعنوان مثال برای جستجو در مورد مطالب مربوط به ژن‌های انسان برخی از واژه کروموزوم و برخی دیگر از واژه ژنوم و دیگران ممکن است از واژگان دیگری استفاده نمایند. این مسئله مشکلی را در جستجو بنام عدم تطبیق کلمات کلیدی (mismatch problem) بوجود می‌اورده که با اعمال SVD بر روی ماتریس سند – لغت این مشکل برطرف خواهد شد.
توجه داشته باشید که SVD ابعاد بردار‌های لغات و سند را کاهش می‌دهد. بعنوان مثال بجای آنکه یک سند در قالب صد هزار بعد (که هر بعد مربوط به یک لغت می‌باشد) نمایش داده شود، بصورت یک بردار مثلا 150 بعدی نمایش داده خواهد شد. طبیعی است که این کاهش ابعاد منجر به از بین رفتن برخی از اطلاعات خواهد شد چرا که ما بسیاری از ابعاد را با یکدیگر ادغام کرده ایم. این مسئله شاید در ابتدا مسئله ای نا مطلوب به نظر آید اما در اینجا نکته ای در آن نهفته است. دقت داشته باشید که آنچه از دست می‌رود اطلاعات زائد (noise) می‌باشد. از بین رفتن این اطلاعات زائد منجر می‌شود تا ارتباطات پنهان موجود در مجموعه اسناد ما نمایان گردند. با اجرای SVD بر روی ماتریس، اسناد و لغات مشابه، مشابه باقی می‌مانند و انهایی که غیر مشابه هستند نیز غیر مشابه باقی خواهد ماند. پس ما از نظر ارتباطات بین اسناد و لغات چیزی را از دست نخواهیم داد.
 
در مباحث بعدی در مورد چگونگی اعمال SVD و همچنین نحوه پاسخگویی به پرس و جو‌ها مطالب بیشتری را برای شما عزیزان خواهیم نوشت.
 
موفق و پیروز باشید. 
نظرات مطالب
ASP.NET MVC #6
مطابق استاندارد، در HTTP header امکان قرار دادن کاراکترهای یونیکد نیست (پیش فرض آن حداکثر ISO-8859-1  است یا حروف لاتین):
 Reason-Phrase  = *<TEXT, excluding CR, LF>
“The TEXT rule is only used for descriptive field contents and values that are not intended to be interpreted by the message
parser. Words of *TEXT MAY contain characters from character sets other than ISO-8859-1
only when encoded according to the rules of RFC 2047”.
مگر اینکه مطابق RFC 2047 انکد شوند. (از این RFC هم بیشتر در عنوان ایمیل‌ها تابحال استفاده شده تا در هدر HTTP)
البته می‌شود توسط HttpUtility.UrlEncode این پیام را encode و در سمت کلاینت توسط مثلا jQuery با استفاده از متد استاندارد decodeURIComponent آن‌را دریافت کرد ولی ... به صورت پیش فرض و encode نشده، تفسیر نمی‌شود و حتی به عنوان یک هدر مخرب شاید برگشت زده شود.
مطالب
بررسی مفهوم Captured Variable در زبان سی شارپ
Capturing Outer Variables  
یک عبارت لامبدا می‌تواند از متغیرهای محلی و یا پارامترهای متدی که در آن تعریف شده است، استفاده نماید (Outer Variables). این متغیرها را captured variables می‌نامند. عبارت لامبدایی که از این متغیرها استفاده می‌کند، closure نامیده می‌شود. برای مثال:
static void Main()
{
 int factor = 2;
 Func<int, int> multiplier = n => n * factor;
 Console.WriteLine (multiplier (3)); // 6
}
در کد فوق multiplier یک delegate می‌باشد که ورودی صحیح n را گرفته و در مقدار factor ضرب کرده و بر می‌گرداند.

عبارت لامبدا زمانی ارزیابی می‌شود که delegate متناظر فراخوانی (Invoke) گردد؛ نه زمانیکه متغیر اصطلاحا capture می‌شود:
int factor = 2;
Func<int, int> multiplier = n => n * factor;
factor = 10;
Console.WriteLine (multiplier (3)); // 30
در کد فوق در زمانی که multiplier فراخوانی می‌شود مقدار factor برابر 10 ارزیابی شده و لذا عدد 30 چاپ خواهد شد.

عبارات لامبدا خود می‌توانند captured variable‌ها را تغییر دهند:
int seed = 0;
Func<int> natural = () => seed++;
Console.WriteLine (natural()); // 0
Console.WriteLine (natural()); // 1
Console.WriteLine (seed); // 2
در کد فوق natural یک delegate بدون ورودی و با یک خروجی integer می‌باشد. در ابتدا متغیر محلی seed تعریف شده و با مقدار اولیه 0 مقداردهی می‌شود. با هر بار اجرای natural مقدار seed به اندازه 1 واحد افزایش می‌یابد.
طول عمر(lifetime) متغیرهای captured شده در حد طول عمر delegate افزایش پیدا می‌کند. در مثال زیر متغیر محلی seed در حالت معمول، محدوده دیدی (scope) در حد تعریف این متغیر تا پایان اجرای متد دارد. اما از آنجاییکه در اینجا متغیر captured شده است، طول عمر آن در حدا طول عمر delegate افزایش می‌یابد: theNatural
static Func<int> Natural()
{
 int seed = 0;
 return () => seed++; // Returns a closure
}
static void Main()
{
 Func<int> theNatural = Natural();
 Console.WriteLine (theNatural ()); // 0
 Console.WriteLine (theNatural ()); // 1
}
اگر متغیر seed را در بدنه عبارت لامبدا تعریف نماییم، این متغیر برای هر بار اجرای delegate یکتا خواهد بود:
static Func<int> Natural()
{
 return() => { int seed = 0; return seed++; };
}
static void Main()
{
 Func<int> natural = Natural();
 Console.WriteLine (natural()); // 0
 Console.WriteLine (natural()); // 0
}

نکته: پیاده سازی پروسه Capture شدن متغیر، به این صورت است که این متغیرها به عنوان یک فیلد از یک کلاس (با سطح دسترسی private) در نظر گرفته می‌شوند. زمانیکه متد فراخوانی شد، کلاس مزبور وهله سازی شده و طول عمر آن به  طول عمر delegate گره می‌خورد.

Capturing iteration variables
در حلقه for، وقتی که متغیر حلقه توسط یک عبارت لامبدا capture می‌گردد، #C با آن متغیر طوری رفتار می‌کند که گویی در خارج از حلقه تعریف شده‌است و این بدان معناست که در هر بار تکرار حلقه، مقدار یکسانی برای متغیر در نظر گرفته می‌شود. کد زیر 333 را در خروجی چاپ می‌کند(بجای 012). 
Action[] actions = new Action[3];
for (int i = 0; i < 3; i++)
actions [i] = () => Console.Write (i);
foreach (Action a in actions) a(); // 333
دلیل این موضوع این است که در هنگام اجرای delegate ها، هر delegate مقدار i را برابر مقدار آن در زمان اجرا می‌بیند و این مقدار در زمان اجرا برابر با 3 می‌باشد.
با نوشتن کد زیر می‌توان درک بهتری از موضوع پیدا کرد. 
Action[] actions = new Action[3];
int i = 0;
actions[0] = () => Console.Write (i);
i = 1;
actions[1] = () => Console.Write (i);
i = 2;
actions[2] = () => Console.Write (i);
i = 3;
foreach (Action a in actions) a(); // 333
اگر بخواهیم خروجی 012 چاپ شود راه حل به شرح زیر خواهد بود:
Action[] actions = new Action[3];
for (int i = 0; i < 3; i++)
{
 int loopScopedi = i;
 actions [i] = () => Console.Write (loopScopedi);
}
foreach (Action a in actions) a(); // 012
زیرا هر متغیر loopScopedi در هر بار تکرار حلقه مجددا تعریف می‌گردد و لذا هر بار متغیر متفاوتی capture می‌گردد.
مطالب
بهبود سرعت نمایش صفحات در ASP.NET MVC با حذف View Engines اضافی
در ASP.NET MVC امکان استفاده از چند View Engine به صورت همزمان وجود دارد و همچنین هربار که قرار است Viewایی رندر شود، از تمام این‌ها تا یافتن موتور مناسب نمایش View جاری کوئری می‌گیرد. بدیهی است هرچقدر تعداد موتورهای ثبت شده در اینجا بیشتر باشند، زمان بیشتری نیز برای یافتن موتور نمایشی مناسب صرف خواهد شد؛ خصوصا اگر موتور مناسب در آخر لیست ثبت شده باشد.
در ASP.NET MVC 3 دو موتور نمایشی به صورت پیش فرض نصب هستند (WebForms and Razor). بنابراین اگر صرفا از Razor استفاده می‌کنید، می‌توان موتور اول را کلا از سیستم پردازشی برنامه حذف کرد. برای اینکار تنها کافی است در فایل global.asax.cs برنامه بنویسیم:
protected void Application_Start() {
    ViewEngines.Engines.Clear();
    ViewEngines.Engines.Add(new RazorViewEngine());
    ...
}
این موارد را توسط Glimpse بهتر می‌توان بررسی کرد. Glimpse یک پروفایلر سمت سرور ASP.NET است و دارای نسخه مخصوص ASP.NET MVC نیز می‌باشد. برای نصب آن باید از طریق NuGet اقدام کرد و حتما دقت داشته باشید که نسخه MVC آن باید نصب شود تا برگه‌های Routing و View آن ظاهر شوند.
پس از نصب از طریق NuGet، به صورت خودکار اسمبلی‌های لازم به پروژه اضافه شده و همچنین فایل web.config برنامه نیز ویرایش می‌شود. در انتهای این فایل سطر ذیل مشخص می‌کند که Glimpse فعال باشد یا خیر.
<glimpse enabled="true" />
پس از نصب، برنامه را اجرا کرده و به آدرس http://localhost/glimpse.axd مراجعه کنید تا صفحه تنظیمات آن ظاهر شود. تنها کاری که باید در اینجا صورت گیرد کلیک بر روی دکمه Turn Glimpse On است.


 به این ترتیب یک کوکی به مرورگر اضافه شده و اکنون پس از بازگشت به صفحه اصلی برنامه و refresh کامل صفحه، در کنار سمت راست پایین صفحه، آیکن آن ظاهر خواهد شد.


بر روی این آیکن کلیک نمائید تا در برگه‌ی View آن، انواع Viewهایی که درگیر نمایش صفحه جاری بوده‌اند، مشخص شوند:


همانطور که ملاحظه می‌کنید در اینجا دو موتور پیش فرض فعال بوده و پس از سعی و خطای صورت گرفته، در انتهای کار Razor انتخاب شده است. اکنون اگر نکته حذف موتورهای نمایشی اضافی را اعمال کنیم به تصویر زیر خواهیم رسید:


هم تعداد سعی و خطاها کمتر شده و هم تعداد فایل‌هایی که بررسی شده است به حداقل رسیده (برای مثال در حالتیکه موتور WebForms فعال باشد، چهار فایل با پسوندهای مختلف در مکان‌های پیش فرض نیز حتما جستجو خواهند شد).