نظرات مطالب
شروع به کار با AngularJS 2.0 و TypeScript - قسمت سوم - غنی سازی کامپوننت‌ها
به روز رسانی: ارتقاء به نگارش «2.0.0rc.0 » 
جزئیات این مورد و تغییرات مداخل ابتدایی، به همراه فایل main.ts جدید را در نظرات قسمت اول مطالعه بفرمائید. 
نظرات مطالب
شروع به کار با AngularJS 2.0 و TypeScript - قسمت دوم - معرفی کامپوننت‌ها
به روز رسانی: ارتقاء به نگارش «2.0.0rc.0 » 
جزئیات این مورد و تغییرات مداخل ابتدایی، به همراه فایل main.ts جدید را در نظرات قسمت اول مطالعه بفرمائید.
مطالب
مهارت‌های تزریق وابستگی‌ها در برنامه‌های NET Core. - قسمت هشتم - ساده سازی معرفی سرویس‌ها توسط Scrutor
قابلیت‌های قرار گرفته‌ی در اسمبلی Microsoft.Extensions.DependencyInjection که پایه‌ی تزریق وابستگی‌های برنامه‌های مبتنی بر NET Core. را ارائه می‌دهد، برای پیاده سازی اکثر پروژه‌ها کافی است. اما اگر از نگارش‌های پیشین ASP.NET MVC به ASP.NET Core مهاجرت کرده باشید، حتما با قابلیت‌های ویژه‌ی اسکن اسمبلی‌های موجود در IoC Containers ثالث، جهت ساده سازی معرفی سرویس‌های برنامه به سیستم تزریق وابستگی‌ها، آشنایی دارید. برای مثال StructureMap قابلیت اسکن اسمبلی‌های موجود در برنامه و معرفی اینترفیس‌ها و سرویس‌های موجود در آن‌را به Container خود دارد:
var container = new Container(x =>
            {
                x.Scan(scanner =>
                {
                    scanner.AssemblyContainingType<IOrderHandler>();
                    // connects `IAccounting` to `Accounting` and `ISales` to `Sales` automatically.
                    scanner.WithDefaultConventions();
                });
            });
و یا AutoFac نیز به همین صورت:
builder.RegisterAssemblyTypes(myAssembly)
    .Where(t => t.IsAssignableTo<IMyInterface>())
    .AsImplementedInterfaces();
البته می‌توان مجددا به تمام این قابلیت‌ها رسید؛ به شرطی‌که سیستم تزریق وابستگی‌های پایه‌ی NET Core. را با یکی از IoC Containers ثالث به طور کامل تعویض کنیم. اگر قصد چنین تعویض پایه‌ای را ندارید و هنوز قصد دارید از همان Microsoft.Extensions.DependencyInjection استفاده کنید، اما تعدادی متد الحاقی جدید تعریف شده‌ی بر فراز آن، کار اسکن کردن اسمبلی‌ها را مانند قبل انجام دهند، می‌توان از کتابخانه‌ی کمکی Scrutor استفاده کرد. این کتابخانه، جایگزین سیستم تزریق وابستگی‌های توکار برنامه‌های NET Core. نیست؛ بلکه صرفا مکمل آن است.


دریافت و نصب کتابخانه‌ی کمکی Scrutor

کتابخانه‌ی کمکی Scrutor سورس باز بوده و بسته‌ی NuGet آن توسط یکی از دستورات زیر به پروژه افزوده می‌شود:
> Install-Package Scrutor
> dotnet add package Scrutor
و یا به صورت مدخلی جدید در فایل csproj:
<Project Sdk="Microsoft.NET.Sdk.Web">
  <ItemGroup>
    <PackageReference Include="Scrutor" Version="3.0.2" />
  </ItemGroup>
</Project>


ثبت و معرفی ساده‌تر سرویس‌ها بر اساس قواعد نامگذاری آن‌ها توسط Scrutor

فرض کنید تعدادی سرویس را به صورت زیر تعریف کرده‌اید:
namespace CoreIocServices
{
    public interface IFoo
    {
        void Run();
    }

    public class Foo : IFoo
    {
        public void Run()
        {
            throw new System.NotImplementedException();
        }
    }

    public interface IBar
    {
        void Add();
    }

    public class Bar : IBar
    {
        public void Add()
        {
            throw new System.NotImplementedException();
        }
    }


    public interface IBaz
    {
        void Stop();
    }

    public class Baz : IBaz
    {
        public void Stop()
        {
            throw new System.NotImplementedException();
        }
    }
}
روش متداول معرفی آن‌ها به IoC Container برنامه به صورت زیر است:
services.AddScoped<IFoo, Foo>();
services.AddScoped<IBar, Bar>();
services.AddScoped<IBaz, Baz>();
و هرچقدر تعداد سرویس‌های برنامه بیشتر شود، سطرهای فوق نیز بیشتر خواهند شد.
در اینجا در حین تعریف سرویس‌های فوق این روش نامگذاری رعایت شده‌است: هر اینترفیس، نامش یک I بیشتر از نام کلاس مشتق شده‌ی از آن دارد؛ مانند اینترفیس IFoo و کلاس Foo. کتابخانه‌ی StructureMap که در ابتدای بحث معرفی شد، کار اسکن و اتصال یک چنین سرویس‌هایی را با تعریف scanner.WithDefaultConventions انجام می‌دهد. معادل آن با Scrutor به صورت زیر است:
namespace CoreIocSample02
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.Scan(scan =>
                //scan.FromCallingAssembly()
                scan.FromAssemblyOf<IFoo>()
                    .AddClasses()
                    .AsMatchingInterface()
                    .WithScopedLifetime());
تعریف فوق به این معنا است:
- scan.FromAssemblyOf کار اسکن اسمبلی را انجام می‌دهد که نوع IFoo در آن قرار دارد. اگر از scan.FromCallingAssembly استفاده کنیم، به این معنا است که کار اسکن را دقیقا از همین اسمبلی فراخوان کدهای جاری، شروع کن. اما چون IFoo تعریف شده، در یک پروژه و اسمبلی دیگر قرار دارد، به همین جهت نیاز به ذکر صریح اسمبلی آن نیز هست.
- AddClasses یعنی تمام کلاس‌های public, non-abstract را به لیست services اضافه کن.
- AsMatchingInterface یعنی بر اساس قرارداد نامگذاری IClassName و ClassName، اتصالات سرویس‌ها را انجام بده.
بجای آن می‌توان از AsImplementedInterfaces نیز استفاده کرد. این حالت برای زمانی مناسب است که یک کلاس، چندین اینترفیس را پیاده سازی کند (مثلا کلاس TestService اینترفیس‌های ITestService و IService را پیاده سازی کرده باشد) و علاقمند باشید به ازای هر اینترفیس، یکبار سرویس آن نیز ثبت شود؛ کاری مانند تنظیمات زیر:
services.AddScoped<ITestService, TestService>();
services.AddScoped<IService, TestService>();
یا حتی می‌توان از متد ()<As<T نیز استفاده کرد. در اینجا به Scrutor گفته می‌شود که تمام کلاس‌های یافت شده را بر اساس نوع سرویس T ثبت و معرفی کن. البته اگر کلاسی نتواند نوع اینترفیس T را پیاده سازی کند، در زمان اجرا با استثناء مواجه خواهید شد.
- WithScopedLifetime نیز طول عمر این سرویس‌های اضافه شده را مشخص می‌کند. در اینجا می‌توان WithTransientLifetime و WithSingletonLifetime را نیز ذکر کرد.

بنابراین همانطور که ملاحظه می‌کنید، هنوز هم همان سیستم Microsoft.Extensions.DependencyInjection برقرار است؛ اما با وجود متد الحاقی جدید Scan، کار تعاریف سرویس‌های برنامه به شدت ساده می‌شود.


کار با وهله‌های کلاس‌های سرویس‌ها بجای اینترفیس‌های آن توسط Scrutor

می‌خواهیم مثال سوم قسمت ششم «چگونه بجای اینترفیس‌ها، یک وهله از کلاسی مشخص را از سیستم تزریق وابستگی‌ها درخواست کنیم؟» را توسط Scrutor پیاده سازی کنیم:
namespace CoreIocServices
{
    public interface IService { }
    public class Service1 : IService { }
    public class Service2 : IService { }
    public class Service : IService { }
}
در حالت متداول آن می‌توان از روش زیر نیز استفاده کرد:
services.AddTransient<Service1>();
services.AddTransient<Service2>();
services.AddTransient<Service>();
که با افزایش تعداد کلاس‌های سرویس برنامه به همین نحو نیز افزایش خواهند یافت. معادل این تنظیمات با Scrutor به صورت زیر است:
namespace CoreIocSample02
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.Scan(scan =>
              //scan.FromCallingAssembly()
              scan.FromAssemblyOf<IService>()
                  .AddClasses()
                  .AsSelf()
                  .WithTransientLifetime());
در اینجا اسمبلی حاوی IService اسکن خواهد شد و سپس تمام کلاس‌های public, non-abstract آن AsSelf (ثبت پیاده سازی خود کلاس به عنوان سرویس) با طول عمر Transient به لیست services اضافه می‌شوند و یا اگر صرفا تعدادی سرویس مشخص مد نظر بود می‌توان به صورت زیر عمل کرد:
services.Scan(scan =>
               scan.AddTypes(new[] { typeof(Service1), typeof(Service2) })
                   .AsSelf()
                   .WithTransientLifetime());
متدهایی که در Scrutor، یک پیاده سازی را به عنوان سرویس معرفی می‌کنند، شامل این موارد هستند:
AsSelf: معادل ()<services.AddTransient<TestService است. در این حالت کلاس‌هایی که اینترفیسی را پیاده سازی نمی‌کنند و یا در کل مایل هستید که از طریق تزریق وابستگی‌ها در دسترس باشند، می‌توان توسط متد AsSelf به سیستم معرفی کرد.
AsSelfWithInterfaces: معادل تنظیمات زیر است:
services.AddSingleton<TestService>();
services.AddSingleton<ITestService>(x => x.GetRequiredService<TestService>());
services.AddSingleton<IService>(x => x.GetRequiredService<TestService>());
فرض کنید کلاس TestService اینترفیس‌های ITestService و IService را پیاده سازی کرده باشد. با استفاده از AsSelfWithInterfaces، یکبار پیاده سازی خود سرویس به سیستم معرفی می‌شود، سپس به ازای هر اینترفیس، از همان وهله‌ی TestService برای وهله سازی سرویس‌های ITestService و IService نیز استفاده می‌شود.


روش‌های متفاوت اسکن اسمبلی‌ها در Scrutor

Scrutor به همراه روش‌های متعددی برای تعریف اسمبلی یا اسمبلی‌هایی است که باید اسکن شوند و نمونه‌ای از آن‌را با FromAssemblyOf بررسی کردیم:
services.Scan(scan =>
              //scan.FromCallingAssembly()
              scan.FromAssemblyOf<IService>()
سایر موارد آن به شرح زیر هستند:
الف) FromAssemblyOf<>, FromAssembliesOf : اسمبلی یا اسمبلی‌هایی که نوع یا نوع‌های تعیین شده را به همراه دارند، اسکن می‌کند.
ب) FromCallingAssembly, FromExecutingAssembly, FromEntryAssembly کار اسکن اسمبلی‌های فراخوان، اسمبلی که هم اکنون در حال اجرا است و اسمبلی آغازین برنامه را انجام می‌دهند.
ج) FromAssemblyDependencies: تمام اسمبلی‌هایی را که وابسته‌ی به اسمبلی معرفی شده‌ی به آن هستند، اسکن می‌کند.
د) FromApplicationDependencies, FromDependencyContext: تمام اسمبلی‌هایی را که توسط برنامه، ارجاعی به آن‌ها وجود دارند، اسکن می‌کند.


انتخاب دقیق‌تر کلاس‌ها و سرویس‌های مدنظر توسط Scrutor

شاید عملکرد کلی متد AddClasses مدنظر شما نباشد و نیاز به انتخاب دقیق‌تری از سرویس‌های اسکن شده را داشته باشید؛ برای این مورد نیز Scrutor روش‌های زیر را ارائه می‌دهد. برای مثال خود کلاس AddClasses دارای overloadهای زیر نیز هست:
    public interface IImplementationTypeSelector : IAssemblySelector, IFluentInterface
    {
        IServiceTypeSelector AddClasses();
        IServiceTypeSelector AddClasses(bool publicOnly);
        IServiceTypeSelector AddClasses(Action<IImplementationTypeFilter> action);
        IServiceTypeSelector AddClasses(Action<IImplementationTypeFilter> action, bool publicOnly);
    }
حالت پیش‌فرض آن انتخاب تمام کلاس‌های public, non-abstract است. اگر پارامتر publicOnly را با false مقدار دهی کنید، internal/private nested classes را نیز انتخاب می‌کند. پارامتر action ای که در اینجا درنظر گرفته شده، جهت فیلتر کردن سرویس‌های انتخابی است که تعدادی از مثال‌های آن‌را در زیر بررسی می‌کنیم:
services.Scan(scan => scan
              .FromAssemblyOf<IService>()
                .AddClasses(classes => classes.AssignableTo<IService>())
// .AddClasses(classes => classes.InNamespaces("MyApp")) 
// .AddClasses(classes => classes.Where(type => type.Name.EndsWith("Repository")) 
                    .AsImplementedInterfaces()
                    .WithTransientLifetime());
در اینجا در حالت اول، کلاس‌هایی که صرفا اینترفیس IService را پیاده سازی کرده باشند، انتخاب می‌شوند. حالت دوم آن، انتخاب‌ها را به یک فضای نام محدود می‌کند و حالت سوم اگر نام کلاسی به Repository ختم شود، آن‌را به عنوان سرویس انتخاب خواهد کرد.


مدیریت جایگزینی سرویس‌ها توسط Scrutor

یکی از مزیت‌های طراحی یک برنامه با درنظر گرفتن الگوی تزریق وابستگی‌ها، امکان جایگزین کردن سرویس‌های پیش‌فرض آن با سرویس‌های دیگری است. فرض کنید کتابخانه‌ای ارائه شده و از الگوریتم هش کردن X استفاده کرده‌است؛ اما شما علاقمندید تا از الگوریتم Y بجای آن استفاده کنید. اگر این کتابخانه وهله‌ی الگوریتم هش کردن را از طریق تزریق وابستگی‌ها تامین کرده باشد، فقط کافی است در ابتدای معرفی تنظیمات تزریق وابستگی‌های آن، سرویس الگوریتم هش کردن موجود را با نمونه‌ی خاص خودتان جایگزین کنید.
اکنون فرض کنید پیش از استفاده‌ی از Scrutor، تعدادی سرویس را به روش متداولی ثبت و معرفی کرده‌اید:
services.AddTransient<ITransientService, TransientService>();
services.AddScoped<IScopedService, ScopedService>();
حال که قرار است متد Scan آن، سرویس‌های یک اسمبلی را به لیست موجود اضافه کند، به سرویس‌های زیر می‌رسد:
public class TransientService : IFooService {}
public class AnotherService : IScopedService {}
 رفتار آن با سرویس‌های معادلی که از پیش ثبت شده‌اند چگونه باید باشد؟ برای مدیریت این مساله، متد UsingRegistrationStrategy پیش بینی شده‌است:
services.Scan(scan =>
                scan.FromAssemblyOf<IFoo>()
                    .AddClasses()
                    .UsingRegistrationStrategy(RegistrationStrategy.Skip)
                    .AsMatchingInterface()
                    .WithScopedLifetime());
و پارامتر دریافتی آن یک چنین امضایی را دارد:
namespace Scrutor
{
    public abstract class RegistrationStrategy
    {
        public static readonly RegistrationStrategy Skip;
        public static readonly RegistrationStrategy Append;
        protected RegistrationStrategy();
        public static RegistrationStrategy Replace();
        public static RegistrationStrategy Replace(ReplacementBehavior behavior);
        public abstract void Apply(IServiceCollection services, ServiceDescriptor descriptor);
    }
}
- حالت Append آن که حالت پیش‌فرض نیز هست، تمام سرویس‌های یافت شده را به لیست IServiceCollection اضافه می‌کند؛ صرفنظر از اینکه پیشتر ثبت شده‌است یا خیر.
- حالت Skip آن، سرویسی را تکراری ثبت نمی‌کند. یعنی اگر سرویسی پیشتر در مجموعه‌ی IServiceCollection موجود بود، مجددا آن‌را ثبت نمی‌کند.

سپس نوبت به متدهای Replace می‌رسد که یک چنین پارامتری را قبول می‌کنند:
namespace Scrutor
{
    [Flags]
    public enum ReplacementBehavior
    {
        Default = 0,
        ServiceType = 1,
        ImplementationType = 2,
        All = 3
    }
}
- در حالت استفاده‌ی از Replace(​ReplacementBehavior.​ServiceType)، اگر سرویسی پیشتر در لیست IServiceCollection ثبت شده باشد، آن‌را حذف کرده و سپس نمونه‌ی جدید را ثبت می‌کند (ثبت سرویس بر اساس اینترفیس و پیاده سازی آن).
- در حالت استفاده‌ی از Replace(​ReplacementBehavior.​ImplementationType)، اگر پیاده سازی کلاسی پیشتر در لیست IServiceCollection ثبت شده باشد، آن‌را حذف کرده و سپس نمونه‌ی جدید را ثبت می‌کند (ثبت سرویس صرفا بر اساس نام کلاس آن).
- حالت Replace(​ReplacementBehavior.All) هر دو حالت قبل را با هم شامل می‌شود.


امکان ترکیب چندین استراتژی جستجو با هم توسط Scrutor

در یک برنامه‌ی واقعی غیرممکن است که بخواهید تمام کلاس‌ها را با یک طول عمر، اسکن و ثبت کنید. برای این منظور می‌توان از قابلیت فیلتر کردن کلاس‌ها که در مورد آن بحث شد و همچنین امکان ترکیب زنجیر وار حالت‌های مختلف اسکن، استفاده کرد:
services.Scan(scan => scan 
  .FromAssemblyOf<CombinedService>() 
    .AddClasses(classes => classes.AssignableTo<ICombinedService>()) // Filter classes 
      .AsSelfWithInterfaces() 
      .WithSingletonLifetime() 
 
    .AddClasses(x=> x.AssignableTo(typeof(IOpenGeneric<>))) // Can close generic types 
      .AsMatchingInterface() 
 
    .AddClasses(x=> x.InNamespaceOf<MyClass>()) 
      .UsingRegistrationStrategy(RegistrationStrategy.Replace()) // Defaults to ReplacementBehavior.ServiceType 
      .AsMatchingInterface() 
      .WithScopedLifetime() 
 
  .FromAssemblyOf<DatabaseContext>()   // Can load from multiple assemblies within one Scan() 
    .AddClasses()  
      .AsImplementedInterfaces() 
);
نظرات مطالب
چک لیست ارتقاء به HTTPS مخصوص یک برنامه‌ی ASP.NET MVC 5x
بله. wildcard certificates در اواخر سال 2018 ارائه خواهد شد که با IIS 7.5 هم کار می‌کند. البته امکان دریافت چندین نوع مجوز به ازای زیر دامنه‌های مختلف یک سایت هم هست، اما استفاده‌ی از آن‌ها نیاز به ویژگی مخصوص «Server Name Indication» موجود در IIS سرور 2012 به بعد را دارد که فعلا در دسترس نیست (امکان داشتن بیش از یک مجوز و استفاده‌ی از آن‌ها به ازای تنها یک IP).
- البته این مشکل با مجوزهای SAN برطرف شد. توضیحات بیشتر
نظرات مطالب
نحوه اضافه کردن Auto-Complete به جستجوی لوسین در ASP.NET MVC و Web forms
- لوسین مستقل است از بانک اطلاعاتی. همچنین یکبار باید این ایندکس را تهیه کنید. اگر تعداد رکوردهای شما بالا است، فقط همان بار اول است که کار تهیه زمانبر خواهد بود. برای دفعات بعد در حد اضافه کردن چند سند لوسین به آن یا به روز رسانی و حذف است و کار دیگری ندارد.
- پس از تهیه ایندکس، جستجوی لوسین کاری به بانک اطلاعاتی شما ندارد. بر روی ایندکس خودش انجام می‌شود و نیازی به جستجوی مجدد در بانک اطلاعاتی شما نیست. یک سیستم مستقل است.
این روش متداول کار با لوسین است و حالت دیگری هم ندارد. این مستقل بودن هم یک مزیت است. برای مثال SQL Server CE یا خیلی از بانک‌های اطلاعاتی دیگر Full Text Search توکار ندارند. اینجا لوسین خوب جواب می‌ده.
ضمن اینکه من در یک دمو استفاده از لوسین برای ایندکس کردن کل اطلاعات ویکی‌پدیا رو دیدم. تهیه ایندکس آن یک روز کار برده بوده (با توجه به حجم اطلاعات بالای ویکی پدیا)، اما جستجوی آن فوق العاده سریع و با کیفیت بود. این ویدیو رو در اینجا می‌تونید مشاهده کنید:
مطالب
بررسی کارآیی کوئری‌ها در SQL Server - قسمت پنجم - خواندن Query Plans
برای هر کوئری که به SQL Server ارسال می‌شود، یک Plan تولید خواهد شد. این عملیات نیز توسط بخش Query Optimizer آغاز می‌گردد. به آن می‌توان همانند فریم‌ورکی که درون SQL Server قرار گرفته و کارش یافتن یک Query Plan مناسب مخصوص کوئری رسیده‌است، نگاه کرد. ابتدا عملیات Parsing صورت می‌گیرد. توسط آن Syntax کوئری رسیده بررسی شده و صحت آن تائید می‌گردد. پس از آن یک Parser tree تولید می‌شود که نمای درونی آن کوئری است. سپس فاز Binding رخ می‌دهد که در آن بررسی می‌شود که آیا تمام اشیاء موجود درخواستی توسط کوئری وجود داشته و توسط کاربر قابل دسترسی هستند. خروجی این فاز یک Query Tree است که به فاز بهینه سازی ارسال می‌شود. یک Query Tree به همراه اعمالی منطقی است. این اعمال منطقی توصیف رخ‌دادهایی می‌باشند که قرار است اتفاق بیفتند؛ مانند خواندن اطلاعات از یک جدول، مرتب سازی اطلاعات، ایجاد جوین و غیره. سپس بهینه ساز، این اعمال منطقی را تبدیل به اعمال فیزیکی می‌کند. برای مثال خواندن اطلاعات از یک جدول، تبدیل به یک Index seek می‌شود. یک جوین تبدیل به یک حلقه‌ی تو در تو می‌شود. در آخر این اعمال فیزیکی در کنار هم قرار گرفته و Query Plan را تشکیل می‌دهند و ما به عنوان یک توسعه دهنده می‌توانیم با بررسی این Plan دریابیم که SQL Server با کوئری رسیده، چگونه برخورد کرده و قرار است چگونه آن‌را اجرا کند.


Plan چیست؟



در اینجا Plan کوئری ساده‌ای را مشاهده می‌کنید. کار آن انتخاب نام، نام خانوادگی و آدرس ایمیل افرادی است که نام خانوادگی آن‌ها با Whit شروع می‌شود و بر روی دو جدول که با هم جوین شده‌اند عمل می‌کند.
اولین موردی را که باید در یک Plan به آن دقت کرد، عملگرهای آن است که شامل select، nested loop، index seek و clustered index seek می‌باشند. index seek بر روی جدول اشخاص و clustered index seek بر روی جدول ایمیل‌ها صورت می‌گیرد. nested loop بیانگر جوین بین جداول است. این عملگرها بیانگر اعمال فیزیکی هستند که رخ داده‌اند.
همچنین تعدادی پیکان (arrow) را هم مشاهده می‌کنید که بیانگر جهت سیلان داده‌ها است. اطلاعات از طریق index seek و clustered index seek به nested loop می‌رسند و در نهایت به عملگر select ارائه خواهند شد.
در این تصویر، هزینه‌های تخمینی مرتبط با هر عملگر نیز قابل مشاهده‌است که نسبت به کل کوئری محاسبه شده‌اند. این هزینه، بدون واحد است و به معنای میزان زمان و یا CPU صرف شده‌ی برای انجام عمل خاصی نیست و صرفا برای مقایسه‌ی هزینه‌ی نسبی عملگرها در کل یک Plan کاربرد دارد. باید دقت داشت که هزینه‌های نمایش داده شده‌ی در یک Plan، همیشه تخمینی هستند. در قسمت‌های قبل در مورد نحوه‌ی دریافت estimated plan و actual plan بحث کردیم. هیچگاه چیزی به نام Actual cost در یک Actual plan وجود ندارد و همیشه تخمینی است. روش محاسبه‌ی آن‌ها توسط الگوریتم‌های بهینه ساز است و مستقل از سخت افزار مورد استفاده.

در یک پلن، مدت زمان انجام یک کوئری، میزان I/O ، locks و wait statistics قابل مشاهده نیستند. البته اگر از SQL Server 2016 به بعد استفاده می‌کنید و یک Actual plan را محاسبه کرده‌اید، مدت زمان انجام یک کوئری و میزان I/O نیز در Plan قابل مشاهده‌اند.


از چه جهتی باید یک Plan را خواند؟

اگر هدف، بررسی «سیلان کنترل» است (Control flow)، باید یک Plan را از «چپ به راست» خواند. یعنی از عملگر select شروع می‌کنیم که کوئری ما را کنترل می‌کند. سپس به nested loop می‌رسیم که نام و نام خانوادگی را از جدول اشخاص دریافت می‌کند. این nested loop نیز با کمک ایندکس‌های تعریف شده، شرط کوئری را بر آورده می‌کند.
اما جهت «سیلان اطلاعات» در یک Plan از «راست به چپ» است (Data flow). اطلاعات از طریق index seekها به حلقه و سپس select می‌رسند.


چگونه یک Query Plan را شروع به بررسی کنیم؟

ابتدا در management studio از منوی Query، گزینه‌ی Include actual execution plan را انتخاب می‌کنیم. سپس کوئری زیر را اجرا می‌کنیم:
USE [WideWorldImporters];
GO

SELECT
    [s].[StateProvinceName],
    [s].[SalesTerritory],
    [s].[LatestRecordedPopulation],
    [s].[StateProvinceCode]
FROM [Application].[Countries] [c]
    JOIN [Application].[StateProvinces] [s]
    ON [s].[CountryID] = [c].[CountryID]
WHERE [c].[CountryName] = 'United States';
GO
نتیجه‌ی آن تولید Query Plan زیر است:


در اینجا چهار عملگر select، nested loop، clustered index seek و clustered index scan مشاهده می‌شوند. شاید اینطور به نظر برسد که در این Plan، ابتدا clustered index scan و clustered index seek انجام می‌شوند و سپس به nested loop می‌رسیم (اگر Plan را بر اساس سیلان داده، از راست به چپ بخوانیم)؛ اما اینطور نیست. عملگرها در اینجا در حقیقت یک سری iterator هستند که با دریافت ردیف‌های مرتبط، بلافاصله آن‌ها را به nested loop ارسال می‌کنند. این nested loop نیز ردیف‌هایی را که با جوین انجام شده تطابق دارند، به سمت select ارسال می‌کند.
اگر به تصویر دقت کنید هر کدام از ایندکس‌ها به یک جدول اشاره می‌کنند که نام آن بالای عدد هزینه درج شده‌است. برای مشاهده نام کامل شیء متناظر با آن، می‌توان اشاره‌گر ماوس را بر روی ایندکس حرکت داد و به اطلاعات قسمت Object دقت کرد:


و یا اگر اطلاعات کاملتری از این popup را نیاز داشتید، عملگر مدنظر را انتخاب کرده و سپس دکمه‌ی F4 را فشار دهید:



در برگه‌ی خواص ظاهر شده می‌توان ریز جزئیات تمام اطلاعات مرتبط با عملگر انتخاب شده را مشاهده کرد. برای مثال در اینجا حتی اطلاعات Logical reads را بدون روشن کردن SET STATISTICS IO ON می‌توان مشاهده کرد:


همچنین با توجه به انتخاب گزینه‌ی Include actual execution plan، تعداد ردیف‌های بازگشت داده شده‌ی واقعی و تخمینی، با هدایت اشاره‌گر ماوس بر روی یکی از اشیاء مرتبط با بررسی ایندکس‌ها، قابل مشاهده هستند:


گزارش این تعداد ردیف‌ها، با حرکت اشاره‌گر ماوس، بر روی پیکان‌های منتهی به nested loop و یا select نیز قابل مشاهده هستند:


به این ترتیب می‌توان دریافت که چه مقدار اطلاعات در طول این Plan و قسمت‌های مختلف آن، از سمت راست به چپ، در حال جابجایی است.

اکنون در ادامه سعی می‌کنیم توسط DMO's، این Plan را از Plan cache دریافت کنیم:
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT [cp].[size_in_bytes],
    [cp].[cacheobjtype],
    [cp].[objtype],
    [cp].[plan_handle],
    [dest].[text],
    [plan].[query_plan]
FROM [sys].[dm_exec_cached_plans] [cp]
CROSS APPLY [sys].[dm_exec_sql_text]([cp].[plan_handle]) [dest]
CROSS APPLY [sys].[dm_exec_query_plan]([cp].[plan_handle]) [plan]
WHERE [dest].[text] LIKE '%StateProvinces%'
OPTION(MAXDOP
1,
RECOMPILE);
ستون آخر این کوئری به query_plan اشاره می‌کند که در management studio به صورت یک لینک قابل کلیک ظاهر می‌شود. اگر بر روی آن کلیک کنیم، به تصویر زیر خواهیم رسید:


همانطور که مشاهده می‌کنید، اینبار تنها اطلاعات تخمینی در این Plan ظاهر شده‌اند؛ چون اطلاعات آن از کش خوانده شده‌است. همچنین در اینجا اطلاعات I/O مانند حالت Actual Plan، در برگه‌ی خواص عملگرهای این Plan، قابل مشاهده نیستند.


نگاهی به اطلاعات XML ای یک Plan

اگر کوئری زیر را با فرض انتخاب Include actual execution plan در منوی Query اجرا کنیم:
SELECT
    [o].[OrderID],
    [ol].[OrderLineID],
    [o].[OrderDate],
    [o].[CustomerID],
    [ol].[Quantity],
    [ol].[UnitPrice]
FROM [Sales].[Orders] [o]
    JOIN [Sales].[OrderLines] [ol]
    ON [o].[OrderID] = [ol].[OrderID];
GO
به این Plan خواهیم رسید که نوع بررسی ایندکس‌ها و جوین آن متفاوت است:


در اینجا با کلیک راست بر روی Plan، می‌توان گزینه‌ی Show Execution Plan XML را نیز انتخاب کرد. گاهی از اوقات کار کردن با این اطلاعات، به صورت XML ای ساده‌تر است و فرمت آن از هر نگارش به نگارش دیگر SQL Server می‌تواند متفاوت باشد.
برای مثال اگر در برگه‌ی نمایش این اطلاعات، دکمه‌های ctrl+f را فشرده و به دنبال runtime بگردیم، خیلی سریعتر می‌توان به اطلاعات I/O ،CPU و تعداد ردیف‌های بازگشت داده شده، رسید.


و یا حتی اطلاعات wait statistics را نیز می‌توان به سادگی در اینجا مشاهده کرد تا مشخص شود چرا یک کوئری خوب عمل نمی‌کند:



اجرای چند کوئری با هم و بررسی Query Plan آن‌ها

اگر دو کوئری زیر را با فرض انتخاب Include actual execution plan در منوی Query با هم اجرا کنیم:
USE [WideWorldImporters];
GO

SELECT
    [CustomerID],
    [TransactionAmount]
FROM [Sales].[CustomerTransactions]
WHERE [CustomerID] = 1056;
GO


SELECT
    [o].[OrderID],
    [ol].[OrderLineID],
    [o].[OrderDate],
    [o].[CustomerID],
    [ol].[Quantity],
    [ol].[UnitPrice]
FROM [Sales].[Orders] [o]
    JOIN [Sales].[OrderLines] [ol]
    ON [o].[OrderID] = [ol].[OrderID];
GO
به این Plan خواهیم رسید که نکته‌ی مهم آن، هزینه‌ی انجام کوئری‌ها است:


هزینه‌ی اولین کوئری نسبت به کل batch جاری، 10 درصد است و هزینه‌ی دومین کوئری، 90 درصد. بنابراین اگر چندین کوئری را با هم اجرا کنیم، به این صورت می‌توان هزینه‌ی هر کدام را نسبت به کل عملیات، تخمین بزنیم. در هر کوئری نیز هزینه‌هایی درج شده‌اند که صرفا متعلق به همان کوئری هستند. برای مثال در اولین کوئری، key lookup سنگین‌ترین عملگر کل کوئری است.
مطالب
Getting Started with Windows SharePoint Services 3.0

کتابچه‌ی رایگان 60 صفحه‌ای از مایکروسافت در مورد SharePoint Services 3.0 با محتوای زیر:

Microsoft Corporation - Published: March 2009

Introduction to Getting Started with Windows SharePoint Services 3.0 technology
What's new for IT professionals in Windows SharePoint Services 3.0
Administration model enhancements
New and improved compliance features and capabilities
New and improved operational tools and capabilities
Improved support for network configuration
Extensibility enhancements
For further reading: Evaluation guide for Windows SharePoint Services 3.0 technology
Determine hardware and software requirements
About hardware and software requirements
Stand-alone installation
Server farm installation
Plan browser support
About browser support
Levels of browser support
Feature-specific compatibility listed by Web browser
Install Windows SharePoint Services 3.0 on a stand-alone computer
Hardware and software requirements
Configure the server as a Web server
Install and configure Windows SharePoint Services 3.0 with Windows Internal Database
Post-installation steps
Deploy in a simple server farm
Deployment overview
Deploy and configure the server infrastructure
Perform additional configuration tasks
Create a site collection and a SharePoint site
Roadmap to Windows SharePoint Services 3.0 content
Windows SharePoint Services 3.0 content by audience
Windows SharePoint Services 3.0 IT professional content by stage of the IT life cycle


دریافت

مطالب
مقایسه بین Proxy و ChannelFactory در WCF
برای ساخت یک WCF Client یا دسترسی به یک سرویس WCF دو راه وجود دارد.
  • استفاده از WCF Proxy
  • استفاده از ChannelFactory

قصد دارم طی یک مقایسه کوتاه این دو روش را بررسی کنیم:

WCF Proxy:

Proxy در واقع یک کلاس CLR است که به عنوان نماینده یک اینترفیس که از نوع  Service Contract است مورد استفاده قرار می‌گیرد. یا به زبان ساده تر، یک Proxy در واقع نماینده Service Contract ای که سمت سرور پیاده سازی شده است در سمت کلاینت خواهد بود. Proxy تمام متد یا Operation Contract‌های سمت سرور را داراست به همراه یک سری متد‌ها و خواص دیگر برای مدیریت چرخه طول عمر سرویس،  هم چنین اطلاعات مربوط به وضعیت سرویس و نحوه اتصال آن به سرور. ساخت Proxy به دو روش امکان پذیر است:

  • با استفاده از امکانات AddServiceReference موجود در Visual Studio. کافیست از پنجره معروف زیر با استفاده از یک URL سرویس مورد نظر را به پروژه سمت کلاینت خود اضافه نمایید

همچنین  می‌توانید از قسمت Advanced نیز برای تنظیمات خاص مورد نظر خود(مثل تولید کد برای متد‌های Async یا تعیین نوع Collection‌ها در هنگام انتقال داده و ...) استفاده نمایید.

  • با استفاده از SvcUtil.exe . کاربرد svcutil.exe در موارد Metadata Export، Service Validtation، XmlSerialization Type Generator و Metadata Download و ... خلاصه می‌شود. با استفاده از Vs.Net Command Promptو svcutil می‌توان به سرویس مورد نظر دسترسی داشت.مثال
    svcutil.exe /language:vb /out:generatedProxy.vb /config:app.config http://localhost:8000/ServiceModelSamples/service

ChannelFactory:

ChannelFactory یک کلاس تعبیه شده در دات نت می‌باشد که به وسیله یک اینترفیس که به عنوان تعاریف سرویس سمت سرور است یک نمونه از سرویس مورد نظر را برای ما خواهد ساخت. اما به خاظر داشته باشید از این روش زمانی می‌توان استفاده کرد که دسترسی کامل به سمت سرور و کلاینت داشته باشید.

برای آشنایی با نحوه پیاده سازی به این روش نیز می‌توانید از این مقاله کمک بگیرید.

مثال:

public static TChannel CreateChannel()
        {
            IBookService service;

            var endPointAddress = new EndpointAddress( "http://localhost:7000/service.svc" );

            var httpBinding = new BasicHttpBinding();
            
            ChannelFactory<TChannel> factory = new ChannelFactory<TChannel>( httpBinding, endPointAddress );

            instance= factory.CreateChannel();

            return instance;
        }
همان طور که مشاهده می‌کنید در این روش نیاز به یک EndpointAddress به همراه یک نمونه از نوع Binding مورد نظر دارید. نوع این Binding حتما باید با نوع نمونه ساخته شده در سمت سرور که برای هاست کردن سرویس‌ها مورد استفاده قرار گرفته است یکی باشد. این نوع‌ها می‌تواند شامل NetTcpBidning ،WShttpBinding  BasicHttpBinding ،WSDualHttpBinding، MSMQ Binding و البته چند نوع دیگر نیز باشد.
در نتیجه برای ساخت یک سرویس به روش ChannelFactory باید مراحل زیر را طی نمایید:
  • یک نمونه از WCF Binding بسازید
  • یک نمونه از کلاس EndPointAddress به همراه آدرس سرویس مورد نظر در سمت سرور بسازید(البته می‌توان این مرحله را نادیده گرفت و آدرس سرویس را مستقیما به نمونه ChannelFactory به عنوان پارامتر پاس داد)
  • یک نمونه از کلاس ChannelFactory یا استفاده از EndPointAddress بسازید
  • با استفاده از ChannelFactory یک نمونه از Channel مورد نظر را فراخوانی نمایید(فراخوانی متد CreateChannel)

تفاوت‌های دو روش

Proxy
 ChannelFactory
فقط نیاز به یک URL برای ساخت سرویس مورد نظر دارد. بقیه مراحل توسط ابزار‌های مرتبط انجام خواهد شد  
 شما نیاز به دسترسی مستقیم به اسمبلی حاوی Service Contract پروژه خود دارید.
 استفاده از این روش بسیار آسان و ساده است
 پیاده سازی آن پیچیدگی بیشتر دارد
فهم مفاهیم این روش بسیار راحت است
نیاز به دانش اولیه از مفاهیم WCF برای پیاده سازی دارد
 زمانی که میزان تغییرات در کلاس‌های مدل و Entity‌ها زیاد باشد این روش بسیار موثر است.(مدیریت تغییرات در WCF)
 زمانی که اطمینان دارید که مدل و entity‌ها پروژه زیاد تغییر نخواهند کرد و از طرفی نیاز به کد نویسی کمتر در سمت کلاینت دارید، این روش موثرتر خواهد بود
 فقط به اینترفیس هایی که دارای ServiceContractAttribute هستند دسترسی خواهیم داشت.
به تمام اینترفیس‌های تعریف شده در بخش  Contracts دسترسی داریم.
 فقط به متد‌های که دارای OperationContractAttribute هستند دسترسی خواهیم داشت.    به تمام متد‌های عمومی سرویس دسترسی داریم.  

آیا می‌توان از روش AddServiceReference تعبیه شده در Vs.Net، برای ساخت ChannelFactory استفاده کرد؟

بله! کافیست هنگام ساخت سرویس، در پنجره AddServiceReference از قسمت Advanced وارد برگه تنظیمات شوید. سپس تیک مربوط به قسمت های  Reused Type in referenced assemblies  و Reused Types in specified referenced assemblies را بزنید. بعد از لیست پایین، اسمبلی‌های مربوط به Domain Model و هم چنین Contract‌های سمت سرور را انتخاب نمایید. در این حالت شما از روش Channel Factory برای ساخت سرویس WCF استفاده کرده اید.

مطالب
اندازه گیری کارآیی پرس و جوها با استفاده از SET STATISTICS TIME
یکی از وظایف اصلی مدیر و یا توسعه دهنده یک بانک اطلاعاتی، نوشتن کدهای T-SQL و اندازه‌گیری عملکرد آنها می‌باشد. ابزارهای مختلفی برای انجام این کار وجود دارد، چه آنهایی که در خود SQL Server بصورت محلی وجود دارند و چه آنهایی که توسط شرکت‌های ثالث ارائه می‌شوند. اما مسئله مهمی که باید در نظر بگیرید چگونگی نوشتن یک پرس و جو (Query) و اندازه گیری کارآیی آن می‌باشد و اینکه باید روی چه مواردی متمرکز شد. در اکثر مواقع گرفتن زمان اجرای یک پرس و جو تا اندازه‌ای خوب می‌باشد. یکی از مواردی که باید روی آن متمرکز شد منابع استفاده شده توسط سرور می‌باشد، درحالیکه زمان اجرای پرس وجو به پارامترهای دیگری همچون بار سرور نیز بستگی دارد. علاوه بر استفاده از پروفایلر و نقشه اجرای کوئری (Execution Plan) ، می‌توانید از SET STATISTICS TIME نیز استفاده نمایید.
 SET STATISTICS TIME تنظیمی است که برای اندازه گیری منابع مورد نیاز اجرای یک پرس و جو به شما کمک می‌کند. SET STATISTICS TIME آمار مربوط به زمان تجزیه و تحلیل (Parse)، کامپایل و اجرای هر دستور در یک پرس و جو را نمایش می‌دهد. راه‌های مختلف اندکی برای مقایسه آماری دو پرس و جو و انتخاب بهترین آنها برای استفاده وجود دارند.  
برای روشن کردن این تنظیم دو راه وجود دارد. ابتدا اینکه از دستور Set برای روشن و خاموش کردن استفاده نمایید و یا اینکه از طریق Query Analyzer اقدام به انجام این کار نمایید. 
SET STATISTICS TIME ON
برای اینکه بتوانید آمارهای این تنظیمات را مشاهده کنید می‌بایست قبل از اجرای پرس و جو تنظیم مورد نظر را روشن نمایید. در نظر داشته باشید که با روشن کردن این تنظیم، برای تمامی پرس و جوهای مربوط به آن جلسه (Session) روشن خواهد ماند تا زمانیکه آنرا خاموش نمایید. 
SELECT ProductID, StartDate, EndDate, StandardCost 
FROM Production.ProductCostHistory
WHERE StandardCost < 500.00; 
با اجرای دستورات بالا خروجی آن بصورت زیر می‌باشد:
SQL Server parse and compile time: 
   CPU time = 0 ms, elapsed time = 1 ms.

(269 row(s) affected)

SQL Server Execution Times:
   CPU time = 1 ms,  elapsed time = 2 ms. 
زمان صرف شده برای اجرای یک کوئری به دو بخش تقسیم می‌شود:
  • زمان کامپایل و تجزیه و تحلیل ( parse and compile time)  زمانیکه یک کوئری را برای اجرا به SQL Server  ارائه می‌دهید، SQL Server آنرا از نظر خطای نحوی بررسی می‌نماید و بهینه ساز یک نقشه بهینه را برای اجرا تولید می‌نماید. اگر به خروجی نگاه کنید، زمان پردازش ( CPU time) و زمان سپری شده ( elapsed time)  را نشان می دهد. منظور از زمان پردازش زمان واقعی صرف شده روی پردازنده می‌باشد و زمان سپری شده اشاره به زمان تکمیل شدن عملیات کامپایل و تجزیه و تحلیل می‌باشد. تفاوت بین زمان پردازش و زمان سپری شده ممکن است زمان انتظار در صف برای گرفتن پردازنده و یا انتظار برای تکمیل عملیات IO باشد. 

  • زمان اجرا  ( Execution Times) : این زمان اشاره به زمان سپری شده برای تکمیل اجرای نقشه کامپایل شده دارد. زمان پردازش اشاره به زمان واقعی صرف شده روی پردازنده دارد و زمان سپری شده نیز مجموع زمان صرف شده تا تکمیل اجرای دستور که شامل زمان انتظار برای تکمیل عملیات IO و زمان صرف شده برای انتقال خروجی به کلاینت می‌باشد، دارد. زمان پردازش می‌تواند به عنوان مبنایی برای اندازه‌گیری کارآیی مورد استفاده قرار بگیرد. این مقدار در اجراهای مختلف تفاوت چندانی با هم ندارند جز اینکه کوئری و یا داده‌ها تغییر نمایند. توجه نمایید که زمان براساس میلی ثانیه می‌باشد. زمان سپری شده نیز به فاکتورهایی مانند بارگذاری روی سرور، بارگذاری IO، و پهنای باند بین سرور و کلاینت وابسته می‌باشد. بنابراین همیشه زمان پردازش به عنوان مبنایی برای اندازه‌گیری کارایی استفاده می‌شود .

در این بخش به بررسی SET STATISTICS TIME  در SQL Server پرداختیم. در بخش بعدی به بررسی   SET STATISTICS IO  برای اندازه گیری کارایی پرس و جوها از نظر میزان استفاده IO خواهیم پرداخت.