مطالب
اتصال SQL Server به MySQL

اگر SQL Server و MySQL بر روی سیستم شما نصب است، روشی ساده برای انتقال اطلاعات بین این دو وجود دارد که نیازی به دخالت هیچ نوع برنامه‌ی جانبی نداشته و با امکانات موجود قابل مدیریت است.

ایجاد یک Linked server

برای اینکه SQL Server را به MySQL متصل کنیم می‌توان بین این دو یک Linked server تعریف کرد و سپس دسترسی به بانک‌های اطلاعاتی MySQL همانند یک بانک اطلاعاتی محلی SQL Server خواهد شد که شرح آن در ادامه ذکر می‌شود.
ابتدا نیاز است تا درایور ODBC مربوط به MySQL دریافت و نصب شود. آن‌را می‌توانید از اینجا دریافت کنید : (+)
سپس management studio را گشوده و در قسمت Server objects ، بر روی گزینه‌ی Linked servers کلیک راست نمائید. از منوی ظاهر شده، گزینه‌ی New linked server را انتخاب کنید:


در ادامه، باید تنظیمات زیر را در صفحه‌ی باز شده وارد کرد:


در قسمت Linked server و Product name ، نام دلخواهی را وارد کنید.
Provider انتخابی باید از نوع Microsoft OLE DB Provider for ODBC Drivers باشد.
مهم‌ترین تنظیم آن، قسمت Provider string است که باید به صورت زیر وارد شود (در غیر اینصورت کار نمی‌کند):
DRIVER={MySQL ODBC 5.1 Driver}; SERVER=localhost; DATABASE=testdb; USER=root; PASSWORD=mypass; OPTION=3;PORT=3306; CharSet=UTF8;
در اینجا نام دیتابیس پیش فرض، نام کاربری اتصال به MySQL و Password و غیره را می‌توان تنظیم کرد.
پس از انجام این تنظیمات بر روی دکمه‌ی Ok کلیک کنید تا Linked server ساخته شود:


اگر لیست بانک‌های اطلاعاتی را مشاهده نمودید، یعنی اتصال به درستی برقرار شده است.

تنظیمات ثانویه:

تا اینجا اس کیوال سرور به MySQL متصل شده است، اما برای استفاده بهینه از امکانات موجود نیاز است تا یک سری تغییرات دیگر را هم اعمال کرد.

تنظیم MSDASQL Provider :
در همان قسمت Linked provider ، ذیل قسمت Providers ، گزینه‌ی MSDASQL را انتخاب کرده و بر روی آن کلیک راست نمائید. سپس صفحه‌ی خواص آن‌را انتخاب کنید تا بتوان تنظیمات زیر را به آن اعمال کرد. این پروایدر جهت اتصال به MySQL مورد استفاده قرار می‌گیرد.



فعال سازی RPC :

برای اینکه بتوان از طریق SQL Server رکوردی را در یکی از جداول بانک‌های اطلاعاتی MySQL متصل شده ثبت نمود، می‌توان از دستور زیر استفاده کرد:
EXECUTE('insert into testdb.testtable(f1,f1) values(1,''data'')') at mysql

اینجا testdb نام بانک اطلاعاتی اتصالی MySQL است و testTable هم نام جدول مورد نظر. MySQL ایی که در آخر عبارت ذکر شده همان نام linked server ایی است که پیشتر تعریف کردیم.
به محض سعی در اجرای این کوئری خطای زیر ظاهر می‌شود:
Server 'mysql' is not configured for RPC.

برای رفع این مشکل، مجددا به صفحه‌ی خواص همان liked server ایجاد شده مراجعه کنید. در قسمت Server options دو گزینه مرتبط به RPC باید فعال شوند:



و اکنون برای کوئری گرفتن از اطلاعات ثبت شده هم از عبارت زیر می‌توان استفاده کرد:
SELECT * FROM OPENQUERY(mysql, 'SELECT * FROM testdb.testtable')

در این کوئری، MySQL نام Linked server ثبت شده است و testdb هم یکی از بانک‌های اطلاعاتی MySQL مورد نظر.


انتقال تمام اطلاعات یک جدول از بانک اطلاعاتی MySQL به SQL Server

پس از برقراری اتصال، اکنون import کامل یک جدول MySQL به SQL Server به سادگی اجرای کوئری زیر می‌باشد:
SELECT * INTO MyDb.dbo.testtable FROM openquery(MYSQL, 'SELECT * FROM testdb.testtable')

در این کوئری، MySQL همان Linked server تعریف شده است. MyDB نام بانک اطلاعاتی موجود در SQL Server جاری است و testtable هم جدولی است که قرار است اطلاعات testdb.testtable بانک اطلاعاتی MySQL به آن وارد شود.

با اطلاعات فارسی هم (در سمت SQL Server) مشکلی ندارد. همانطور که مشخص است، در اطلاعات provider string ذکر شده‌، مقدار charset به utf8 تنظیم شده و همچنین اگر نوع collation فیلدهای تعریف شده در MySQL نیز به utf8_persian_ci تنظیم شده باشد، با مشکل ثبت اطلاعات فارسی به صورت ???? مواجه نخواهید شد.


نکته:
اگر بانک اطلاعاتی MySQL شما بر روی local host نصب نیست، جهت فعال سازی دسترسی ریموت به آن، می‌توان به یکی از نکات زیر مراجعه کرد و سپس این اطلاعات جدید باید در همان قسمت provider string مرتبط با تعریف linked server وارد شوند:


مطالب مشابه:

هیچکدام از این روش‌ها قابل استفاده نبودند چون provider string صحیحی را نهایتا تولید نمی‌کنند. همچنین تمام این روش‌ها مبتنی است بر ایجاد DSN در کنترل پنل که اصلا نیازی به‌ آن نیست و اضافی است.

مطالب
بررسی کارآیی کوئری‌ها در SQL Server - قسمت هفتم - بررسی عملگر Nested loop‌ در یک Query Plan
دراین قسمت قصد داریم عملگر nested loop حاصل از نوشتن جوین‌ها را دقیق‌تر بررسی کنیم. یک حلقه‌ی تو در تو، از هر ردیف ورودی (دیتاست خارجی) برای یافتن ردیف‌هایی (دیتاست درونی) که نوع جوین را برآورده می‌کنند، استفاده می‌کند.


بررسی مفهوم دیتاست خارجی و درونی

 ابتدا در management studio از منوی Query، گزینه‌ی Include actual execution plan را انتخاب می‌کنیم. سپس کوئری‌های زیر را اجرا می‌کنیم:
USE [WideWorldImporters];
GO

SET STATISTICS IO ON;
GO


/*
What's are the inner and outer
data sets?
*/
SELECT
    [ol].[OrderLineID],
    [o].[CustomerID]
FROM [Sales].[OrderLines] [ol]
    INNER JOIN [Sales].[Orders] [o]
    ON [ol].[OrderID] = [o].[OrderID]
WHERE [o].[CustomerID] = 185;
GO
این کوئری یک جوین بین جداول OrderLines و Orders را تشکیل داده‌است؛ به همراه کوئری پلن زیر:


در اینجا دیتاست خارجی، همان index seek بالایی است که بر روی جدول Orders انجام شده‌است. اولین ردیف بازگشت داده شده‌ی توسط آن به همراه OrderID مربوطه را به حلقه‌ی تو در توی Inner Join ارسال می‌کند. سپس index seek دوم بر روی جدول OrderLines‌، بر اساس OrderID دیتاست خارجی، ردیف مرتبطی را در صورت وجود یافته و به حلقه‌ی تو در توی Inner Join بازگشت می‌دهد که در نهایت به select ارسال می‌شود و این عملیات به همین ترتیب ادامه پیدا می‌کند. این خلاصه‌ی کاری است که یک حلقه‌ی تو در تو انجام می‌دهد.

سؤال: اگر جای این دیتاست‌ها را عوض کنیم چه اتفاقی رخ خواهد داد؟
در کوئری زیر توسط گزینه‌ی FORCE ORDER سبب شده‌ایم تا جای دیتاست‌های OUTER/INNER تغییر کند (البته این query hint، کاربرد عملی ندارد و صرفا جهت نمایش دیتاست‌ها از آن استفاده کرده‌ایم):
SELECT
    [ol].[OrderLineID],
    [o].[CustomerID]
FROM [Sales].[OrderLines] [ol]
    INNER JOIN [Sales].[Orders] [o]
    ON [ol].[OrderID] = [o].[OrderID]
WHERE [o].[CustomerID] = 185
OPTION (FORCE ORDER);
اینبار در کوئری پلن تولید شده، index seek بالایی بر روی جدول OrderLines، دیتاست خارجی را تشکیل می‌دهد و index seek دوم بر روی جدول Orders، دیتاست درونی را:



یک نکته: در این تصاویر بجای nested loop، از عملگر Hash Match استفاده شده‌است. اگر بخواهیم بهینه سازی کوئری را وادار کنیم تا از nested loop استفاده کند، می‌توان کوئری فوق را توسط یک INNER LOOP JOIN به صورت زیر نوشت:
SELECT
    [ol].[OrderLineID],
    [o].[CustomerID]
FROM [Sales].[OrderLines] [ol]
    INNER LOOP JOIN [Sales].[Orders] [o]
    ON [ol].[OrderID] = [o].[OrderID]
WHERE [o].[CustomerID] = 185
OPTION (FORCE ORDER);
GO
که یک چنین کوئری پلنی را تولید می‌کند:


همانطور که مشاهده می‌کنید اینبار به علت بالا رفتن تعداد ردیف‌هایی که باید پردازش کند، به یک پلن بسیار غیر بهینه رسیده‌است که برای بهبود آن مجبور شده‌است Parallelism را نیز فعال کند.

در این حالت اگر هر سه کوئری فوق را با هم اجرا کنیم، تا بتوانیم هزینه‌ی آن‌ها را در کوئری پلن نهایی تولید شده، با یکدیگر مقایسه کنیم، هزینه‌ی کوئری اول صفر درصد، کوئری دوم 1 درصد و کوئری سوم 99 درصد نسبت به کل batch محاسبه می‌شود. علت آن را نیز در برگه‌ی messages، با مشاهده‌ی logical reads 477304 مربوط به کوئری سوم می‌توان مشاهده کرد که نسبت به سایر کوئری‌ها بسیار بیشتر است. بنابراین بهتر است در کار بهینه ساز کوئری‌ها به صورت دستی دخالت نکنیم!


بهبود کارآیی یک کوئری، با حذف حلقه‌ی تو در توی کوئری پلن آن در حالت Key lookup

کوئری زیر را با فرض انتخاب گزینه‌ی Include actual execution plan در منوی کوئری، اجرا می‌کنیم:
SELECT
    [ContactPersonID],
    [OrderDate],
    [CustomerPurchaseOrderNumber]
FROM [Sales].[Orders]
WHERE [ContactPersonID] = 3144;
این کوئری هرچند به همراه یک جوین نیست، اما دارای کوئری پلنی دارای یک nested loop است:


ایندکس‌هایی که در این کوئری پلن استفاده شده‌اند، شامل موارد پیش‌فرض زیر هستند؛ یکی بر روی OrderID که کلید اصلی جدول است، تشکیل شده و دیگری بر روی ContactPersonID که در قسمت where کوئری فوق مورد استفاده قرار گرفته‌است:
ALTER TABLE [Sales].[Orders] ADD  CONSTRAINT [PK_Sales_Orders] PRIMARY KEY CLUSTERED 
(
[OrderID] ASC
)

GO

CREATE NONCLUSTERED INDEX [FK_Sales_Orders_ContactPersonID] ON [Sales].[Orders]
(
[ContactPersonID] ASC
)
علت وجود عملگر key lookup بر روی ایندکس PK_Sales_Orders در اینجا این است که ایندکس FK_Sales_Orders_ContactPersonID، ستون‌های کوئری نوشته شده را include نکرده‌است. به همین جهت مجبور شده‌است آن‌ها را از clustered index تعریف شده دریافت کند.
برای بهبود این وضعیت، NONCLUSTERED INDEX تعریف شده را به صورت زیر تغییر می‌دهیم تا ستون‌های OrderDate و CustomerPurchaseOrderNumber را INCLUDE کند:
CREATE NONCLUSTERED INDEX [FK_Sales_Orders_ContactPersonID]
ON [Sales].[Orders] (
[ContactPersonID] ASC
)
INCLUDE (
[OrderDate], [CustomerPurchaseOrderNumber]
)
WITH (DROP_EXISTING = ON)
ON [USERDATA];
GO
اکنون اگر مجددا کوئری قبلی را اجرا کنیم:
SELECT
    [ContactPersonID],
    [OrderDate],
    [CustomerPurchaseOrderNumber]
FROM [Sales].[Orders]
WHERE [ContactPersonID] = 3144;
به این کوئری پلن دارای index seek بدون nested loop می‌رسیم:


چون ایندکس جدید تعریف شده کاملا کوئری ما را پوشش می‌دهد، دیگر نیازی به ایجاد یک nested loop، جهت کار با چندین index متفرقه نیست.


بهبود کارآیی یک کوئری، با حذف حلقه‌ی تو در توی کوئری پلن آن در حالت RID lookup

در اینجا یک جدول کپی را از روی جدول اصلی Orders ایجاد کرده‌ایم؛ به همراه تعریف یک NONCLUSTERED INDEX بر روی ستون ContactPersonID آن:
USE [WideWorldImporters]
GO

DROP TABLE [Sales].[Copy_Orders]
GO

SELECT *
INTO [Sales].[Copy_Orders]
FROM [Sales].[Orders];
GO

CREATE NONCLUSTERED INDEX [NCI_Copy_Orders_ContactPersonID]
ON [Sales].[Copy_Orders] (
[ContactPersonID]
);
GO
سپس کوئری زیر را که همانند کوئری مثال قبلی است، بر روی این جدول کپی اجرا می‌کنیم:
SELECT
    [ContactPersonID],
    [OrderDate],
    [CustomerPurchaseOrderNumber]
FROM [Sales].[Copy_Orders]
WHERE [ContactPersonID] = 3144;
نتیجه‌ی آن تولید کوئری پلن زیر است:


در اینجا یک nested loop را به همراه RID lookup داریم (RID به معنای row id است). همچنین واژه‌ی heap نیز ذکر شده‌است. در این حالت اطلاعات یک چنین جدولی بدون هیچگونه ترتیبی ذخیره شده‌اند؛ بنابراین نیاز به شماره ردیف آن (RID) برای برقراری ارتباطات می‌باشد. Key lookup زمانی رخ می‌دهند که یک جدول دارای یک clustered index باشد و RID lookup، در حالت عکس آن رخ می‌دهد. دقیقا مانند جدول کپی ایجاد شده، که دارای یک clustered index نیست.

در صورت مشاهده‌ی RID lookup نیز می‌توانیم ستون‌هایی از کوئری را که در NONCLUSTERED INDEX ذکر نشده‌اند، include کنیم:
CREATE NONCLUSTERED INDEX [NCI_Copy_Orders_ContactPersonID]
ON [Sales].[Copy_Orders] (
[ContactPersonID] ASC
)
INCLUDE (
[OrderDate], [CustomerPurchaseOrderNumber]
)
WITH (DROP_EXISTING = ON)
ON [USERDATA];
GO
و در این حالت اگر همان کوئری قبلی را مجددا اجرا کنیم، به کوئری پلن دارای index seek زیر خواهیم رسید: