مطالب
نگاشت خودکار اشیاء توسط AutoMapper و Reflection - ایده شماره 1
آموزش کامل AutoMapper قبلا در سایت ارائه شده است. در این مقاله می‌خواهیم Mapping نوع‌های مختلف بین Dto و Entity‌های پروژه را توسط Reflection به صورت خودکار انجام دهیم. سورس کامل مثال را می‌توانید در این ریپازیتوری مشاهده کنید.
در این روش ما یک کلاس جنریک را به نام BaseDto داریم که تمام Dto‌های ما برای نگاشت خودکار باید از آن ارث بری کنند. در مثال زیر کلاس PostDto لازم است به کلاس Post نگاشت شود. پس خواهیم داشت :
public class PostDto : BaseDto<PostDto, Post, long>
{
    public string Title { get; set; }
    public string Text { get; set; }
    public int CategoryId { get; set; }

    public string CategoryName { get; set; } //=> Category.Name
}
  • کلاس PostDto خودش را به عنوان اولین پارامتر جنریک BaseDto معرفی می‌کند.
  • به عنوان پارامتر دوم، باید کلاس Entity ایی که قرار است به آن نگاشت شود (Post) را معرفی کنیم.
  • پارامتر سوم، نوع فیلد Id است که در اینجا خاصیت Id کلاس‌های Post و PostDto ما، از نوع long است.
  • نهایتا خواصی را که برای نگاشت لازم داریم، تعریف میکنیم مثل Title و...
  • همچنین می‌توانیم خواصی برای نگاشت با خواص Navigation Property‌های Post هم تعریف کنیم؛ مانند CategoryName که به خاصیت Name از Category پست مربوطه اشاره میکند و AutoMapper به صورت هوشمندانه آن‌ها را به هم نگاشت می‌کند.
تعریف کلاس جنریک BaseDto هم به نحو زیر است.
public abstract class BaseDto<TDto, TEntity, TKey>
        where TDto : class, new()
        where TEntity : BaseEntity<TKey>, new()
{
    [Display(Name = "ردیف")]
    public TKey Id { get; set; }

    public TEntity ToEntity()
    {
        return Mapper.Map<TEntity>(CastToDerivedClass(this));
    }

    public TEntity ToEntity(TEntity entity)
    {
        return Mapper.Map(CastToDerivedClass(this), entity);
    }

    public static TDto FromEntity(TEntity model)
    {
        return Mapper.Map<TDto>(model);
    }

    protected TDto CastToDerivedClass(BaseDto<TDto, TEntity, TKey> baseInstance)
    {
        return Mapper.Map<TDto>(baseInstance);
    }
}
  • نوع TDto به کلاس Dto ما اشاره میکند؛ مثلا PostDto
  • نوع TEntity به کلاس Entity ما اشاره میکند؛ مثلا Post
  • نوع TKey به نوع خاصیت Id اشاره میکند.
  • شرط لازم برای نوع TEntity این است که از <BaseEntity<TKey ارث بری کرده باشد (نوع پایه‌ای که تمام Entity‌های ما از آن ارث بری می‌کنند).
  • متد‌های کمکی ToEntity و FromEntity، کار نگاشت اشیاء را برای ما راحت‌تر می‌کنند.
پیاده سازی کلاس BaseEntity و Post نیز به شرح زیر است.
public abstract class BaseEntity<TKey>
{
    public TKey Id { get; set; }
}

public class Post : BaseEntity<long>
{
    public string Title { get; set; }
    public string Text { get; set; }
    public int CatgeoryId { get; set; }

    public Category Category { get; set; }
}

توضیح متد های ToEntity  و  FromEntity 
متد ToEntity شی Dto جاری را به Entity مربوطه نگاشت کرده و یک وهله از آن را باز میگرداند. پس بجای استفاده دستی از Api‌های AutoMapper مانند Mapper.Map<Post>(postDto)  کافی است متد ToEntity را فراخوانی کنیم؛ مثال:
var postDto = new PostDto();
var post = postDto.ToEntity();
متد بالا برای اکشن Create مناسب است؛ ولی برای اکشن Update خیر. چرا که برای Update نباید نگاشت بر روی وهله جدیدی از Post انجام شود؛ بلکه باید بر روی وهله‌ای از قبل موجود (همان post ایی که بر اساس id واکشی کرده‌ایم) نگاشت انجام شود، تا تغییرات لازم، بر روی همان وهله تاثیر کند. در غیر این صورت اگر وهله جدیدی از post ایجاد شود، چون توسط EF ChangeTracker ردیابی نمی‌شود، به‌روز رسانی هم انجام نخواهد شد.
بنابراین برای نگاشت postDto به یک شیء Post از پیش موجود (post یافت شده توسط id) خواهیم داشت:
var post = // finded by id
var updatePost = postDto.ToEntity(post);
همچنین برای نگاشت از یک Entity به Dto (عکس قضیه بالا: مثلا نگاشت یک postDto به post) کافی است متد ایستای FromEntity را خوانی کنیم. مثال :
var postDto = PostDto.FromEntity(post);

کانفیگ خودکار Mapping توسط Reflection
در ادامه می‌خواهیم کانفیگ Mapping بین Dto‌های پروژه به Entity‌های مربوطه (مثلا PostDto به Dto و برعکس) را به صورت خودکار توسط Reflection پیاده سازی و اعمال کنیم. این کار توسط کلاس AutoMapperConfiguration به نحو زیر انجام می‌شود.
public static class AutoMapperConfiguration
{
    public static void InitializeAutoMapper()
    {
        Mapper.Initialize(configuration =>
        {
            configuration.ConfigureAutoMapperForDto();
        });

        //Compile mapping after configuration to boost map speed
        Mapper.Configuration.CompileMappings();
    }

    public static void ConfigureAutoMapperForDto(this IMapperConfigurationExpression config)
    {
        config.ConfigureAutoMapperForDto(Assembly.GetEntryAssembly());
    }

    public static void ConfigureAutoMapperForDto(this IMapperConfigurationExpression config, params Assembly[] assemblies)
    {
        var dtoTypes = GetDtoTypes(assemblies);

        var mappingTypes = dtoTypes
            .Select(type =>
            {
                var arguments = type.BaseType.GetGenericArguments();
                return new
                {
                    DtoType = arguments[0],
                    EntityType = arguments[1]
                };
            }).ToList();

        foreach (var mappingType in mappingTypes)
            config.CreateMappingAndIgnoreUnmappedProperties(mappingType.EntityType, mappingType.DtoType);
    }

    public static void CreateMappingAndIgnoreUnmappedProperties(this IMapperConfigurationExpression config, Type entityType, Type dtoType)
    {
        var mappingExpression = config.CreateMap(entityType, dtoType).ReverseMap();

        //Ignore mapping to any property of source (like Post.Categroy) that dose not contains in destination (like PostDto)
        //To prevent from wrong mapping. for example in mapping of "PostDto -> Post", automapper create a new instance for Category (with null catgeoryName) because we have CategoryName property that has null value
        foreach (var property in entityType.GetProperties())
        {
            if (dtoType.GetProperty(property.Name) == null)
                mappingExpression.ForMember(property.Name, opt => opt.Ignore());
        }
    }

    public static IEnumerable<Type> GetDtoTypes(params Assembly[] assemblies)
    {
        var allTypes = assemblies.SelectMany(a => a.ExportedTypes);

        var dtoTypes = allTypes.Where(type =>
                type.IsClass && !type.IsAbstract && type.BaseType != null && type.BaseType.IsGenericType &&
                (type.BaseType.GetGenericTypeDefinition() == typeof(BaseDto<,>) ||
                type.BaseType.GetGenericTypeDefinition() == typeof(BaseDto<,,>)));

        return dtoTypes;
    }
}
عملیات با فراخوانی متد ایستا InitializeAutoMapper شروع می‌شود و باید این متد فقط یکبار در اجرای پروژه فراخوانی شود. (مثلا در سازنده کلاس Startup.cs)
public class Startup
{
    public Startup(IConfiguration configuration)
    {
        Configuration = configuration;
        AutoMapperConfiguration.InitializeAutoMapper();
    }
- درون این متد کانفیگ، Mapping نوع‌های مختلف قابل نگاشت برای AutoMapper توسط Mapper.Initialize انجام می‌شود.
- متد ConfigureAutoMapperForDto متد دیگری را به همین نام، فراخوانی می‌کند؛ با این تفاوت که Assembly ورودی پروژه را توسط متد ()Assembly.GetEntryAssembly، یافته و به آن پاس میدهد.
- EntryAssembly به اسمبلی ای که به عنوان نقطه ورود برنامه است، اشاره می‌کند. در این سورس کد چون پروژه ما از نوع ASP.NET Core است، اسمبلی این پروژه به عنوان EntryAssmebly شناخته می‌شود؛ یعنی همان لایه‌ای که کلاس‌های Dto ما (مانند PostDto) داخل آن تعریف شده‌است. ما به این اسمبلی از این جهت نیاز داریم که می‌خواهیم توسط Reflection، تمام نوع‌هایی که از BaseDto ارث بری می‌کنند (مانند PostDto) را یافته و Mapping آنها را به AutoMapper معرفی و اعمال کنیم.
نکته : اگر در پروژه شما Dto‌ها در لایه/لایه‌های دیگری تعریف شده‌اند باید اسمبلی آن لایه‌ها را به آن پاس دهید.
در این مرحله توسط متد GetDtoTypes کار یافتن نوع‌های Dto موجود در اسمبلی/اسمبلی‌های مشخص شده انجام می‌شود.
public static IEnumerable<Type> GetDtoTypes(params Assembly[] assemblies)
{
    var allTypes = assemblies.SelectMany(a => a.ExportedTypes);

    var dtoTypes = allTypes.Where(type =>
            type.IsClass && !type.IsAbstract && type.BaseType != null && type.BaseType.IsGenericType &&
            (type.BaseType.GetGenericTypeDefinition() == typeof(BaseDto<,>) ||
            type.BaseType.GetGenericTypeDefinition() == typeof(BaseDto<,,>)));

    return dtoTypes;
}
  • در خط اول ابتدا تمامی نوع‌های قابل دسترس از بیرون (ExportedTypes) از assembly‌های دریافتی واکشی می‌شود.
  • سپس توسط Where، نوع‌هایی که کلاس بوده، abstract نیستند و از BaseDto ارث بری کرده‌اند، فیلتر شده و بازگردانده می‌شوند.
در ادامه، از لیست نوع‌های Dto یافت شده، پارامتر‌های جنریک TDto و TEntity به ازای هر نوع استخراج می‌شوند.
public static void ConfigureAutoMapperForDto(this IMapperConfigurationExpression config, params Assembly[] assemblies)
{
var dtoTypes = GetDtoTypes(assemblies);

var mappingTypes = dtoTypes
.Select(type =>
{
var arguments = type.BaseType.GetGenericArguments();
return new
{
DtoType = arguments[0],
EntityType = arguments[1]
};
}).ToList();

foreach (var mappingType in mappingTypes)
config.CreateMappingAndIgnoreUnmappedProperties(mappingType.EntityType, mappingType.DtoType);
}

در آخر بر روی لیست یافت شده، گردش می‌کنیم (foreach) و دو نوع DtoType و EntityType (مانند postDto و post) را که باید به یکدیگر نگاشت شوند، به متد CreateMappingAndIgnoreUnmappedProperties ارسال می‌کنیم. کار این متد، معرفی/اعمال Mapping بین نوع‌ها به کانفیگ AutoMapper می‌باشد. همچنین خواصی را که نباید نگاشت شوند، به طور خودکار یافته و Ignore می‌کند.
در مثال جاری، خاصیت CategoryName کلاس PostDto برای خواندن و select از دیتابیس لازم است زیرا می‌خواهیم هر postDto، شامل نام دسته بندی هر پست نیز باشد، ولی این ویژگی برای افزودن یا به‌روزرسانی مدنظر ما نیست؛ چرا که کلاینت ما به هنگام فراخوانی اکشن Create، فقط مقادیر خواص Post (مانند Title, Text و CategoryId) را ارسال می‌کند و نه CategoryName را. در نتیجه CatgoryName همیشه null است. اما مشکلی که ایجاد می‌کند این است که AutoMapper به هنگام نگاشت یک PostDto به Post، چون خاصیت CategoryName با (مقدار null)  وجود دارد، یک وهله جدید (با مقادیر پیشفرض) را برای Category ایجاد می‌کند که خاصیت Name آن برابر با null است و قطعا این مدنظر ما نیست. پس جهت جلوگیری از این مشکل لازم است خواصی از Entity که در Dto موجود نیستند (مانند Category) را Ignore کنیم و این دقیقا همان کاری است که متد CreateMappingAndIgnoreUnmappedProperties انجام می‌دهد. 
public static void CreateMappingAndIgnoreUnmappedProperties(this IMapperConfigurationExpression config, Type entityType, Type dtoType)
{
    var mappingExpression = config.CreateMap(entityType, dtoType).ReverseMap();

    //Ignore mapping to any property of entity (like Post.Categroy) that dose not contains in dto (like PostDto.CategoryName)
    //To prevent from wrong mapping. for example in mapping of "PostDto -> Post", automapper create a new instance for Category (with null catgeoryName) because we have CategoryName property that has null value
    foreach (var property in entityType.GetProperties())
    {
        if (dtoType.GetProperty(property.Name) == null)
            mappingExpression.ForMember(property.Name, opt => opt.Ignore());
    }
}
البته اساسا استفاده از یک Dto هم برای Create/Update و هم برای Select اصولی نیست و بهتر است دو Dto جداگانه که صرفا خواص مورد نیاز را دارند، داشته باشیم که در این صورت مشکل بالا نیز اصلا رخ نخواهد داد. راه حل مورد استفاده کنونی صرفا مرهمی برای یک استفاده غیر اصولی است!
در آخر می‌توان گفت تنها ایراد کوچک ایده‌ی فوق، استفاده از Api‌های استاتیک AutoMapper در کلاس BaseDto است (متد Mapper.Map)  که باعث می‌شود نتوانیم به هنگام تست نویسی، سرویس AutoMapper را با پیاده سازی دیگری (Fake) جایگزین و آن را Mock کنیم. البته این کار برای AutoMapper زیاد معمول هم نبوده و در مقابل مزایای این ایده، به نظرم ارزش استفاده را خواهد داشت.
در قسمت بعدی همین ایده را توسعه خواهیم داد و قابلیت سفارشی سازی Mapping را برای آن فراهم خواهیم کرد.
مطالب
بررسی تفاوت Task و ValueTask

زمانیکه تصمیم میگیریم کدهای زده شده را بهینه کنیم، اکثرا دنبال راه حل‌های جدید نمیگردیم. این مورد کاملا غریزی است؛ چرا که به‌دنبال کم‌ترین انرژی و بیشترین بازدهی هستیم؛ این طبیعت انسان است. صرفا کدهای قبلی را بازبینی میکنیم و سعی میکنیم  نحوه‌ی نوشتن منطق‌های موجود را بهینه کنیم. در همین راستا درک عملکرد Task و ValueTask ‌ها شاید قدمی مهم در مورد بهینه کردن کد‌ها باشد؛ چرا استفاده درست و بجای این دو مورد می‌تواند تاثیر زیادی بر روی سرعت و استفاده از مصرف حافظه داشته باشد؟ در این مقاله سعی میکنیم تا درک درستی از این دو داشته باشیم.


Task<T>  چیست؟

Task یک کلاس در فضای نام System.Threading.Tasks است؛ به‌طوریکه کمک میکند تا یک قسمت از برنامه به صورت مستقل از Thread اصلی اجرا شود. به‌بیان دیگر می‌تواند یک Thread Pool را ایجاد و با توجه به روند کار، از یک مرحله‌ی اجرایی به مرحله‌ای دیگر منتقل می‌کند. همچنین هر Task می‌تواند یک مقدار برگشتی نیز داشته باشد.

 این درحالی‌است که می‌تواند صرفا یک فرآیند را اجرا کند، بدون اینکه خروجی داشته باشد. به‌عبارتی دیگر اگر فرآیندی داشته باشیم که در نهایت یک شناسه را برمیگرداند، از Task<int> و اگر فرآیندی داشته باشیم که صرفا فرآیند همگام سازی داده‌های قدیمی به جدید را انجام میدهد، می‌تواند از نوع Task باشد.

همانطور که اشاره شد، Task یک کلاس است که شامل متد‌ها و فیلد‌های مختلفی می‌باشد. با استفاده از این اعضا می‌توان نحوه‌ی اجرای کدها و وضعیت‌های مختلف اجرای آن را مدیریت کرد، تا در نهایت اجرای آن کامل شود.

به دلیل اینکه Task یک class است و class ‌ها از نوع ReferenceType می‌باشند، روی حافظه‌ی Heap ذخیره می‌شوند و به‌ازای هر بار فراخوانی متدی که خروجی Task دارد، شیء Task را روی Heap ذخیره میکند. این شیء وضعیت اجرای قسمتی از کد ما را که میتواند sync یا async باشد، در خود ذخیره میکند تا در نهایت اجرای آن کامل شود.


نحوه استفاده از Task<T>

برای درک بهتر، یک تکه کد را با بهره بردن از Task ایجاد میکنیم :

public static class DummyWeatherProvider
{
    public static async Task<Weather> Get(string city)
    {
        await Task.Delay(10);
        var weather = new Weather 
        { 
            City = city, 
            Date = DateTime.Now, 
            AvgTempratureF = new Random().Next(5, 70) 
        };
        
        return weather;
    }
}
همان طور که مشخص است، کلاس موجود یک متد به نام Get دارد تا اطلاعات آب و هوای  شهر مورد نظر را به صورت یک Task  برگرداند. حال کد زیر را جهت بررسی تغییر وضعیت‌های اجرایی این Task ایجاد می‌کنیم :
static async Task CheckTaskStatus()
{
   var task = DummyWeatherProvider.Get("Stockholm");
    LogTaskStatus(task.Status);
    await task;
    LogTaskStatus(task.Status);
}

static void LogTaskStatus(TaskStatus status)
{
    Console.WriteLine($"Task Status: {Enum.GetName(typeof(TaskStatus), status)}");
}
TaskStatus یک enumeration است، به‌طوری‌که بیانگر وضعیت‌های مختلف یک Task در حال اجرا می‌باشد. برای مثال: WaitingForActivation, Running, RanToCompletion. در کد بالا ابتدا متد را فراخوانی می‌کنیم. سپس منتظر می‌مانیم تا متد اجرا شده، تکمیل شود. در اولین لاگ وضعیت، به WaitingForActivation و در دومین لاگ به RanToCompletion تبدیل میشود. حال‌که با Task ها و نحوه‌ی اجرای فرآیند آن آشنا شدیم، در قسمت بعدی به بررسی ValueTask ها می‌پردازیم. 

ValueTask<T>  چیست؟

همانند Task ، ValueTask هم برای مدیریت وضعیت فرآیند استفاده میشود؛ با این تفاوت که ValueTask ‌ها از نوع struct هستند. به‌طوریکه نحوه‌ی ذخیره سازی آن‌ها در حافظه به نسبت class ‌ها کاملا متفاوت است. از نقطه نظر سرعت، تشخیص دادن اینکه کدامیک باید استفاده شود، باید با توجه به سناریو، بررسی و انتخاب شود؛ چرا که از نظر تخصیص حافظه متفاوت عمل می‌کنند. برای درک بهتر عملکرد ValueTask ‌ها کد زیر را بررسی میکنیم :

public class WeatherService
{
    private readonly ConcurrentDictionary<string, Weather> _cache;
    public WeatherService()
    {
        _cache = new();
    }

    public async Task<Weather> GetWeatherTask(string city)
    {
        if (!_cache.ContainsKey(city))
        {
            var weather = await DummyWeatherProvider.Get(city);
            _cache.TryAdd(city, weather);
        }
        return _cache[city];
    }

    public async ValueTask<Weather> GetWeatherValueTask(string city)
    {
        if (!_cache.ContainsKey(city))
        {
            var weather = await DummyWeatherProvider.Get(city);
            _cache.TryAdd(city, weather);
        }
        return _cache[city];   
  }

کلاس WeatherService شامل یک فیلد private از نوع collection و دو متد است. ما از _cache  جهت نگهداری اطلاعاتی که قبلا دریافت شده، استفاده می‌کنیم و به نوعی in-memory cache را پیاده سازی میکنیم. پیاده سازی منطق هر دو متد  GetWeatherTask و GetWeatherValueTask  کاملا شبیه به هم است؛ به‌طوری‌که اول بررسی میکنیم اطلاعات آب و هوای شهر مورد نظر در _cache وجود دارد یا خیر؟ اگر وجود داشت، اطلاعات به صورت مستقیم برگشت داده می‌شود؛ در غیر این صورت DummyWeatherProvider.Get()  فراخوانی خواهد شد. 

در قدم بعدی اطلاعات به‌دست آمده را در _cache ذخیره می‌کنیم. سپس مقدار ذخیره شده را برگشت میدهیم. در واقع تنها تفاوت دو متد ذکر شده، نوع خروجی آن می‌باشد؛ یکی از Taskو دیگری از ValueTask استفاده می‌کند.

برای مقایسه‌ی مصرف حافظه‌ی این دو روی هر دو متد، Benchmark میگیریم. برای پیاده سازی نیار به کد‌های زیر داریم : 

[MemoryDiagnoser]
public class TaskAndValueTaskBenchmark
{
    private readonly WeatherService _weatherService;
    public TaskAndValueTaskBenchmark()
    {
        _weatherService = new();
    }
    
    [Benchmark]
    [Arguments("Denver")]
    public async Task<Weather> TaskBenchmark(string city)
    {
        return await _weatherService.GetWeatherTask(city);
    }

    [Benchmark]
    [Arguments("London")]
    public async ValueTask<Weather> ValueTaskBenchmark(string city)
    {
        return await _weatherService.GetWeatherValueTask(city);
    }
}

نتیجه به دست آمده به شرح زیر است :

Allocated

Gen0

Method

144 B

0.0229

TaskBenchmark

------

----

ValueTaskBenchmark

  با توجه به نتیجه به‌دست آمده، متدی که خروجی ValueTask دارد، حافظه‌ای را تخصیص نداده‌است؛ این دقیقا مزیت مهم ValueTask نسبت به Task  می‌باشد.

مزیت  ValueTask<T>

به‌دلیل اینکه از نوع struct هستند، بر روی حافظه، در قسمت Stack ذخیره می‌شوند و به صورت خودکار بعد از اینکه نیازی به آنها نباشد، از حافظه حذف می‌شوند . به همین دلیل به شکل قابل توجهی، فشار را از روی GC کاهش می‌دهد .

 علاوه بر این، در سناریویی که اکثر کدها به صورت sync اجرا می‌شوند، در این مواقع استفاده از ValueTask، بهتر از Task می‌باشد .

این سری متد GetWeatherValueTask   را جهت تشخص اینکه  اغلب کدها به صورت sync یا async اجرا می‌شوند، بررسی می‌کنیم. در متد ذکر شده اگر اطلاعات شهر مورد نظر وجود داشته باشد، کار به صورت sync اجرا می‌شود و اگر شهر وجود نداشته باشد، کار به صورت async اجرا می‌شود. با بررسی دقیق‌تر متوجه می‌شویم اکثر مواقع در این متد کار به صورت sync  اجرا می‌شود؛ چرا که بعد ازدریافت اطلاعات، مجدد آن را دریافت نمیکند، بلکه از حافظه میخواند (همان _cache ) .


محدودیت‌های استفاده از    ValueTask<T>  

1. در اینجا تنها یکبار امکان استفاده از await وجود دارد. وقتی یکبار valueTask را await می‌کنیم، بهتر است کار دیگری بر روی آن انجام ندهیم؛ چراکه ممکن است از حافظه پاک شده باشد.

2. اگر در سناریویی لازم دارید چندین بار await را بر روی valueTask اجرا کنید، لازم است ابتدا آن را به Task تبدیل کنیم. برای این کار متد AsTask را فراخوانی میکنیم (بهتر است صرفا یکبار متد AsTask را فراخوانی کنیم).

3. نمیتوانیم به یک ValueTask به صورت هم زمان در حالت Multi threads دسترسی داشته باشیم.

4. به صورت پیش فرض خروجی عملیات async، نوع Task می‌باشد؛ مگر اینکه اغلب مراحل کار به صورت sync اجرا شود، مانند مثالی که بالاتر اشاره شد.


منابع :

مطالب
الگوی طراحی Factory Method به همراه مثال

الگوی طراحی Factory Method به همراه مثال

عناوین :

·   تعریف Factory Method
·   دیاگرام UML
·   شرکت کنندگان در UML
·   مثالی از Factory Pattern در #C 


تعریف الگوی Factory Method :

این الگو پیچیدگی ایجاد اشیاء برای استفاده کننده را پنهان می‌کند. ما با این الگو میتوانیم بدون اینکه کلاس دقیق یک شیئ را مشخص کنیم آن را ایجاد و از آن استفاده کنیم. کلاینت ( استفاده کننده ) معمولا شیئ واقعی را ایجاد نمی‌کند بلکه با یک واسط و یا کلاس انتزاعی (Abstract) در ارتباط است و کل مسئولیت ایجاد کلاس واقعی را به Factory Method می‌سپارد. کلاس Factory Method می‌تواند استاتیک باشد . کلاینت معمولا اطلاعاتی را به متدی استاتیک از این کلاس می‌فرستد و این متد بر اساس آن اطلاعات تصمیم می‌گیرید که کدام یک از پیاده سازی‌ها را برای کلاینت برگرداند.

از مزایای این الگو این است که اگر در نحوه ایجاد اشیاء تغییری رخ دهد هیچ نیازی به تغییر در کد کلاینت‌ها نخواهد بود. در این الگو اصل DIP از اصول پنجگانه SOLID به خوبی رعایت می‌شود چون که مسئولیت ایجاد زیرکلاس‌ها از دوش کلاینت برداشته می‌شود.


دیاگرام UML :

در شکل زیر دیاگرام UML الگوی Factory Method را مشاهده می‌کنید.

        

شرکت کنندگان در این الگو به شرح زیل هستند :

- Iproduct یک واسط است که هر کلاینت  از آن استفاده می‌کند. در اینجا کلاینت استفاده کننده نهایی است مثلا می‌تواند متد main یا هر متدی در کلاسی خارج از این الگو باشد. ما می‌توانیم پیاده سازی‌های مختلفی بر حسب نیاز از واسط Iproduct ایجاد کنیم.

- ConcreteProduct یک پیاده سازی از واسط Iproduct است ، برای این کار بایستی کلاس پیاده سازی (ConcreteProduct) از این واسط (IProduct) مشتق شود.

- Icreator واسطیست که Factory Method را تعریف می‌کند. پیاده ساز این واسط بر اساس اطلاعاتی دریافتی کلاس صحیح را ایجاد می‌کند. این اطلاعات از طریق پارامتر برایش ارسال می‌شوند.همانطور که گفتیم این عملیات بر عهده پیاده ساز این واسط است و ما در این نمودار این وظیفه را فقط بر عهده ConcreteCreator گذاشته ایم که از واسط Icreator مشتق شده است.


پیاده سازی UMLفوق به صورت زیر است:

در ابتدا کلاس واسط IProduct تعریف شده است.

interface IProduct
{
       //  در اینجا  برحسب نیاز فیلدها  و یا امضای متد‌ها قرار می‌گیرند 
}

در این مرحله ما پند پیاده سازی از IProduct انجام می‌دهیم.

class ConcreteProductA : IProduct
{
      // A پیاده سازی 
}
 
class ConcreteProductB : IProduct
{
      // B پیاده سازی 
}
در این مرحله کلاس انتزاعی Creator تعریف می‌شود.
abstract class Creator
{
          // این متد بر اساس نوع ورودی انتخاب مناسب را انجام و باز می‌گرداند
           public abstract IProduct FactoryMethod(string type);
}
در این مرحله ما با ارث بری از Creator متد Abstract آن را به شیوه خودمان پیاده سازی می‌کنیم.
class ConcreteCreator : Creator
{
     public override IProduct FactoryMethod(string type)
    {
            switch (type)
           {
                case "A": return new ConcreteProductA();
                case "B": return new ConcreteProductB();
                default: throw new ArgumentException("Invalid type", "type");
           }
     }
}
مثالی از Factory Pattern در #C :

برای روشن‌تر شدن موضوع ، یک مثال کاملتر ارائه داده می‌شود. در شکل زیر طراحی این برنامه نشان داده شده است.

کد برنامه به شرح زیل است :

using System;

namespace FactoryMethodPatternRealWordConsolApp
{
    internal class Program
    {
        private static void Main(string[] args)
        {
            VehicleFactory factory = new ConcreteVehicleFactory();

            IFactory scooter = factory.GetVehicle("Scooter");
            scooter.Drive(10);

            IFactory bike = factory.GetVehicle("Bike");
            bike.Drive(20);

            Console.ReadKey();

        }
    }

    public interface IFactory
    {
        void Drive(int miles);
    }

    public class Scooter : IFactory
    {
        public void Drive(int miles)
        {
            Console.WriteLine("Drive the Scooter : " + miles.ToString() + "km");
        }
    }

    public class Bike : IFactory
    {
        public void Drive(int miles)
        {
            Console.WriteLine("Drive the Bike : " + miles.ToString() + "km");
        }
    }

    public abstract class VehicleFactory
    {
        public abstract IFactory GetVehicle(string Vehicle);

    }

    public class ConcreteVehicleFactory : VehicleFactory
    {
        public override IFactory GetVehicle(string Vehicle)
        {
            switch (Vehicle)
            {
                case "Scooter":
                    return new Scooter();
                case "Bike":
                    return new Bike();
                default:
                    throw new ApplicationException(string.Format("Vehicle '{0}' cannot be created", Vehicle));
            }
        }
    }
}
خروجی اجرای برنامه فوق به شکل زیر است :






فایل این برنامه ضمیمه شده است، از لینک مقابل دانلود کنید FactoryMethodPatternRealWordConsolApp.zip

در مقالات بعدی مثال‌های کاربردی‌تر و جامع‌تری از این الگو و الگو‌های مرتبط ارائه خواهم کرد... 
مطالب
Attribute Routing در ASP.NET MVC 5
Routing مکانیزم مسیریابی ASP.NET MVC است، که یک URI را به یک اکشن متد نگاشت می‌کند. MVC 5 نوع جدیدی از مسیر یابی را پشتیبانی میکند که Attribute Routing یا مسیریابی نشانه ای نام دارد. همانطور که از نامش پیداست، مسیریابی نشانه ای از Attribute‌ها برای این امر استفاده میکند. این روش به شما کنترل بیشتری روی URI‌های اپلیکیشن تان می‌دهد.
مدل قبلی مسیریابی (conventional-routing) هنوز کاملا پشتیبانی می‌شود. در واقع می‌توانید هر دو تکنیک را بعنوان مکمل یکدیگر در یک پروژه استفاده کنید.
در این پست قابلیت‌ها و گزینه‌های اساسی مسیریابی نشانه ای را بررسی میکنیم.
  • چرا مسیریابی نشانه ای؟
  • فعال سازی مسیریابی نشانه ای
  • پارامتر‌های اختیاری URI و مقادیر پیش فرض
  • پیشوند مسیر ها
  • مسیر پیش فرض
  • محدودیت‌های مسیر ها
      • محدودیت‌های سفارشی
  • نام مسیر ها
  • ناحیه‌ها (Areas)


چرا مسیریابی نشانه ای

برای مثال یک وب سایت تجارت آنلاین بهینه شده اجتماعی، می‌تواند مسیرهایی مانند لیست زیر داشته باشد:
  • {productId:int}/{productTitle}
نگاشت می‌شود به: (ProductsController.Show(int id
  • {username}
نگاشت می‌شود به: (ProfilesController.Show(string username
  • {username}/catalogs/{catalogId:int}/{catalogTitle}
نگاشت می‌شود به: (CatalogsController.Show(string username, int catalogId
در نسخه قبلی ASP.NET MVC، قوانین مسیریابی در فایل RouteConfig.cs تعریف می‌شدند، و اشاره به اکشن‌های کنترلرها به نحو زیر انجام می‌شد:
routes.MapRoute(
    name: "ProductPage",
    url: "{productId}/{productTitle}",
    defaults: new { controller = "Products", action = "Show" },
    constraints: new { productId = "\\d+" }
);
هنگامی که قوانین مسیریابی در کنار اکشن متدها تعریف می‌شوند، یعنی در یک فایل سورس و نه در یک کلاس پیکربندی خارجی، درک و فهم نگاشت URI‌ها به اکشن‌ها واضح‌تر و راحت می‌شود. تعریف مسیر قبلی، می‌تواند توسط یک attribute ساده بدین صورت نگاشت شود:
[Route("{productId:int}/{productTitle}")]
public ActionResult Show(int productId) { ... }

فعال سازی Attribute Routing

برای فعال سازی مسیریابی نشانه ای، متد MapMvcAttributeRoutes را هنگام پیکربندی فراخوانی کنید.
public class RouteConfig
{
    public static void RegisterRoutes(RouteCollection routes)
    {
        routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 
        routes.MapMvcAttributeRoutes();
    }
}
همچنین می‌توانید مدل قبلی مسیریابی را با تکنیک جدید تلفیق کنید.
public static void RegisterRoutes(RouteCollection routes)
{
    routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 
    routes.MapMvcAttributeRoutes();
 
    routes.MapRoute(
        name: "Default",
        url: "{controller}/{action}/{id}",
        defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional }
    );
}

پارامترهای اختیاری URI و مقادیر پیش فرض

می توانید با اضافه کردن یک علامت سوال به پارامترهای مسیریابی، آنها را optional یا اختیاری کنید. برای تعیین مقدار پیش فرض هم از فرمت parameter=value استفاده می‌کنید.
public class BooksController : Controller
{
    // eg: /books
    // eg: /books/1430210079
    [Route("books/{isbn?}")]
    public ActionResult View(string isbn)
    {
        if (!String.IsNullOrEmpty(isbn))
        {
            return View("OneBook", GetBook(isbn));
        }
        return View("AllBooks", GetBooks());
    }
 
    // eg: /books/lang
    // eg: /books/lang/en
    // eg: /books/lang/he
    [Route("books/lang/{lang=en}")]
    public ActionResult ViewByLanguage(string lang)
    {
        return View("OneBook", GetBooksByLanguage(lang));
    }
}
در این مثال، هر دو مسیر books/ و books/1430210079/ به اکشن متد "View" نگاشت می‌شوند، مسیر اول تمام کتاب‌ها را لیست میکند، و مسیر دوم جزئیات کتابی مشخص را لیست می‌کند. هر دو مسیر books/lang/ و books/lang/en/ به یک شکل نگاشت می‌شوند، چرا که مقدار پیش فرض این پارامتر en تعریف شده.



پیشوند مسیرها (Route Prefixes)

برخی اوقات، تمام مسیرها در یک کنترلر با یک پیشوند شروع می‌شوند. بعنوان مثال:
public class ReviewsController : Controller
{
    // eg: /reviews
    [Route("reviews")]
    public ActionResult Index() { ... }
    // eg: /reviews/5
    [Route("reviews/{reviewId}")]
    public ActionResult Show(int reviewId) { ... }
    // eg: /reviews/5/edit
    [Route("reviews/{reviewId}/edit")]
    public ActionResult Edit(int reviewId) { ... }
}
همچنین می‌توانید با استفاده از خاصیت [RoutePrefix] یک پیشوند عمومی برای کل کنترلر تعریف کنید:
[RoutePrefix("reviews")]
public class ReviewsController : Controller
{
    // eg.: /reviews
    [Route]
    public ActionResult Index() { ... }
    // eg.: /reviews/5
    [Route("{reviewId}")]
    public ActionResult Show(int reviewId) { ... }
    // eg.: /reviews/5/edit
    [Route("{reviewId}/edit")]
    public ActionResult Edit(int reviewId) { ... }
}
در صورت لزوم، می‌توانید برای بازنویسی (override) پیشوند مسیرها از کاراکتر ~ استفاده کنید:
[RoutePrefix("reviews")]
public class ReviewsController : Controller
{
    // eg.: /spotlight-review
    [Route("~/spotlight-review")]
    public ActionResult ShowSpotlight() { ... }
 
    ...
}

مسیر پیش فرض

می توانید خاصیت [Route] را روی کنترلر اعمال کنید، تا اکشن متد را بعنوان یک پارامتر بگیرید. این مسیر سپس روی تمام اکشن متدهای این کنترلر اعمال می‌شود، مگر آنکه یک [Route] بخصوص روی اکشن‌ها تعریف شده باشد.
[RoutePrefix("promotions")]
[Route("{action=index}")]
public class ReviewsController : Controller
{
    // eg.: /promotions
    public ActionResult Index() { ... }
 
    // eg.: /promotions/archive
    public ActionResult Archive() { ... }
 
    // eg.: /promotions/new
    public ActionResult New() { ... }
 
    // eg.: /promotions/edit/5
    [Route("edit/{promoId:int}")]
    public ActionResult Edit(int promoId) { ... }
}

محدودیت‌های مسیر ها

با استفاده از Route Constraints می‌توانید نحوه جفت شدن پارامتر‌ها در قالب مسیریابی را محدود و کنترل کنید. فرمت کلی {parameter:constraint} است. بعنوان مثال:
// eg: /users/5
[Route("users/{id:int}"]
public ActionResult GetUserById(int id) { ... }
 
// eg: users/ken
[Route("users/{name}"]
public ActionResult GetUserByName(string name) { ... }
در اینجا، مسیر اول تنها در صورتی انتخاب می‌شود که قسمت id در URI یک مقدار integer باشد. در غیر اینصورت مسیر دوم انتخاب خواهد شد.
جدول زیر constraint‌ها یا محدودیت هایی که پشتیبانی می‌شوند را لیست می‌کند.
 مثال  توضیحات  محدودیت
 {x:alpha}  کاراکترهای الفبای لاتین را تطبیق (match) می‌دهد (a-z, A-Z).  alpha
 {x:bool}  یک مقدار منطقی را تطبیق می‌دهد.  bool
 {x:datetime}  یک مقدار DateTime را تطبیق می‌دهد.  datetime
 {x:decimal}  یک مقدار پولی را تطبیق می‌دهد.  decimal
 {x:double}  یک مقدار اعشاری 64 بیتی را تطبیق می‌دهد.  double
 {x:float}  یک مقدار اعشاری 32 بیتی را تطبیق می‌دهد.  float
 {x:guid}  یک مقدار GUID را تطبیق می‌دهد.  guid
 {x:int}  یک مقدار 32 بیتی integer را تطبیق می‌دهد.  int
 {(x:length(6}
{(x:length(1,20}
 رشته ای با طول تعیین شده را تطبیق می‌دهد.  length
 {x:long}  یک مقدار 64 بیتی integer را تطبیق می‌دهد.  long
 {(x:max(10}  یک مقدار integer با حداکثر مجاز را تطبیق می‌دهد.  max
 {(x:maxlength(10}  رشته ای با حداکثر طول تعیین شده را تطبیق می‌دهد.  maxlength
 {(x:min(10}  مقداری integer با حداقل مقدار تعیین شده را تطبیق می‌دهد.  min
 {(x:minlength(10}  رشته ای با حداقل طول تعیین شده را تطبیق می‌دهد.  minlength
 {(x:range(10,50}  مقداری integer در بازه تعریف شده را تطبیق می‌دهد.  range
 {(${x:regex(^\d{3}-\d{3}-\d{4}  یک عبارت با قاعده را تطبیق می‌دهد.  regex

توجه کنید که بعضی از constraint ها، مانند "min" آرگومان‌ها را در پرانتز دریافت می‌کنند.
می توانید محدودیت‌های متعددی روی یک پارامتر تعریف کنید، که باید با دونقطه جدا شوند. بعنوان مثال:
// eg: /users/5
// but not /users/10000000000 because it is larger than int.MaxValue,
// and not /users/0 because of the min(1) constraint.
[Route("users/{id:int:min(1)}")]
public ActionResult GetUserById(int id) { ... }
مشخص کردن اختیاری بودن پارامتر ها، باید در آخر لیست constraints تعریف شود:
// eg: /greetings/bye
// and /greetings because of the Optional modifier,
// but not /greetings/see-you-tomorrow because of the maxlength(3) constraint.
[Route("greetings/{message:maxlength(3)?}")]
public ActionResult Greet(string message) { ... }

محدودیت‌های سفارشی

با پیاده سازی قرارداد IRouteConstraint می‌توانید محدودیت‌های سفارشی بسازید. بعنوان مثال، constraint زیر یک پارامتر را به لیستی از مقادیر قابل قبول محدود می‌کند:
public class ValuesConstraint : IRouteConstraint
{
    private readonly string[] validOptions;
    public ValuesConstraint(string options)
    {
        validOptions = options.Split('|');
    }
 
    public bool Match(HttpContextBase httpContext, Route route, string parameterName, RouteValueDictionary values, RouteDirection routeDirection)
    {
        object value;
        if (values.TryGetValue(parameterName, out value) && value != null)
        {
            return validOptions.Contains(value.ToString(), StringComparer.OrdinalIgnoreCase);
        }
        return false;
    }
}
قطعه کد زیر نحوه رجیستر کردن این constraint را نشان می‌دهد:
public class RouteConfig
{
    public static void RegisterRoutes(RouteCollection routes)
    {
        routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 
        var constraintsResolver = new DefaultInlineConstraintResolver();
 
        constraintsResolver.ConstraintMap.Add("values", typeof(ValuesConstraint));
 
        routes.MapMvcAttributeRoutes(constraintsResolver);
    }
}
حالا می‌توانید این محدودیت سفارشی را روی مسیرها اعمال کنید:
public class TemperatureController : Controller
{
    // eg: temp/celsius and /temp/fahrenheit but not /temp/kelvin
    [Route("temp/{scale:values(celsius|fahrenheit)}")]
    public ActionResult Show(string scale)
    {
        return Content("scale is " + scale);
    }
}

نام مسیر ها

می توانید به مسیرها یک نام اختصاص دهید، با این کار تولید URI‌ها هم راحت‌تر می‌شوند. بعنوان مثال برای مسیر زیر:
[Route("menu", Name = "mainmenu")]
public ActionResult MainMenu() { ... }
می‌توانید لینکی با استفاده از Url.RouteUrl تولید کنید:
<a href="@Url.RouteUrl("mainmenu")">Main menu</a>

ناحیه‌ها (Areas)

برای مشخص کردن ناحیه ای که کنترلر به آن تعلق دارد می‌توانید از خاصیت [RouteArea] استفاده کنید. هنگام استفاده از این خاصیت، می‌توانید با خیال راحت کلاس AreaRegistration را از ناحیه مورد نظر حذف کنید.
[RouteArea("Admin")]
[RoutePrefix("menu")]
[Route("{action}")]
public class MenuController : Controller
{
    // eg: /admin/menu/login
    public ActionResult Login() { ... }
 
    // eg: /admin/menu/show-options
    [Route("show-options")]
    public ActionResult Options() { ... }
 
    // eg: /stats
    [Route("~/stats")]
    public ActionResult Stats() { ... }
}
با این کنترلر، فراخوانی تولید لینک زیر، رشته "Admin/menu/show-options/" را بدست میدهد:
Url.Action("Options", "Menu", new { Area = "Admin" })
به منظور تعریف یک پیشوند سفارشی برای یک ناحیه، که با نام خود ناحیه مورد نظر متفاوت است می‌توانید از پارامتر AreaPrefix استفاده کنید. بعنوان مثال:
[RouteArea("BackOffice", AreaPrefix = "back-office")]
اگر از ناحیه‌ها هم بصورت مسیریابی نشانه ای، و هم بصورت متداول (که با کلاس‌های AreaRegistration پیکربندی می‌شوند) استفاده می‌کنید باید مطمئن شوید که رجیستر کردن نواحی اپلیکیشن پس از مسیریابی نشانه ای پیکربندی می‌شود. به هر حال رجیستر کردن ناحیه‌ها پیش از تنظیم مسیرها بصورت متداول باید صورت گیرد. دلیل آن هم مشخص است، برای اینکه درخواست‌های ورودی بدرستی با مسیرهای تعریف شده تطبیق داده شوند، باید ابتدا attribute routes، سپس area registration و در آخر default route رجیستر شوند. بعنوان مثال:
public static void RegisterRoutes(RouteCollection routes)
{
    routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 
    routes.MapMvcAttributeRoutes();
 
    AreaRegistration.RegisterAllAreas();
 
    routes.MapRoute(
        name: "Default",
        url: "{controller}/{action}/{id}",
        defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional }
    );
}

مطالب
ویژگی های کمتر استفاده شده در NET. - بخش ششم

#Execute VB code via C

می توان از طریق #C، ماکروهای Visual Basic مورد استفاده‌ی در Office را تولید کرد.
static void AddChartButton( Workbook workBook,
                            Worksheet xlWorkSheetNew,
                            Range currentRange,  int macroId,
                            int startRow, int endRow,
                            int startCol, int endCol,
                            string buttonImagePath )
{
    var cell = currentRange.Next;
    var width = cell.Width;
    var height = 24;
    var left = cell.Left;
    var top = System.Math.Max( cell.Top + cell.Height - height, 0 );
    var button = xlWorkSheetNew.Shapes.AddPicture( buttonImagePath,
                                                    MsoTriState.msoFalse,
                                                    MsoTriState.msoCTrue,
                                                    left, top, width, height );
    var module = workBook.VBProject.VBComponents.Add( vbext_ComponentType.vbext_ct_StdModule );
    module.CodeModule.AddFromString( GetMacro( macroId,
                                                startRow, endRow,
                                                startCol, endCol ) );
    button.OnAction = "Macro" + macroId;
}

static string GetMacro( int macroId,
                        int startRow,  int endRow,
                        int startCol, int endCol )
{
    var sb = new StringBuilder();
    var range = "ActiveSheet.Range(Cells(" + startRow + "," + startCol + "), Cells(" + endRow + "," + endCol + ")).Select";
    sb.AppendLine( "Sub Macro" + macroId + "()" );
    sb.AppendLine( "On Error Resume Next" );
    sb.AppendLine( range );
    sb.AppendLine( "ActiveSheet.Shapes.AddChart.Select" );
    sb.AppendLine( "ActiveChart.ChartType = xlColumn" );
    sb.AppendLine( "ActiveChart.SetSourceData Source:=" + range );
    sb.AppendLine( "On Error GoTo 0" );
    sb.AppendLine( "End Sub" );
    return sb.ToString();
}

و برای استفاده از آن می‌توان مانند مثال زیر عمل کرد:

var excelApp = new Microsoft.Office.Interop.Excel.Application();
var fileName = @"C:\Users\Vahid\Desktop\VBA.xlsm";
var workBook = excelApp.Workbooks.Open( fileName );
var sheet = workBook.Sheets[1];

AddChartButton( workBook,
                sheet,
                sheet.Range["B1"],
                1231,
                1,
                10,
                1,
                2,
                @"C:\Users\Vahid\Desktop\BarChart.png");

excelApp.DisplayAlerts = false;
workBook.Close( true,
                fileName );

خروجی مثال بالا


نکته: در صورتیکه بعد از اجرای برنامه، خطای " programmatic access to visual basic project is not trusted"  رخ داد از این طریق می‌توانید مشکل را حل کنید.

File -> Options -> Trust Center -> Trust Center Settings -> Macro Settings -> Trust Access to the VBA Project object model


volatile

کلمه کلیدی volatile نشان می‌دهد که یک فیلد ممکن است توسط چندین thread به صورت همزمان تغییر کند. فیلدهایی که به عنوان volatile تعریف می‌شوند، شامل بهینه سازی کامپایلر برای دسترسی از طریق تنها یک thread قرار نمی‌گیرند و بروزرسانی مقدار فعلی این فیلد را در تمامی زمان‌ها، تضمین می‌کند.
class Program
{
    volatile bool _shouldPartyContinue = true;

    static void Main()
    {
        var firstDimension = new Program();
        var secondDimension = new Thread( firstDimension.StartPartyInAnotherDimension );
        secondDimension.Start( firstDimension );
        Thread.Sleep( 5000 );
        firstDimension._shouldPartyContinue = false;
        Console.WriteLine( "Party Finish" );
    }

    void StartPartyInAnotherDimension( object input )
    {
        var currentDimensionInput = (Program)input;
        Console.WriteLine( "let the party begin" );
        while ( currentDimensionInput._shouldPartyContinue ) {}
        Console.WriteLine( "Party ends: (" );
    }
}
نکته: اگر متغیر shouldPartyContinue به وسیله volatile علامت گذاری نشده بود، برنامه در حالت Release (که گزینه Optimize code تیک داشته باشد) هیچگاه به پایان نمی‌رسید.

::global

وقتی که یک عضو توسط موجودیت دیگری با همان نام مخفی شده باشد، با استفاده از کلمه کلیدی ::global (فضای نام سراسری) قابلیت دسترسی به آن امکان پذیر می‌شود.
class Program
{
    public static void Main(string[] args)
    {
        Console.WriteLine( Number );  // Error
        global::System.Console.WriteLine( "Console: " + Console ); //OK
    }

    public class System { }

    // Define a constant called ‘Console’ to cause more problems.
    const int Console = 7;
    const int Number = 67;
}
همانطور که در مثال بالا مشاهده می‌کنید، به دلیل وجود ثابت Console و کلاس System امکان دسترسی به متد WriteLine وجود ندارد، برای در دسترس قرار گرفتن آن باید از ::global استفاده کرد.

DebuggerDisplayAttribute

با استفاده از  DebuggerDisplayAttribute  می‌توانید نحوه نمایش یک فیلد یا یک کلاس را در پنجره متغیر دیباگر مشخص کنید.
[DebuggerDisplay( "{DebuggerDisplay}" )]
public class DebuggerDisplayTest
{
    public string FirstName { get; set; }

    public string LastName { get; set; }

    public int Age { get; set; }

    [DebuggerBrowsable( DebuggerBrowsableState.Never )]
    string DebuggerDisplay => $"{FirstName} {LastName} {Age} years old";
}
و بعد از استفاده‌ی از آن، خروجی زیر بدست می‌آید:

همچنین شما می‌توانید عبارات مختلفی را به صورت مستقیم در این attribute استفاده کنید.
[DebuggerDisplay( "Age {Age > 0 ? Age : 25}" )]
public class DebuggerDisplayTest
{
 //...
}
اگر مقدار پروپرتی Age بیشتر از 0 باشد، مقدار Age و در غیراینصورت 25 نشان داده می‌شود.
مطالب
طراحی و پیاده سازی زیرساختی برای مدیریت خطاهای حاصل از Business Rule Validationها در ServiceLayer
بعد از انتشار مطلب «Defensive Programming - بازگشت نتایج قابل پیش بینی توسط متدها»، بخصوص بخش نظرات آن و همچنین R&D در ارتباط با موضوع مورد بحث، در نهایت قصد دارم نتایج بدست آماده را به اشتراک بگذارم.

پیش نیازها
در بخش نهایی مطلب «Defensive Programming - بازگشت نتایج قابل پیش بینی توسط متدها » پیشنهادی را برای استفاده از استثناءها برای bubble up کردن یکسری پیغام از داخلی‌ترین یا پایین‌ترین لایه، تا لایه Presentation، ارائه دادیم:
استفاده از Exception برای نمایش پیغام برای کاربر نهایی 
با صدور یک استثناء و مدیریت سراسری آن در بالاترین (خارجی ترین) لایه و نمایش پیغام مرتبط با آن به کاربر نهایی، می‌توان از آن به عنوان ابزاری برای ارسال هر نوع پیغامی به کاربر نهایی استفاده کرد. اگر قوانین تجاری با موفقیت برآورده نشده‌اند یا لازم است به هر دلیلی یک پیغام مرتبط با یک اعتبارسنجی تجاری را برای کاربر نمایش دهید، این روش بسیار کارساز می‌باشد و با یکبار وقت گذاشتن برای توسعه زیرساخت برای این موضوع، به عنوان یک Cross Cutting Concern تحت عنوان Exception Management، آزادی عمل زیادی در ادامه توسعه سیستم خود خواهید داشت. 

اگر مطالب پیش نیاز را مطالعه کنید، قطعا روش مطرح شده را انتخاب نخواهید کرد؛ به همین دلیل به دنبال راه حل صحیح برخورد با این سناریوها بودم که نتیجه آن را در ادامه خواهیم دید.

راه حل صحیح برای برخورد با این سناریوها بازگشت یک Result می‌باشد که در مطلب قبلی هم تحت عنوان OperationResult مطرح شد. 


کلاس Result
    public class Result
    {
        private static readonly Result SuccessResult = new Result(true, null);

        protected Result(bool succeeded, string message)
        {
            if (succeeded)
            {
                if (message != null)
                    throw new ArgumentException("There should be no error message for success.", nameof(message));
            }
            else
            {
                if (message == null)
                    throw new ArgumentNullException(nameof(message), "There must be error message for failure.");
            }

            Succeeded = succeeded;
            Error = message;
        }

        public bool Succeeded { get; }
        public string Error { get; }

        [DebuggerStepThrough]
        public static Result Success()
        {
            return SuccessResult;
        }

        [DebuggerStepThrough]
        public static Result Failed(string message)
        {
            return new Result(false, message);
        }

        [DebuggerStepThrough]
        public static Result<T> Failed<T>(string message)
        {
            return new Result<T>(default, false, message);
        }

        [DebuggerStepThrough]
        public static Result<T> Success<T>(T value)
        {
            return new Result<T>(value, true, string.Empty);
        }

        [DebuggerStepThrough]
        public static Result Combine(string seperator, params Result[] results)
        {
            var failedResults = results.Where(x => !x.Succeeded).ToList();

            if (!failedResults.Any())
                return Success();

            var error = string.Join(seperator, failedResults.Select(x => x.Error).ToArray());
            return Failed(error);
        }

        [DebuggerStepThrough]
        public static Result Combine(params Result[] results)
        {
            return Combine(", ", results);
        }

        [DebuggerStepThrough]
        public static Result Combine<T>(params Result<T>[] results)
        {
            return Combine(", ", results);
        }

        [DebuggerStepThrough]
        public static Result Combine<T>(string seperator, params Result<T>[] results)
        {
            var untyped = results.Select(result => (Result) result).ToArray();
            return Combine(seperator, untyped);
        }

        public override string ToString()
        {
            return Succeeded
                ? "Succeeded"
                : $"Failed : {Error}";
        }
    }

مشابه کلاس بالا، در فریمورک ASP.NET Identity کلاسی تحت عنوان IdentityResult برای همین منظور در نظر گرفته شده‌است.

پراپرتی Succeeded نشان دهنده موفقت آمیز بودن یا عدم موفقیت عملیات (به عنوان مثال یک متد ApplicationService) می‌باشد. پراپرتی Error دربرگیرنده پیغام خطایی می‌باشد که قبلا از طریق Message مربوط به یک استثناء صادر شده، در اختیار بالاترین لایه قرار می‌گرفت. با استفاده از متد Combine، امکان ترکیب چندین Result حاصل از عملیات مختلف را خواهید داشت. متدهای استاتیک Failed و Success هم برای درگیر نشدن برای وهله سازی از کلاس Result در نظر گرفته شده‌اند.

متد GetForEdit مربوط به MeetingService را در نظر بگیرید. به عنوان مثال وظیفه این متد بازگشت یک MeetingEditModel می‌باشد؛ اما با توجه به یکسری قواعد تجاری، به‌عنوان مثال «امکان ویرایش جلسه‌ای که پابلیش نهایی شده‌است، وجود ندارد و ...» لازم است خروجی این متد نیز در صورت Fail شدن، دلیل آن را به مصرف کننده ارائه دهد. از این رو کلاس جنریک Result را به شکل زیر خواهیم داشت:

    public class Result<T> : Result
    {
        private readonly T _value;

        protected internal Result(T value, bool succeeded, string error)
            : base(succeeded, error)
        {
            _value = value;
        }

        public T Value
        {
            get
            {
                if (!Succeeded)
                    throw new InvalidOperationException("There is no value for failure.");

                return _value;
            }
        }
    }
حال با استفاده از کلاس بالا امکان مهیا کردن خروجی به همراه نتیجه اجرای متد را خواهیم داشت.
در ادامه با استفاده از تعدادی متد الحاقی بر فراز کلاس Result، روش Railway-oriented Programming را که یکی از روش‌های برنامه نویسی تابعی برای مدیریت خطاها است، در سی شارپ اعمال خواهیم کرد. 
    public static class ResultExtensions
    {
        public static Result<TK> OnSuccess<T, TK>(this Result<T> result, Func<T, TK> func)
        {
            return !result.Succeeded ? Result.Failed<TK>(result.Error) : Result.Success(func(result.Value));
        }

        public static Result<T> Ensure<T>(this Result<T> result, Func<T, bool> predicate, string message)
        {
            if (!result.Succeeded)
                return Result.Failed<T>(result.Error);

            return !predicate(result.Value) ? Result.Failed<T>(message) : Result.Success(result.Value);
        }

        public static Result<TK> Map<T, TK>(this Result<T> result, Func<T, TK> func)
        {
            return !result.Succeeded ? Result.Failed<TK>(result.Error) : Result.Success(func(result.Value));
        }

        public static Result<T> OnSuccess<T>(this Result<T> result, Action<T> action)
        {
            if (result.Succeeded) action(result.Value);

            return result;
        }

        public static T OnBoth<T>(this Result result, Func<Result, T> func)
        {
            return func(result);
        }

        public static Result OnSuccess(this Result result, Action action)
        {
            if (result.Succeeded) action();

            return result;
        }

        public static Result<T> OnSuccess<T>(this Result result, Func<T> func)
        {
            return !result.Succeeded ? Result.Failed<T>(result.Error) : Result.Success(func());
        }

        public static Result<TK> OnSuccess<T, TK>(this Result<T> result, Func<T, Result<TK>> func)
        {
            return !result.Succeeded ? Result.Failed<TK>(result.Error) : func(result.Value);
        }

        public static Result<T> OnSuccess<T>(this Result result, Func<Result<T>> func)
        {
            return !result.Succeeded ? Result.Failed<T>(result.Error) : func();
        }

        public static Result<TK> OnSuccess<T, TK>(this Result<T> result, Func<Result<TK>> func)
        {
            return !result.Succeeded ? Result.Failed<TK>(result.Error) : func();
        }

        public static Result OnSuccess<T>(this Result<T> result, Func<T, Result> func)
        {
            return !result.Succeeded ? Result.Failed(result.Error) : func(result.Value);
        }

        public static Result OnSuccess(this Result result, Func<Result> func)
        {
            return !result.Succeeded ? result : func();
        }

        public static Result Ensure(this Result result, Func<bool> predicate, string message)
        {
            if (!result.Succeeded)
                return Result.Failed(result.Error);

            return !predicate() ? Result.Failed(message) : Result.Success();
        }

        public static Result<T> Map<T>(this Result result, Func<T> func)
        {
            return !result.Succeeded ? Result.Failed<T>(result.Error) : Result.Success(func());
        }


        public static TK OnBoth<T, TK>(this Result<T> result, Func<Result<T>, TK> func)
        {
            return func(result);
        }

        public static Result<T> OnFailure<T>(this Result<T> result, Action action)
        {
            if (!result.Succeeded) action();

            return result;
        }

        public static Result OnFailure(this Result result, Action action)
        {
            if (!result.Succeeded) action();

            return result;
        }

        public static Result<T> OnFailure<T>(this Result<T> result, Action<string> action)
        {
            if (!result.Succeeded) action(result.Error);

            return result;
        }

        public static Result OnFailure(this Result result, Action<string> action)
        {
            if (!result.Succeeded) action(result.Error);

            return result;
        }
    }
OnSuccess برای انجام عملیاتی در صورت موفقیت آمیز بودن نتیجه یک متد، OnFailed برای انجام عملیاتی در صورت عدم موفقت آمیز بودن نتیجه یک متد و OnBoth در هر صورت، عملیات مورد نظر شما را اجرا خواهد کرد. به عنوان مثال:
[HttpPost, AjaxOnly, ValidateAntiForgeryToken, ValidateModelState]
public virtual async Task<ActionResult> Create([Bind(Prefix = "Model")]MeetingCreateModel model)
{
    var result = await _service.CreateAsync(model);

    return result.OnSuccess(() => { })
                 .OnFailure(() => { })
                 .OnBoth(r => r.Succeeded ? InformationNotification("Messages.Save.Success") : ErrorMessage(r.Error));

}

یا در حالت‌های پیچیده تر:

var result = await _service.CreateAsync(new TenantAwareEntityCreateModel());

return Result.Combine(result, Result.Success(), Result.Failed("نتیجه یک متد دیگر به عنوان مثال"))
    .OnSuccess(() => { })
    .OnFailure(() => { })
    .OnBoth(r => r.Succeeded ? Json("OK") : Json(r.Error));


ترکیب با الگوی Maybe یا Option

قبلا مطلبی در رابطه با الگوی Maybe در سایت منتشر شده‌است. در نظرات آن مطلب، یک پیاده سازی به شکل زیر مطرح کردیم:
    public struct Maybe<T> : IEquatable<Maybe<T>>
        where T : class
    {
        private readonly T _value;

        private Maybe(T value)
        {
            _value = value;
        }

        public bool HasValue => _value != null;
        public T Value => _value ?? throw new InvalidOperationException();
        public static Maybe<T> None => new Maybe<T>();


        public static implicit operator Maybe<T>(T value)
        {
            return new Maybe<T>(value);
        }

        public static bool operator ==(Maybe<T> maybe, T value)
        {
            return maybe.HasValue && maybe.Value.Equals(value);
        }

        public static bool operator !=(Maybe<T> maybe, T value)
        {
            return !(maybe == value);
        }

        public static bool operator ==(Maybe<T> left, Maybe<T> right)
        {
            return left.Equals(right);
        }

        public static bool operator !=(Maybe<T> left, Maybe<T> right)
        {
            return !(left == right);
        }

        /// <inheritdoc />
        /// <summary>
        ///     Avoid boxing and Give type safety
        /// </summary>
        /// <param name="other"></param>
        /// <returns></returns>
        public bool Equals(Maybe<T> other)
        {
            if (!HasValue && !other.HasValue)
                return true;

            if (!HasValue || !other.HasValue)
                return false;

            return _value.Equals(other.Value);
        }

        /// <summary>
        ///     Avoid reflection
        /// </summary>
        /// <param name="obj"></param>
        /// <returns></returns>
        public override bool Equals(object obj)
        {
            if (obj is T typed)
            {
                obj = new Maybe<T>(typed);
            }

            if (!(obj is Maybe<T> other)) return false;

            return Equals(other);
        }

        /// <summary>
        ///     Good practice when overriding Equals method.
        ///     If x.Equals(y) then we must have x.GetHashCode()==y.GetHashCode()
        /// </summary>
        /// <returns></returns>
        public override int GetHashCode()
        {
            return HasValue ? _value.GetHashCode() : 0;
        }

        public override string ToString()
        {
            return HasValue ? _value.ToString() : "NO VALUE";
        }
    }

متد الحاقی زیر را در نظر بگیرید:
public static Result<T> ToResult<T>(this Maybe<T> maybe, string message)
    where T : class
{
    return !maybe.HasValue ? Result.Failed<T>(message) : Result.Success(maybe.Value);
}

فرض کنید خروجی متدی که در لایه سرویس مورد استفاده قرار می‌گیرد، Maybe باشد. در این حالت می‌توان با متد الحاقی بالا آن را به یک Result تبدیل کرد و در اختیار لایه بالاتر قرار داد. 
Result<Customer> customerResult = _customerRepository.GetById(model.Id)
    .ToResult("Customer with such Id is not found: " + model.Id);

همچنین متدهای الحاقی زیر را نیز برای ساختار داده Maybe می‌توان در نظر گرفت:

        public static T GetValueOrDefault<T>(this Maybe<T> maybe, T defaultValue = default)
            where T : class
        {
            return maybe.GetValueOrDefault(x => x, defaultValue);
        }

        public static TK GetValueOrDefault<T, TK>(this Maybe<T> maybe, Func<T, TK> selector, TK defaultValue = default)
            where T : class
        {
            return maybe.HasValue ? selector(maybe.Value) : defaultValue;
        }

        public static Maybe<T> Where<T>(this Maybe<T> maybe, Func<T, bool> predicate)
            where T : class
        {
            if (!maybe.HasValue)
                return default(T);

            return predicate(maybe.Value) ? maybe : default(T);
        }

        public static Maybe<TK> Select<T, TK>(this Maybe<T> maybe, Func<T, TK> selector)
            where T : class
            where TK : class
        {
            return !maybe.HasValue ? default : selector(maybe.Value);
        }

        public static Maybe<TK> Select<T, TK>(this Maybe<T> maybe, Func<T, Maybe<TK>> selector)
            where T : class
            where TK : class
        {
            return !maybe.HasValue ? default(TK) : selector(maybe.Value);
        }

        public static void Execute<T>(this Maybe<T> maybe, Action<T> action)
            where T : class
        {
            if (!maybe.HasValue)
                return;

            action(maybe.Value);
        }
    }

پیشنهادات
  • استفاده از الگوی Specification برای زمانیکه منطقی قرار است هم برای اعتبارسنجی درون حافظه‌ای استفاده شود و همچنین برای اعمال فیلتر برای واکشی داده‌ها؛ در واقع دو Use-case استفاده از این الگو حداقل یکجا وجود داشته باشد. استفاده از این مورد برای Domain Validation در سناریوهای پیچیده بسیار پیشنهاد می‌شود.
  • استفاده از Domain Eventها برای اعمال اعتبارسنجی‌های مرتبط با قواعد تجاری تنها در شرایط inter-application communication و در شرایط inner-application communication به صورت صریح، اعتبارسنجی‌های مرتبط با قواعد تجاری را در جریان اصلی برنامه پیاده سازی کنید. 

با تشکر از آقای «محسن خان»
مطالب
انجام پی در پی اعمال Async به کمک Iterators - قسمت دوم

در قسمت قبل ایده‌ی اصلی و مفاهیم مرتبط با استفاده از Iterators مطرح شد. در این قسمت به یک مثال عملی در این مورد خواهیم پرداخت.

چندین کتابخانه و کلاس جهت مدیریت Coroutines در دات نت تهیه شده که لیست آن‌ها به شرح زیر است:
1) Using C# 2.0 iterators to simplify writing asynchronous code
2) Wintellect's Jeffrey Richter's PowerThreading Library
3) Rob Eisenberg's Build your own MVVM Framework codes

و ...

مورد سوم که توسط خالق اصلی کتابخانه‌ی Caliburn (یکی از فریم ورک‌های مشهور MVVM برای WPF و Silverlight) در کنفرانس MIX 2010 ارائه شد، این روزها در وبلاگ‌های مرتبط بیشتر مورد توجه قرار گرفته و تقریبا به یک روش استاندارد تبدیل شده است. این روش از یک اینترفیس و یک کلاس به شرح زیر تشکیل می‌شود:

using System;

namespace SLAsyncTest.Helper
{
public interface IResult
{
void Execute();
event EventHandler Completed;
}
}

using System;
using System.Collections.Generic;

namespace SLAsyncTest.Helper
{
public class ResultEnumerator
{
private readonly IEnumerator<IResult> _enumerator;

public ResultEnumerator(IEnumerable<IResult> children)
{
_enumerator = children.GetEnumerator();
}

public void Enumerate()
{
childCompleted(null, EventArgs.Empty);
}

private void childCompleted(object sender, EventArgs args)
{
var previous = sender as IResult;

if (previous != null)
previous.Completed -= childCompleted;

if (!_enumerator.MoveNext())
return;

var next = _enumerator.Current;
next.Completed += childCompleted;
next.Execute();
}
}
}

توضیحات:
مطابق توضیحات قسمت قبل، برای مدیریت اعمال همزمان به شکلی پی در پی، نیاز است تا یک IEnumerable را به همراه yield return در پایان هر مرحله از کار ایجاد کنیم. در اینجا این IEnumerable را از نوع اینترفیس IResult تعریف خواهیم کرد. متد Execute آن شامل کدهای عملیات Async خواهند شد و پس از پایان کار رخداد Completed صدا زده می‌شود. به این صورت کلاس ResultEnumerator به سادگی می‌تواند یکی پس از دیگری اعمال Async مورد نظر ما را به صورت متوالی فراخوانی نمائید. با هر بار فراخوانی رخداد Completed، متد MoveNext صدا زده شده و یک مرحله به جلو خواهیم رفت.
برای مثال کدهای ساده WCF Service زیر را در نظر بگیرید.

using System.ServiceModel;
using System.ServiceModel.Activation;
using System.Threading;

namespace SLAsyncTest.Web
{
[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(RequirementsMode
= AspNetCompatibilityRequirementsMode.Allowed)]
public class TestService
{
[OperationContract]
public int GetNumber(int number)
{
Thread.Sleep(2000);//Simulating a log running operation
return number * 2;
}
}
}

قصد داریم در طی دو مرحله متوالی این WCF Service را در یک برنامه‌ی Silverlight فراخوانی کنیم. کدهای قسمت فراخوانی این سرویس بر اساس پیاده سازی اینترفیس IResult به صورت زیر درخواهند آمد:

using System;
using SLAsyncTest.Helper;

namespace SLAsyncTest.Model
{
public class GetNumber : IResult
{
public int Result { set; get; }
public bool HasError { set; get; }

private int _num;
public GetNumber(int num)
{
_num = num;
}

#region IResult Members
public void Execute()
{
var srv = new TestServiceReference.TestServiceClient();
srv.GetNumberCompleted += (sender, e) =>
{
if (e.Error == null)
Result = e.Result;
else
HasError = true;

Completed(this, EventArgs.Empty); //run the next IResult
};
srv.GetNumberAsync(_num);
}

public event EventHandler Completed;
#endregion
}
}
در متد Execute کار فراخوانی غیرهمزمان WCF Service به صورتی متداول انجام شده و در پایان متد Completed صدا زده می‌شود. همانطور که توضیح داده شد، این فراخوانی در کلاس ResultEnumerator یاد شده مورد استفاده قرار می‌گیرد.
اکنون قسمت‌های اصلی کدهای View Model برنامه به شکل زیر خواهند بود:

private void doFetch(object obj)
{
new ResultEnumerator(executeAsyncOps()).Enumerate();
}

private IEnumerable<IResult> executeAsyncOps()
{
FinalResult = 0;
IsBusy = true; //Show BusyIndicator

//Sequential Async Operations
var asyncOp1 = new GetNumber(10);
yield return asyncOp1;

//using the result of the previous step
if(asyncOp1.HasError)
{
IsBusy = false; //Hide BusyIndicator
yield break;
}

var asyncOp2 = new GetNumber(asyncOp1.Result);
yield return asyncOp2;

FinalResult = asyncOp2.Result; //Bind it to the UI

IsBusy = false; //Hide BusyIndicator
}
در اینجا یک IEnumerable از نوع IResult تعریف شده است و در طی دو مرحله‌ی متوالی اما غیرهمزمان کار دریافت اطلاعات از WCF Service صورت می‌گیرد. ابتدا عدد 10 به WCF Service ارسال می‌شود و خروجی 20 خواهد بود. سپس این عدد در مرحله‌ی بعد مجددا به WCF Service ارسال گردیده و حاصل نهایی که عدد 40 می‌باشد در اختیار سیستم Binding قرار خواهد گرفت.
اگر از این روش استفاده نمی‌شد ممکن بود به این جواب برسیم یا خیر. ممکن بود مرحله‌ی دوم ابتدا شروع شود و سپس مرحله‌ی اول رخ دهد. اما با کمک Iterators و yield return به همراه کلاس ResultEnumerator موفق شدیم تا عملیات دوم همزمان را در حالت تعلیق قرار داده و پس از پایان اولین عملیات غیر همزمان، مرحله‌ی بعدی فراخوانی را بر اساس مقدار حاصل شده از WCF Service آغاز کنیم.
این روش برای برنامه‌ نویس‌ها آشناتر است و همان سیستم فراخوانی A->B->C را تداعی می‌کند اما کلیه اعمال غیرهمزمان هستند و ترد اصلی برنامه قفل نخواهد شد.

کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.

مطالب
تزریق وابستگی‌ها در پروفایل‌های AutoMapper در برنامه‌های ASP.NET Core
Profileهای AutoMapper، قابلیت تزریق وابستگی‌ها را در سازنده‌ی خود ندارند؛ به همین جهت در این مطلب، دو راه حل را جهت رفع این محدودیت بررسی می‌کنیم.


مثال: نیاز به نگاشت کلمه‌ی عبور، به کلمه‌ی عبور هش شده

فرض کنید موجودیت کاربری که قرار است در بانک اطلاعاتی ذخیره شود، چنین ساختاری را دارد:
namespace AutoMapperInjection.Entities
{
    public class User
    {
        public int Id { set; get; }

        public string HashedPassword { set; get; }
    }
}
در اینجا کلمه‌ی عبور، به صورت معمولی ذخیره نمی‌شود و معادل هش شده‌ی آن ذخیره خواهد شد. اما اطلاعاتی را که از کاربر دریافت می‌کنیم:
namespace AutoMapperInjection.Models
{
    public class UserDto
    {
        public string Password { set; get; }
    }
}
حاوی کلمه‌ی عبور معمولی است که باید در حین نگاشت UserDto به User، هش شود. این اطلاعات نیز به صورت زیر توسط اکشن متد RegisterUser دریافت می‌شوند که توسط متد mapper.Map، قرار است به یک نمونه از شیء User تبدیل شود:
namespace AutoMapperInjection.Controllers
{
    [ApiController]
    [Route("[controller]")]
    public class HomeController : ControllerBase
    {
        private readonly IMapper _mapper;

        public HomeController(IMapper mapper)
        {
            _mapper = mapper ?? throw new NullReferenceException(nameof(mapper));
        }

        [HttpPost("[action]")]
        public IActionResult RegisterUser(UserDto model)
        {
            var user = _mapper.Map<User>(model);

            // TODO: Save user

            return Ok();
        }
    }
}
کار این هش شدن نیز برای مثال توسط سرویس زیر انجام می‌شود:
using System;
using System.Security.Cryptography;
using System.Text;

namespace AutoMapperInjection.Services
{
    public interface IPasswordHasherService
    {
        string GetSha256Hash(string input);
    }

    public class PasswordHasherService : IPasswordHasherService
    {
        public string GetSha256Hash(string input)
        {
            using var hashAlgorithm = new SHA256CryptoServiceProvider();
            var byteValue = Encoding.UTF8.GetBytes(input);
            var byteHash = hashAlgorithm.ComputeHash(byteValue);
            return Convert.ToBase64String(byteHash);
        }
    }
}
به همین جهت در حین تعریف نگاشت‌های AutoMaper، نیاز خواهیم داشت تا بتوانیم از این سرویس استفاده کنیم.


روش اول: IValueResolver‌ها قابلیت تزریق وابستگی را در سازنده‌ی خود دارند

توسط یک IValueResolver سفارشی، می‌توانیم مشخص کنیم که برای مثال اطلاعات یک خاصیت خاص، چگونه باید از منبع دریافتی تامین شود:
        public class HashedPasswordResolver : IValueResolver<UserDto, User, string>
        {
            private readonly IPasswordHasherService _hasher;

            public HashedPasswordResolver(IPasswordHasherService hasher)
            {
                _hasher = hasher ?? throw new ArgumentNullException(nameof(hasher));
            }

            public string Resolve(UserDto source, User destination, string destMember, ResolutionContext context)
            {
                return _hasher.GetSha256Hash(source.Password);
            }
        }
همانطور که مشاهده می‌کنید، در اینجا می‌توان سرویس مدنظر را به سازنده‌ی این کلاس تزریق کرد و سپس از آن جهت تامین مقدار هش شده‌ی کلمه‌ی عبور استفاده کرد. IValueResolverها تنها تامین کننده‌ی مقدار یک خاصیت، در حین نگاشت هستند.

پس از آن، روش استفاده‌ی از این تامین کننده‌ی مقدار سفارشی، به صورت زیر است:
    public class UserDtoMappingsProfile : Profile
    {
        public UserDtoMappingsProfile()
        {
            // Map from User (entity) to UserDto, and back
            this.CreateMap<User, UserDto>()
                .ReverseMap()
                .ForMember(user => user.HashedPassword, exp => exp.MapFrom<HashedPasswordResolver>());
        }
    }
با این تعاریف، هر زمانیکه قرار است کار var user = _mapper.Map<User>(model) انجام شود، مقدار خاصیت HashedPassword، از طریق HashedPasswordResolver تامین می‌شود که در اینجا کار تزریق وابستگی‌های آن نیز به صورت خودکار توسط AutoMapper مدیریت می‌شود. البته بدیهی است که سرویس IPasswordHasherService باید به نحو زیر پیشتر به سیستم معرفی شده باشد:
namespace AutoMapperInjection
{
    public class Startup
    {
        public Startup(IConfiguration configuration)
        {
            Configuration = configuration;
        }

        public IConfiguration Configuration { get; }

        public void ConfigureServices(IServiceCollection services)
        {
            services.AddScoped<IPasswordHasherService, PasswordHasherService>();
            services.AddAutoMapper(typeof(UserDtoMappingsProfile).Assembly);
            services.AddControllers();
        }


روش دوم: IMappingAction‌ها قابلیت تزریق وابستگی را در سازنده‌ی خود دارند

می‌توان پیش و یا پس از عملیات نگاشت، منطقی را توسط یک IMappingAction سفارشی بر روی آن اجرا کرد که در اینجا نیز امکان تزریق وابستگی در سازنده‌ی IMappingActionهای پیاده سازی شده، وجود دارد:
        public class UserDtoMappingsAction : IMappingAction<UserDto, User>
        {
            private readonly IPasswordHasherService _hasher;

            public UserDtoMappingsAction(IPasswordHasherService hasher)
            {
                _hasher = hasher ?? throw new ArgumentNullException(nameof(hasher));
            }

            public void Process(UserDto source, User destination, ResolutionContext context)
            {
                destination.HashedPassword = _hasher.GetSha256Hash(source.Password);
            }
        }
در اینجا می‌خواهیم مقدار یک یا چندین خاصیت از مقصد نگاشت را (شیء User در اینجا) پس از نگاشت ابتدایی از طریق مقدار دریافتی از کاربر، با منطق خاصی تغییر دهیم. برای مثال کلمه‌ی عبور ساده‌ی دریافتی را هش کنیم و به خاصیت خاصی نسبت دهیم (و یا حتی مقدار خواص دیگری را نیز پس از نگاشت، تغییر دهیم).

در این حالت روش استفاده‌ی از کلاس UserDtoMappingsAction به صورت زیر است:
    public class UserDtoMappingsProfile : Profile
    {
        public UserDtoMappingsProfile()
        {
            // Map from User (entity) to UserDto, and back
            this.CreateMap<User, UserDto>()
                .ReverseMap()
                .AfterMap<UserDtoMappingsAction>();
        }
    }


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: AutoMapperInjection.zip
مطالب
ذخیره تنظیمات متغیر مربوط به یک وب اپلیکیشن ASP.NET MVC با استفاده از EF
طی این  مقاله، نحوه‌ی ذخیره سازی تنظیمات متغیر و پویای یک برنامه را به صورت Strongly Typed ارائه خواهم داد. برای این منظور، یک API را که از Lazy Loading ، Cache ، Reflection و Entity Framework بهره میگیرد، خواهیم ساخت.
برنامه‌ی هدف ما که از این API استفاده می‌کند، یک اپلیکیشن Asp.net MVC است. قبل از شروع به ساخت API مورد نظر، یک دید کلی در مورد آنچه که قرار است در نهایت توسعه یابد، در زیر مشاهده میکنید:
public SettingsController(ISettings settings)
{
  // example of saving 
  _settings.General.SiteName = "دات نت تیپس";
  _settings.Seo.HomeMetaTitle = ".Net Tips";
  _settings.Seo.HomeMetaKeywords = "َAsp.net MVC,Entity Framework,Reflection";
  _settings.Seo.HomeMetaDescription = "ذخیره تنظیمات برنامه";
  _settings.Save();
}

همانطور که در کدهای بالا مشاهده میکنید، شی setting_ ما دارای دو پراپرتی فقط خواندنی بنام‌های General و Seo است که شامل  تنظیمات مورد نظر ما هستند و این دو کلاس از کلاس پایه‌ی SettingBase ارث بری کرده‌اند. دو دلیل برای انجام این کار وجود دارد:
  1. تنظیمات به صورت گروه بندی شده در کنار  هم قرار گرفته‌اند و یافتن تنظیمات برای زمانی که نیاز به دسترسی  به آنها داریم، راحت‌تر و ساده‌تر خواهد بود. 
  2. به این شکل تنظیمات قابل دسترس در یک گروه، از دیتابیس بازیابی خواهند شد.

اصلا چرا باید این تنظیمات را در دیتابیس ذخیره کنیم؟ 

شاید فکر کنید چرا باید تنظیمات را در دیتابیس ذخیره کنیم در حالی که فایل web.config در درسترس است و می‌توان توسط کلاس ConfigurationManager به اطلاعات آن دسترسی داشت.
جواب: دلیل این است که با تغییر فایل web.config، برنامه‌ی وب شما ری استارت خواهد شد (چه زمان‌هایی یک برنامه Asp.net ری استارت میشود).
برای جلوگیری از این مساله، راه حل مناسب برای ذخیره سازی اطلاعاتی که نیاز به تغییر در زمان اجرا دارند، استفاده از از دیتابیس می‌باشد. در این مقاله از Entity Framework و پایگاه داده Sql Sever استفاده می‌کنم.

مراحل ساخت Setting API مورد نظر به شرح زیر است:
  1. ساخت یک Asp.net Web Application 
  2. ساخت مدل Setting و افزودن آن به کانتکست Entity Framework 
  3. ساخت کلاس SettingBase برای بازیابی و ذخیره سازی تنظیمات با رفلکشن
  4. ساخت کلاس GenralSettins و SeoSettings که از کلاس SettingBase ارث بری کرده‌اند.
  5. ساخت کلاس Settings به منظور مدیریت تمام انواع تنظیمات 

یک برنامه‌ی Asp.Net Web Application را از نوع MVC ایجاد کنید. تا اینجا مرحله‌ی اول ما به پایان رسید؛ چرا که ویژوال استودیو کار‌های مورد نیاز ما را انجام خواهد داد.
 لازم است مدل خود را به ApplicationDbContext موجود در فایل IdentityModels.cs معرفی کنیم. به شکل زیر:
namespace DynamicSettingAPI.Models
{
    public interface IUnitOfWork
    {
        DbSet<Setting> Settings { get; set; }
        int SaveChanges();
    }
} 

public class ApplicationDbContext : IdentityDbContext<ApplicationUser>,IUnitOfWork
    {
        public DbSet<Setting> Settings { get; set; }
        public ApplicationDbContext()
            : base("DefaultConnection", throwIfV1Schema: false)
        {
        }

        public static ApplicationDbContext Create()
        {
            return new ApplicationDbContext();
        }
    }


namespace DynamicSettingAPI.Models
{
    public class Setting
    {
        public string Name { get; set; }
        public string Type { get; set; }
        public string Value { get; set; }
    }
}
مدل تنظیمات ما خیلی ساده است و دارای سه پراپرتی به نام‌های Name ، Type ، Value هست که به ترتیب برای دریافت مقدار تنظیمات، نام کلاسی که از کلاس SettingBase ارث برده و نام تنظیمی که لازم داریم ذخیره کنیم، در نظر گرفته شده‌اند. 
لازم است تا متد OnModelCreating مربوط به ApplicationDbContext را نیز تحریف کنیم تا کانفیگ مربوط به مدل خود را نیز اعمال نمائیم.
 protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            modelBuilder.Entity<Setting>()
                    .HasKey(x => new { x.Name, x.Type });

            modelBuilder.Entity<Setting>()
                        .Property(x => x.Value)
                        .IsOptional();

            base.OnModelCreating(modelBuilder);
        }
ساختاری به شکل زیر مد نظر ماست:

  کلاس SettingBase ما همچین ساختاری را خواهد داشت:
namespace DynamicSettingAPI.Service
{
    public abstract class SettingsBase
    {
        //1
        private readonly string _name;
        private readonly PropertyInfo[] _properties;

        protected SettingsBase()
        {
            //2
            var type = GetType();
            _name = type.Name;
            _properties = type.GetProperties();
        }

        public virtual void Load(IUnitOfWork unitOfWork)
        {
            //3 get setting for this type name
            var settings = unitOfWork.Settings.Where(w => w.Type == _name).ToList();

            foreach (var propertyInfo in _properties)
            {
                //get the setting from setting list
                var setting = settings.SingleOrDefault(s => s.Name == propertyInfo.Name);
                if (setting != null)
                {
                    //4 set 
                    propertyInfo.SetValue(this, Convert.ChangeType(setting.Value, propertyInfo.PropertyType));
                }
            }
        }
        public virtual void Save(IUnitOfWork unitOfWork)
        {
            //5 get all setting for this type name
            var settings = unitOfWork.Settings.Where(w => w.Type == _name).ToList();

            foreach (var propertyInfo in _properties)
            {
                var propertyValue = propertyInfo.GetValue(this, null);
                var value = (propertyValue == null) ? null : propertyValue.ToString();

                var setting = settings.SingleOrDefault(s => s.Name == propertyInfo.Name);
                if (setting != null)
                {
                    // 6 update existing value
                    setting.Value = value;
                }
                else
                {
                    // 7 create new setting
                    var newSetting = new Setting()
                    {
                        Name = propertyInfo.Name,
                        Type = _name,
                        Value = value,
                    };
                    unitOfWork.Settings.Add(newSetting);
                }
            }
        }
    }
}
این کلاس قرار است توسط کلاس‌های تنظیمات ما به ارث برده شود و در واقع کارهای مربوط به رفلکشن را در این کلاس کپسوله کرده‌ایم. همانطور که مشخص است ما دو فیلد را به نام‌های name_ و properties_ به صورت فقط خواندنی در نظر گرفته ایم که نام کلاس مورد نظر ما که از این کلاس به ارث خواهد برد، به همراه پراپرتی‌های آن، در این ظرف‌ها قرار خواهند گرفت.
متد Load وظیفه‌ی واکشی تمام تنظیمات مربوط به Type و ست کردن مقادیر به دست آمده را به خصوصیات کلاس ما، برعهده دارد. کد زیر مقدار دریافتی از دیتابیس را به نوع داده پراپرتی مورد نظر تبدیل کرده و نتیجه را به عنوان Value پراپرتی ست میکند. 
propertyInfo.SetValue(this, Convert.ChangeType(setting.Value, propertyInfo.PropertyType));
متد Save نیز وظیفه‌ی ذخیره سازی مقادیر موجود در خصوصیات کلاس تنظیماتی را که از کلاس SettingBase ما به ارث برده است، به عهده دارد. 
این متد دیتا‌های موجود دردیتابیس را که متعلق به کلاس ارث برده مورد نظر ما هستند، واکشی میکند و در یک حلقه، اگر خصوصیتی در دیتابیس موجود بود، آن را ویرایش کرده وگرنه یک رکورد جدید را ثبت میکند.

  کلاس‌های تنظیمات شخصی سازی شده خود را به شکل زیر تعریف میکنیم :
  public class GeneralSettings : SettingsBase
    {
        public string SiteName { get; set; }
        public string AdminEmail { get; set; }
        public bool RegisterUsersEnabled { get; set; }
    }

 public class GeneralSettings : SettingsBase
    {
        public string SiteName { get; set; }
        public string AdminEmail { get; set; }
    }
نیازی به توضیح ندارد.
برای اینکه تنظیمات را به صورت یکجا داشته باشیم و Abstraction ای را برای استفاده از این API ارائه دهیم، یک اینترفیس و یک کلاس که اینترفیس مذکور را پیاده کرده است در نظر میگیریم: 
public interface ISettings
{
    GeneralSettings General { get; }
    SeoSettings Seo { get; }
    void Save();
}

public class Settings : ISettings
{
    // 1
    private readonly Lazy<GeneralSettings> _generalSettings;
    // 2
    public GeneralSettings General { get { return _generalSettings.Value; } }

    private readonly Lazy<SeoSettings> _seoSettings;
    public SeoSettings Seo { get { return _seoSettings.Value; } }

    private readonly IUnitOfWork _unitOfWork;
    public Settings(IUnitOfWork unitOfWork)
    {
        _unitOfWork = unitOfWork;
        // 3
        _generalSettings = new Lazy<GeneralSettings>(CreateSettings<GeneralSettings>);
        _seoSettings = new Lazy<SeoSettings>(CreateSettings<SeoSettings>);
    }

    public void Save()
    {
        // only save changes to settings that have been loaded
        if (_generalSettings.IsValueCreated)
            _generalSettings.Value.Save(_unitOfWork);

        if (_seoSettings.IsValueCreated)
            _seoSettings.Value.Save(_unitOfWork);

        _unitOfWork.SaveChanges();
    }
    // 4
    private T CreateSettings<T>() where T : SettingsBase, new()
    {
        var settings = new T();
        settings.Load(_unitOfWork);
        return settings;
    }
}
این اینترفیس مشخص می‌کند که ما به چه نوع تنظیماتی، دسترسی داریم و متد Save آن برای آپدیت کردن تنظیمات، در نظر گرفته شده است. هر کلاسی که از کلاس SettingBase ارث بری کرده را به صورت فیلد فقط خواندنی و با استفاده از کلاس Lazy درون آن ذکر میکنیم و به این صورت کلاس تنظیمات ما زمانی ساخته خواهد شد که برای اولین بار به آن دسترسی داشته باشیم.
متد CreateSetting وظیفه‌ی لود دیتا را از دیتابیس، بر عهده دارد که برای این منظور، متد لود Type مورد نظر را فراخوانی میکند. این متد وقتی به کلاس تنظیمات مورد نظر برای اولین بار دسترسی پیدا کنیم، فراخوانی خواهد شد.

 حتما امکان این وجود دارد که شما از امکان Caching هم بهره ببرید برای مثال همچین متد و سازنده‌ای را در کلاس Settings در نظر بگیرید:
private readonly ICache _cache;
public Settings(IUnitOfWork unitOfWork, ICache cache)
{
    // ARGUMENT CHECKING SKIPPED FOR BREVITY
    _unitOfWork = unitOfWork;
    _cache = cache;
    _generalSettings = new Lazy<GeneralSettings>(CreateSettingsWithCache<GeneralSettings>);
    _seoSettings = new Lazy<SeoSettings>(CreateSettingsWithCache<SeoSettings>);
}

private T CreateSettingsWithCache<T>() where T : SettingsBase, new()
{
    // this is where you would implement loading from ICache
    throw new NotImplementedException();
}
در آخر هم به شکل زیر میتوان (به عنوان دمو فقط ) از این API استفاده کرد.
   public ActionResult Index()
        {
            using (var uow = new ApplicationDbContext())
            {
                var _settings = new Settings(uow);
                _settings.General.SiteName = "دات نت تیپس";
                _settings.General.AdminEmail = "admin@gmail.com";
                _settings.General.RegisterUsersEnabled = true;
                _settings.Seo.HomeMetaTitle = ".Net Tips";
                _settings.Seo.MetaKeywords = "Asp.net MVC,Entity Framework,Reflection";
                _settings.Seo.HomeMetaDescription = "ذخیره تنظیمات برنامه";

                var settings2 = new Settings(uow);
                var output = string.Format("SiteName: {0} HomeMetaDescription: {1}  MetaKeywords:  {2}  MetaTitle:  {3}  RegisterEnable:  {4}",
                    settings2.General.SiteName,
                    settings2.Seo.HomeMetaDescription,
                    settings2.Seo.MetaKeywords,
                    settings2.Seo.HomeMetaTitle,
                    settings2.General.RegisterUsersEnabled.ToString()
                    );
                return Content(output);
            }

        }

خروجی :

نکته: در پروژه ای که جدیدا در سایت ارائه داده‌ام و در حال تکمیل آن هستم، از بهبود یافته‌ی این مقاله استفاده می‌شود. حتی برای اسلاید شو‌های سایت هم میشود از این روش استفاده کرد و از فرمت json بهره برد برای این منظور. حتما در پروژه‌ی مذکور همچین امکانی را هم در نظر خواهم گرفتم.
پیشنها میکنم سورس SmartStore را بررسی کنید. آن هم به شکل مشابهی ولی پیشرفته‌تر از این مقاله، همچین امکانی را دارد.
مطالب
سفارشی سازی ASP.NET Core Identity - قسمت اول - موجودیت‌های پایه و DbContext برنامه
با به پایان رسیدن مرحله‌ی توسعه‌ی ASP.NET Identity 2.x مخصوص نگارش‌های ASP.NETایی که از Full .NET Framework استفاده می‌کنند، نگارش جدید آن صرفا بر پایه‌ی ASP.NET Core تهیه شده‌است و در طی یک سری، نحوه‌ی سفارشی سازی تقریبا تمام اجزای آن‌را بررسی خواهیم کرد. جهت سهولت پیگیری این سری، پروژه‌ی کامل سفارشی سازی شده‌ی ASP.NET Core Identity را از مخزن کد DNT Identity می‌توانید دریافت کنید.


پیشنیازهای اجرای پروژه‌ی DNT Identity

 - ابتدا نیاز است حداقل ASP.NET Core Identity 1.1 را نصب کرده باشید.
 - همچنین بانک اطلاعاتی پایه‌ی آن که به صورت خودکار در اولین بار اجرای برنامه تشکیل می‌شود، مبتنی بر LocalDB است. بنابراین اگر قصد تغییری را در تنظیمات Context آن ندارید، بهتر است LocalDB را نیز بر روی سیستم نصب کنید. هرچند با تغییر تنظیم ActiveDatabase به SqlServer در فایل appsettings.json، برنامه به صورت خودکار از نگارش کامل SqlServer استفاده خواهد کرد. رشته‌ی اتصالی آن نیز در مدخل ConnectionStrings فایل appsettings.json ذکر شده‌است و قابل تغییر است. برای شروع به کار، نیازی به اجرای مراحل Migrations را نیز ندارید و همینقدر که برنامه را اجرا کنید، بانک اطلاعاتی آن نیز تشکیل خواهد شد.
 - کاربر پیش فرض Admin سیستم و کلمه‌ی عبور آن از مدخل AdminUserSeed فایل appsettings.json خوانده می‌شوند.
 - تنظیمات ایمیل پیش فرض برنامه به استفاده‌ی از PickupFolder در مدخل Smtp فایل appsettings.json تنظیم شده‌است. بنابراین تمام ایمیل‌های برنامه را جهت آزمایش محلی می‌توانید در مسیر PickupFolder آن یا همان c:\smtppickup مشاهده کنید. محتوای این ایمیل‌ها را نیز توسط مرورگر (drag&drop بر روی یک tab جدید) و یا برنامه‌ی Outlook می‌توان مشاهده کرد.


سفارشی سازی کلید اصلی موجودیت‌های ASP.NET Core Identity

ASP.NET Core Identity به همراه دو سری موجودیت است. یک سری ساده‌ی آن که از یک string به عنوان نوع کلید اصلی استفاده می‌کنند و سری دوم، حالت جنریک که در آن می‌توان نوع کلید اصلی را به صورت صریحی قید کرد و تغییر داد. در اینجا نیز قصد داریم از حالت جنریک استفاده کرده و نوع کلید اصلی جداول را تغییر دهیم. تمام این موجودیت‌های تغییر یافته را در پوشه‌ی src\ASPNETCoreIdentitySample.Entities\Identity نیز می‌توانید مشاهده کنید و شامل موارد ذیل هستند:

جدول نقش‌های سیستم
    public class Role : IdentityRole<int, UserRole, RoleClaim>, IAuditableEntity
    {
        public Role()
        {
        }

        public Role(string name)
            : this()
        {
            Name = name;
        }

        public Role(string name, string description)
            : this(name)
        {
            Description = description;
        }

        public string Description { get; set; }
    }
کار با ارث بری از نگارش جنریک کلاس IdentityRole شروع می‌شود. این کلاس پایه، حاوی تعاریف اصلی فیلدهای جدول نقش‌های سیستم است که اولین آرگومان جنریک آن، نوع کلید اصلی جدول مرتبط را نیز مشخص می‌کند و در اینجا به int تنظیم شده‌است. همچنین یک اینترفیس جدید IAuditableEntity را نیز در انتهای این تعریف‌ها مشاهده می‌کنید. در مورد این اینترفیس و Shadow properties متناظر با آن، در ادامه‌ی بحث با سفارشی سازی DbContext برنامه بیشتر توضیح داده خواهد شد.


در اولین بار اجرای برنامه، نقش Admin در این جدول ثبت خواهد شد.

جدول کاربران منتسب به نقش‌ها
    public class UserRole : IdentityUserRole<int>, IAuditableEntity
    {
        public virtual User User { get; set; }

        public virtual Role Role { get; set; }
    }
کلاس پایه‌ی جدول کاربران منتسب به نقش‌ها، کلاس جنریک IdentityUserRole است که در اینجا با تغییر آرگومان جنریک آن به int، نوع فیلدهای UserId و RoleId آن به int تنظیم می‌شوند. در کلاس سفارشی سازی شده‌ی فوق، دو خاصیت اضافه‌تر User و Role نیز را مشاهده می‌کنید. مزیت تعریف آن‌ها، دسترسی ساده‌تر به اطلاعات کاربران و نقش‌ها توسط EF Core است.


در اولین بار اجرای برنامه، کاربر شماره 1 یا همان Admin به نقش شماره 1 یا همان Admin، انتساب داده می‌شود.


جدول جدید  IdentityRoleClaim سیستم
public class RoleClaim : IdentityRoleClaim<int>, IAuditableEntity
{
   public virtual Role Role { get; set; }
}
در ASP.NET Core Identity، جدول جدیدی به نام RoleClaim نیز اضافه شده‌است. در این سری از آن برای پیاده سازی سطوح دسترسی پویای به صفحات استفاده خواهیم کرد. ابتدا یک سری نقش ثابت در جدول Roles ثبت خواهند شد. سپس تعدادی کاربر به هر نقش نسبت داده می‌شوند. اکنون می‌توان به هر نقش نیز تعدادی Claim را انتساب داد. برای مثال یک Claim سفارشی که شامل ID سفارشی area:controller:action باشد. به این ترتیب و با بررسی سفارشی آن می‌توان سطوح دسترسی پویا را نیز پیاده سازی کرد و مزیت آن این است که تمام این Claims به صورت خودکار به کوکی شخص نیز اضافه شده و دسترسی به اطلاعات آن بسیار سریع است و نیازی به مراجعه‌ی به بانک اطلاعاتی را ندارد.

جدول UserClaim سیستم
public class UserClaim : IdentityUserClaim<int>, IAuditableEntity
{
   public virtual User User { get; set; }
}
می‌توان به هر کاربر یک سری Claim مخصوص را نیز انتساب داد. برای مثال مسیر عکس ذخیره شده‌ی او در سرور، چه موردی است و این اطلاعات به صورت خودکار به کوکی او نیز توسط ASP.NET Core Identity اضافه می‌شوند. البته ما در این سری روش دیگری را برای سفارشی سازی Claims عمومی کاربران بکار خواهیم گرفت (با سفارشی سازی کلاس ApplicationClaimsPrincipalFactory آن).

جداول توکن و لاگین‌های کاربران
public class UserToken : IdentityUserToken<int>, IAuditableEntity
{
   public virtual User User { get; set; }
}

public class UserLogin : IdentityUserLogin<int>, IAuditableEntity
{
   public virtual User User { get; set; }
}
دراینجا نیز نحوه‌ی سفارشی سازی و تغییر جداول لاگین‌های کاربران و توکن‌های مرتبط با آن‌ها را مشاهده می‌کنید. این جداول بیشتر جهت دسترسی به حالت‌هایی مانند لاگین با حساب کاربری جی‌میل مورد استفاده قرار می‌گیرند و کاربرد پیش فرضی ندارند (اگر از تامین کننده‌های لاگین خارجی نمی‌خواهید استفاده کنید).

جدول کاربران سیستم
    public class User : IdentityUser<int, UserClaim, UserRole, UserLogin>, IAuditableEntity
    {
        public User()
        {
            UserUsedPasswords = new HashSet<UserUsedPassword>();
            UserTokens = new HashSet<UserToken>();
        }

        [StringLength(450)]
        public string FirstName { get; set; }

        [StringLength(450)]
        public string LastName { get; set; }

        [NotMapped]
        public string DisplayName
        {
            get
            {
                var displayName = $"{FirstName} {LastName}";
                return string.IsNullOrWhiteSpace(displayName) ? UserName : displayName;
            }
        }

        [StringLength(450)]
        public string PhotoFileName { get; set; }

        public DateTimeOffset? BirthDate { get; set; }

        public DateTimeOffset? CreatedDateTime { get; set; }

        public DateTimeOffset? LastVisitDateTime { get; set; }

        public bool IsEmailPublic { get; set; }

        public string Location { set; get; }

        public bool IsActive { get; set; } = true;

        public virtual ICollection<UserUsedPassword> UserUsedPasswords { get; set; }

        public virtual ICollection<UserToken> UserTokens { get; set; }
    }

    public class UserUsedPassword : IAuditableEntity
    {
        public int Id { get; set; }

        public string HashedPassword { get; set; }

        public virtual User User { get; set; }
        public int UserId { get; set; }
    }
در اینجا علاوه بر نحوه‌ی تغییر نوع کلید اصلی جدول کاربران سیستم، نحوه‌ی افزودن خواص اضافه‌تری مانند نام، تاریخ تولد، مکان، تصویر و غیره را نیز مشاهده می‌کنید. به علاوه جدولی نیز جهت ثبت سابقه‌ی کلمات عبور هش شده‌ی کاربران نیز تدارک دیده شده‌است تا کاربران نتوانند از 5 کلمه‌ی عبور اخیر خود (تنظیم NotAllowedPreviouslyUsedPasswords در فایل appsettings.json) استفاده کنند.
فیلد IsActive نیز از این جهت اضافه شده‌است تا بجای حذف فیزیکی یک کاربر، بتوان اکانت او را غیرفعال کرد.


تعریف Shadow properties ثبت تغییرات رکوردها

در #C ارث‌بری چندگانه‌ی کلاس‌ها ممنوع است؛ مگر اینکه از اینترفیس‌ها استفاده شود. برای مثال IdentityUser یک کلاس است و در اینجا دیگر نمی‌توان کلاس دومی را به نام BaseEntity جهت اعمال خواص اضافه‌تری اعمال کرد. به همین جهت است که اعمال اینترفیس خالی IAuditableEntity را در اینجا مشاهده می‌کنید. این اینترفیس کار علامت‌گذاری کلاس‌هایی را انجام می‌دهد که قصد داریم به آن‌ها به صورت خودکار، خواصی مانند تاریخ ثبت رکورد، تاریخ ویرایش آن و غیره را اعمال کنیم.
در Context برنامه، به اطلاعات src\ASPNETCoreIdentitySample.Entities\AuditableEntity مراجعه شده و متد AddAuditableShadowProperties بر روی تمام کلاس‌هایی از نوع IAuditableEntity اعمال می‌شود. این متد خواص مدنظر ما را مانند ModifiedDateTime به صورت Shadow properties به موجودیت‌های علامت‌گذاری شده اضافه می‌کند.
همچنین متد SetAuditableEntityPropertyValues، کار مقدار دهی خودکار این خواص را انجام خواهد داد. بنابراین دیگر نیازی نیست در برنامه برای مثال IP شخص ثبت کننده یا ویرایش کننده را به صورت دستی مقدار دهی کرد. هم تعریف و هم مقدار دهی آن توسط Change tracker سیستم به صورت خودکار انجام خواهند شد.


تاثیر افزودن Shadow properties را بر روی کلاس نقش‌های سیستم، در تصویر فوق ملاحظه می‌کنید. خواصی که به صورت معمول در کلاس‌های برنامه ظاهر نمی‌شوند و صرفا هدف بازبینی سیستم را برآورده می‌کنند و مدیریت آن‌ها نیز در اینجا کاملا خودکار است.


سفارشی سازی DbContext برنامه

نحوه‌ی سفارشی سازی DbContext برنامه را در پوشه‌ی src\ASPNETCoreIdentitySample.DataLayer\Context و src\ASPNETCoreIdentitySample.DataLayer\Mappings ملاحظه می‌کنید. پوشه‌ی Context حاوی کلاس ApplicationDbContextBase است که تمام سفارشی سازی‌های لازم بر روی آن انجام شده‌است؛ شامل:
 - تغییر نوع کلید اصلی موجودیت‌ها به همراه معرفی موجودیت‌های تغییر یافته:
 public abstract class ApplicationDbContextBase :
  IdentityDbContext<User, Role, int, UserClaim, UserRole, UserLogin, RoleClaim, UserToken>,
  IUnitOfWork
ما در ابتدای بحث، برای مثال کلاس Role را سفارشی سازی کردیم. اما برنامه از وجود آن بی‌اطلاع است. با ارث بری از IdentityDbContext و ذکر این کلاس‌های سفارشی به همراه نوع int کلید اصلی مورد استفاده، کار معرفی موجودیت‌های سفارشی سازی شده انجام می‌شود.

 - اعمال متد BeforeSaveTriggers به تمام نگارش‌های مختلف SaveChanges
protected void BeforeSaveTriggers()
{
  ValidateEntities();
  SetShadowProperties();
  this.ApplyCorrectYeKe();
}
در اینجا پیش از ذخیره‌ی اطلاعات، ابتدا موجودیت‌ها اعتبارسنجی می‌شوند. سپس مقادیر Shadow properties تنظیم شده و دست آخر، ی و ک فارسی نیز به اطلاعات ثبت شده، جهت یک دست سازی اطلاعات سیستم، اعمال می‌شوند.

- انتخاب نوع بانک اطلاعاتی مورد استفاده در متد OnConfiguring
در اینجا است که خاصیت ActiveDatabase تنظیم شده‌ی در فایل appsettings.json خوانده شده و اعمال می‌شوند. تعریف متد GetDbConnectionString را در کلاس SiteSettingsExtesnsions مشاهده می‌کنید. کار آن استفاده‌ی از بانک اطلاعاتی درون حافظه‌ای، جهت انجام آزمون‌های واحد و یا استفاده‌ی از LocalDb و یا نگارش کامل SQL Server می‌باشد. اگر علاقمند بودید تا بانک اطلاعاتی دیگری (مثلا SQLite) را نیز اضافه کنید، ابتدا enum ایی به نام ActiveDatabase را تغییر داده و سپس متد GetDbConnectionString و متد OnConfiguring را جهت درج اطلاعات این بانک اطلاعاتی جدید، اصلاح کنید.

پس از تعریف این DbContext پایه‌ی سفارشی سازی شده، کلاس جدید ApplicationDbContext را مشاهده می‌کنید. این کلاس ‍Context ایی است که در برنامه از آن استفاده می‌شود و از کلاس پایه ApplicationDbContextBase مشتق شده‌است:
 public class ApplicationDbContext : ApplicationDbContextBase
تعاریف موجودیت‌های جدید خود را به این کلاس اضافه کنید.
تنظیمات mapping آن‌ها نیز به متد OnModelCreating این کلاس اضافه خواهند شد. فقط نحوه‌ی استفاده‌ی از آن را به‌خاطر داشته باشید:
        protected override void OnModelCreating(ModelBuilder builder)
        {
            // it should be placed here, otherwise it will rewrite the following settings!
            base.OnModelCreating(builder);

            // Adds all of the ASP.NET Core Identity related mappings at once.
            builder.AddCustomIdentityMappings(SiteSettings.Value);

            // Custom application mappings


            // This should be placed here, at the end.
            builder.AddAuditableShadowProperties();
        }
ابتدا باید base.OnModelCreating را ذکر کنید. در غیراینصورت تمام سفارشی سازی‌های شما بازنویسی می‌شوند.
سپس متد AddCustomIdentityMappings ذکر شده‌است. این متد اطلاعات src\ASPNETCoreIdentitySample.DataLayer\Mappings را به صورت خودکار و یکجا اضافه می‌کند که در آن برای مثال نام جداول پیش فرض Identity سفارشی سازی شده‌اند.


در آخر باید AddAuditableShadowProperties فراخوانی شود تا خواص سایه‌ای که پیشتر در مورد آن‌ها بحث شد، به سیستم به صورت خودکار اضافه شوند.
تمام نگاشت‌های سفارشی شما باید در این میان و در قسمت «Custom application mappings» درج شوند.

در قسمت بعدی، نحوه‌ی سفارشی سازی سرویس‌های پایه‌ی Identity را بررسی خواهیم کرد. بدون این سفارشی سازی و اطلاعات رسانی به سرویس‌های پایه که از چه موجودیت‌های جدید سفارشی سازی شده‌ایی در حال استفاده هستیم، کار Migrations انجام نخواهد شد.


کدهای کامل این سری را در مخزن کد DNT Identity می‌توانید ملاحظه کنید.