نظرات مطالب
پشتیبانی توکار از انجام کارهای پس‌زمینه در ASP.NET Core 2x
نکته تکمیلی: معادل  HostingEnvironment.QueueBackgroundWorkItem  در ASP.NET Core
public interface IBackgroundTaskQueue : ISingletonDependency
{
    void QueueBackgroundWorkItem(Func<CancellationToken, IServiceProvider, Task> workItem);

    Task<Func<CancellationToken, IServiceProvider, Task>> DequeueAsync(
        CancellationToken cancellationToken);
}
با تزریق این IBackgroundTaskQueue و استفاده از متد QueueBackgoundWorkItem، امکان در صف قرار دادن یک وظیفه جدید را خواهید داشت. 
پیاده سازی واسط IBackgroundTaskQueue
internal class BackgroundTaskQueue : IBackgroundTaskQueue
{
    private readonly ConcurrentQueue<Func<CancellationToken, IServiceProvider, Task>> _workItems =
        new ConcurrentQueue<Func<CancellationToken, IServiceProvider, Task>>();

    private readonly SemaphoreSlim _signal = new SemaphoreSlim(0);

    public void QueueBackgroundWorkItem(
        Func<CancellationToken, IServiceProvider, Task> workItem)
    {
        if (workItem == null)
        {
            throw new ArgumentNullException(nameof(workItem));
        }

        _workItems.Enqueue(workItem);
        _signal.Release();
    }

    public async Task<Func<CancellationToken, IServiceProvider, Task>> DequeueAsync(
        CancellationToken cancellationToken)
    {
        await _signal.WaitAsync(cancellationToken);
        _workItems.TryDequeue(out var workItem);

        return workItem;
    }
}
در زمان ثبت و معرفی یک کار پس‌زمینه، داخل صفی با رعایت مباحث همزمانی و تحت عنوان ‎_workItems قرار خواهد گرفت. متد DequeueAsync نیز توسط HostedService پیاده سازی شده در ادامه، استفاده شده و به ترتیب وظایف ثبت شده را اجرا خواهد کرد.
پیاده سازی یک QueuedHostedService 
public class QueuedHostedService : BackgroundService
{
    private readonly IServiceScopeFactory _factory;
    private readonly ILogger _logger;
    private readonly IBackgroundTaskQueue _queue;

    public QueuedHostedService(
        IBackgroundTaskQueue queue,
        IServiceScopeFactory factory,
        ILoggerFactory loggerFactory)
    {
        _factory = factory ?? throw new ArgumentNullException(nameof(factory));
        _queue = queue ?? throw new ArgumentNullException(nameof(queue));
        _logger = loggerFactory.CreateLogger<QueuedHostedService>();
    }


    protected override async Task ExecuteAsync(CancellationToken cancellationToken)

    {
        _logger.LogInformation("Queued Hosted Service is starting.");

        while (!cancellationToken.IsCancellationRequested)
        {
            var workItem = await _queue.DequeueAsync(cancellationToken);

            try
            {
                using (var scope = _factory.CreateScope())
                {
                    await workItem(cancellationToken, scope.ServiceProvider);
                }
            }
            catch (Exception ex)
            {
                _logger.LogError(ex,
                    $"Error occurred executing {nameof(workItem)}.");
            }
        }

        _logger.LogInformation("Queued Hosted Service is stopping.");
    }
}
این امکان قرار است به صورت آزمایشی به نسخه ASP.NET Core 3.0 اضافه شود. برای استفاده از آن کافی است QueuedHostedService را به سیستم DI معرفی کرده به شکل زیر عمل کنید:
public class InvoiceService : IInvoiceService
{
   private readonly IBackgroundTaskQueue _queue;
   
   public InvoiceService(IBackgroundTaskQueue queue)
   {
     _queue = queue ?? throw new ArgumentNullException(nameof(queue));
   }
   
   public Print(InvoiceModel model)
   {
      _queue.QueueBackgroundWorkItem((token, provider)=>
      {
      //todo: print
      return Task.Task.CompletedTask;
      })
   }
}

مطالب
انتخاب پویای فیلد ها در LINQ

LINQ یک DLS  بر مبنای .NET  می باشد که برای پرس و جو در منابع داده ای مانند پایگاه‌های داده ، فایل‌های XML و یا لیستی از اشیاء درون حافظه کاربرد دارد.

یکی از بزرگترین مزیت‌های آن Syntax  آسان و خوانا آن می‌باشد.

LINQ  از 2 نوع نمادگذاری پشتیبانی می‌کند:

  • Inline LINQ یا query expressions : 
var result = 
    from product in dbContext.Products
    where product.Category.Name == "Toys"
    where product.Price >= 2.50
    select product.Name;
  • Fluent Syntax : 
var result = dbContext.Products
    .Where(p => p.Category.Name == "Toys" && p.Price >= 250)
    .Select(p => p.Name);

در پرس و چو‌های بالا فیلد‌های مورد نیاز در قسمت Select در زمان Compile شناخته شده هستند . اما گاهی ممکن است فیلد‌های مورد نیاز در زمان اجرا مشخص شوند.

به عنوان مثال یک گزارش ساز پویا که کاربر مشخص می‌کند چه ستون هایی در خروجی نمایش داده شوند یا یک جستجوی پیشرفته که ستون‌های خروجی به اختیار کاربر در زمان اجرا مشخص می‌شوند. 

این مدل را در نظر داشته باشید :

    public class Student
    {
        public int Id { get; set; }
        public string Name { get; set; }
        public string Field1 { get; set; }
        public string Field2 { get; set; }
        public string Field3 { get; set; }


        public static IEnumerable<Student> GetStudentSource()
        {
            for (int i = 0; i < 10; i++)
            {
                yield return new Student
                                 {
                                     Id = i,
                                     Name = "Name " + i,
                                     Field1 = "Field1 " + i,
                                     Field2 = "Field2 " + i,
                                     Field3 = "Field3 " + i
                                 };
            }
        }
    }

ستون‌های کلاس Student  را در رابط کاربری برنامه جهت انتخاب به کاربر نمایش می‌دهیم. سپس کاربر یک یا چند ستون را انتخاب می‌کند که قسمت Select  کوئری برنامه باید  بر اساس فیلد‌های مورد نظر کاربر مشخص شود.

یکی از روش هایی که می‌توان از آن بهره برد استفاده از کتاب خانه Dynamic LINQ معرفی شده در اینجا می باشد.

این کتابخانه جهت سهولت در نصب به کمک NuGet در این آدرس قرار دارد.

فرض بر این است که فیلد‌های انتخاب شده توسط کاربر با "," از یکدیگر جدا شده اند. 

    public class Program
    {
        private static void Main(string[] args)
        {
            System.Console.WriteLine("Specify the desired fields : ");
            string fields = System.Console.ReadLine();
            IEnumerable<Student> students = Student.GetStudentSource();
            IQueryable output = students.AsQueryable().Select(string.Format("new({0})", fields));
            foreach (object item in output)
            {
                System.Console.WriteLine(item);
            }
          
            System.Console.ReadKey();
        }
  
    }

همانطور که در عکس ذیل مشاهده می‌کنید پس از اجرای برنامه ، فیلد‌های انتخاب شده توسط کاربر از منبع داده‌ی دریافت شده و در خروجی نمایش داده شده اند.

این روش مزایا و معایب خودش را دارد ، به عنوان مثال خروجی یک لیست از شیء Student  نیست یا این Select  فقط برای روی یک شیء IQueryable  قابل انجام است.

روش دیگری که می‌توان از آن بهره جست استفاده از یک متد کمکی جهت تولید پویای عبارت Lambda  ورودی Select  می باشد :  

    public  class SelectBuilder <T>
    {
        public static Func<T, T> CreateNewStatement(string fields)
        {
            // input parameter "o"
            var xParameter = Expression.Parameter(typeof(T), "o");


            // new statement "new T()"
            var xNew = Expression.New(typeof(T));

            // create initializers
            var bindings = fields.Split(',').Select(o => o.Trim())
                .Select(o =>
                {

                    // property "Field1"
                    var property = typeof(T).GetProperty(o);

                    // original value "o.Field1"
                    var xOriginal = Expression.Property(xParameter, property);

                    // set value "Field1 = o.Field1"
                    return Expression.Bind(property, xOriginal);
                }
            ).ToList();

            // initialization "new T { Field1 = o.Field1, Field2 = o.Field2 }"
            var xInit = Expression.MemberInit(xNew, bindings);

            // expression "o => new T { Field1 = o.Field1, Field2 = o.Field2 }"
            var lambda = Expression.Lambda<Func<T, T>>(xInit, xParameter);

            // compile to Func<T, T>
            return lambda.Compile();
        }
    }
برای استفاده از متد CreateNewStatement باید اینگونه عمل کرد :  
       IEnumerable<Student> result = students.Select(SelectBuilder<Student>.CreateNewStatement("Field1, Field2")).ToList();

            foreach (Student student in result)
            {
                System.Console.WriteLine(student.Field1);
            }
خروجی یک لیست از Student  می باشد.
 نحوه‌ی کارکرد CreateNewStatement :

ابتدا فیلد‌های انتخابی کاربر که با "," جدا شده اند به ورودی پاس داده می‌شود سپس یک statement  خالی ایجاد می‌شود

o=>new Student()
فیلد‌های ورودی از یکدیگر تفکیک می‌شوند و به کمک Reflection پراپرتی معادل فیلد رشته ای در کلاس Student پیدا می‌شود :  
var property = typeof(T).GetProperty(o);
سپس عبارت Select و تولید شیء جدید بر اساس فیلد‌های ورودی تولید می‌شود و برای استفاده Compile  به Func می‌شود. در نهایت Func  تولید شده به Select پاس داده می‌شود و لیستی از Student  بر مبنای فیلد‌های انتخابی تولید می‌شود. 

دریافت مثال : DynamicSelect.zip 
مطالب
ذخیره‌ی سوابق کامل تغییرات یک رکورد در یک فیلد توسط Entity framework Core
در این مقاله، نوشته‌ی ایمان محمدی، ذخیره‌ی اطلاعات نظارتی هر Entity توسط دو فیلد CreatedSources و ModifiedSources به صورت JSON انجام می‌شود که در هر کدام از این فیلدها، اطلاعات مختلفی مانند ip کاربر، شناسه دستگاه، HostName، ClientName و یک سری اطلاعات دیگر ذخیره می‌شوند. بیایید به این اطلاعات متادیتا بگوییم. در این حالت اگر رکورد، چندین بار تغییر کند، متادیتای آخرین تغییرات در فیلد ModifiedSources ذخیره می‌شود. حالا اگر ما بخواهیم اطلاعات متادیتای همه‌ی تغییرات را داشته باشیم چه؟ اگر بخواهیم علاوه بر اطلاعات بالا، اینکه چه کسی و در چه زمانی این تغییرات را انجام داده است، نیز داشته باشیم چطور؟ اگر بخواهیم حتی اطلاعات متادیتای حذف یک رکورد را داشته باشیم چطور (در حالت soft-delete که رکورد واقعا پاک نمی‌شود)؟ سوال جالبتر اینکه اگر بخواهیم تمام تاریخچه‌ی مقادیر مختلف یک رکورد را از ابتدای ایجاد شدن داشته باشیم چطور؟ در این مقاله قصد داریم به همه‌ی این موارد اضافی برسیم؛ آن هم فقط با یک ستون در Entityهایمان، به اسم Audit!

ابتدا کلاس پایه موجودیت‌هایمان را تعریف می‌کنیم؛ تا بر روی Entityهایمان بتوانیم فیلد نظارتی Audit را اعمال کنیم:
public class BaseEntity : IBaseEntity
{
   [JsonIgnore]
   int Id { get; set; } 

   [JsonIgnore] 
    string? Audit { get; set; }
}
ویژگی [JsonIgnore]  به این منظور استفاده شده است تا از serialize کردن این فیلدها هنگام ایجاد Audit، جلوگیری شود؛ تا در نهایت حجم جیسن Audit کاهش یابد. با مطالعه‌ی ادامه‌ی مقاله، متوجه این قضیه خواهید شد.

دقیقا مانند مقاله‌ی اشاره شده (که خواندن آن توصیه می‌شود)، کلاس AuditSourceValues را ایجاد می‌کنیم:
public class AuditSourceValues
{
    [JsonProperty("hn")]
    public string? HostName { get; set; }

    [JsonProperty("mn")]
    public string? MachineName { get; set; }

    [JsonProperty("rip")]
    public string? RemoteIpAddress { get; set; }

    [JsonProperty("lip")]
    public string? LocalIpAddress { get; set; }

    [JsonProperty("ua")]
    public string? UserAgent { get; set; }

    [JsonProperty("an")]
    public string? ApplicationName { get; set; }

    [JsonProperty("av")]
    public string? ApplicationVersion { get; set; }

    [JsonProperty("cn")]
    public string? ClientName { get; set; }

    [JsonProperty("cv")]
    public string? ClientVersion { get; set; }

    [JsonProperty("o")]
    public string? Other { get; set; }
}
با تعریف کردن نام برای فیلد‌های JSON و نادیده گرفتن مقادیر نال، سعی کردیم حجم خروجی JSON پایین باشد.

اکنون کلاس EntityAudit را ایجاد می‌کنیم که شامل تمامی اطلاعات مورد نیاز ما برای ثبت تاریخچه‌ی کامل هر موجودیت است:
public class EntityAudit<TEntity>
{
    [JsonProperty("type")]
    [JsonConverter(typeof(StringEnumConverter))]
    public EntityEventType EventType { get; set; }

    [JsonProperty("user", NullValueHandling = NullValueHandling.Include)]
    public int? ActorUserId { get; set; }

    [JsonProperty("at")]
    public DateTime ActDateTime { get; set; }

    [JsonProperty("sources")]
    public AuditSourceValues? AuditSourceValues { get; set; }

    [JsonProperty("newValues", NullValueHandling = NullValueHandling.Include)]
    public TEntity NewEntity { get; set; } = default!;

    public string? SerializeJson()
    {
        return JsonSerializer.Serialize(this, 
            options: new JsonSerializerOptions { WriteIndented = false, IgnoreNullValues = true }); 
    }
}

دقت کنید که این کلاس به صورت جنریک تعریف شده است تا اگر بعدا بخواهیم آن را Deserialize کنیم و مثلا از آن API بسازیم، یا استفاده‌ی خاصی را از آن داشته باشیم، به‌راحتی به Entity مد نظر تبدیل شود. در این مقاله فقط به ذخیره‌ی آن پرداخته می‌شود و استفاده از این فیلد که به راحتی و با کمک DbFunctionها در Entity Framework قابل انجام است به خواننده واگذار می‌شود. 

همچنین اینام EntityEventType که تعریف آن در زیر می‌آید دارای ویژگی [JsonConverter(typeof(StringEnumConverter))]  می‌باشد تا مقدار رشته‌ای آن را بجای مقدار عددی، در خروجی جیسن داشته باشیم. این اینام، شامل  تمامی عملیاتی است که بر روی یک رکورد قابل انجام است و به این صورت تعریف می‌شود:
public enum EntityEventType
{
    Create = 0,
    Update = 1,
    Delete = 2
}

تامین اطلاعات کلاس AuditSourceValues به همان صورت است که در مقاله‌ی اشاره شده آمده‌است؛ ابتدا تعریف اینترفیس IAuditSourcesProvider و سپس ایجاد کلاس AuditSourcesProvider:
public interface IAuditSourcesProvider
{
    AuditSourceValues GetAuditSourceValues();
}
public class AuditSourcesProvider : IAuditSourcesProvider
{
    protected readonly IHttpContextAccessor HttpContextAccessor;

    public AuditSourcesProvider(IHttpContextAccessor httpContextAccessor)
    {
        HttpContextAccessor = httpContextAccessor;
    }

    public virtual AuditSourceValues GetAuditSourceValues()
    {
        var httpContext = HttpContextAccessor.HttpContext;

        return new AuditSourceValues
        {
            HostName = GetHostName(httpContext),
            MachineName = GetComputerName(httpContext),
            LocalIpAddress = GetLocalIpAddress(httpContext),
            RemoteIpAddress = GetRemoteIpAddress(httpContext),
            UserAgent = GetUserAgent(httpContext),
            ApplicationName = GetApplicationName(httpContext),
            ClientName = GetClientName(httpContext),
            ClientVersion = GetClientVersion(httpContext),
            ApplicationVersion = GetApplicationVersion(httpContext),
            Other = GetOther(httpContext)
        };
    }

    protected virtual string? GetUserAgent(HttpContext httpContext)
    {
        return httpContext.Request?.Headers["User-Agent"].ToString();
    }

    protected virtual string? GetRemoteIpAddress(HttpContext httpContext)
    {
        return httpContext.Connection?.RemoteIpAddress?.ToString();
    }

    protected virtual string? GetLocalIpAddress(HttpContext httpContext)
    {
        return httpContext.Connection?.LocalIpAddress?.ToString();
    }

    protected virtual string GetHostName(HttpContext httpContext)
    {
        return httpContext.Request.Host.ToString();
    }

    protected virtual string GetComputerName(HttpContext httpContext)
    {
        return Environment.MachineName;
    }
    protected virtual string? GetApplicationName(HttpContext httpContext)
    {
        return Assembly.GetEntryAssembly()?.GetName().Name;
    }

    protected virtual string? GetApplicationVersion(HttpContext httpContext)
    {
        return Assembly.GetEntryAssembly()?.GetName().Version.ToString();
    }

    protected virtual string? GetClientVersion(HttpContext httpContext)
    {
        return httpContext.Request?.Headers["client-version"];
    }
    protected virtual string? GetClientName(HttpContext httpContext)
    {
        return httpContext.Request?.Headers["client-name"];
    }

    protected virtual string? GetOther(HttpContext httpContext)
    {
        return null;
    }
}

حالا برای تامین اطلاعات کلاس EntityAudit کار مشابهی می‌کنیم. ابتدا اینترفیس IEntityAuditProvider را به صورت زیر تعریف می‌کنیم: 
public interface IEntityAuditProvider
{
    string? GetAuditValues(EntityEventType eventType, object? entity, string? previousJsonAudit = null);
}

  و سپس کلاس EntityAuditProvider را ایجاد می‌کنیم:
public class EntityAuditProvider : IEntityAuditProvider
{
    private readonly IHttpContextAccessor _httpContextAccessor;
    private readonly IAuditSourcesProvider _auditSourcesProvider;

    #region Constructor Injections

    public EntityAuditProvider(IHttpContextAccessor httpContextAccessor, IAuditSourcesProvider auditSourcesProvider)
    {
        _httpContextAccessor = httpContextAccessor;
        _auditSourcesProvider = auditSourcesProvider;
    }

    #endregion

    public virtual string? GetAuditValues(EntityEventType eventType, object? newEntity, string? previousJsonAudit = null)
    {
        var httpContext = _httpContextAccessor.HttpContext;
        int? userId;

        var user = httpContext.User;

        if (!user.Identity.IsAuthenticated)
            userId = null;
        else
            userId = user.Claims.Where(x => x.Type == "UserID").Select(x => x.Value).First().ToInt();

        var auditSourceValues = _auditSourcesProvider.GetAuditSourceValues();

        var auditJArray = new JArray();

        // Update & Delete
        if (eventType == EntityEventType.Update || eventType == EntityEventType.Delete)
        {
            auditJArray = JArray.Parse(previousJsonAudit!);
        }

        // Delete => No NewValues
        if (eventType == EntityEventType.Delete)
        {
            newEntity = null;
        }

        JObject newAuditJObject = JObject.FromObject(new EntityAudit<object?>
        {
            EventType = eventType,
            ActorUserId = userId,
            ActDateTime = DateTime.Now,
            AuditSourceValues = auditSourceValues,
            NewEntity = newEntity
        }, new JsonSerializer
        {
            NullValueHandling = NullValueHandling.Ignore,
            Formatting = Formatting.None
        });

        auditJArray.Add(newAuditJObject);

        return auditJArray.SerializeToJson(true);
    }
}
در این کلاس برای اینکه به جیسن قبلی Audit که تاریخچه‌ی قبلی رکورد می‌باشد یک آیتم را اضافه کنیم، از JArray و JObject پکیج Newtonsoft استفاده کرد‌ه‌ایم.

حالا همه چیز آماده است. مانند مقاله‌ی اشاره شده، از مفهوم Interceptor استفاده می‌کنیم. کلاس AuditSaveChangesInterceptor را که از کلاس SaveChangesInterceptor مشتق می‌شود، به صورت زیر ایجاد می‌کنیم: 
public class AuditSaveChangesInterceptor : SaveChangesInterceptor
{
    private readonly IEntityAuditProvider _entityAuditProvider;

    #region Constructor Injections

    public AuditSaveChangesInterceptor(IEntityAuditProvider entityAuditProvider)
    {
        _entityAuditProvider = entityAuditProvider;
    }

    #endregion

    public override InterceptionResult<int> SavingChanges(DbContextEventData eventData, InterceptionResult<int> result)
    {
        ApplyAudits(eventData.Context.ChangeTracker);
        return base.SavingChanges(eventData, result);
    }

    public override ValueTask<InterceptionResult<int>> SavingChangesAsync(DbContextEventData eventData, InterceptionResult<int> result,
        CancellationToken cancellationToken = new CancellationToken())
    {
        ApplyAudits(eventData.Context.ChangeTracker);
        return base.SavingChangesAsync(eventData, result, cancellationToken);
    }

    private void ApplyAudits(ChangeTracker changeTracker)
    {
        ApplyCreateAudits(changeTracker);
        ApplyUpdateAudits(changeTracker);
        ApplyDeleteAudits(changeTracker);
    }

    private void ApplyCreateAudits(ChangeTracker changeTracker)
    {
        var addedEntries = changeTracker.Entries()
            .Where(x => x.State == EntityState.Added);

        foreach (var addedEntry in addedEntries)
        {
            if (addedEntry.Entity is IBaseEntity entity)
            {              
                entity.Audit = _entityAuditProvider.GetAuditValues(EntityEventType.Create, entity);
            }
        }
    }

    private void ApplyUpdateAudits(ChangeTracker changeTracker)
    {
        var modifiedEntries = changeTracker.Entries()
            .Where(x => x.State == EntityState.Modified);

        foreach (var modifiedEntry in modifiedEntries)
        {
            if (modifiedEntry.Entity is IBaseEntity entity)
            {
                var eventType = entity.IsArchived ? EntityEventType.Delete : EntityEventType.Update; // Maybe Soft Delete
                entity.Audit = _entityAuditProvider.GetAuditValues(eventType, entity, entity.Audit);
            }
        }
    }

    private void ApplyDeleteAudits(ChangeTracker changeTracker)
    {
        var deletedEntries = changeTracker.Entries()
            .Where(x => x.State == EntityState.Deleted);

        foreach (var modifiedEntry in deletedEntries)
        {
            if (modifiedEntry.Entity is IBaseEntity entity)
            {
                entity.Audit = _entityAuditProvider.GetAuditValues(EntityEventType.Delete, entity, entity.Audit);
            }
        }
    }

}


و سپس آن را به سیستم معرفی می‌کنیم:

services.AddDbContext<ATADbContext>((serviceProvider, options) =>
{
    options
        .UseSqlServer(...)

    // Interceptors
    var entityAuditProvider = serviceProvider.GetRequiredService<IEntityAuditProvider>();
    options.AddInterceptors(new AuditSaveChangesInterceptor(entityAuditProvider));

});

یادمان باشد همه‌ی سرویس‌ها را باید در برنامه رجیستر کنیم تا بتوانیم از تزریق وابستگی‌ها مانند کدهای بالا استفاده نماییم. 

نمونه‌ی نتیجه‌ای را که از این روش بدست می‌آید، در این تصویر می‌بینید. اگر بخواهید به صورت نرم‌افزاری یا کدی از این دیتا استفاده کنید، باید آن را Deserialize کنید که همانطور که گفته شد با امکاناتی که SQL Server برای خواندن فیلدهای JSON دارد و معرفی آن به EF، قابل انجام است. در غیر اینصورت استفاده از این دیتا به صورت چشمی یا استفاده از Json Formatterها به‌راحتی امکان پذیر است. 

 
نمونه‌ی کامل فیلد Audit که در JsonFormatter قرار داده شده است، بعد از ایجاد شدن و یکبار آپدیت و سپس حذف نرم رکورد:
[
   {
      "type":"Create",
      "user":1,
      "at":"2020-11-24T23:05:54.2692711+03:30",
      "sources":{
         "hn":"localhost:44398",
         "mn":"DESKTOP-N1GAV2U",
         "rip":"::1",
         "lip":"::1",
         "ua":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36",
         "an":"Server.Api",
         "av":"1.0.0.0"
      },
      "newValues":{               
         "Name":"Farshad"
      }
   },
   {
      "type":"Update",
      "user":1,
      "at":"2020-11-24T23:06:20.0838188+03:30",
      "sources":{
         "hn":"localhost:44398",
         "mn":"DESKTOP-N1GAV2U",
         "rip":"::1",
         "lip":"::1",
         "ua":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36",
         "an":"Server.Api",
         "av":"1.0.0.0"
      },
      "newValues":{                 
         "Name":"Edited Farshad"
      }
   },
   {
      "type":"Delete",
      "user":null,
      "at":"2020-11-24T23:06:28.601837+03:30",
      "sources":{
         "hn":"localhost:44398",
         "mn":"DESKTOP-N1GAV2U",
         "rip":"::1",
         "lip":"::1",
         "ua":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36",
         "an":"Server.Api",
         "av":"1.0.0.0"
      },
      "newValues":null
   }
]

یک روش مرسوم داشتن تاریخچه‌ی تغییرات رکورد که با جستجو در اینترنت نیز می‌توان به آن رسید، داشتن یک جدول جداگانه به اسم Audit است که با هر بار تغییر هر Entity، یک رکورد در آن ایجاد می‌شود. ساختار آن مانند تصاویر زیر است:


ولی روش گفته شده در این مقاله، همین عملیات را به صورت کاملتری و فقط بر روی یک ستون همان جدول انجام می‌دهد که باعث ذخیره‌ی دیتای کمتر، یکپارچگی بهتر و دسترسی‌پذیری و راحتی استفاده از آن می‌شود.

مطالب
چقدر سی‌شارپ را می‌شناسیم؟!
هر چند که #C به عنوان یک زبان ساده برای درک و یادگیری شناخته میشود، گاهی رفتاری غیرمنتظره را حتی برای توسعه دهنده‌های با تجربه خواهد داشت. در این نوشته مروری بر بعضی از این رفتارها و توضیح دلایل پشت آن خواهیم کرد.

Value 

اگر مقدار null مدیریت نشود، میتواند باعث ایجاد نتایج نامطلوب، یا باعث از کار افتادن برنامه شود. شئ null به خودی خود مخرب نیست؛ اما اگر بخواهیم به یکی از متدها یا خاصیت‌های آن دسترسی داشته باشیم، با استثنای معروف NullReferenceException روبرو می‌شویم. برای در امان ماندن، باید همیشه اطمینان داشته باشیم که پیش از استفاده از امکانات شئ، ارجاع آن null نباشد. در قطعه کد زیر برخی از رفتارهای null value آورده شده:
// Behavior 1 
object obj = null;
bool objValueEqual = obj.Equals(null);

// Behavior 2 
object obj = null;
Type objType = obj.GetType();

// Behavior 3
string str = (string)null;
bool strType = str is string;

// Behavior 4
int num = 5;
Nullable<int> nullableNum = 5;
bool typeEqual = num.GetType() == nullableNum.GetType();

// Behavior 5
Type inType = typeof(int);
Type nullableIntType = typeof(Nullable<int>);
bool typeEqual = inType == nullableIntType;
  • در رفتار اول هرچند که متد Equals از شی null در دسترس است و با مقدار null مقایسه شده اما در زمان اجرا پیغام خطای NullReferenceException را خواهیم داشت. 
  • در رفتار دوم هم پیغام خطا را خواهیم داشت. شئ با مقدار null، در زمان اجرا هیچ نوعی را برنمیگرداند. 
  • در رفتار سوم هر چند که مقدار null صریحا به رشته تبدیل شده و برای چاپ متغیر str پیام خطایی را نخواهیم داشت، اما متغیر strType در خروجی، false خواهد بود. همانطور که در رفتار دوم گفته شد، شیء با مقدار null هیچ نوعی را برنمیگرداند. 
  • خروجی رفتار چهارم true خواهد بود. به این صورت که هر دو از نوع System.int32 خواهند بود.
  • در رفتار پنجم اگر از نوع‌ها، خروجی جداگانه بگیریم، خواهیم دیدکه نوع int از System.int32 و <Nullable<int از نوع System.Nullable`1[System.Int32] میباشند، در نتیجه خروجی false است. اشیای nullable بعد از اینکه مقداری مشخص را دریافت کردند، به صورت یک شیء غیر nullable رفتار خواهند کرد.

مدیریت مقادیر null در سربارگذاری متدها   

        static void Main(string[] args)
        {
            Console.WriteLine(Method(null));
            Console.ReadLine();
        }
        private static string Method(object obj)
        {
            return "Object parameter";
        }
        private static string Method(string str)
        {
            return "String parameter";
        }
در قطعه کد بالا، فراخوانی متد سربارگذاری شده با مقدار ورودی null، باعث اجرای متدی میشود که پارامتر ورودی آن از نوع رشته است. تا زمانیکه یکی از پارامترها بتواند به دیگری تبدیل شود، برنامه بدون خطا کامپایل خواهد شد. اما اگر هیچ تبدیل نوعی بین پارامترها وجود نداشته باشد، کد کامپایل نخواهد شد. بین متدهای سربارگذاری شده، متدی که نوع پارامتر آن مشخص‌تر است، فراخوانی میشود. برای اینکه متد خاصی را مجبور به اجرا کنیم، باید مقدار null را پیش از ارسال، به نوع پارامتر آن متد تبدیل کنید.(object)null

رفتارهای ()Math.Round

var rounded = Math.Round(1.5); // 2
var rounded = Math.Round(2.5); // 2

var rounded = Math.Round(2.5, MidpointRounding.ToEven); // 2
var rounded = Math.Round(2.5, MidpointRounding.AwayFromZero); // 3

var value = 1.4f;
var rounded = Math.Round(value + 0.1f); // 1
متد Round از کلاس Math، ورودی را که عددی اعشاری است، گرد میکند. اگر مقدار اعشار کمتر از ۰.۵ باشد، به سمت پایین و اگر بیشتر از ۰.۵ باشد، به سمت بالا گرد میشود. اما اگر ورودی دقیقا مقدار اعشاری ۰.۵ را داشته باشد چطور؟ متد Round به صورت پیش‌فرض ورودی  را به نزدیکترین عدد زوج گرد میکند، به این دلیل خط‌های ۱ و ۲ از قطعه کد بالا، خروجی یکسان ۲ را خواهند داشت. این متد آرگومان دومی هم دارد که دو حالت MidpointRounding.ToEven و MidpointRounding.AwayFromZero را می‌توان برای آن مشخص کرد. ToEven همان رفتار پیش‌فرض متد است که ورودی را به نزدیکترین عدد زوج گرد میکند و از حالت AwayFromZero میشود برای گرد کردن ورودی به عدد بزرگتر استفاده کرد (خط ۵). 
در خط ۸ یک حالت خاص دیگر نیز داریم. انتظار میرود که خروجی، به نزدیکترین عدد زوج گرد شود و نتیجه ۲ باشد؛ مثل خط ۱، اما خروجی ۱ خواهد بود. وقتی ورودی‌ها را از نوع float در نظر بگیریم، مقدار 0.1f کمی کمتر از ۰.۱ خواهد بود و نتیجه محاسبه کمی کمتر از ۱.۵. برای پرهیز از این مسئله بهتر است ورودی متد Round را از نوع decimal در نظر بگیریم.
 

مقدار دهی اولیه کلاسها 

پیشنهاد میشود برای جلوگیری از وقوع استثناءها از مقدار دهی اولیه کلاسها در سازنده کلاس، بخصوص اگر سازنده استاتیک داشته باشیم، پرهیز کنیم. ترتیب مقدار دهی اولیه زمانیکه از یک کلاس یه وهله ساخته میشود، به قرار زیر است:
  • فیلدهای استاتیک (زمانیکه کلاس برای اولین بار در دسترس قرار میگیرد)
  • سازنده استاتیک (زمانیکه کلاس برای اولین بار در دسترس قرار میگیرد)
  • فیلدهایی از کلاس که در نمونه ساخته شده در دسترس قرار میگیرند.
  • سازنده کلاس که در زمان ایجاد یک نمونه از کلاس در دسترس قرار میگیرد.
در قطعه کد زیر اگر نمونه‌ای از کلاس FailingClass ساخته شود، انتظار میرود که خطای InvalidOperationException صادر شود؛ اما برنامه با خطای TypeInitializationException متوقف میشود. در واقع در زمان اجرا به صورت خودکار خطای TypeInitializationException، خطای InvalidOperationException را پوشش میدهد. اگر بجای  InvalidOperationException یک دستور ساده WriteLine داشته باشیم، سازنده کلاس FailingClass مجال کامل شدن را خواهد داشت. اما با خطایی که داخل سازنده صادر کرده‌ایم، سازنده کلاس بدون اینکه به طور کامل به پایان برسد، متوقف خواهد شد. 
    public static class Config
    {
        public static bool ThrowException { get; set; } = true;
    }

    public class FailingClass
    {
        static FailingClass()
        {
            if (Config.ThrowException)
            {
                throw new InvalidOperationException();
            }
        }
    }
حال که میدانیم خطای اصلی که در این مواقع صادر میشود چیست، شاید بخواهیم به روش زیر آن را مدیریت کنیم.
try
{
   var failedInstance = new FailingClass();
}
catch (TypeInitializationException) { }

Config.ThrowException = false;
var instance = new FailingClass();
اگر قطعه کد بالا را بدون بخش try  اجرا کنیم، برنامه ابتدا صدور خطا را false میکند و بدون مشکل از کلاس نمونه‌ای ساخته میشود. اما اگر بخش try را داشته باشیم، هر چند که خطا در بخش try گرفته میشود و تنظیم صدور خطا false است، باز هم در خط آخر و در زمان ایجاد یک نمونه از کلاس، پیام خطای TypeInitializationException خواهیم داشت. علت آن است که سازنده استاتیک کلاس فقط یک بار فراخوانی میشود و اگر در این فراخوانی خطایی رخ دهد، این خطا در اثر ایجاد سایر نمونه‌ها و یا استفاده مستقیم از کلاس، مجددا صادر خواهد شد. در نتیجه این کلاس تا زمانیکه پردازش آن در جریان است، غیرقابل استفاده خواهد بود. یک مثال دیگر از ترتیب فراخوانی‌ها را بررسی میکنیم.
public class BaseClass
{
    {
        public BaseClass()
        {
            VirtualMethod(1);
        }
        public virtual int VirtualMethod(int dividend)
        {
            return dividend / 1;
        }
    }

    public class DerivedClass : BaseClass
    {
        int divisor;
        public DerivedClass()
        {
            divisor = 1;
        }
        public override int VirtualMethod(int dividend)
        {
            return base.VirtualMethod(dividend / divisor);
        }
    }
در قطعه کد بالا هر چند که همه چیز درست به نظر میرسد، اما اگر از کلاس DerivedClass نمونه‌ای ساخته شود، با پیام خطای DivideByZeroException مواجه میشویم. علت این مشکل ترتیب مقدار دهی اولیه در کلاسهای فرزند است. ابتدا فیلدهای کلاس فرزند مقدار دهی میشوند و بعد فیلدهای کلاس پایه، بعد سازنده کلاس پایه فراخوانی میشود و پس از آن سازنده کلاس فرزند. ترتیب فراخوانی‌ها به همین جا محدود نمیشود. 
در مثال بالا متد VirtualMethod که در سازنده کلاس پایه فراخوانی شده، پیش از این که کد داخل خود را اجرا کند، متد VirtualMethod را در کلاس فرزند، فراخوانی میکند و کلاس فرزند مجالی را برای مقدار دهی متغیر divisor، در سازنده خود نخواهد داشت. در نتیجه مقدار این متغیر در متد VirtualMethod صفر خواهد ماند و باعث صدور استثناء میشود. برای پرهیز از چنین مشکلاتی بهتر است فیلدهای یک کلاس به صورت مستقیم مقدار دهی اولیه بشوند. مقدار دهی اولیه و یا فراخوانی متدهای virtual در سازنده کلاس‌ها میتواند باعث بروز رفتارهای پیش بینی نشده‌ای شوند.

چند ریختی 

 چند ریختی قابلیتی است برای کلاسهای متفاوت تا بتوانند یک اینترفیس مشابه را به صورت‌های مختلفی پیاده‌سازی کنند. اما قطعه کد زیر قاعده چند ریختی را نقض میکند. 
 class Program
    {
        static void Main(string[] args)
        {
            var instance = new DerivedClass();
            var result = instance.Method();
            result = ((BaseClass)instance).Method();
            Console.WriteLine(instance + " -> " + result); // Derived Class ...  -> Method in BaseClass
            Console.ReadLine();

        }
    }

    public class BaseClass
    {
        public virtual string Method()
        {
            return "Method in BaseClass";
        }
    }

    public class DerivedClass : BaseClass
    {
        public override string ToString()
        {
            return "Derived Class ... ";
        }

        public new string Method()
        {
            return "Method in DerivedClass";
        }
    }
در خروجی کنسول هرچند که Instance همچنان وهله‌ای از DerivedClass است اما به دلیل تبدیل در خط ۷، Method کلاس DerivedClass به وسیله کلاس پایه پنهان شده و Method کلاس پایه فراخوانی میشود. در قطعه کد زیر حالت مشابه‌ای را که در بالا داشتیم، برای interface‌ها دیده میشود.
class Program
    {
        static void Main(string[] args)
        {
            var instance = new DerivedClass();
            var result = instance.Method(); // -> Method in DerivedClass
            result = ((IInterface)instance).Method(); // -> Method belonging to IInterface
            Console.WriteLine(result);
            Console.ReadLine();
        }
    }

    public interface IInterface
    {
        string Method();
    }

    public class DerivedClass : IInterface
    {
        public string Method()
        {
            return "Method in DerivedClass";
        }
        string IInterface.Method()
        {
            return "Method belonging to IInterface";
        }
}
هرچند که به نظر میرسد دلیلی برای استفاده از روشهای گفته شده وجود ندارد، اما اگر بخواهیم بیش از یک پیاده‌سازی را برای یک متد در یک کلاس داشته باشیم، میتواند مورد توجه قرار گیرد. بخصوص اگر نیاز باشد که پیاده‌سازی دوم خودش به طور مستقلی در کلاسی دیگر استفاده شود.

Iterators 

Iterator‌ها (تکرار شونده‌ها) ساختارهایی هستند که برای حرکت در عناصر یک collection استفاده میشوند. عموما از دستور foreach استفاده و نوع جنریک <IEnumerable<T را نمایندگی میکنند. هر چند که استفاده از آنها ساده است، اما اگر کارکرد داخلی iteratorها را درک نکنیم ممکن است به دام استفاده نادرست از آنها گرفتار شویم. در قطعه کد زیر کلاس Test صدا زده میشود و مقادیر یک تا پنج به صورت یک IEnumerable از داخل بلوک using بازگشت داده میشود. 
private IEnumerable<int> GetEnumerable(StringBuilder log)
{
     using (var test = new Test(log))
      {
          return Enumerable.Range(1, 5);
      }
}

فرض کنیم کلاس Test اینترفیس IDisposable را پیاده‌سازی کرده و در سازنده و متد Dispose خود پیامهایی را به log اضافه کند. در مثالهای واقعی، کلاس Testمیتواند اتصالی به پایگاه داده باشد و رکوردهای خوانده شده، بازگشت داده شوند. توسط حلقه زیر مقدار خروجی تابع را چاپ میکنیم.
var log = new StringBuilder();
            
foreach (var number in GetEnumerable(log))
{
     log.AppendLine($"{number}");
}
انتظار میرود که خروجی به این صورت باشد که ابتدا رشته Created (از سازنده کلاس Test) چاپ شود بعد اعداد یک تا پنج و در نهایت رشته Disposed (از متد Dispose کلاس Test). به عبارتی در ابتدای کار، بلوک using، سازنده کلاس را فراخوانی کند و بعد از اینکه بلوک به پایان کارش رسید متد Dispose کلاس فراخوانی شود. اما در واقع خروجی به صورت زیر خواهد بود. 
Created
Disposed
1
2
3
4
5
این تفاوت در دنیای واقعی مهم است؛ به اینصورت که مثلا اتصال به پایگاه داده قبل از اینکه داده‌ها خوانده شوند، بسته میشود و قطعه کد به درستی عمل نخواهد کرد. تنها راه حل، پیمایش در collection داخل using و بازگشت هر مقدار به صورت مجزا است، که در زیر آمده است.
 using (var test = new Test(log))
 {
     foreach (var i in Enumerable.Range(1,5))
     {
         yield return i;
     }
 }
فقط در این صورت است که کلاس Test بعد از اتمام کار حلقه و در زمان درست به پایان میرسد. توسط کلمه کلیدی yield و برای متدی که خروجی قابل پیمایش داشته باشد میتوان چندین مقدار را بازگشت داد. ترتیب اجرای دستورات در قطعه کد بالا به این صورت است که ابتدا نمونه‌ای از کلاس Test ایجاد میشود و سازنده کلاس فراخوانی میشود، سپس حلقه foreach به تعداد مشخص شده در Range مقادیر بازگشتی را در خروجی تابع قرار میدهد. وقتی که کار حلقه تمام شد، بلوک using دستورات را ادامه خواهد داد که برابر با خاتمه دادن به تمام نمونه‌ها و منابع استفاده شده در بلوک است؛ یعنی فراخوانی متد Dispose. با استفاده از این روش خروجی به شکل زیر خواهد بود. 
Created
1
2
3
4
5
Disposed

مطالب
بررسی تغییرات Blazor 8x - قسمت پنجم - امکان تعریف جزیره‌های تعاملی Blazor Server
در Blazor 8x می‌توان صفحات SSR ای را به همراه Blazor server islands و یا Blazor WASM islands داشت؛ یعنی یک کامپوننت Blazor Server که داخل یک صفحه‌ی معمولی SSR قرار گرفته و با سرور، ارتباط SiganlR برقرار می‌کند و یا یک کامپوننت Blazor WASM که در قسمتی از صفحه‌ی SSR درج شده و درون مرورگر کاربر اجرا می‌شود. به هر کدام از این‌ها یک «جزیره‌ی تعاملی» گفته می‌شود (interactive island). در این قسمت، نکات مرتبط با جزایر تعاملی Blazor Server را بررسی می‌کنیم.


بررسی یک مثال: تهیه یک برنامه‌ی Blazor 8x برای نمایش لیست محصولات، به همراه جزئیات آن‌ها

به لطف وجود SSR در Blazor 8x، می‌توان HTML نهایی کامپوننت‌ها و صفحات Blazor را همانند صفحات MVC و یا Razor pages، در سمت سرور تهیه و بازگشت داد. این خروجی در نهایت یک static HTML بیشتر نیست و گاهی از اوقات ما به بیش از یک خروجی ساده HTML ای نیاز داریم.
در این مثال که بر اساس قالب dotnet new blazor --interactivity Server تهیه می‌شود، قصد داریم موارد زیر را پیاده سازی کنیم:
- صفحه‌ای که یک لیست محصولات فرضی را نمایش می‌دهد : بر اساس SSR
- صفحه‌ای که جزئیات یک محصول را نمایش می‌دهد: بر اساس SSR
- دکمه‌ای در ذیل قسمت نمایش جزئیات یک محصول، برای دریافت و نمایش لیست محصولات مشابه و مرتبط: بر اساس Blazor server islands

یعنی تا جائیکه ممکن است قصد نداریم تمام صفحات و تمام قسمت‌های برنامه را با فعالسازی سراسری حالت تعاملی Blazor server که در قسمت‌های قبل در مورد آن توضیح داده شد، پیاده سازی کنیم. می‌خواهیم فقط قسمت کوچکی از این سناریو را که واقعا نیاز به یک چنین قابلیتی را دارد، توسط یک جزیره‌ی تعاملی Blazor server واقع شده‌ی در قسمتی از یک صفحه‌ی استاتیک SSR، مدیریت کنیم.


مدل برنامه: رکوردی برای ذخیره سازی اطلاعات یک محصول

namespace BlazorDemoApp.Models;

public record Product
{
    public int Id { get; set; }
    public required string Title { get; set; }
    public required string Description { get; set; }
    public decimal Price { get; set; }

    public List<int> Related { get; set; } = new();
}
در اینجا، هدف تعریف لیستی از محصولات فرضی است؛ به همراه خاصیتی که Id محصولات مشابه را نگهداری می‌کند (خاصیت Related).


سرویس برنامه: سرویسی برای بازگشت لیست محصولات

چون Blazor Server و SSR هر دو بر روی سرور اجرا می‌شوند، از لحاظ دسترسی به اطلاعات و کار با سرویس‌ها، هماهنگی کاملی وجود داشته و می‌توان کدهای یکسان و یکدستی را در اینجا بکار گرفت.
در ادامه کدهای کامل سرویس Services\ProductStore.cs را مشاهده می‌کنید:
using BlazorDemoApp.Models;

namespace BlazorDemoApp.Services;

public interface IProductStore
{
    IList<Product> GetAllProducts();
    Product GetProduct(int id);
    IList<Product> GetRelatedProducts(int productId);
}

public class ProductStore : IProductStore
{
    private static readonly List<Product> ProductsDataSource =
        new()
        {
            new Product
            {
                Id = 1, Title = "Smart speaker", Price = 22m,
                Description =
                    "This smart speaker delivers excellent sound quality and comes with built-in voice control, offering an impressive music listening experience.",
                Related = new List<int> { 2, 3 },
            },
            new Product
            {
                Id = 2, Title = "Regular speaker", Price = 89m,
                Description =
                    "Enjoy room-filling sound with this regular speaker. With its slick design, it perfectly fits into any room in your house.",
                Related = new List<int> { 1, 3 },
            },
            new Product
            {
                Id = 3, Title = "Speaker cable", Price = 12m,
                Description =
                    "This high-quality speaker cable ensures a reliable and clear audio connection for your sound system.",
            },
        };

    public IList<Product> GetAllProducts() => ProductsDataSource;

    public Product GetProduct(int id) => ProductsDataSource.Single(p => p.Id == id);

    public IList<Product> GetRelatedProducts(int productId)
    {
        var product = ProductsDataSource.Single(x => x.Id == productId);
        return ProductsDataSource.Where(p => product.Related.Contains(p.Id)).ToList();
    }
}
هدف از این سرویس، ارائه‌ی لیست تمام محصولات، دریافت اطلاعات یک محصول و همچنین یافتن لیست محصولات مشابه یک محصول خاص است.
این سرویس را باید در فایل Program.cs برنامه به صورت زیر معرفی کرد تا در فایل‌های razor برنامه‌ی جاری قابل دسترسی شود:
builder.Services.AddScoped<IProductStore, ProductStore>();


تکمیل صفحه‌ی نمایش لیست محصولات

قصد داریم زمانیکه کاربر برای مثال به آدرس فرضی http://localhost:5136/products مراجعه کرد، با تصویر لیستی از محصولات مواجه شود:


کدهای این صفحه را که در فایل Components\Pages\Store\ProductsList.razor قرار می‌گیرند، در ادامه مشاهده می‌کنید:

@page "/Products"
@using BlazorDemoApp.Models
@using BlazorDemoApp.Services

@inject IProductStore Store

@attribute [StreamRendering]

<h3>Products</h3>

@if (_products == null)
{
    <p>Loading...</p>
}
else
{
    @foreach (var item in _products)
    {
        <a href="/ProductDetails/@item.Id">
            <div>
                <div>
                    <h5>@item.Title</h5>
                </div>
                <div>
                    <h5>@item.Price.ToString("c")</h5>
                </div>
            </div>
        </a>
    }
}

@code {
    private IList<Product>? _products;

    protected override Task OnInitializedAsync() => GetProductsAsync();

    private async Task GetProductsAsync()
    {
        await Task.Delay(1000); // Simulates asynchronous loading to demonstrate streaming rendering
        _products = Store.GetAllProducts();
    }

}
توضیحات:
- جهت دسترسی به سرویس لیست محصولات، ابتدا سرویس IProductStore به این صفحه تزریق شده‌است.
- سپس در روال رویدادگردان آغازین OnInitializedAsync، کار دریافت اطلاعات و انتساب آن به لیستی، صورت گرفته‌است.
- در این متد جهت شبیه سازی یک عملیات async از یک Task.Delay استفاده شده‌است.
- چون این صفحه، یک صفحه‌ی SSR عادی است، بدون تعریف ویژگی StreamRendering در آن، پس از اجرای برنامه، هیچگاه قسمت loading که در حالت products == null_ قرار است ظاهر شود، نمایش داده نمی‌شود؛ چون در این حالت (حذف نوع رندر)، صفحه‌ی نهایی که به کاربر ارائه خواهد شد، یک صفحه‌ی استاتیک کاملا رندر شده‌ی در سمت سرور است و کاربر باید تا زمان پایان این رندر در سمت سرور، منتظر بماند و سپس صفحه‌ی نهایی را دریافت و مشاهده کند. در حالت Streaming rendering، ابتدا می‌توان یک قالب HTML ای را بازگشت داد و سپس مابقی محتوای آن‌را به محض آماده شدن در طی چند مرحله بازگشت داد.
- لینک‌های نمایش داده شده‌ی در اینجا، به صفحه‌ی ProductDetails اشاره می‌کنند که در آن، جزئیات محصول انتخابی نمایش داده می‌شوند.


تکمیل صفحه‌ی نمایش جزئیات یک محصول


در صفحه‌ی کامپوننت Components\Pages\Store\ProductDetails.razor، کار نمایش جزئیات محصول انتخابی صورت می‌گیرد:

@page "/ProductDetails/{ProductId}"
@using BlazorDemoApp.Models
@using BlazorDemoApp.Services

@inject IProductStore Store

@attribute [StreamRendering]

@if (_product == null)
{
    <p>Loading...</p>
}
else
{
    <div>
        <div>
            <h5>
                @_product.Title (@_product.Price.ToString("C"))
            </h5>
            <p>
                @_product.Description
            </p>
        </div>
        @if (_product.Related.Count > 0)
        {
            <div>
                <RelatedProducts ProductId="Convert.ToInt32(ProductId)" />
            </div>
        }
    </div>
    <NavLink href="/Products">Back</NavLink>
}

@code {
    private Product? _product;

    [Parameter]
    public string? ProductId { get; set; }

    protected override Task OnInitializedAsync() => GetProductAsync();

    private async Task GetProductAsync()
    {
        await Task.Delay(1000); // Simulates asynchronous loading to demonstrate streaming rendering
        _product = Store.GetProduct(Convert.ToInt32(ProductId));
    }

}
توضیحات:
- باتوجه به نحوه‌ی تعریف مسیریابی این صفحه، پارامتر ProductId از طریق آدرسی مانند http://localhost:5136/ProductDetails/1 دریافت می‌شود.
- سپس این ProductId را در روال رخ‌دادگردان OnInitializedAsync، برای یافتن جزئیات محصول انتخابی از سرویس تزریقی IProductStore، بکار می‌گیریم.
- در اینجا نیز از Task.Delay برای شبیه سازی یک عملیات طولانی async مانند دریافت اطلاعات از یک بانک اطلاعاتی، کمک گرفته شده‌است.
- همچنین برای نمایش قسمت loading صفحه در حالت SSR، بازهم از StreamRendering استفاده کرده‌ایم.
- اگر دقت کرده باشید، ذیل تصویر اطلاعات محصول، دکمه‌ای نیز جهت بارگذاری اطلاعات محصولات مشابه، قرار دارد که ProductId محصول انتخابی را دریافت می‌کند:
<RelatedProducts ProductId="Convert.ToInt32(ProductId)" />
بنابراین در ادامه کامپوننت RelatedProducts فوق را تکمیل می‌کنیم.


تکمیل کامپوننت نمایش لیست محصولات مشابه و مرتبط

در فایل Components\Pages\Store\RelatedProducts.razor، کار نمایش یک دکمه و سپس نمایش لیستی از محصولات مشابه، صورت می‌گیرد:
@using BlazorDemoApp.Models
@using BlazorDemoApp.Services
@inject IProductStore Store

<button @onclick="LoadRelatedProducts">Related products</button>

@if (_loadRelatedProducts)
{
    @if (_relatedProducts == null)
    {
        <p>Loading...</p>
    }
    else
    {
        <div>
            @foreach (var item in _relatedProducts)
            {
                <a href="/ProductDetails/@item.Id">
                    <div>
                        <h5>@item.Title (@item.Price.ToString("C"))</h5>
                    </div>
                </a>
            }
        </div>
    }
}

@code{

    private IList<Product>? _relatedProducts;
    private bool _loadRelatedProducts;

    [Parameter]
    public int ProductId { get; set; }

    private async Task LoadRelatedProducts()
    {
        _loadRelatedProducts = true;
        await Task.Delay(1000); // Simulates asynchronous loading to demonstrate InteractiveServer mode
        _relatedProducts = Store.GetRelatedProducts(ProductId);
    }

}

تعاملی کردن کامپوننت نمایش لیست محصولات مشابه

مشکل! اگر در این حالت برنامه را اجرا کرده و بر روی دکمه‌ی related products کلیک کنیم، هیچ اتفاقی رخ نمی‌دهد! یعنی روال رویدادگران LoadRelatedProducts اصلا اجرا نمی‌شود. علت اینجا است که صفحات SSR، در نهایت یک static HTML بیشتر نیستند و فاقد قابلیت‌های تعاملی، مانند واکنش نشان دادن به کلیک بر روی یک دکمه هستند.
محدودیتی که به همراه صفحات SSR وجود دارد این است: این نوع کامپوننت‌ها و صفحات فقط یکبار رندر می‌شوند و نه بیشتر. بله می‌توان بر روی آن‌ها ده‌ها دکمه، نوارهای لغزان، دراپ‌داون و غیره را قرار داد، اما ... نمی‌توان هیچگونه تعاملی را با آن‌ها داشت. کامپوننت نهایی رندر شده و نمایش داده شده، دیگر در هیچ‌جائی اجرا نمی‌شود. در این حالت است که می‌توان تصمیم گرفت که نیاز است قسمتی از این صفحه، تعاملی شود.
به همین جهت باید نحوه‌ی رندر کامپوننت RelatedProducts را به صورت یک جزیره‌ی تعاملی Blazor server درآورد تا رویداد منتسب به دکمه‌ی related products موجود در آن، پردازش شود. بنابراین به صفحه‌ی ProductDetails.razor مراجعه کرده و rendermode@ این کامپوننت را به صورت زیر به حالت InteractiveServer تغییر می‌دهیم:
<RelatedProducts ProductId="Convert.ToInt32(ProductId)" @rendermode="@InteractiveServer"/>
اکنون اگر برنامه را مجددا اجرا کرده و بر روی دکمه‌ی نمایش محصولات مشابه قرار گرفته در ذیل جزئیات یک محصول کلیک کنیم، بدون مشکل کار می‌کند:


نحوه‌ی پردازش پشت صحنه‌ی این نوع صفحات هم جالب است. برای اینکار به برگه‌ی network مخصوص developer tools مرورگر مراجعه کرده و مراحل رسیدن به صفحه‌ی نمایش جزئیات محصول را طی می‌کنیم:


- اگر دقت کنید، جابجایی بین صفحات، با استفاده از fetch انجام شده؛ یعنی با اینکه این صفحات در اصل static HTML خالص هستند، اما ... کار full reload صفحه مانند ASP.NET Web forms قدیمی انجام نمی‌شود (و یا حتی برنامه‌های MVC و Razor pages) و نمایش صفحات، Ajax ای است و با fetch استاندارد آن صورت می‌گیرد تا هنوز هم حس و حال SPA بودن برنامه حفظ شود. همچنین اطلاعات DOM کل صفحه را هم به‌روز رسانی نمی‌کند؛ فقط موارد تغییر یافته در اینجا به روز رسانی خواهند شد.
این موارد توسط فایل blazor.web.js درج شده‌ی در کامپوننت آغازین App.razor، به صورت خودکار مدیریت می‌شوند:
<script src="_framework/blazor.web.js"></script>

به علاوه در این حالت ای‌جکسی fetch، کار دریافت مجدد فایل‌های استاتیک مرتبط یک صفحه، مانند فایل‌های js.، css.، تصاویر و غیره، مجددا انجام نمی‌شود که این مورد خود مزیتی است نسبت به حالت متداول برنامه‌های ASP.NET Core MVC و یا Razor pages. در حالت Blazor 8x SSR، فقط یک partial update از نوع Ajax ای انجام می‌شود.
به این قابلیت، enhanced navigation هم گفته می‌شود. برای مثال زمانیکه یک فرم SSR را در Blazor 8x به سمت سرور ارسال می‌کنیم، موقعیت scroll به صورت خودکار ذخیره و بازیابی می‌شود تا کاربر با یک full post back مواجه نشده و موقعیت جاری خود را در صفحه از دست ندهد (چنین ایده‌ای، یک زمانی در برنامه‌های ASP.NET Web forms هم برقرار بود و هست! به نظر مایکروسافت هنوز دلتنگ طراحی قدیمی ASP.NET Web forms است!).

- همچنین به محض نمایش صفحه‌ی جزئیات محصول، پس از پایان کار نمایش آن، یک اتصال وب‌سوکت هم برقرار شده که مرتبط با جزیره‌ی تعاملی Blazor server تعریف شده، یا همان کامپوننت RelatedProducts است.

- یک disconnect را هم در اینجا مشاهده می‌کنید. اگر به یک صفحه‌ی تعاملی مراجعه کنیم، همانطور که مشخص است، یک اتصال SignalR برقرار می‌شود (که به آن در اینجا circuit هم می‌گویند). اما اگر از این صفحه به سمت یک صفحه‌ی SSR حرکت کنیم، پس از نمایش آن صفحه، اتصال SignalR قبلی که دیگر نیازی به آن نیست، بسته خواهد شد تا منابع سمت سرور، رها شوند.


در حین disconnect، شماره ID اتصال SignalR ای که دیگر به آن نیازی نیست، به برنامه ارسال می‌شود تا به صورت خودکار در سمت سرور بسته شود. تمام این موارد توسط blazor.web.js فریم‌ورک، مدیریت می‌شوند.
در این تصویر ابتدا به آدرس http://localhost:5136/ProductDetails/1 مراجعه کرده‌ایم که سبب برقراری اتصال یک وب‌سوکت شده‌است. سپس با کلیک بر روی دکمه‌ی back، به صفحه‌ی SSR مشاهده‌ی لیست محصولات برگشته‌ایم. در این حالت، دستور قطع اتصال SignalR قبلی صادر شده‌است.


نحوه‌ی مدیریت Pre-rendering در جزایر تعاملی Blazor 8x

به صورت پیش‌فرض زمانیکه از حالت رندر InteractiveServer استفاده می‌کنیم، قابلیت pre-rendering آن نیز فعال است. یعنی ابتدا حداقل قالب و قسمت‌های ثابت کامپوننت، در سمت سرور پردازش و رندر شده و سپس به سمت کلاینت ارسال می‌شوند. در این حالت کاربر، تجربه‌ی کاربری روان‌تری را شاهد خواهد بود؛ چون برای مدتی نباید منتظر آماده شدن کل UI مرتبط باشد و حداقل، قسمت‌هایی از صفحه که تعاملی نیستند، قابل دسترسی و مشاهده هستند.
اگر به هر دلیلی نیاز به غیرفعال کردن این قابلیت را دارید، باید به صورت زیر عمل کرد:
<RelatedProducts ProductId="Convert.ToInt32(ProductId)" @rendermode="@(new InteractiveServerRenderMode(false))"/>
در این حالت اگر برنامه را اجرا کنید، در حین نمایش صفحه‌ی اصلی در برگیرنده‌ی از نوع SSR، فقط جای این کامپوننت در صفحه مشخص می‌شود و پس از برقراری اتصال با سرور از طریق اتصال SignalR، شاهد UI کامپوننت RelatedProducts خواهیم بود، که نسبت به قبل، وقفه‌ای را سبب خواهد شد.

نحوه‌ی تعریف خواص استاتیک InteractiveServer بکار گرفته شده و یا کلاس InteractiveServerRenderMode را در ادامه مشاهده می‌کنید. جهت سهولت تعریف این موارد، سطر زیر که یک using static است، به فایل Imports.razor_ اضافه شده‌است:
@using static Microsoft.AspNetCore.Components.Web.RenderMode

public static class RenderMode
  {
    public static InteractiveServerRenderMode InteractiveServer { get; } = new InteractiveServerRenderMode();

    public static InteractiveWebAssemblyRenderMode InteractiveWebAssembly { get; } = new InteractiveWebAssemblyRenderMode();

    public static InteractiveAutoRenderMode InteractiveAuto { get; } = new InteractiveAutoRenderMode();
  }


public class InteractiveServerRenderMode : IComponentRenderMode
  {
    public InteractiveServerRenderMode()
      : this(true)
    {
    }

    public InteractiveServerRenderMode(bool prerender) => this.Prerender = prerender;

    public bool Prerender { get; }
  }


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید: Blazor8x-Server-Normal.zip  
مطالب
Markup Extensions در XAML
Markup Extension‌ها برای مواردی استفاده می‌شوند که قرار است مقداری غیر از یک مقدار ثابت و یک نوع قابل شناسایی در XAML برای یک value تنظیم شود. تمام مواردی در XAML که درون {} قرا می‌گیرند همان Markup Extension‌ها هستند. مانند Binding و یا StaticResoiurces.
علاوه بر Markup Extension‌های از پیش تعریف شده در XAML، می‌توان Markup Extension‌های شخصی را نیز تولید کرد. در واقع به زبان ساده‌تر Markup Extension برای تولید ساده‌ی داده‌های پیچیده در XAML استفاده می‌شوند.

لازم به ذکر است کهMarkup Extension ‌ها می‌توانند به دو صورت Attribute Usage ،درون  {} :
 "{Binding path=something,Mode=TwoWay}”
و یا Property Element Usage (همانند سایر Element هایWPF) درون <> استفاده شوند:
 <Binding Path="Something" Mode="TwoWay"></Binding>
برای تعریف یک Markup Extension، یک کلاس ایجاد می‌کنیم که از Markup Extensions ارث بری می‌کند. این کلاس یک Abstract Method به نام  ProvideValue دارد که باید پیاده سازی  شود. این متد مقدار خصوصیتی که Markup Extensions را فراخوانی کرده به صورت یک Object بر می‌گرداند که یکبار در زمان Load برای خصوصیت مربوطه‌اش تنظیم می‌شود.
 public abstract Object ProvideValue(IServiceProvider serviceProvider)
همانطورکه ملاحظه می‌کنید ProvideValue یک پارامتر IServiceProvider دارد که ازطریق آن می‌توان به IProvideValueTarget دسترسی داشت. ازاین Interface برای گرفتن اطلاعات کنترل(TargetObject) و خصوصیتی (TargetProperty) که فراخوانی را انجام داده در صورت لزوم استفاده می‌شود.
var target = serviceProviderGetService(typeof(IProvideValueTarget))as IProvideValueTarget;
var host = targetTargetObject as FrameworkElement;
Markup Extension‌ها می‌توانند پارامتر‌های ورودی داشته باشند:
public class ValueExtension : MarkupExtension
{
  public ValueExtension () { }
  public ValueExtension (object value1)
  {
    Value1 = value1;
  }
   public object Value1 { get; set; }
   public override object ProvideValue(IServiceProvider serviceProvider)
   {
     return Value1;
   }
}
و برای استفاده در فایل Xaml:
 <TextBox  Text="{app:ValueExtension test}" ></TextBox>
و یا می‌توان خصوصیت هایی ایجاد کرد و  از آنها برای ارسال مقادیر به آن استفاده کرد:
  <TextBox  Text="{app:ValueExtension Value1=test}" ></TextBox>
تا اینجا موارد کلی برای تعریف و استفاده از Markup Extensions گفته شد. در ادامه یک مثال کاربردی می‌آوریم. برای مثال در نظر بگیرید که نیاز دارید DataType مربوط به یک DataTemplate را برابر یک کلاس Generic قرار بدهید:
public class EntityBase
{
   public int Id{get;set}
}

public class MyGenericClass<TType> where TType : EntityBase
{
   public int Id{get;set}
   public string Test{  get;set; }

In XAML:

<DataTemplate DataType="{app:GenericType ؟}">
برای انجام این کار یک Markup Extensions به صورت زیر ایجاد می‌کنیم که Type را به عنوان ورودی گرفته و یک نمونه از کلاس Generic ایجاد می‌کند:
public class GenericType : MarkupExtension
{
  private readonly Type _of;
  public GenericType(Type of)
  {
     _of = of;
  }
  public override object ProvideValue(IServiceProvider serviceProvider)
  {
      return typeof(MyGenericClass<>)MakeGenericType(_of);
 }
}
و برای استفاده از آن یک نمونه از MarkupExtension ایجاد شده ایجاد کرده و نوع Generic را برای آن ارسال می‌کنیم:
 <DataTemplate DataType="{app:GenericType app:EntityBase}">
این یک مثال ساده از استفاده از Markup Extensions است. هنگام کار با WPF می‌توان استفاده‌های زیادی از این مفهوم داشت، برای مثال زمانی که نیاز است ItemsSource یک  Combobox  از Description‌های یک Enum پر شود می‌توان به راحتی با نوشتن یک Markup Extensions ساده این عمل و کارهای مشابه زیادی را انجام داد.  
نظرات مطالب
ایجاد یک Repository در پروژه برای دستورات EF
با سلام من یک  معماری طراحی کردم به شکل زیر
ابتدا یک اینترفیس به شکل زیر دارم
using System;
using System.Collections;
using System.Linq;

namespace Framework.Model
{
    public interface IContext
    {
        T Get<T>(Func<T, bool> prediction) where T : class;
        IEnumerable List<T>(Func<T, bool> prediction) where T : class;
        void Insert<T>(T entity) where T : class;
        int Save();
    }
}
بعد یک کلاس ازش مشتق شده
using System;
using System.Collections;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Text;

namespace Framework.Model
{
    public class Context : IContext
    {
        private readonly DbContext _dbContext;

        public Context(DbContext context)
        {
            _dbContext = context;
        }

        public T Get<T>(Func<T,bool> prediction) where T : class
        {
            var dbSet = _dbContext.Set<T>();
            if (dbSet!= null)
                return dbSet.Single(prediction);

            throw new Exception();
        }

        public void Insert<T>(T entity) where T : class
        {
            var dbSet = _dbContext.Set<T>();
            if (dbSet != null)
            {
                _dbContext.Entry(entity).State = EntityState.Added;
            }
        }

        public int Save()
        {
            return _dbContext.SaveChanges();
        }


        IEnumerable IContext.List<T>(Func<T, bool> prediction)
        {
            var dbSet = _dbContext.Set<T>();
            if (dbSet != null)
                return dbSet.Where(prediction).ToList();

            throw new Exception();
        }
    }
}
سپس یک کلاش context دارم که مستقیما از dbcontext مشتق شده
using System.Data.Entity;
using DataModel;

namespace Model
{
    public class EFContext : DbContext
    {
        public EFContext(string db): base(db)
        {

        }

        public DbSet<Product> Products { get; set; }
    }
}
و سپس کلاس دارم که اومده پیاده سازی کرده context که خودم ساختمو 
using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;
using System.Text;

namespace Model
{
    public class Context : Framework.Model.Context
    {
        public Context(string db): base(new EFContext(db))
        {
            
        }
    }
}
در پروژه دیگری اومدم یک کلاس context جدید ساختم 
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Biz
{
    public class Context : Model.Context
    {
        public Context(string db) : base(db)
        {

        }
    }
}
و در کنترلر هم به این شکل ازش استفاده کردم
using System.Web.Mvc;
using Framework.Model;

namespace ProductionRepository.Controllers
{
    public class BaseController : Controller
    {
        public IContext DataContext { get; set; }

        public BaseController()
        {
            DataContext = new Biz.Context(System.Configuration.ConfigurationManager.ConnectionStrings["Database"].ConnectionString);
        }
    }
}
using System.Web.Mvc;
using DataModel;
using System.Collections.Generic;

namespace ProductionRepository.Controllers
{
    public class ProductController : BaseController
    {
        public ActionResult Index()
        {
            var x = DataContext.List<Product>(s => s.Name != null);
            return View(x);
        }

    }
}
و این هم تست 
using NUnit.Framework;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Web.Mvc;

namespace TestUnit
{
    [TestFixture]
    public class Test
    {
        [Test]
        public void IndexShouldListProduct()
        {
            var repo = new Moq.Mock<Framework.Model.IContext>();
            var products = new List<DataModel.Product>();
            products.Add(new DataModel.Product { Id = 1, Name = "asdasdasd" });
            products.Add(new DataModel.Product { Id = 2, Name = "adaqwe" });
            products.Add(new DataModel.Product { Id = 4, Name = "qewqw" });
            products.Add(new DataModel.Product { Id = 5, Name = "qwe" });
            repo.Setup(x => x.List<DataModel.Product>(p => p.Name != null)).Returns(products.AsEnumerable());
            var controller = new ProductionRepository.Controllers.ProductController();
            controller.DataContext = repo.Object;
            var result = controller.Index() as ViewResult;
            var model = result.Model as List<DataModel.Product>;
            Assert.AreEqual(4, model.Count);
            Assert.AreEqual("", result.ViewName);

        }
    }
}
نظرتون چیه آقای نصیری
مطالب
Implementing second level caching in EF code first
هدف اصلی از انواع و اقسام مباحث caching اطلاعات، فراهم آوردن روش‌هایی جهت میسر ساختن دسترسی سریعتر به داده‌هایی است که به صورت متناوب در برنامه مورد استفاده قرار می‌گیرند، بجای مراجعه مستقیم به بانک اطلاعاتی و خواندن اطلاعات از دیسک سخت.

عموما در ORMها دو سطح کش می‌تواند وجود داشته باشد:
الف) سطح اول کش
که نمونه بارز آن در EF Code first استفاده از متد context.Entity.Find است. در بار اول فراخوانی این متد، مراجعه‌ای به بانک اطلاعاتی صورت گرفته تا بر اساس primary key ذکر شده در آرگومان آن، رکورد متناظری بازگشت داده شود. در بار دوم فراخوانی متد Find، دیگر مراجعه‌ای به بانک اطلاعاتی صورت نخواهد گرفت و اطلاعات از سطح اول کش (یا همان Context جاری) خوانده می‌شود.
بنابراین سطح اول کش در طول عمر یک تراکنش معنا پیدا می‌کند و به صورت خودکار توسط EF مدیریت می‌شود.

ب) سطح دوم کش
سطح دوم کش در ORMها طول عمر بیشتری داشته و سراسری است. هدف از آن کش کردن اطلاعات عمومی و پر مصرفی است که در دید تمام کاربران قرار دارد و همچنین تمام کاربران می‌توانند به آن دسترسی داشته باشند. بنابراین محدود به یک Context نیست.
عموما پیاده سازی سطح دوم کش خارج از ORM مورد استفاده قرار می‌گیرد و توسط اشخاص و شرکت‌های ثالث تهیه می‌شود.
در حال حاضر پیاده سازی توکاری از سطح دوم کش در EF Code first وجود ندارد و قصد داریم در مطلب جاری به یک پیاده سازی نسبتا خوب از آن برسیم.


تلاش‌های صورت گرفته

تا کنون دو پیاده سازی نسبتا خوب از سطح دوم کش در EF صورت گرفته:

Entity Framework Code First Caching
Caching the results of LINQ queries

مورد اول برای ایده گرفتن خوب است. بحث اصلی پیاده سازی سطح دوم کش، یافتن کلیدی است که معادل کوئری LINQ در حال فراخوانی است. سطح دوم کش را به صورت یک Dictionary تصور کنید. هر آیتم آن تشکیل شده است از یک کلید و یک مقدار. از کلید برای یافتن مقدار متناظر استفاده می‌شود.
اکنون مشکل چیست؟ در یک برنامه ممکن است صدها کوئری لینک وجود داشته باشد. چطور باید به ازای هر کوئری LINQ یک کلید منحصربفرد تولید کرد؟
در مطلب «Entity Framework Code First Caching» از متد ToString استفاده شده است. اگر این متد، بر روی یک عبارت LINQ در EF Code first فراخوانی شود، معادل SQL آن نمایش داده می‌شود. بنابراین یک قدم به تولید کلید منحصربفرد متناظر با یک کوئری نزدیک شده‌ایم. اما ... مشکل اینجا است که متد ToString پارامترها را لحاظ نمی‌کند. بنابراین این روش اصلا قابل استفاده نیست. چون کاربر به ازای تمام پارامترهای ارسالی، همواره یک نتیجه را دریافت خواهد کرد.
در مقاله «Caching the results of LINQ queries» این مشکل برطرف شده است. با parse کامل expression tree یک عبارت LINQ کلید منحصربفرد معادل آن یافت می‌شود. سپس بر این اساس می‌توان نتیجه کوئری را به نحو صحیحی کش کرد. در این روش پارامترها هم لحاظ می‌شوند و مشکل مقاله قبلی را ندارد.
اما این مقاله دوم یک مشکل مهم را به همراه دارد: روشی را برای حذف آیتم‌ها از کش ارائه نمی‌دهد. فرض کنید مقالات سایت را در سطح دوم کش قرار داده‌اید. اکنون یک مقاله جدید در سایت ثبت شده است. اصطلاحا برای invalidating کش در این روش، راهکاری پیشنهاد نشده است.


پیاده سازی بهتری از سطح دوم کش در EF Code fist

می‌توان از همان روش یافتن کلید منحصربفرد معادل با یک کوئری LINQ، که در مقاله دوم فوق، یاد شد، کار را شروع کرد و سپس آن‌را به مرحله‌ای رساند که مباحث حذف کش نیز به صورت خودکار مدیریت شود. پیاده سازی آن را برای برنامه‌های وب در ذیل ملاحظه می‌کنید:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Data.Objects;
using System.Diagnostics;
using System.Linq;
using System.Web;
using System.Web.Caching;

namespace EfSecondLevelCaching.Core
{
    public static class EfHttpRuntimeCacheProvider
    {
        #region Methods (6)

        // Public Methods (2) 

        public static IList<TEntity> ToCacheableList<TEntity>(
                            this IQueryable<TEntity> query,
                            int durationMinutes = 15,
                            CacheItemPriority priority = CacheItemPriority.Normal)
        {
            return query.Cacheable(x => x.ToList(), durationMinutes, priority);
        }

        /// <summary>
        /// Returns the result of the query; if possible from the cache, otherwise
        /// the query is materialized and the result cached before being returned.
        /// The cache entry has a one minute sliding expiration with normal priority.
        /// </summary>
        public static TResult Cacheable<TEntity, TResult>(
                            this IQueryable<TEntity> query,
                            Func<IQueryable<TEntity>, TResult> materializer,
                            int durationMinutes = 15,
                            CacheItemPriority priority = CacheItemPriority.Normal)
        {
            // Gets a cache key for a query.
            var queryCacheKey = query.GetCacheKey();

            // The name of the cache key used to clear the cache. All cached items depend on this key.
            var rootCacheKey = typeof(TEntity).FullName;

            // Try to get the query result from the cache.
            printAllCachedKeys();
            var result = HttpRuntime.Cache.Get(queryCacheKey);
            if (result != null)
            {
                debugWriteLine("Fetching object '{0}__{1}' from the cache.", rootCacheKey, queryCacheKey);
                return (TResult)result;
            }

            // Materialize the query.
            result = materializer(query);

            // Adding new data.
            debugWriteLine("Adding new data: queryKey={0}, dependencyKey={1}", queryCacheKey, rootCacheKey);
            storeRootCacheKey(rootCacheKey);
            HttpRuntime.Cache.Insert(
                    key: queryCacheKey,
                    value: result,
                    dependencies: new CacheDependency(null, new[] { rootCacheKey }),
                    absoluteExpiration: DateTime.Now.AddMinutes(durationMinutes),
                    slidingExpiration: Cache.NoSlidingExpiration,
                    priority: priority,
                    onRemoveCallback: null);

            return (TResult)result;
        }

        /// <summary>
        /// Call this method in `public override int SaveChanges()` of your DbContext class 
        /// to Invalidate Second Level Cache automatically.
        /// </summary>        
        public static void InvalidateSecondLevelCache(this DbContext ctx)
        {
            var changedEntityNames = ctx.ChangeTracker
                                      .Entries()
                                      .Where(x => x.State == EntityState.Added ||
                                                  x.State == EntityState.Modified ||
                                                  x.State == EntityState.Deleted)
                                      .Select(x => ObjectContext.GetObjectType(x.Entity.GetType()).FullName)
                                      .Distinct()
                                      .ToList();

            if (!changedEntityNames.Any()) return;

            printAllCachedKeys();
            foreach (var item in changedEntityNames)
            {
                item.removeEntityCache();
            }
            printAllCachedKeys();
        }
        // Private Methods (4) 

        private static void debugWriteLine(string format, params object[] args)
        {
            if (!Debugger.IsAttached) return;
            Debug.WriteLine(format, args);
        }

        private static void printAllCachedKeys()
        {
            if (!Debugger.IsAttached) return;
            debugWriteLine("Available cached keys list:");
            int count = 0;
            var enumerator = HttpRuntime.Cache.GetEnumerator();
            while (enumerator.MoveNext())
            {
                if (enumerator.Key.ToString().StartsWith("__")) continue; // such as __System.Web.WebPages.Deployment
                debugWriteLine("queryKey: {0}", enumerator.Key.ToString());
                count++;
            }
            debugWriteLine("count: {0}", count);
        }

        private static void removeEntityCache(this string rootCacheKey)
        {
            if (string.IsNullOrWhiteSpace(rootCacheKey)) return;
            debugWriteLine("Removing items with dependencyKey={0}", rootCacheKey);
            // Removes all cached items depend on this key.
            HttpRuntime.Cache.Remove(rootCacheKey);
        }

        private static void storeRootCacheKey(string rootCacheKey)
        {
            // The cacheKeys of a cacheDependency that are not already in cache ARE NOT inserted into the cache 
            // on the Insert of the item in which the dependency is used.
            if (HttpRuntime.Cache.Get(rootCacheKey) != null)
                return;

            HttpRuntime.Cache.Add(
                rootCacheKey,
                rootCacheKey,
                null,
                Cache.NoAbsoluteExpiration,
                Cache.NoSlidingExpiration,
                CacheItemPriority.Default,
                null);
        }

        #endregion Methods
    }
}

توضیحات کدهای فوق

در اینجا یک متدالحاقی به نام Cacheable توسعه داده شده است که می‌تواند در انتهای کوئری‌های LINQ شما قرار گیرد. مثلا:

var data = context.Products.AsQueryable().Cacheable(x => x.FirstOrDefault());

کاری که در این متد انجام می‌شود به این شرح است:
الف) ابتدا کلید منحصربفرد معادل کوئری LINQ فراخوانی شده محاسبه می‌شود.
ب) بر اساس نام کامل نوع Entity در حال استفاده، کلید دیگری به نام rootCacheKey تولید می‌گردد.
شاید بپرسید اهمیت این کلید چیست؟
فرض کنید در حال حاضر 1000 آیتم در کش وجود دارند. چه روشی را برای حذف آیتم‌های مرتبط با کش Entity1 پیشنهاد می‌دهید؟ احتمالا خواهید گفت تمام کش را بررسی کرده و آیتم‌ها را یکی یکی حذف می‌کنیم.
این روش بسیار کند است (و جواب هم نمی‌دهد؛ چون کلیدی که در اینجا تولید شده، هش MD5 معادل کوئری است و نمی‌توان آن‌را به موجودیتی خاص ربط داد) و ... نکته جالبی در متد HttpRuntime.Cache.Insert برای مدیریت آن پیش بینی شده است: استفاده از CacheDependency.
توسط CacheDependency می‌توان گروهی از آیتم‌های هم‌خانواده را تشکیل داد. سپس برای حذف کل این گروه کافی است کلید اصلی CacheDependency را حذف کرد. به این ترتیب به صورت خودکار کل کش مرتبط خالی می‌شود.
ج) مراحل بعدی آن هم یک سری اعمال متداول هستند. ابتدا توسط HttpRuntime.Cache.Get بررسی می‌شود که آیا بر اساس کلید متناظر با کوئری جاری، اطلاعاتی در کش وجود دارد یا خیر. اگر بله، نتیجه از کش خوانده می‌شود. اگر خیر، کوئری اصطلاحا materialized می‌شود تا بر روی بانک اطلاعاتی اجرا شده و نتیجه بازگشت داده شود. سپس این نتیجه را در کش قرار می‌دهیم.

مورد بعدی که باید به آن دقت داشت، خالی کردن کش، پس از به روز رسانی اطلاعات توسط کاربران است. این کار در متد InvalidateSecondLevelCache صورت می‌گیرد. به کمک ChangeTracker می‌توان نام نوع‌های موجودیت‌های تغییر کرده را یافت. چون کلید اصلی CacheDependency را بر مبنای همین نام نوع‌های موجودیت‌ها تعیین کرده‌ایم، به سادگی می‌توان کش مرتبط با موجودیت یافت شده را خالی کرد.
استفاده از متد InvalidateSecondLevelCache یاد شده به نحو زیر است:

using System.Data.Entity;
using EfSecondLevelCaching.Core;
using EfSecondLevelCaching.Test.Models;

namespace EfSecondLevelCaching.Test.DataLayer
{
    public class ProductContext : DbContext
    {
        public DbSet<Product> Products { get; set; }

        public override int SaveChanges()
        {
            this.InvalidateSecondLevelCache();
            return base.SaveChanges();
        }        
    }
}

در اینجا با تحریف متد SaveChanges، می‌توان درست در زمان اعمال تغییرات به بانک اطلاعاتی، قسمتی از کش را غیرمعتبر کرد.


نحوه استفاده از سطح دوم کش توسعه داده شده

مثالی از کاربرد متدهای الحاقی توسعه داده شده را در ذیل مشاهده می‌کنید:

using System.Data.Entity;
using System.Linq;
using EfSecondLevelCaching.Core;
using EfSecondLevelCaching.Test.DataLayer;
using EfSecondLevelCaching.Test.Models;
using System;

namespace EfSecondLevelCaching
{
    public static class TestUsages
    {
        public static void RunQueries()
        {
            using (ProductContext context = new ProductContext())
            {
                var isActive = true;
                var name = "Product1";

                // reading from db
                var list1 = context.Products
                                   .OrderBy(one => one.ProductNumber)
                                   .Where(x => x.IsActive == isActive && x.ProductName == name)
                                   .ToCacheableList();

                // reading from cache
                var list2 = context.Products
                                   .OrderBy(one => one.ProductNumber)
                                   .Where(x => x.IsActive == isActive && x.ProductName == name)
                                   .ToCacheableList();

                // reading from cache
                var list3 = context.Products
                                   .OrderBy(one => one.ProductNumber)
                                   .Where(x => x.IsActive == isActive && x.ProductName == name)
                                   .ToCacheableList();

                // reading from db
                var list4 = context.Products
                                   .OrderBy(one => one.ProductNumber)
                                   .Where(x => x.IsActive == isActive && x.ProductName == "Product2")
                                   .ToCacheableList();
            }

            // removes products cache
            using (ProductContext context = new ProductContext())
            {
                var p = new Product()
                {
                    IsActive = false,
                    ProductName = "P4",
                    ProductNumber = "004"
                };
                context.Products.Add(p);
                context.SaveChanges();
            }

            using (ProductContext context = new ProductContext())
            {
                var data = context.Products.AsQueryable().Cacheable(x => x.FirstOrDefault());
                var data2 = context.Products.AsQueryable().Cacheable(x => x.FirstOrDefault());
                context.SaveChanges();
            }
        }
    }
}

در این حالت اگر برنامه را اجرا کنیم به یک چنین خروجی در پنجره Debug ویژوال استودیو خواهیم رسید:

Adding new data: queryKey=72AF5DA1BA9B91E24DCCF83E88AD1C5F, dependencyKey=EfSecondLevelCaching.Test.Models.Product

Available cached keys list:
queryKey: EfSecondLevelCaching.Test.Models.Product
queryKey: 72AF5DA1BA9B91E24DCCF83E88AD1C5F
count: 2

Fetching object 'EfSecondLevelCaching.Test.Models.Product__72AF5DA1BA9B91E24DCCF83E88AD1C5F' from the cache.

Available cached keys list:
queryKey: EfSecondLevelCaching.Test.Models.Product
queryKey: 72AF5DA1BA9B91E24DCCF83E88AD1C5F
count: 2

Fetching object 'EfSecondLevelCaching.Test.Models.Product__72AF5DA1BA9B91E24DCCF83E88AD1C5F' from the cache.

Available cached keys list:
queryKey: EfSecondLevelCaching.Test.Models.Product
queryKey: 72AF5DA1BA9B91E24DCCF83E88AD1C5F
count: 2

Adding new data: queryKey=11A2C33F9AD7821A0A31003BFF1DF886, dependencyKey=EfSecondLevelCaching.Test.Models.Product

Available cached keys list:
queryKey: 72AF5DA1BA9B91E24DCCF83E88AD1C5F
queryKey: 11A2C33F9AD7821A0A31003BFF1DF886
queryKey: EfSecondLevelCaching.Test.Models.Product
count: 3

Removing items with dependencyKey=EfSecondLevelCaching.Test.Models.Product
Available cached keys list:
count: 0
Available cached keys list:
count: 0

Adding new data: queryKey=02E6FE403B461E45C5508684156C1D10, dependencyKey=EfSecondLevelCaching.Test.Models.Product

Available cached keys list:
queryKey: 02E6FE403B461E45C5508684156C1D10
queryKey: EfSecondLevelCaching.Test.Models.Product
count: 2


Fetching object 'EfSecondLevelCaching.Test.Models.Product__02E6FE403B461E45C5508684156C1D10' from the cache.

توضیحات:
در زمان تولید list1 چون اطلاعاتی در کش سطح دوم وجود ندارد، پیغام Adding new data قابل مشاهده است. اطلاعات از بانک اطلاعاتی دریافت شده و سپس در کش قرار داده می‌شود.
حین فراخوانی list2 که دقیقا همان کوئری list1 را یکبار دیگر فراخوانی می‌کند، به عبارت Fetching object خواهیم رسید که بر دریافت اطلاعات از کش سطح دوم بجای مراجعه به بانک اطلاعاتی دلالت دارد.
در list4 چون پارامترهای کوئری تغییر کرده‌اند، بنابراین دیگر کلید منحصربفرد معادل آن با list1 و lis2 یکی نیست و اینبار پیغام Adding new data مشاهده می‌شود؛ چون برای دریافت اطلاعات آن نیاز است که به بانک اطلاعاتی مراجعه شود.
در ادامه یک context دیگر باز شده و در آن رکوردی به بانک اطلاعاتی اضافه می‌شود. به همین دلیل اینبار پیام Removing items with dependencyKey قابل مشاهده است. به عبارتی متد InvalidateSecondLevelCache وارد عمل شده است و بر اساس تغییری که صورت گرفته، کش را غیرمعتبر کرده است.
سپس در context بعدی تعریف شده، دوبار متد FirstOrDefault فراخوانی شده است. اولین مورد Adding new data است و دومین فراخوانی به Fetching object ختم شده است (دریافت اطلاعات از کش).

کدهای کامل این پروژه را از اینجا می‌توانید دریافت کنید:
  EfSecondLevelCaching.zip
مطالب
اتریبیوت اختصاصی برای قفل کردن یک اکشن جهت جلوگیری از تداخلات درخواست‌های همزمان

در کتابخانه‌ی Microsoft AspNetCore Identity میتوان با این کد، فیلد Email را منحصر به‌فرد کرد:

//Program.cs file
builder.Services.AddIdentity<User, Role>(options =>
{
    options.User.RequireUniqueEmail = true;
}).AddEntityFrameworkStores<DatabaseContext>();

برنامه را اجرا و درخواست‌ها را یکی یکی به سمت سرور ارسال میکنیم و اگر ایمیل تکراری باشد به ما خطا میده و میگه: "ایمیل تکراری است".

ولی مشکل اینجاست که کد بالا فیلد Email رو داخل دیتابیس منحصر به‌فرد نمیکنه و فقط از سمت نرم افزار بررسی تکراری بودن ایمیل رو انجام میده. حالا اگه ما با استفاده از نرم افزارهای "تست برنامه‌های وب" مثل Apache JMeter تعداد زیادی درخواست را به سمت برنامه‌مان ارسال کنیم و بعد رکوردهای داخل جدول کاربران را نگاه کنیم، با وجود اینکه داخل نرم افزارمان پراپرتی Email را منحصر به‌فرد کرده‌ایم، ولی چندین رکورد، با یک ایمیل مشابه در داخل جدول User وجود خواهد داشت.

برای تست این سناریو، برنامه Apache JMeter را از این لینک دانلود می‌کنیم (در بخش Binaries فایل zip رو دانلود می کنیم).

نکته: داشتن jdk ورژن 8 به بالا پیش نیاز است. برای اینکه بدونید ورژن جاوای سیستمتون چنده، داخل cmd دستور java -version رو صادر کنید.

اگه تمایل به نصب، یا به روز رسانی jdk را داشتید، میتونید از این لینک استفاده کنید و بسته به سیستم عاملتون، یکی از تب‌های Windows, macOS یا Linux رو انتخاب کنید و فایل مورد نظر رو دانلود کنید (برای Windows فایل x64 Compressed Archive رو دانلود و نصب میکنیم).

حالا فایل دانلود شده JMeter رو استخراج میکنیم، وارد پوشه‌ی bin میشیم و فایل jmeter.bat رو اجرا میکنیم تا برنامه‌ی JMeter اجرا بشه.

قبل از اینکه وارد برنامه JMeter بشیم، کدهای برنامه رو بررسی می‌کنیم.

موجودیت کاربر:

public class User : IdentityUser<int>;

ویوو مدل ساخت کاربر:

public class UserViewModel
{
    public string UserName { get; set; } = null!;

    public string Email { get; set; } = null!;

    public string Password { get; set; } = null!;
}

کنترلر ساخت کاربر:

[ApiController]
[Route("/api/[controller]")]
public class UserController(UserManager<User> userManager) : Controller
{
    [HttpPost]
    public async Task<IActionResult> Add(UserViewModel model)
    {
        var user = new User
        {
            UserName = model.UserName,
            Email = model.Email
        };
        var result = await userManager.CreateAsync(user, model.Password);
        if (result.Succeeded)
        {
            return Ok();
        }
        return BadRequest(result.Errors);
    }
}

حالا وارد برنامه JMeter میشیم و اولین کاری که باید انجام بدیم این است که مشخص کنیم چند درخواست را در چند ثانیه قرار است ارسال کنیم. برای اینکار در برنامه JMeter روی TestPlan کلیک راست میکنیم و بعد:

Add -> Threads (Users) -> Thread Group

حالا باید بر روی Thread Group کلیک کنیم و بعد در بخش Number of threads (users) تعداد درخواست‌هایی را که قرار است به سمت سرور ارسال کنیم، مشخص کنیم؛ برای مثال عدد 100.

گزینه Ramp-up period (seconds) برای اینه که مشخص کنیم این 100 درخواست قرار است در چند ثانیه ارسال شوند که آن را روی 0.1 ثانیه قرار می‌دهیم تا درخواست‌ها را با سرعت بسیار زیاد ارسال کند.

الان باید مشخص کنیم چه دیتایی قرار است به سمت سرور ارسال شود:

برای اینکار باید یک Http Request اضافه کنیم. برای این منظور روی Thread Group که از قبل ایجاد کردیم، کلیک راست میکنیم و بعد:

Add -> Sampler -> Http Request

حالا روی Http Request کلیک میکنیم و متد ارسال درخواست رو که روی Get هست، به Post تغییر میدیم و بعد Path رو هم به آدرسی که قراره دیتا رو بهش ارسال کنیم، تغییر میدهیم:

https://localhost:7091/api/User

حالا پایینتر Body Data رو انتخاب میکنیم و دیتایی رو که قراره به سمت سرور ارسال کنیم، در قالب Json وارد میکنیم:

{
  "UserName": "payam${__Random(1000, 9999999)}",
  "Email": "payam@gmail.com",
  "Password": "123456aA@"
}

چون بخش UserName در پایگاه داده منحصر به‌فرد است، با این دستور:

${__Random(1000, 9999999)}

یک عدد Random رو به UserName اضافه میکنیم که دچار خطا نشیم.

حالا فقط باید یک Header رو هم به درخواستمون اضافه کنیم، برای اینکار روی Http Request که از قبل ایجاد کردیم، کلیک راست میکنیم و بعد:

Add -> Config Element -> Http Header Manager

حالا روی دکمه‌ی Add در پایین صفحه کلیک میکنیم و این Header رو اضافه میکنیم:

Name: Content-Type
Value: application/json

همچنین میتونیم یک View result رو هم اضافه کنیم تا وضعیت تمامی درخواست‌های ارسال شده رو مشاهده کنیم. برای اینکار روی Http Request که از قبل ایجاد کردیم، کلیک راست میکنیم و بعد:

Add -> Listener -> View Results Tree

فایل Backup، برای اینکه مراحل بالا رو سریعتر انجام بدید:

File -> Open

حالا بر روی دکمه‌ی سبز رنگ Play در Toolbar بالا کلیک میکنیم تا تمامی درخواست ها را به سمت سرور ارسال کنه و همچنین میتونیم از طریق View result tree ببینیم که چند درخواست موفقیت آمیز و چند درخواست ناموفق انجام شده‌است.

حالا اگر وارد پایگاه داده بشیم، میبینیم که چندین رکورد، با Email یکسان، در جدول User وجود داره:

در حالیکه ایمیل رو در تنظیمات کتابخانه Microsoft AspNetCore Identity به صورت Unique تعریف کرده‌ایم:

//Program.cs file
builder.Services.AddIdentity<User, Role>(options =>
{
    options.User.RequireUniqueEmail = true;
}).AddEntityFrameworkStores<DatabaseContext>();

دلیل این مشکل این است که درخواست‌ها در قالب یک صف، یک به یک اجرا نمیشوند؛ بلکه به صورت همزمان فریم ورک ASP.NET Core برای بالا بردن سرعت اجرای درخواست‌ها از تمامی Thread هایی که در اختیارش هست استفاده می‌کند و در چندین Thread جداگانه، درخواست‌هایی رو به کنترلر User میفرسته و در نتیجه، در یک زمان مشابه، چندین درخواست ارسال میشه که آیا یک ایمیل برای مثال با مقدار payam@yahoo.com وجود داره یا خیر و در تمامی درخواست‌ها چون همزمان انجام شده، جواب خیر است. یعنی ایمیل تکراری با آن مقدار، در پایگاه داده وجود ندارد و تمامی درخواست‌هایی که همزمان به سرور رسیده‌اند، کاربر جدید را با ایمیل مشابهی ایجاد می‌کنند.

این مشکل را میتوان حتی در سایت‌های فروش بلیط نیز پیدا کرد؛ یعنی چند نفر یک صندلی را رزرو کرده‌اند و همزمان وارد درگاه پرداخت شده و هزینه‌ایی را برای آن پرداخت میکنند. اگر آن درخواست‌ها را وارد صف نکنیم، امکان دارد که یک صندلی را به چند نفر بفروشیم. این سناریو برای زمانی است که در پایگاه داده، فیلد‌ها را Unique تعریف نکرده باشیم. هر چند که اگر فیلدها را نیز Unique تعریف کرده باشیم تا یک صندلی را به چند نفر نفروشیم، در آن صورت هم برنامه دچار خطای 500 خواهد شد. پس بهتر است که حتی در زمان‌هایی هم که فیلدها را Unique تعریف میکنیم، باز هم از ورود چند درخواست همزمان به اکشن رزرو صندلی جلوگیری کنیم.

راه حل

برای حل این مشکل میتوان از Lock statement استفاده کرد که این راه حل نیز یک مشکل دارد که در ادامه به آن اشاره خواهم کرد.

Lock statement به ما این امکان رو میده تا اگر بخشی از کد ما در یک Thread در حال اجرا شدن است، Thread دیگری به آن بخش از کد، دسترسی نداشته باشد و منتظر بماند تا آن Thread کارش با کد ما تموم شود و بعد Thread جدید بتونه کد مارو اجرا کنه.

نحوه استفاده از Lock statement هم بسیار ساده‌است:

public class TestClass
{
    private static readonly object _lock1 = new();

    public void Method1()
    {
        lock (_lock1)
        {
            // Body
        }
    }
}

حالا باید کدهای خودمون رو در بخش Body اضافه کنیم تا دیگر چندین Thread به صورت همزمان، کدهای ما رو اجرا نکنند.

اما یک مشکل وجود داره و آن این است که ما نمیتوانیم در Lock statement، از کلمه کلیدی await استفاده کنیم؛ در حالیکه برای ساخت User جدید باید از await استفاده کنیم:

var result = await userManager.CreateAsync(user, model.Password);

برای حل این مشکل میتوان از کلاس SemaphoreSlim بجای کلمه‌ی کلیدی lock استفاده کرد:

[ApiController]
[Route("/api/[controller]")]
public class UserController(UserManager<User> userManager) : Controller
{
    private static readonly SemaphoreSlim Semaphore = new (initialCount: 1, maxCount: 1);

    [HttpPost]
    public async Task<IActionResult> Add(UserViewModel model)
    {
        var user = new User
        {
            UserName = model.UserName,
            Email = model.Email
        };

        // Acquire the semaphore
        await Semaphore.WaitAsync();
        try
        {
            // Perform user creation
            var result = await userManager.CreateAsync(user, model.Password);
            if (result.Succeeded)
            {
                return Ok();
            }
            return BadRequest(result.Errors);
        }
        finally
        {
            // Release the semaphore
            Semaphore.Release();
        }
    }
}

این کلاس نیز مانند lock عمل میکند، ولی توانایی‌های بیشتری را در اختیار ما قرار میدهد؛ برای مثال میتوان تعیین کرد که همزمان چند ترد میتوانند به این کد دسترسی داشته باشند؛ در حالیکه در lock statement فقط یک Thread میتوانست به کد دسترسی داشته باشد. مزیت دیگر کلاس SemaphoreSlim این است که میتوان برای اجرای کدمان Timeout در نظر گرفت تا از بلاک شدن نامحدود Thread جلوگیری کنیم.

با فراخوانی await semaphore.WaitAsync، دسترسی کد ما توسط سایر Thread ها محدود و با فراخوانی Release، کد ما توسط سایر Thread ها قابل دسترسی می‌شود.

مشکل قفل کردن Thread ها

هنگام قفل کردن Thread ها، مشکلی وجود دارد و آن این است که اگر برنامه‌ی ما روی چندین سرور مختلف اجرا شود، این روش جوابگو نخواهد بود؛ چون قفل کردن Thread روی یک سرور تاثیری در سایر سرورها جهت محدود کردن دسترسی به کد ما ندارد. اما به صورت کلی میتوان از این روش برای بخش‌هایی خاص از برنامه‌هایمان استفاده کنیم.

پیاده سازی با کمک الگوی AOP

برای اینکه کارمون راحت تر بشه، میتونیم کدهای بالا رو به یک Attribute انتقال بدیم و از اون Attribute در بالای اکشن‌هامون استفاده کنیم تا کل عملیات اکشن‌هامونو رو در یک Thread قفل کنیم:

[AttributeUsage(AttributeTargets.Method)]
public class SemaphoreLockAttribute : Attribute, IAsyncActionFilter
{
    private static readonly SemaphoreSlim Semaphore = new (1, 1);

    public async Task OnActionExecutionAsync(ActionExecutingContext context, ActionExecutionDelegate next)
    {
        // Acquire the semaphore
        await Semaphore.WaitAsync();
        try
        {
            // Proceed with the action
            await next();
        }
        finally
        {
            // Release the semaphore
            Semaphore.Release();
        }
    }
}

حالا میتونیم این Attribute را برای هر اکشنی استفاده کنیم:

[HttpPost]
[SemaphoreLock]
public async Task<IActionResult> Add(UserViewModel model)
{
    var user = new User
    {
        UserName = model.UserName,
        Email = model.Email
    };

    var result = await userManager.CreateAsync(user, model.Password);
    if (result.Succeeded)
    {
        return Ok();
    }
    return BadRequest(result.Errors);
}