بازخوردهای دوره
استفاده از StructureMap به عنوان یک IoC Container
سلام؛ توی این ورژن جدید کدها رو به صورت زیر تغییر دادم. آیا درسته؟ ممنون میشم بررسی بفرمایید
    public static class IoC
    {  
        public static IContainer Initialize()
        {
            var container = new Container(x =>
            {

               x.For<IUnitOfWork>().HybridHttpOrThreadLocalScoped().Use(() => new baranDbContext());
                x.For<IUserService>().Use<UserService>();
                x.For<IUserMetaDataService>().Use<UserMetaDataService>();
            });

            return container;
        }
        public class StructureMapControllerFactory : DefaultControllerFactory
        {
            private readonly IContainer _container;

            public StructureMapControllerFactory(IContainer container)
            {
                _container = container;
            }
            protected override IController GetControllerInstance(RequestContext requestContext, Type controllerType)
            {
                if (controllerType == null)
                    return null;

                return (IController)_container.GetInstance(controllerType);
            }
        }
} 
و یه سول دیگه اینکه در یک فایل جدا معادل دستور زیر چی میشه؟ چون از این خط خطا میگیره
var userService = ObjectFactory.GetInstance<IUserService>();
مطالب
ایجاد «خواص الحاقی» با استفاده از امکانات TypeDescriptor و یک TypeDescriptionProvider سفارشی

برای ایجاد «خواص الحاقی» قبلا در سایت مطلب ایجاد «خواص الحاقی» تهیه شده‌است. در این مطلب قصد داریم راه حل ارائه شده‌ی در مطلب مذکور را با یک TypeDescriptionProvider سفارشی ترکیب کرده تا به صورت یکدست، از طریق TypeDescriptor بتوان به آن خواص نیز دسترسی داشته باشیم. 

فرض کنید در یک سیستم Modular Monolith، نیاز جدیدی به دست شما رسیده است که به شرح زیر می‌باشد:

نیاز داریم در گریدی از صفحه‌ی X مربوط به «مؤلفه 1»، ستونی جدید را اضافه کنید و دیتای مربوط به این ستون، توسط «مؤلفه 2» مهیا خواهد شد.

شرایط زیر می‌تواند در سیستم حاکم باشد:
  • قبلا «مؤلفه 2» ارجاعی را به «مؤلفه 1» داده است؛ لذا امکان ارجاع معکوس را در این حالت، نداریم.
  • «مؤلفه 1» باید بتواند مستقل از «مؤلفه 2» نیز توزیع شده و کار کند؛ لذا این نیاز برای زمانی است که «مؤلفه 2» برای توزیع در Component Model ما وجود داشته باشد.
  • نمی‌خواهیم در آینده برای نیازهای مشابه در همان صفحه‌ی X، تغییر جدیدی را در «مؤلفه 1» داشته باشیم (اضافه کردن خصوصیت مورد نظر به مدل نمایشی یا اصطلاحا ویو-مدل متناظر با گرید در در زمان طراحی، جواب مساله نمی‌باشد)
  • می‌‌خواهیم به یک طراحی با Loose Coupling (اتصال سست و ضعیف، وابستگی ضعیف) دست پیدا کنیم.

راه حل چیست؟
با توجه به شرایط حاکم، بدون شک برای مهیا کردن دیتای ستون مذکور نمی‌توان به «مؤلفه 2» مستقیما ارجاع داده و «مؤلفه 1» را به «مؤلفه 2» وابسته کنیم. از طرفی چه بسا در نیاز‌های آتی نیز لازم باشد ستون جدید دیگری برای نمایش دیتای خاصی در گرید مذکور، اضافه شود. راه حل پیشنهادی، معکوس سازی این وابستگی می‌باشد. به عنوان مثال با استفاده از Expose کردن یک Interface توسط «مؤلفه 1» و پیاده سازی آن توسط سایر مؤلفه‌ها و استفاده از این پیاده سازی‌ها در زمان اجرا، می‌تواند راه حلی برای این معکوس سازی باشد. 

نمودار UML بالا، نشان دهنده‌ی راه حل پیشنهادی میباشد.

در این حالت «مؤلفه 1» بدون آگاهی از سایر مؤلفه‌ها، همه‌ی پیاده سازی‌های IExtraColumnConenvtion را در زمان اجرا یافته و از آنها برای ایجاد ستون‌های جدید، استفاده خواهد کرد.

واسط مذکور به شکل زیر می‌باشد: 

public interface IConvention
{
}

public interface IExtraColumnConvention<T> : IConvention
{
   string Name { get; }
 
   string Title { get; }
 
   void Populate(IEnumerable<T> list);
}

البته این واسط می‌تواند جزئیات بیشتری را هم شامل شود.


گام اول: طراحی TypeDescriptionProvider


در ‎.NET به دو طریق میتوان به متادیتا‌ی یک Type دسترسی داشت:

  • استفاده از API Reflection موجود در فضای نام System.Reflection 
  • کلاس TypeDescriptor 

به طور کلی هدف از این کلاس در دات نت، ارائه اطلاعاتی در خصوص یک وهله از جمله: Attributeها، Propertyها، Event‌های آن و غیره، می‌باشد. هنگام استفاده از Reflection، اطلاعات بدست آمده از Type، به دلیل اینکه بعد از کامپایل نمی‌توانند تغییر کنند، لذا قابلیت توسعه پذیری را هم ندارند. در مقابل، با استفاده از کلاس TypeDescriptor این توسعه پذیری را برای وهله‌های مختلف می‌توانید داشته باشید.

برای مهیا کردن متادیتای سفارشی (در اینجا اطلاعات مرتبط با خصوصیات الحاقی) برای TypeDescriptor، نیاز است یک TypeDescriptionProvider سفارشی را طراحی کنیم. 

/// <summary>
/// Use this provider when you need access ExtraProperties with TypeDescriptor.GetProperties(instance)
/// </summary>
public class ExtraPropertyTypeDescriptionProvider<T> : TypeDescriptionProvider where T : class
{
    private static readonly TypeDescriptionProvider Default =
        TypeDescriptor.GetProvider(typeof(T));

    public ExtraPropertyTypeDescriptionProvider() : base(Default)
    {
    }

    public override ICustomTypeDescriptor GetTypeDescriptor(Type instanceType, object instance)
    {
        var descriptor = base.GetTypeDescriptor(instanceType, instance);
        return instance == null ? descriptor : new ExtraPropertyCustomTypeDescriptor(descriptor, instance);
    }

    private sealed class ExtraPropertyCustomTypeDescriptor : CustomTypeDescriptor
    {
      //...
    }
}

  در تکه کد بالا، ابتدا تامین کننده‌ی پیش‌فرض مرتبط با نوع جنریک مورد نظر را یافته و به عنوان تامین کننده‌ی پایه معرفی کرده‌ایم. سپس برای معرفی CustomTypeDescritpr باید متد GetTypeDescriptor را بازنویسی کنیم. در اینجا لازم است برای معرفی متادیتا مرتبط با یک نوع، یک پیاده سازی از واسط ICustomTypeDescriptor را ارائه کنیم:
private sealed class ExtraPropertyCustomTypeDescriptor : CustomTypeDescriptor
{
    private readonly IEnumerable<ExtraPropertyDescriptor<T>> _instanceExtraProperties;

    public ExtraPropertyCustomTypeDescriptor(ICustomTypeDescriptor defaultDescriptor, object instance)
        : base(defaultDescriptor)
    {
        _instanceExtraProperties = instance.ExtraPropertyList<T>();
    }

    public override PropertyDescriptorCollection GetProperties(Attribute[] attributes)
    {
        var properties = new PropertyDescriptorCollection(null);

        foreach (PropertyDescriptor property in base.GetProperties(attributes))
        {
            properties.Add(property);
        }

        foreach (var property in _instanceExtraProperties)
        {
            properties.Add(property);
        }

        return properties;
    }

    public override PropertyDescriptorCollection GetProperties()
    {
        return GetProperties(null);
    }
}
در سازنده این کلاس، لیست خصوصیات الحاقی وهله جاری، در قالب لیستی از ExtraPropertyDescriptor‌ها دریافت شده و با بازنویسی دو متد GetProperties، لیست بدست آماده را به لیست خصوصیات فعلی آن وهله اضافه کرده‌ایم.
متد الحاقی ExtraPropertList به شکل زیر پیاده‌سازی شده‌است:
public static class ExtraProperties
{
    //...

    public static IEnumerable<ExtraPropertyDescriptor<T>> ExtraPropertyList<T>(this object instance) where T : class
    {
        if (!PropertyCache.TryGetValue(instance, out var properties))
            throw new KeyNotFoundException($"key: {instance.GetType().Name} was not found in dictionary");

        return properties.Select(p =>
            new ExtraPropertyDescriptor<T>(p.PropertyName, p.PropertyValueFunc, p.SetPropertyValueFunc,
                p.PropertyType,
                p.Attributes));
    }
}

در اینجا از همان مکانیزم افزودن خواص الحاقی که در ابتدای مطلب اشاره شد، استفاده شده است. 
ExtraPropertyDescriptor به شکل زیر طراحی شده است:
public sealed class ExtraPropertyDescriptor<T> : PropertyDescriptor where T : class
{
    private readonly Func<object, object> _propertyValueFunc;
    private readonly Action<object, object> _setPropertyValueFunc;
    private readonly Type _propertyType;

    public ExtraPropertyDescriptor(
        string propertyName,
        Func<object, object> propertyValueFunc,
        Action<object, object> setPropertyValueFunc,
        Type propertyType,
        Attribute[] attributes) : base(propertyName, attributes)
    {
        _propertyValueFunc = propertyValueFunc;
        _setPropertyValueFunc = setPropertyValueFunc;
        _propertyType = propertyType;
    }

    public override void ResetValue(object component)
    {
    }

    public override bool CanResetValue(object component) => true;

    public override object GetValue(object component) => _propertyValueFunc(component);

    public override void SetValue(object component, object value) => _setPropertyValueFunc(component, value);

    public override bool ShouldSerializeValue(object component) => true;
    public override Type ComponentType => typeof(T);
    public override bool IsReadOnly => _setPropertyValueFunc == null;
    public override Type PropertyType => _propertyType;
}
در نهایت برای استفاده از تامین کننده‌ی طراحی شده، می‌توان به شکل زیر عمل کرد:
[TypeDescriptionProvider(typeof(ExtraPropertyTypeDescriptionProvider<Person>))]
private class Person
{
    public string Name { get; set; }
    public string Family { get; set; }
}
در اینصورت با آزمایش زیر مشخص است که امکان دسترسی به این خصوصیات الحاقی نیز از طریق TypeDescriptor مهیا می‌باشد:
[Test]
public void Should_TypeDescriptor_GetProperties_Returns_ExtraProperties_And_PredefinedProperties()
{
    //Arrange
    var rabbal = new Person {Name = "GholamReza", Family = "Rabbal"};
    const string propertyName = "Title";
    const string propertyValue = "Software Engineer";

    //Act
    rabbal.ExtraProperty(propertyName, propertyValue);
    var title = TypeDescriptor.GetProperties(rabbal).Find(propertyName, true);

    //Assert
    rabbal.ExtraProperty<string>(propertyName).ShouldBe(propertyValue);
    title.ShouldNotBeNull();
    title.GetValue(rabbal).ShouldBe(propertyValue);
}

گام دوم: استفاده از IExtraColumnConvention برای نمایش ستون‌های الحاقی


فرض کنیم 3 پیاده‌سازی از واسط IExtraColumnConvention را توسط مؤلفه‌های مختلف، به شکل داشته باشیم:
public class Column4Convention : IExtraColumnConvention<Product>
{
   public string Name => "Column4";
 
   public string Title => "Column 4"
 
   public void Populate(IEnumerable<Product> list)
   {
      //TODO: forEach on list and set ExtraProperty
      // item.ExtraProperty(Name,value)
      // item.ExtraProperty(Name,(obj)=> value)
      // item.ExtraProperty(Name,(obj)=> value, (obj,value)=>)
   }
}

public class Column2Convention : IExtraColumnConvention<Product>
{
   public string Name => "Column2";
 
   public string Title => "Column 2"
 
   public void Populate(IEnumerable<Product> list)
   {
      //TODO: forEach on list and set ExtraProperty
   }
}

public class Column3Convention : IExtraColumnConvention<Product>
{
   public string Name => "Column3";
 
   public string Title => "Column 3"
 
   public void Populate(IEnumerable<Product> list)
   {
      //TODO: forEach on list and set ExtraProperty
   }
}

سپس این پیاده‌سازی‌ها از طریق مکانیزمی مانند معرفی آنها به یک IoC Container، توسط میزبان (مؤلفه 1) قابل دسترسی خواهد بود. در نهایت میزبان، قبل از نمایش محصولات، به شکل زیر عمل خواهد کرد:
var products = _productService.PagedList(page:1, pageSize:10);
var columns = _provider.GetServices<IExtraColumnConvention<Product>>();
foreach(var column in columns)
{
  column.Populate(products);
}
از این پس خصوصیات الحاقی اضافه شده‌ی توسط مؤلفه‌های دیگر نیز جزئی از خصوصیات محصولات بوده و از طریق TypeDescriptor.GetProperties قابل دسترسی می‌باشد. البته مشخص است راهکاری که در اینجا مطرح شد، وابستگی خیلی زیادی را به مکانیزم استفاده شده در لایه Presentation برای نمایش اطلاعات دارد.
نکته: امکان تهیه ContractResolver سفارشی برای کتابخانه JSON.NET به منظور Serialize خواص الحاقی اضافه شده در زمان اجرا، نیز وجود دارد.

تامین کننده طراحی شده‌ی در این مطلب، به زیرساخت DNTFrameworkCore اضافه شد.
نظرات مطالب
EF Code First #7
یعنی میفرمایید من چه رابطه ای بین این دو کلاس تعریف کنم تا رابطه 0..1-0..1 داشته باشم؟
    public class Order
    {
        public int OrderId { get; set; }
        public virtual Quotation Quotation { get; set; }
    }
    public class Quotation
    {
        public int QuotationId { get; set; }
        public virtual Order Order { get; set; }
    }

مطالب
بررسی ساختارهای جدید DateOnly و TimeOnly در دات نت 6
به همراه دات نت 6، دو ساختار داده‌ی جدید DateOnly و TimeOnly نیز معرفی شده‌اند که امکان کار کردن ساده‌تر با قسمت‌های فقط تاریخ و یا فقط زمان DateTime را میسر می‌کنند. این دو نوع جدید نیز همانند DateTime، از نوع struct هستند و بنابراین value type محسوب می‌شوند. در فضای نام System قرار گرفته‌اند و همچنین با نوع‌های date و time مربوط به SQL Server، سازگاری کاملی دارند.


روش استفاده از نوع DateOnly در دات نت 6

نوع‌های جدید معرفی شده، بسیار واضح هستند و مقصود از بکارگیری آن‌ها را به خوبی بیان می‌کنند. برای مثال اگر نیاز بود تاریخی را بدون در نظر گرفتن قسمت زمان آن معرفی کنیم، می‌توان از نوع DateOnly استفاده کرد؛ مانند تاریخ تولد، روزهای کاری و امثال آن. تا پیش از این برای معرفی یک چنین تاریخ‌هایی، عموما قسمت زمان DateTime را با 00:00:00.000 مقدار دهی می‌کردیم؛ اما دیگر نیازی به این نوع تعاریف نیست و می‌توان مقصود خود را صریح‌تر بیان کرد.
روش معرفی نمونه‌ای از آن با معرفی سال، ماه و روز است:
 var date = new DateOnly(2020, 04, 20);
و یا اگر خواستیم یک DateTime موجود را به DateOnly تبدیل کنیم، می‌توان به صورت زیر عمل کرد:
 var currentDate = DateOnly.FromDateTime(DateTime.Now);

همچنین در اینجا نیز همانند DateTime می‌توان از متدهای Parse و یا TryParse، برای تبدیل یک رشته به معادل DateOnly آن، کمک گرفت:
if (DateOnly.TryParse("28/09/1984", new CultureInfo("en-US"), DateTimeStyles.None, out var result))
{
   Console.WriteLine(result);
}
در یک چنین حالتی ذکر CultureInfo، دقت کار را افزایش می‌دهد؛ در غیراینصورت از CultureInfo ترد جاری برنامه استفاده خواهد شد که می‌تواند در سیستم‌های مختلف، متفاوت باشد.

و یا می‌توان توسط متد ParseExact، ساختار تاریخ دریافتی را دقیقا مشخص کرد:
DateOnly d1 = DateOnly.ParseExact("31 Dec 1980", "dd MMM yyyy", CultureInfo.InvariantCulture);  // Custom format
Console.WriteLine(d1.ToString("o", CultureInfo.InvariantCulture)); // "1980-12-31"  (ISO 8601 format)

در حین نمونه سازی DateOnly، امکان ذکر تقویم‌های خاص، مانند PersianCalendar نیز وجود دارد:
var persianCalendar = new PersianCalendar();
DateOnly d2 = new DateOnly(1400, 9, 6, persianCalendar);
Console.WriteLine(d2.ToString("d MMMM yyyy", CultureInfo.InvariantCulture));

در اینجا همچنین متدهایی مانند AddDays، AddMonths و AddYears نیز بر روی date مهیا کار می‌کنند:
var newDate = date.AddDays(1).AddMonths(1).AddYears(1)

یک نکته: برخلاف DateTime، نوع DateOnly به همراه DateTimeKind مانند Utc و امثال آن نیست و همواره DateTimeKind آن Unspecified است.


روش استفاده از نوع TimeOnly در دات نت 6

نوع و ساختار TimeOnly، قسمت زمان را به نحو صریحی مشخص می‌کند؛ مانند ساعتی که باید هر روز راس آن، آلارمی به صدا درآید و یا جلسه‌ای تشکیل شود و یا وظیفه‌ای صورت گیرد. سازنده‌ی آن overload‌های قابل توجهی را داشته و می‌تواند یکی از موارد زیر باشد:
public TimeOnly(int hour, int minute)
public TimeOnly(int hour, int minute, int second)
public TimeOnly(int hour, int minute, int second, int millisecond)
برای نمونه برای نمایش 10:30 صبح، می‌توان به صورت زیر عمل کرد:
var startTime = new TimeOnly(10, 30);
در اینجا قسمت ساعت، 24 ساعتی تعریف شده‌است. بنابراین برای نمونه، ساعت 1 عصر را باید به صورت 13 قید کرد:
var endTime = new TimeOnly(13, 00, 00);

و یا برای مثال می‌توان این نمونه‌ها را از هم کم کرد:
var diff = endTime - startTime;
خروجی این تفاوت محاسبه شده، بر حسب TimeSpan است:
Console.WriteLine($"Hours: {diff.TotalHours}");
و یا با استفاده از متد الحاقی ToTimeSpan می‌توان یک TimeOnly را به TimeSpan معادلی تبدیل نمود:
TimeSpan ts = endTime.ToTimeSpan();

برای تبدیل قسمت زمان DateTime به TimeOnly، می‌توان از متد FromDateTime به صورت زیر استفاده کرد:
var currentTime = TimeOnly.FromDateTime(DateTime.Now);
و یا اگر بخواهیم یک DateOnly را به DateTime تبدیل کنیم، می‌توان از متد الحاقی ToDateTime به همراه ذکر قسمت زمان آن بر حسب TimeOnly کمک گرفت:
DateTime dt = date.ToDateTime(new TimeOnly(0, 0));
Console.WriteLine(dt);

و در این حالت اگر خواستیم بررسی کنیم که آیا زمانی بین دو زمان دیگر واقع شده‌است یا خیر، می‌توان از متد IsBetween استفاده نمود:
 var isBetween = currentTime.IsBetween(startTime, endTime);
Console.WriteLine($"Current time {(isBetween ? "is" : "is not")} between start and end");

در اینجا امکان مقایسه این نمونه‌ها، توسط عملگرهایی مانند < نیز وجود دارد:
var startTime = new TimeOnly(08, 00);
var endTime = new TimeOnly(09, 00);
 
Console.WriteLine($"{startTime < endTime}");

اگر نیاز به تبدیل رشته‌ای به TimeOnly بود، می‌توان از متد ParseExact به همراه ذکر ساختار مدنظر، استفاده کرد:
TimeOnly time = TimeOnly.ParseExact("5:00 pm", "h:mm tt", CultureInfo.InvariantCulture);  // Custom format
Console.WriteLine(time.ToString("T", CultureInfo.InvariantCulture)); // "17:00:00"  (long time format)


عدم پشتیبانی System.Text.Json از نوع‌های جدید DateOnly و TimeOnly

فرض کنید رکوردی را به صورت زیر تعریف کرده‌ایم که از نوع‌های جدید DateOnly و TimeOnly، تشکیل شده‌است:
public record DataTypeTest(DateOnly Date, TimeOnly Time);
اگر سعی کنیم نمونه‌ای از آن را به JSON تبدیل کنیم:
var date = DateOnly.FromDateTime(DateTime.Now);
var time = TimeOnly.FromDateTime(DateTime.Now);
var test = new DataTypeTest(date, time);
var json = JsonSerializer.Serialize(test);
با استثنای زیر مواجه خواهیم شد:
Serialization and deserialization of 'System.DateOnly' instances are not supported.

برای رفع این مشکل می‌توان ابتدا تبدیلگر ویژه‌ی DateOnly و
    public class DateOnlyConverter : JsonConverter<DateOnly>
    {
        private readonly string _serializationFormat;

        public DateOnlyConverter() : this(null)
        { }

        public DateOnlyConverter(string? serializationFormat)
        {
            _serializationFormat = serializationFormat ?? "yyyy-MM-dd";
        }

        public override DateOnly Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
        {
            var value = reader.GetString();
            return DateOnly.ParseExact(value!, _serializationFormat, CultureInfo.InvariantCulture);
        }

        public override void Write(Utf8JsonWriter writer, DateOnly value, JsonSerializerOptions options)
            => writer.WriteStringValue(value.ToString(_serializationFormat));
    }
و سپس تبدیلگر ویژه‌ی TimeOnly را به صورت زیر تدارک دید:
    public class TimeOnlyConverter : JsonConverter<TimeOnly>
    {
        private readonly string _serializationFormat;

        public TimeOnlyConverter() : this(null)
        {
        }

        public TimeOnlyConverter(string? serializationFormat)
        {
            _serializationFormat = serializationFormat ?? "HH:mm:ss.fff";
        }

        public override TimeOnly Read(ref Utf8JsonReader reader, Type typeToConvert, JsonSerializerOptions options)
        {
            var value = reader.GetString();
            return TimeOnly.ParseExact(value!, _serializationFormat, CultureInfo.InvariantCulture);
        }

        public override void Write(Utf8JsonWriter writer, TimeOnly value, JsonSerializerOptions options)
            => writer.WriteStringValue(value.ToString(_serializationFormat));
    }
و به نحو زیر مورد استفاده قرار داد:
var jsonOptions = new JsonSerializerOptions(JsonSerializerDefaults.Web);
jsonOptions.Converters.Add(new DateOnlyConverter());
jsonOptions.Converters.Add(new TimeOnlyConverter());
var json = JsonSerializer.Serialize(test, jsonOptions);
نظرات مطالب
پیاده سازی Option یا Maybe در #C
با تشکر از شما
لزوما با پیاده سازی ارائه شده در مطلب جاری، از شر بررسی Null بودن یا نبودن خلاص نشده ایم (از دید استفاده کننده) چرا که خروجی متد همچنان می‌تواند Nullable باشد (کلاس Option یک نوع ارجاعی می‌باشد). چرا که استفاده کننده از آن لازم است برروی خروجی خود متد که یک وهله از Option می‌باشد بررسی Null بودن یا عدم آن را انجام دهد. برای رهایی از این موضوع استفاده از struct راه حل معقولی می‌باشد؛ یک پیاده سازی از آن به صورت زیر می‌باشد:
    public struct Maybe<T> : IEquatable<Maybe<T>>
        where T : class
    {
        private readonly T _value;

        private Maybe(T value)
        {
            _value = value;
        }

        public bool HasValue => _value != null;
        public T Value => _value ?? throw new InvalidOperationException();
        public static Maybe<T> None => new Maybe<T>();


        public static implicit operator Maybe<T>(T value)
        {
            return new Maybe<T>(value);
        }

        public static bool operator ==(Maybe<T> maybe, T value)
        {
            return maybe.HasValue && maybe.Value.Equals(value);
        }

        public static bool operator !=(Maybe<T> maybe, T value)
        {
            return !(maybe == value);
        }

        public static bool operator ==(Maybe<T> left, Maybe<T> right)
        {
            return left.Equals(right);
        }

        public static bool operator !=(Maybe<T> left, Maybe<T> right)
        {
            return !(left == right);
        }

        /// <inheritdoc />
        /// <summary>
        ///     Avoid boxing and Give type safety
        /// </summary>
        /// <param name="other"></param>
        /// <returns></returns>
        public bool Equals(Maybe<T> other)
        {
            if (!HasValue && !other.HasValue)
                return true;

            if (!HasValue || !other.HasValue)
                return false;

            return _value.Equals(other.Value);
        }

        /// <summary>
        ///     Avoid reflection
        /// </summary>
        /// <param name="obj"></param>
        /// <returns></returns>
        public override bool Equals(object obj)
        {
            if (obj is T typed)
            {
                obj = new Maybe<T>(typed);
            }

            if (!(obj is Maybe<T> other)) return false;

            return Equals(other);
        }

        /// <summary>
        ///     Good practice when overriding Equals method.
        ///     If x.Equals(y) then we must have x.GetHashCode()==y.GetHashCode()
        /// </summary>
        /// <returns></returns>
        public override int GetHashCode()
        {
            return HasValue ? _value.GetHashCode() : 0;
        }

        public override string ToString()
        {
            return HasValue ? _value.ToString() : "NO VALUE";
        }
    }

 این بار می‌توان به امضای متد مذکور اعتماد کرد که قطعا خروجی null ارائه نخواهد داد؛ مگر اینکه به صورت صریح مشخص شود.
نکته: پیاده سازی صحیحی از واسط IEquatable برای Value Typeها در پیاده سازی struct بالا در نظر گرفته شده است.
استفاده از آن
public virtual async Task<Maybe<TModel>> GetByIdAsync(long id)
{
    Guard.ArgumentInRange(id, 1, long.MaxValue, nameof(id));

    var entity = await UnTrackedEntitySet.Where(a => a.Id == id)
        .ProjectTo<TModel>(_mapper.ConfigurationProvider).SingleOrDefaultAsync();

    return entity;
}
ساختار داده Maybe تعریف شده در بالا شبیه است با ساختار داده Nullable با این تفاوت که برای انواع ارجاعی مورد استفاده می‌باشد.
Maybe<T> = Nullable<T>

مطالب دوره‌ها
ساخت یک Mini ORM با AutoMapper
Mini ORM‌ها برخلاف ORMهای کاملی مانند Entity framework یا NHibernate، کوئری‌های LINQ را تبدیل به SQL نمی‌کنند. در اینجا کار با SQL نویسی مستقیم شروع می‌شود و مهم‌ترین کار این کتابخانه‌ها، نگاشت نتیجه‌ی دریافتی از بانک اطلاعاتی به اشیاء دات نتی هستند. خوب ... AutoMapper هم دقیقا همین کار را انجام می‌دهد! بنابراین در ادامه قصد داریم یک Mini ORM را به کمک AutoMapper طراحی کنیم.


کلاس پایه AdoMapper

public abstract class AdoMapper<T> where T : class
{
    private readonly SqlConnection _connection;
 
    protected AdoMapper(string connectionString)
    {
        _connection = new SqlConnection(connectionString);
    }
 
    protected virtual IEnumerable<T> ExecuteCommand(SqlCommand command)
    {
        command.Connection = _connection;
        command.CommandType = CommandType.StoredProcedure;
        _connection.Open();
 
        try
        {
            var reader = command.ExecuteReader();
            try
            {
                return Mapper.Map<IDataReader, IEnumerable<T>>(reader);
            }
            finally
            {
                reader.Close();
            }
        }
        finally
        {
            _connection.Close();
        }
    }
 
    protected virtual T GetRecord(SqlCommand command)
    {
        command.Connection = _connection;
        _connection.Open();
        try
        {
            var reader = command.ExecuteReader();
            try
            {
                reader.Read();
                return Mapper.Map<IDataReader, T>(reader);
            }
            finally
            {
                reader.Close();
            }
        }
        finally
        {
            _connection.Close();
        }
    }
 
    protected virtual IEnumerable<T> GetRecords(SqlCommand command)
    {
        command.Connection = _connection;
        _connection.Open();
        try
        {
            var reader = command.ExecuteReader();
            try
            {
                return Mapper.Map<IDataReader, IEnumerable<T>>(reader);
            }
            finally
            {
                reader.Close();
            }
        }
        finally
        {
            _connection.Close();
        }
    }
}
در اینجا کلاس پایه Mini ORM طراحی شده را ملاحظه می‌کنید. برای نمونه قسمت GetRecords آن مانند مباحث استاندارد ADO.NET است. فقط کار خواندن و همچنین نگاشت رکوردهای دریافت شده از بانک اطلاعاتی به شیء‌ایی از نوع T توسط AutoMapper انجام خواهد شد.


نحوه‌ی استفاده از کلاس پایه AdoMapper

در کدهای ذیل نحوه‌ی ارث بری از کلاس پایه AdoMapper و سپس استفاده از متدهای آن‌را ملاحظه می‌کنید:
public class UsersService : AdoMapper<User>, IUsersService
{
    public UsersService(string connectionString)
        : base(connectionString)
    {
    }
 
    public IEnumerable<User> GetAll()
    {
        using (var command = new SqlCommand("SELECT * FROM Users"))
        {
            return GetRecords(command);
        }
    }
 
    public User GetById(int id)
    {
        using (var command = new SqlCommand("SELECT * FROM Users WHERE Id = @id"))
        {
            command.Parameters.Add(new SqlParameter("id", id));
            return GetRecord(command);
        }
    }
}
در این مثال نحوه‌ی تعریف کوئری‌های پارامتری نیز در متد GetById به نحو متداولی مشخص شده‌است. کار نگاشت حاصل این کوئری‌ها به اشیاء دات نتی را AutoMapper انجام خواهد داد. نحوه‌ی کار نیز، نگاشت فیلد f1 به خاصیت f1 است (هم نام‌ها به هم نگاشت می‌شوند).


تعریف پروفایل مخصوص AutoMapper

ORMهای تمام عیار، کار نگاشت فیلدهای بانک اطلاعاتی را به خواص اشیاء دات نتی، به صورت خودکار انجام می‌دهند. در اینجا همانند روش‌های متداول کار با AutoMapper نیاز است این نگاشت را به صورت دستی یکبار تعریف کرد:
public class UsersProfile : Profile
{
    protected override void Configure()
    {
        this.CreateMap<IDataRecord, User>();
    }
 
    public override string ProfileName
    {
        get { return this.GetType().Name; }
    }
}
و سپس در ابتدای برنامه آن‌را به AutoMapper معرفی نمود:
Mapper.Initialize(cfg => // In Application_Start()
{
    cfg.AddProfile<UsersProfile>();
});


سفارشی سازی نگاشت‌های AutoMapper

فرض کنید کلاس Advertisement زیر، معادل است با جدول Advertisements بانک اطلاعاتی؛ با این تفاوت که در کلاس تعریف شده، خاصیت TitleWithOtherName تطابقی با هیچکدام از فیلدهای بانک اطلاعاتی ندارد. بنابراین اطلاعاتی نیز به آن نگاشت نخواهد شد.
public class Advertisement
{
    public int Id { set; get; }
    public string Title { get; set; }
    public string Description { get; set; }
    public int UserId { get; set; }
 
    public string TitleWithOtherName { get; set; }
}
برای رفع این مشکل می‌توان حین تعریف پروفایل مخصوص Advertisement، آن‌را سفارشی سازی نیز نمود:
public class AdvertisementsProfile : Profile
{
    protected override void Configure()
    {
        this.CreateMap<IDataRecord, Advertisement>()
            .ForMember(dest => dest.TitleWithOtherName,
                       options => options.MapFrom(src =>
                            src.GetString(src.GetOrdinal("Title"))));
    }
 
    public override string ProfileName
    {
        get { return this.GetType().Name; }
    }
}
در اینجا پس از تعریف نگاشت مخصوص کار با IDataRecordها، عنوان شده‌است که هر زمانیکه به خاصیت TitleWithOtherName رسیدی، مقدارش را از فیلد Title دریافت و جایگزین کن.


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید.
مطالب
مقایسه value type و reference type
در سی شارپ دو نوع class و struct وجود دارد که تقریباً مشابه یکدیگرند در حالیکه یکی از آنها-value type و دیگری reference-type است.

struct چیست؟
structها مشابه classها هستند با این تفاوت که structها finalizer ندارند و از ارث بری پشتیبانی نمی‌کنند. structها کاملا مشابه classها تعریف می‌شوند و در تعریف آنها از کلمه کلیدی struct استفاده می‌شود. آنها شامل فیلدها، متدها، خصوصیت‌ها نیز می‌شوند. در زیر نحوه تعریف آن را مشاهده می‌کنید: 

struct Point
{
   private int x, y;             // private fields
 
   public Point (int x, int y)   // constructor
   {
         this.x = x;
         this.y = y;
   }

   public int X                  // property
   {
         get {return x;}
         set {x = value;}
   }

   public int Y
   {
         get {return y;}
         set {y = value;}
   }
}

value type و reference type
تفاوت دیگری که بین class و struct، از اهمیت ویژه‌ای برخوردار است  آن است که classها reference-type و structها value-type هستند و در زمان اجرا با آنها متفاوت رفتار می‌شود و در ادامه به تشریح آن می‌پردازیم.
وقتی یک وهله از value-type ایجاد شود، یک فضای خالی از حافظه‌ی اصلی (RAM) برای ذخیره سازی مقدار آن تخصیص داده می‌شود. نوع‌های اصلی مانند int, float, bool و char از نوع value type هستند. در ضمن سرعت دسترسی به آنها بسیار بالاست.
ولی وقتی یک وهله از reference-type ایجاد شود، یک فضا برای object و فضایی دیگر برای اشاره‌گر به آن شیء در حافظه اصلی ذخیره می‌شود. در واقع دو فضا از حافظه برای ذخیره سازی آنها اشغال می‌شود. برای درک بهتر به مثال زیر توجه کنید:
Point p1 = new Point();         // Point is a *struct*
Form f1 = new Form();           // Form is a *class*
نکته: Point از نوع struct و Form از نوع reference است. در مورد اول، یک فضا از حافظه برای p1 تخصیص داده می‌شود و در مورد دوم، دو فضا از حافظه اصلی یکی برای ذخیره کردن اشاره‌گر f1 برای اشاره به Form object و دیگری برای ذخیره کردن Form object تخصیص داده می‌شود.
Form f1;                        // Allocate the reference
f1 = new Form();                // Allocate the object
به قطعه کد زیر دقت کنید:
Point p2 = p1;
Form f2 = f1;
همانطور که قبلاً گفته شد p2، یک نوع struct است بنابراین در مورد اول مقدار p2 یک کپی از مقدار p1 خواهد بود ولی در مورد دوم، آدرس f1 را درون f2 کپی می‌کنیم در واقع f1 و f2 به یک شیء اشاره خواهند کرد. (یک شیء با 2 اشاره گر)
در سی شارپ، پارامترها (بصورت پیش فرض) بصورت یک کپی از آنها به متدها ارسال می‌شوند، یعنی اگر پارامتر از نوع value-type باشد یک کپی از آن وهله و اگر پارامتر reference-type یک کپی از آدرس ارسال خواهد شد. برای توضیح بهتر به مثال زیر توجه کنید:
Point myPoint = new Point (0, 0);      // a new value-type variable
Form myForm = new Form();              // a new reference-type variable
Test (myPoint, myForm);                // Test is a method defined below
 
void Test (Point p, Form f)
{
      p.X = 100;                       // No effect on MyPoint since p is a copy
      f.Text = "Hello, World!";        // This will change myForm’s caption since
                                       // myForm and f point to the same object
      f = null;                        // No effect on myForm
}
انتساب null به f درون متد Test هیچی اثری بر روی آدرس myForm ندارد چون f، یک کپی از آدرس myForm است.
حال می‌توانیم روش پیش فرض را با افزودن کلمه کلید ref تغییر دهیم.  وقتی از ref استفاده کنیم متد با پارامترهای فراخوانی کننده (caller's arguments) بصورت مستقیم در تعامل است در کد زیر می‌توانیم تصور کنیم که پارامترهای p و f متد Test همان متغیرهای myPoint و myForm است.
Point myPoint = new Point (0, 0);      // a new value-type variable
Form myForm = new Form();              // a new reference-type variable
Test (ref myPoint, ref myForm);        // pass myPoint and myForm by reference
 
void Test (ref Point p, ref Form f)
{
      p.X = 100;                       // This will change myPoint’s position
      f.Text = “Hello, World!”;        // This will change MyForm’s caption
      f = null;                        // This will nuke the myForm variable!
}
در کد بالا انتساب null به f باعث تهی شدن myForm می‌شود بدلیل اینکه متد مستقیماً به آن دسترسی داشته است.

تخصیص حافظه
CLR اشیاء را در دو قسمت ذخیره می‌کند:
  1. stack یا پشته
  2. heap
ساختار stack یا پشته first-in last-out است که دسترسی به آن سریع است. زمانی که متدی فراخوانی می‌شود، CLR پشته را نشانه گذاری می‌کند. سپس متد data را به پشته جهت اجرا push می‌کند و زمانی که اجرایش به اتمام رسید، CLR پشته را تا محل نشانه گذاری شده مرحله قبل، پاک می‌کند (pop).
ولی ساختار heap بصورت تصادفی است. یعنی اشیاء در محل‌های تصادفی قرار داده می‌شوند بهمین دلیل آنها دارای 2 سربار memory manager و garbage-collector هستند.
برای آشنایی با نحوه استفاده پشته و heap به کد زیر توجه کنید:
void CreateNewTextBox()
{
      TextBox myTextBox = new TextBox();             // TextBox is a class
}
در این متد، ما یک متغیر محلی ایجاد کرده ایم که به یک شیء اشاره می‌کند.

پشته همیشه برای ذخیره سازی موارد زیر استفاده می‌شود:
  • قسمت reference متغیرهای محلی و پارامترهای از نوع reference-typed (مانند myTextBox)
  • متغیرهای محلی و پارامترهای متد از نوع value-typed (مانند integer, bool, char, DateTime و ...)
همچنین از heap برای ذخیره سازی موارد زیر استفاده می‌شود:
  • محتویات شیء از نوع reference-typed
  • هر چیزی که قرار است در شیء از نوع reference-typed ذخیره شود.

آزادسازی حافظه در heap

در کد بالا وقتی اجرای متد CreateNewTextBox به اتمام برسد متغیر myTextBox از دید (Scope) خارج می‌شود. بنابراین از پشته نیز خارج می‌شود ولی با خارج شدن myTextBox از پشته چه اتفاقی برای TextBox object رخ خواهد داد؟! پاسخ در garbage-collector نهفته است. garbage-collector بصورت خودکار عملیات پاکسازی heap را انجام می‌دهد و اشیائی که اشاره گر معتبر ندارند را حذف می‌نماید. در حالت کلی اگر شیء از حافظه خارج شد باید منابع سایر قسمت‌های اشغال شده توسط آن هم آزاد شود، که این آزاد سازی بعهده garbage-collector است.

حال آزاد سازی برای کلاسهایی که اینترفیس IDisposable را پیاده سازی می‌کنند به دو صورت انجام می‌شود:

  1. دستی: با فراخوانی متد Dispose میسر است.
  2. خودکار: افزودن شیء به Net Container. مانند Form, Panel, TabPage یا UserControl. این نگهدارندها این اطمینان را به ما می‌دهند در صورتیکه آنها از حافظه خارج شدند کلیه عضوهای آن هم از حافظه خارج شوند.

برای آزادسازی دستی می‌توانیم مانند کدهای زیر عمل کنیم:

using (Stream s = File.Create ("myfile.txt"))

{
   ...
}
یا
Stream s = File.Create ("myfile.txt");

try
{
   ...
}

finally
{
   if (s != null) s.Dispose();
}


مثالی از Windows Forms
فرض کنید قصد داریم فونت و اندازه یک ویندوز فرم را تغییر دهیم.

Size s = new Size (100, 100);          // struct = value type
Font f = new Font (“Arial”,10);        // class = reference type

Form myForm = new Form();

myForm.Size = s;
myForm.Font = f;
توجه کنید که ما در کد بالا از اعضای myForm استفاده کردیم نه از کلاسهای Font و Size که این دو گانگی قابل قبول است. حال به تصویر زیر که به پیاده سازی کد بالا اشاره دارد توجه کنید.

همانطور که مشاهد می‌کنید محتویات s و آدرس f را در Form object ذخیره کرده ایم که نشان می‌دهد تغییر در s برروی فرم تغییر ایجاد نمی‌کند ولی تغییر در f باعث ایجاد تغییر فرم می‌شود. Form object دو اشاره گر به Font object دارد.

In-Line Allocation (تخصیص درجا)
در قبل گفته شد برای ذخیره متغیرهای محلی از نوع value-typed از پشته استفاده می‌شود آیا شیء Size جدید هم در پشته ذخیره می‌شود؟ خیر، بدلیل اینکه آن متغیر محلی نیست و در شیء دیگر ذخیره می‌شود (در مثال بالا در یک فرم ذخیره شده است) که آن شیء هم در heap ذخیره شده است پس شیء جدید Size هم در heap ذخیر می‌شود که به این نوع ذخیره سازی In-Line گفته می‌شود.

تله (Trap)
فرض کنید کلاس Form بشکل زیر تعریف شده است:
class Form
{
      // Private field members
      Size size;
      Font font;

      // Public property definitions
      public Size Size
      {
            get    { return size; }
            set    { size = value; fire resizing events }
      }

      public Font Font
      {
            get    { return font;  }
            set    { font = value; }
      }
}
حال ما قصد داریم ارتفاع آن را دو برابر کنیم، بنابراین از کد زیر استفاده می‌کنیم:
myForm.ClientSize.Height = myForm.ClientSize.Height * 2;
ولی با خطای کامپایلر زیر روبرو می‌شویم:
Cannot modify the return value of 'System.Windows.Forms.Form.ClientSize' because it is not a variable
علت چیست؟ بدلیل اینکه myForm.ClientSize شیء Size که از نوع Struct است را بر می‌گرداند و این Struct از نوع value-typed است و این شیء یک کپی از اندازه فرم است و ما همزمان قصد دو برابر نمودن آن کپی را داریم که کامپایلر خطای بالا را نمایش می‌دهد.

برای توضیح بیشتر می‌توانید به این سوال مراجعه کنید و در تکمیل آن این لینک را هم بررسی کنید.

پس بنابراین کد بالا را به کد زیر اصلاح می‌کنیم:
myForm.ClientSize = new Size (myForm.ClientSize.Width, myForm.ClientSize.Height * 2);
برای اصلاح خطای کامپایلر، ما باید یک شیء جدیدی را برای اندازه فرم تخصیص بدهیم.
بازخوردهای دوره
تزریق وابستگی‌ها در فیلترهای ASP.NET MVC
با تشکر از زحمات فراوان شما، راه حل دیگر :
public class StructureMapGlobalFilterProvider : IFilterProvider
    {
        public StructureMapGlobalFilterProvider(IContainer container, GlobalFilterRegistrationList filterList)
        {
            _container = container;
            _filterList = filterList;
        }

        private IContainer _container;
        private GlobalFilterRegistrationList _filterList;

        public IEnumerable<Filter> GetFilters(ControllerContext controllerContext, ActionDescriptor actionDescriptor)
        {
            var filters = new List<Filter>();
            if (_filterList == null || _filterList.Count == 0)
                return filters;
            foreach (GlobalFilterRegistration registration in _filterList)
            {
                var actionFilter = _container.GetInstance(registration.Type);
                var filter = new Filter(actionFilter, FilterScope.Global, registration.Order);
                filters.Add(filter);
            }
            return filters;
        }
    }

    public class GlobalFilterRegistration
    {
        public Type Type { get; set; }
        public int? Order { get; set; }
    }

    public class GlobalFilterRegistrationList : List<GlobalFilterRegistration>
    {
    }

و تنظیمات Global:
 var globalFilterRegistrationList = new GlobalFilterRegistrationList
                {
                    new GlobalFilterRegistration
                    {
                        Type = typeof (LogAttribute),
                        Order
                            = 1
                    }
                };
                container.Configure(x =>
                {
                    x.For<IFilterProvider>().Use<StructureMapGlobalFilterProvider>();
                    x.For<GlobalFilterRegistrationList>().Use(globalFilterRegistrationList);
                });
مطالب
آشنایی با OWIN و بررسی نقش آن در ASP.NET Core
در این مطلب می‌خواهیم نگاهی به قسمت‌های کلیدی OWIN و همچنین پروژه‌ی Katana بیندازیم و در نهایت نیز نقش OWIN را در ASP.NET Core بررسی خواهیم کرد.



OWIN چیست؟

همانطور که می‌دانید OWIN یک specification است که استانداری را بین وب‌سرور و وب‌اپلیکیشن‌ها تعریف کرده است. در واقع OWIN یکسری لایه‌ی انتزاعی را جهت ایجاد اپلیکیشن‌هایی که نحوه‌ی میزبانی آنها اهمیتی ندارد، تعریف خواهد کرد. به صورت خلاصه توسط این لایه‌ی انتزاعی می‌توانیم وابستگی بین وب‌سرور و وب‌اپلیکیشن را حذف کنیم. در این specification منظور از وب‌سرور یک delegate و همچنین یک دیکشنری است. در واقع هدف این است که وقتی درخواستی به این وب‌سرور ارسال شد، درخواست به قسمت‌های کوچکی تقسیم‌بندی شده و درون این دیکشنری قرار خواهند گرفت (این دیکشنری حاوی کلیدهای از پیش‌تعریف شده‌ای است که توسط OWIN تعریف شده‌اند). سپس این دیکشنری از طریق یک application function به درون pipeline ارسال خواهد شد و از یکسری middleware عبور خواهد کرد. در اینحالت می‌توانیم کنترلی را بر روی درخواست‌های وارده و صادره داشته باشیم. ایده‌ی middleware خیلی شبیه به HTTP moduleها در IIS است؛ اما تفاوت آن این است که middlewareها وابستگی‌ایی به IIS ندارند و همچنین مبتنی بر رویداد نیستند. هر middleware بعد از انجام تغییرات بر روی درخواست، تا زمان رسیدن دیکشنری به آخرین middleware، آن را به middleware بعدی ارسال خواهد کرد. در این حین می‌توانیم به response streams اطلاعاتی را append کنیم. وقتی دیکشنری از تمامی middlewareها عبور کرد، سرور مطلع خواهد شد و نتیجه را به کلاینت ارسال می‌کند.


استاندارد OWIN تعدادی کلید را درون یک دیکشنری تعریف کرده است که بعد از ورود به هر middleware مقداردهی خواهند شد. این کلیدها را می‌توانیم در دو دسته‌ی Request و Response بررسی کنیم.

کلیدهای مربوط به Request

ضروری؟

نام کلید

مقدار

بله

"owin.RequestBody"

یک Stream همراه با request body. اگر body برای request وجود نداشته باشد، Stream.Null به عنوان placeholder قابل استفاده است.

بله

"owin.RequestHeaders"

یک دیکشنری به صورت IDictionary<string, string[]> از هدرهای درخواست.

بله

"owin.RequestMethod"

رشته‌ایی حاوی نوع فعل متد HTTP مربوط به درخواست (مانند GET and POST )

بله

"owin.RequestPath"

path درخواست شده به صورت string

بله

"owin.RequestPathBase"

قسمتی از path درخواست به صورت string

بله

"owin.RequestProtocol"

نام و نسخه‌ی پروتکل (مانند HTTP/1.0 or HTTP/1.1 )

بله

"owin.RequestQueryString"

رشته‌ای حاوی query string ؛ بدون علامت ? (مانند foo=bar&baz=quux )

بله

"owin.RequestScheme"

رشته‌ایی حاوی URL scheme استفاده شده در درخواست (مانند HTTP or HTTPS )



کلیدهای مربوط به Response

ضروری؟

نام کلید

مقدار

بله

"owin.ResponseBody"

یک Stream جهت نوشتن response body در خروجی

بله

"owin.ResponseHeaders"

یک دیکشنری به صورت IDictionary<string, string[]> از هدرهای response

خیر

"owin.ResponseStatusCode"

یک عدد صحیح حاوی کد وضعیت HTTP response ؛ حالت پیش‌فرض 200 است.

خیر

"owin.ResponseReasonPhrase"

یک رشته حاوی reason phrase مربوط به status code ؛ اگر خالی باشد در نتیجه سرور بهتر است آن را مقداردهی کند.

خیر

"owin.ResponseProtocol"

یک رشته حاوی نام و نسخه‌ی پروتکل (مانند HTTP/1.0 or HTTP/1.1 )؛ اگر خالی باشد؛ “owin.RequestProtocol” به عنوان مقدار پیش‌فرض در نظر گرفته خواهد شد.


Katana
پروژه‌ی Katana یک پیاده‌سازی از استاندارد OWIN است که توسط مایکروسافت ایجاد شده است. مایکروسافت علاوه بر پیاده‌سازی OWIN، یکسری قابلیت دیگر را نیز به آن اضافه کرده است. برای شروع کار با Katana یک پروژه خالی از نوع ASP.NET Web Application را ایجاد کنید. در ادامه لازم است پکیج Microsoft.Owin.Host.SystemWeb را نیز نصب کنیم. همراه با نصب این پکیج، دو وابستگی دیگر نیز نصب خواهند شد؛ زیرا پیاده‌سازی OWIN درون پکیج Microsoft.Owin قرار دارد:
<package id="Microsoft.Owin" version="3.0.1" targetFramework="net461" />
<package id="Microsoft.Owin.Host.SystemWeb" version="3.0.1" targetFramework="net461" />
<package id="Owin" version="1.0" targetFramework="net461" />
در ادامه نیاز به یک نقطه‌ی شروع برای اپلیکیشن‌مان داریم. طبق convention باید یک فایل را با نام Startup.cs با محتویات زیر ایجاد کنیم:
using Owin;
namespace SimpleOwinWebApp
{
    public class Startup
    {
        public void Configuration(IAppBuilder app)
        {

        } 
    }
}
توسط IAppBuilder می‌توانیم middlewareها را به pipeline اضافه کنیم:
using Owin;
namespace SimpleOwinWebApp
{
    public class Startup
    {
        public void Configuration(IAppBuilder app)
        {
            app.Use(async (ctx, next) =>
            {
                await ctx.Response.WriteAsync("Hello");
            });
        } 
    }
توسط متد Use، یک middleware را به صورت inline تعریف کرده‌ایم. متد Use یک delegate را از ورودی دریافت خواهد کرد و امضای آن به اینصورت است:
Func<IOwinContext, Func<Task>, Task> handler

IOwinContext در واقع یک wrapper برای environment dictionaryایی است که در ابتدا به آن اشاره کردیم. در مثال قبل، از پراپرتی Response، جهت ارسال خروجی به کلاینت استفاده شده است. این پراپرتی در واقع معادل کلید owin.ResponseBody درون دیکشنری است. اما در اینجا به صورت strongly-typed و ساده به آن دسترسی داریم؛ هر چند که امکان کار با دیکشنری خام نیز وجود دارد. به عنوان مثال معادل مثال قبل بدون استفاده از پراپرتی Response، اینچنین خواهد بود:
app.Use(async (ctx, next) =>
{
   var response = ctx.Environment["owin.ResponseBody"] as Stream;
   using (var writer = new StreamWriter(response))
   {
      await writer.WriteAsync("Hello");
   }
});
اکنون اگر پروژه را اجرا کنید، با وارد کردن هر آدرسی، پیام Hello درون مرورگر برایتان نمایش داده خواهد شد:


به هر تعداد middleware که خواستید می‌توانید به pipeline اضافه کنید؛ اما باید دقت داشته باشید که ترتیب قرار دادن آنها اهمیت دارد.

Self-hosting OWIN
در مثال قبلی، اپلیکیشن توسط IIS Express اجرا می‌شد. برای میزبانی درون یک کنسول اپلیکیشن، ابتدا یک پروژه‌ی Console Application را ایجاد کرده و پکیج Microsoft.Owin.SelfHost را نصب کنید. سپس کلاس Startup موردنظرتان را ایجاد کرده و در نهایت درون متد Main، کار راه‌اندازی سرور را انجام خواهیم داد:
using System;
using Microsoft.Owin.Hosting;

namespace SimpleOwinConsoleApp
{
    class Program
    {
        static void Main(string[] args)
        {
            using (WebApp.Start<Startup>("http://localhost:12345"))
            {
                Console.WriteLine("Listening to port 12345");
                Console.WriteLine("Press Enter to end...");
                Console.ReadLine();
            }
        }
    }
}

OWIN در ASP.NET Core
ASP.NET Core دارای مفهومی با عنوان pipeline است. این pipeline خیلی شبیه به OWIN است اما OWIN نیست؛ بلکه عملکرد آن شبیه به OWIN است. به عنوان مثال اینبار به جای دیکشنری، شیء HttpContext را داریم. در ادامه یک پروژه‌ی ASP.NET Core Web Application از نوع Empty را شروع خواهیم کرد. اگر دقت کنید اینبار برای کلاس Startup باید دو متد را پیاده‌سازی کنیم:
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

namespace SimpleOwinCoreApp
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
        }

        public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
        {
            loggerFactory.AddConsole();

            if (env.IsDevelopment())
            {
                app.UseDeveloperExceptionPage();
            }

            app.Run(async (context) =>
            {
                await context.Response.WriteAsync("Hello World!");
            });
        }
    }
}

متد Configure: همانطور که در ابتدای مطلب مشاهده کردید این متد قبلاً در پروژه‌های مبتنی بر کاتانا Configuration نام داشت؛ همچنین به جای IAppBuilder اینبار IApplicationBuilder را داریم. مزیت ASP.NET Core این است که در هر جایی از اپلیکیشن می‌توانیم از سیستم DI توکار آن استفاده کنیم؛ در نتیجه علاوه بر IApplicationBuilder وابستگی‌های دیگری مانند IHostingEnvironment و ILoggerFactory را نیز می‌توانیم تزریق کنیم.
متد ConfigureServices: در اینجا می‌توانیم سرویس‌های موردنیاز درون اپلیکیشن را برای IoC ریجستر کنیم.
در کد فوق استفاده از متد Use به معنای آخرین نقطه در pipeline است. یعنی جایی که response برگردانده خواهد شد و چیزی بعد از آن اجرا نخواهد شد؛ در واقع ارجاعی به middleware بعدی وجود ندارد.

ایجاد یک Middleware جدید
تا اینجا تمامی کدها را به صورت inline نوشتیم. اما اگر بخواهیم middlewareمان قابلیت استفاده‌ی مجدد داشته باشد می‌توانیم تعاریف آن را به یک کلاس با ساختار زیر منتقل نمائیم:
using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;

namespace SimpleOwinCoreApp.Middlewares
{
    public class SimpleMiddleware
    {
        private readonly RequestDelegate _next;

        public SimpleMiddleware(RequestDelegate next)
        {
            _next = next;
        }

        public async Task Invoke(HttpContext ctx)
        {
            // قبل از فراخوانی میان‌افزار بعدی

            await ctx.Response.WriteAsync("Hello DNT!");

            await _next(ctx);

            // بعد از فراخوانی میان‌افزار بعدی
        }
    }
}

درون متد Invoke بعد از پردازش درخواست باید متد middleware بعدی را همراه با context جاری فراخوانی کنیم. در نتیجه قبل و بعد از فراخوانی middleware بعدی فرصت این را خواهیم داشت تا درخواست را پردازش کنیم. در نهایت برای استفاده از middleware فوق می‌توانیم از متد الحاقی UseMiddleware استفاده کنیم:
app.UseMiddleware<SimpleMiddleware>();

استفاده از middlewareهای مبتنی بر Katana در ASP.NET Core
middlewareهایی را که برای Katana نوشته‌اید، درون یک اپلیکیشن ASP.NET Core نیز قابل استفاده هستند. برای اینکار با مراجعه به فایل project.json می‌توانید پکیج زیر را نصب کنید:
"Microsoft.AspNetCore.Owin": "1.0.0"
سپس درون متد Configure می‌توانید Owin را به pipeline اضافه کرده و middleware خود را ریجستر کنید:
app.UseOwin(pipeline =>
{
pipeline(next => new MyKatanaBasedMiddleware(next).Invoke)
});

مثال تکمیلی:
در ادامه می‌خواهیم ماژول مطرح شده در این مطلب  را به صورت یک middleware با قابلیت پذیرفتن تنظیمات، نوشته و سپس درون pipeline استفاده کنیم. برای شروع یک کلاس با نام IpBlockerMiddleware با محتویات زیر ایجاد خواهیم کرد:
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;

namespace SimpleOwinAspNetCore.Middleware
{
    public class IpBlockerMiddleware
    {
        private readonly RequestDelegate _next;
        private readonly IpBlockerOptions _options;

        public IpBlockerMiddleware(RequestDelegate next, IpBlockerOptions options)
        {
            _next = next;
            _options = options;
        }

        public async Task Invoke(HttpContext context)
        {
            var ipAddress = context.Request.Host.Host;
            if (IsBlockedIpAddress(ipAddress))
            {
                context.Response.StatusCode = 403;
                await context.Response.WriteAsync("Forbidden : The server understood the request, but It is refusing to fulfill it.");
                return;
            }
            await _next.Invoke(context);
        }

        private bool IsBlockedIpAddress(string ipAddress)
        {
            return _options.Ips.Any(ip => ip == ipAddress);
        }
    }
}
در کدهای فوق لیست Ipها از پراپرتی Ips درون کلاس IpBlockerOptions دریافت خواهد شد:
using System.Collections.Generic;

namespace SimpleOwinAspNetCore.Middleware
{
    public class IpBlockerOptions
    {
        public IpBlockerOptions()
        {
            Ips = new[] { "192.168.1.1" };
        }
        public IList<string> Ips { get; set; }
    }
}
همچنین برای استفاده راحت‌تر از middleware، یک متد الحاقی را برای آن ایجاد کرده‌ایم و سپس پراپرتی Ips را توسط اینترفیس IConfigurationRoot دریافت کرده‌ایم:
using System.Linq;
using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.Configuration;

namespace SimpleOwinAspNetCore.Middleware
{
    public static class IpBlockerExtensions
    {
        public static IApplicationBuilder UseIpBlocker(this IApplicationBuilder builder, IConfigurationRoot configuration, IpBlockerOptions options = null)
        {
            return builder.UseMiddleware<IpBlockerMiddleware>(options ?? new IpBlockerOptions
            {
                Ips = configuration.GetSection("block_list").GetChildren().Select(p => p.Value).ToArray()
            });
        }
    }
}
قبلاً در رابطه با فایل‌های کانفیگ مطلبی را مطالعه کرده‌اید؛ در نتیجه نیازی به توضیح اضافه‌تری ندارد. تنها کاری که در اینجا انجام شده است، دریافت محتویات کلید block_list از فایل کانفیگ است. 
محتویات فایل blockedIps.json:
{
  "block_list": [
    "192.168.1.1",
    "localhost",
    "127.0.0.1",
    "172.16.132.151"
  ]
}

برای خواندن فایل فوق در برنامه نیز خواهیم داشت:
public IConfigurationRoot Configuration { set; get; }

public Startup(IHostingEnvironment env)
{
var builder = new ConfigurationBuilder()
.SetBasePath(env.ContentRootPath)
.AddJsonFile("blockedIps.json");
Configuration = builder.Build();
}
در نهایت برای استفاده از middleware فوق خواهیم داشت:
app.UseIpBlocker(Configuration);
اکنون هر درخواستی که با آدرس‌های تعیین شده درون فایل blockedIps.json وارد pipeline شود، امکان استفاده‌ی از سایت را نخواهد داشت.

کدهای این مطلب را می‌توانید از اینجا دریافت کنید.
مطالب
آشنایی با الگوی طراحی Iterator
فرض کنید قبلا کلاسی بنام CollectionClass را داشته‌اید که در آن یک آرایه از نوع []String تعریف کرده‌اید. همچنین n تا کلاس هم دارید که از آرایه‌ی تعریف شده‌ی در CollectionClass استفاده می‌کنند. تا اینجا مشکلی نیست. مشکل زمانی شروع می‌شود که متوجه می‌شوید دیگر این آرایه کارآیی ندارد و باید آن را با <List<string جایگزین کنید. واضح است که نمی‌توانید همه کلاس‌هایی را که از CollectionClass استفاده کرده‌اند، بیابید و آنها را تغییر دهید؛ چرا که شاید برخی از کلاس‌ها اصلا در دسترس شما نباشند یا هر دلیل دیگری.
راهگشای این مشکل، استفاده از الگوی طراحی Iterator است. در این الگو، باید کلاس CollectionClass ابتدا واسط IEnumerable را پیاده سازی نماید. این واسط متدی بنام GetEnumerator دارد که می‌توان به کمک آن، درون آرایه یا هر نوع کالکشن دیگری حرکت کرده و آیتم‌های آن را برگرداند.(مطالعه بیشتر )
اول این الگو را پیاده سازی می‌کنیم و در ادامه توضیح می‌دهیم که چگونه مشکل ما را حل میکند:
ابتدا باید کلاس CollectionClass واسط IEnumerable را پیاده سازی نماید. در ادامه بدنه متد GetEnumerator را می‌نویسیم:
    public class CollectionClass : IEnumerable
    {
        private string[] mySet = { "Array of String 1", "Array of String 2", "Array of String 3" };
        public IEnumerator GetEnumerator()
        {
            //return arrayStrings.GetEnumerator(); 
            foreach (var element in mySet )
            {
                yield return element;
            }
        }
    }
در اینجا یک آرایه رشته‌ای را بنام mySet  تعریف کرده‌ایم و مقادیر مختلفی را در آن قرار داده‌ایم. سپس در متد GetEnumerator اعضای این آرایه را خوانده و return می‌کنیم.(yield چیست؟ )
وقتی از این کلاس می‌خواهیم استفاده کنیم، داریم:
CollectionClass c = new CollectionClass();
foreach (var element in c)
{
       Console.WriteLine(element);
}
در این حالت مهم نیست که مجموعه‌ی مورد نظر، آرایه هست یا هر نوع کالکشن دیگری. لذا وقتی بخواهیم نوع mySet را تغییر دهیم، نگران نخواهیم بود؛ چراکه فقط کافی‌است کلاس CollectionClass را تغییر دهیم. بصورت زیر:
 public class CollectionClass : IEnumerable
    {
        //private readonly string[] arrayStrings = { "Array of String 1", "Array of String 2", "Array of String 3" };
        private List<string> mySet= new List<string>() { "Array of String 1", "Array of String 2", "Array of String 3" }; 
        public IEnumerator GetEnumerator()
        {
            foreach (var element in mySet )
            {
                yield return element;
            }
        }
    }