مطالب
ایجاد توالی‌ها در Reactive extensions
در مطلب «معرفی Reactive extensions» با نحوه‌ی تبدیل IEnumerable‌ها به نمونه‌های Observable آشنا شدیم. اما سایر حالات چطور؟ آیا Rx صرفا محدود است به کار با IEnumerableها؟ در ادامه نگاهی خواهیم داشت به نحوه‌ی تبدیل بسیاری از منابع داده دیگر به توالی‌های Observable قابل استفاده در Rx.


روش‌های متفاوت ایجاد توالی (sequence) در Rx

الف) استفاده از متدهای Factory

1) Observable.Create
نمونه‌ای از استفاده از آن‌را در مطلب «معرفی Reactive extensions» مشاهده کردید.
 var query = Enumerable.Range(1, 5).Select(number => number);
var observableQuery = query.ToObservable();
var observer = Observer.Create<int>(onNext: number => Console.WriteLine(number));
observableQuery.Subscribe(observer);
کار آن، تدارک delegate ایی است که توسط متد Subscribe، به ازای هربار پردازش مقدار موجود در توالی معرفی شده به آن، فراخوانی می‌گردد و هدف اصلی از آن این است که به صورت دستی اینترفیس IObservable را پیاده سازی نکنید (امکان پیاده سازی inline یک اینترفیس توسط Actionها).
البته در این مثال فقط delegate مربوط به onNext را ملاحظه می‌کند. توسط سایر overloadهای آن امکان ذکر delegate‌های OnError/OnCompleted نیز وجود دارد.

2) Observable.Return
برای ایجاد یک خروجی Observable از یک مقدار مشخص، می‌توان از متد جنریک Observable.Return استفاده کرد. برای مثال:
 var observableValue1 = Observable.Return("Value");
var observableValue2 = Observable.Return(2);
در ادامه نحوه‌ی پیاده سازی این متد را توسط Observable.Create مشاهده می‌کنید:
        public static IObservable<T> Return<T>(T value)
        {
            return Observable.Create<T>(o =>
            {
                o.OnNext(value);
                o.OnCompleted();
                return Disposable.Empty;
            });
        }
البته دو سطر نوشته شده در اصل معادل هستند با سطرهای ذیل؛ که ذکر نوع جنریک آن‌ها ضروری نیست. زیرا به صورت خودکار از نوع آرگومان معرفی شده، تشخیص داده می‌شود:
 var observableValue1 = Observable.Return<string>("Value");
var observableValue2 = Observable.Return<int>(2);

3) Observable.Empty
برای بازگشت یک توالی خالی که تنها کار اطلاع رسانی onCompleted  را انجام می‌دهد.
 var emptyObservable = Observable.Empty<string>();
در کدهای ذیل، پیاده سازی این متد را توسط Observable.Create مشاهده می‌کنید:
        public static IObservable<T> Empty<T>()
        {
            return Observable.Create<T>(o =>
            {
                o.OnCompleted();
                return Disposable.Empty;
            });
        }

4) Observable.Never
برای بازگشت یک توالی بدون قابلیت اطلاع رسانی و notification
 var neverObservable = Observable.Never<string>();
این متد به نحو زیر توسط Observable.Create پیاده سازی شده‌است:
        public static IObservable<T> Never<T>()
        {
            return Observable.Create<T>(o =>
            {
                return Disposable.Empty;
            });
        }

5) Observable.Throw
برای ایجاد یک توالی که صرفا کار اطلاع رسانی OnError را توسط استثنای معرفی شده به آن انجام می‌دهد.
 var throwObservable = Observable.Throw<string>(new Exception());
در ادامه نحوه‌ی پیاده سازی این متد را توسط Observable.Create مشاهده می‌کنید:
        public static IObservable<T> Throws<T>(Exception exception)
        {
            return Observable.Create<T>(o =>
            {
                o.OnError(exception);
                return Disposable.Empty;
            });
        }

6) توسط Observable.Range
به سادگی می‌توان بازه‌ی Observable ایی را ایجاد کرد:
 var range = Observable.Range(10, 15);
range.Subscribe(Console.WriteLine, () => Console.WriteLine("Completed"));

7) Observable.Generate
اگر بخواهیم عملیات Observable.Range را پیاده سازی کنیم، می‌توان از متد Observable.Generate استفاده کرد:
        public static IObservable<int> Range(int start, int count)
        {
            var max = start + count;
            return Observable.Generate(
                initialState: start,
                condition: value => value < max,
                iterate: value => value + 1,
                resultSelector: value => value);
        }
توسط پارامتر initialState، مقدار آغازین را دریافت می‌کند. پارامتر condition، مشخص می‌کند که توالی چه زمانی باید خاتمه یابد. در پارامتر iterate، مقدار جاری دریافت شده و مقدار بعدی تولید می‌شود. resultSelector کار تبدیل و بازگشت مقدار خروجی را به عهده دارد.

8) Observable.Interval
عموما از انواع و اقسام تایمرهای موجود در دات نت مانند System.Timers.Timer ، System.Threading.Timer و System.Windows.Threading.DispatcherTimer برای ایجاد یک توالی از رخ‌دادها استفاده می‌شود. تمام این‌ها را به سادگی می‌توان توسط متد Observable.Interval‌، که قابل انتقال به تمام پلتفرم‌هایی است که Rx برای آن‌ها تهیه شده‌است، جایگزین کرد:
 var interval = Observable.Interval(period: TimeSpan.FromMilliseconds(250));
interval.Subscribe(Console.WriteLine, () => Console.WriteLine("completed"));
در اینجا تایمر تهیه شده، هر 450 میلی‌ثانیه یکبار اجرا می‌شود. برای خاتمه‌ی آن باید شیء interval را Dispose کنید.
Overload دوم این متد، امکان معرفی scheduler و اجرای بر روی تردی دیگر را نیز میسر می‌کند.

9) Observable.Timer
تفاوت Observable.Timer با Observable.Interval در مفهوم پارامتر ارسالی به آن‌ها است:
 var timer = Observable.Timer(dueTime: TimeSpan.FromSeconds(1));
 timer.Subscribe(Console.WriteLine, () => Console.WriteLine("completed"));
یکی due time دارد (مدت زمان صبر کردن تا تولید اولین خروجی) و دیگری period (به صورت متوالی تکرار می‌شود).  
خروجی Observable.Interval مثال زده شده به نحو زیر است و خاتمه‌‌ای ندارد:
0
1
2
3
4
5

اما خروجی Observable.Timer به نحو ذیل  بوده و پس از یک ثانیه، خاتمه می‌یابد:
0
completed

متد Observable.Timer دارای هفت overload متفاوت است که توسط آن‌ها dueTime (مدت زمان صبر کردن تا تولید اولین خروجی)، period (کار Observable.Timer را به صورت متوالی در بازه‌ی زمانی مشخص شده تکرار می‌کند) و scheduler (تعیین ترد اجرایی عملیات) قابل مقدار دهی هستند.
اگر می‌خواهید Observable.Timer بلافاصله شروع به کار کند، مقدار dueTime آن‌را مساوی TimeSpan.Zero قرار دهید. به این ترتیب یک Observable.Interval را به وجود آورده‌اید که بلافاصله شروع به کار کرده است و تا مدت زمان مشخص شده‌ای جهت اجرای اولین callback خود صبر نمی‌کند.



ب) تبدیلگرهایی که خروجی IObservable ایجاد می‌کنند

برای تبدیل مدل‌های برنامه نویسی Async قدیمی دات نت مانند APM، رخدادها و امثال آن به معادل‌های Rx، متدهای الحاقی خاصی تهیه شده‌اند.

1) تبدیل delegates به معادل Observable
متد Observable.Start، امکان تبدیل یک Func یا Action زمانبر را به یک توالی observable میسر می‌کند. در این حالت به صورت پیش فرض، پردازش عملیات بر روی یکی از تردهای ThreadPool انجام می‌شود.
        static void StartAction()
        {
            var start = Observable.Start(() =>
            {
                Console.Write("Observable.Start");
                for (int i = 0; i < 10; i++)
                {
                    Thread.Sleep(100);
                    Console.Write(".");
                }
            });
            start.Subscribe(
               onNext: unit => Console.WriteLine("published"),
               onCompleted: () => Console.WriteLine("completed"));
        }

        static void StartFunc()
        {
            var start = Observable.Start(() =>
            {
                Console.Write("Observable.Start");
                for (int i = 0; i < 10; i++)
                {
                    Thread.Sleep(100);
                    Console.Write(".");
                }
                return "value";
            });
            start.Subscribe(
               onNext: Console.WriteLine,
               onCompleted: () => Console.WriteLine("completed"));
        }
در اینجا دو مثال از بکارگیری Action و Func‌ها را توسط Observable.Start مشاهده می‌کنید.
زمانیکه از Func استفاده می‌شود، تابع یک خروجی را ارائه داده و سپس توالی خاتمه می‌یابد. اگر از Action استفاده شود، نوع Observable بازگشت داده شده از نوع Unit است که در برنامه نویسی functional معادل void است و هدف از آن مشخص سازی پایان عملیات Action می‌باشد. Unit دارای مقداری نبوده و صرفا سبب اجرای اطلاع رسانی OnNext می‌شود.
تفاوت مهم Observable.Start و Observable.Return در این است که Observable.Start مقدار تابع را به صورت تنبل (lazily) پردازش می‌کند، اما Observable.Return پردازش حریصانه‌ای (eagrly) را به همراه خواهد داشت. به این ترتیب Observable.Start بسیار شبیه به یک Task (پردازش‌های غیرهمزمان) عمل می‌کند.
در اینجا شاید این سؤال مطرح شود که استفاده از قابلیت‌های Async سی‌شارپ 5 برای اینگونه کارها مناسب است یا Rx؟ قابلیت‌های Async بیشتر به اعمال مخصوص IO bound مانند کار با شبکه، دریافت فایل از اینترنت، کار با یک بانک اطلاعاتی خارج از مرزهای سیستم، مرتبط می‌شوند؛ اما اعمال CPU bound مانند محاسبات سنگین حاصل از توالی‌های observable را به خوبی می‌توان توسط Rx مدیریت کرد.


2) تبدیل Events به معادل Observable

دات نت از روزهای اول خود به همراه یک event driven programming model بوده‌است. Rx متدهایی را برای دریافت یک رخداد و تبدیل آن به یک توالی Observable ارائه داده‌است. برای نمونه ObservableCollection زیر را درنظر بگیرید
 var items = new System.Collections.ObjectModel.ObservableCollection<string>
  {
          "Item1", "Item2", "Item3"
  };
اگر بخواهیم مانند روش‌های متداول، حذف شدن آیتم‌های آن‌را تحت نظر قرار دهیم، می‌توان نوشت:
            items.CollectionChanged += (sender, ea) =>
            {
                if (ea.Action == NotifyCollectionChangedAction.Remove)
                {
                    foreach (var oldItem in ea.OldItems.Cast<string>())
                    {
                        Console.WriteLine("Removed {0}", oldItem);
                    }
                }
            };
این نوع کدها در WPF زیاد کاربرد دارند. اکنون معادل کدهای فوق با Rx به صورت زیر هستند:
            var removals =
                Observable.FromEventPattern<NotifyCollectionChangedEventHandler, NotifyCollectionChangedEventArgs>
                (
                    addHandler: handler => items.CollectionChanged += handler,
                    removeHandler: handler => items.CollectionChanged -= handler
                )
                .Where(e => e.EventArgs.Action == NotifyCollectionChangedAction.Remove)
                .SelectMany(c => c.EventArgs.OldItems.Cast<string>());

            var disposable = removals.Subscribe(onNext: item => Console.WriteLine("Removed {0}", item));
با استفاده از متد Observable.FromEventPattern می‌توان معادل Observable رخ‌داد CollectionChanged را تهیه کرد. پارامتر اول جنریک آن، نوع رخداد است و پارامتر اختیاری دوم آن، EventArgs این رخداد. همچنین با توجه به قسمت Where نوشته شده، در این بین مواردی را که Action مساوی حذف شدن را دارا هستند، فیلتر کرده و نهایتا لیست Observable آن‌ها بازگشت داده می‌شوند. اکنون می‌توان با استفاده از متد Subscribe، این تغییرات را دریافت کرد. برای مثال با فراخوانی
 items.Remove("Item1");
بلافاصله خروجی Removed item1 ظاهر می‌شود.


3) تبدیل Task به معادل Observable

متد ToObservable واقع در فضای نام System.Reactive.Threading.Tasks را بر روی یک Task نیز می‌توان فراخوانی کرد:
 var task = Task.Factory.StartNew(() => "Test");
var source = task.ToObservable();
source.Subscribe(Console.WriteLine, () => Console.WriteLine("completed"));
البته باید دقت داشت استفاده از Task دات نت 4.5 که بیشتر جهت پردازش‌های async اعمال I/O-bound طراحی شده‌است، بر IObservable مقدم است. صرفا اگر نیاز است این Task را با سایر observables ادغام کنید از متد ToObservable برای کار با آن استفاده نمائید.


4) تبدیل IEnumerable به معادل Observable
با این مورد تاکنون آشنا شده‌اید. فقط کافی است متد ToObservable را بر روی یک IEnumerable، جهت تهیه خروجی Observable فراخوانی کرد.


5) تبدیل APM به معادل Observable

APM یا Asynchronous programming model، همان روش کار با متدهای Async با نام‌های BeginXXX و EndXXX است که از نگارش‌های آغازین دات نت به همراه آن بوده‌اند. کار کردن با آن مشکل است و مدیریت آن به همراه پراکندگی‌های بسیاری جهت کار با callbacks آن است. برای تبدیل این نوع روش برنامه نویسی به روش Rx نیز متدهایی پیش بینی شده‌است؛ مانند Observable.FromAsyncPattern.

یک نکته
کتابخانه‌ای به نام Rxx بسیاری از این محصور کننده‌ها را تهیه کرده‌است:
http://Rxx.codeplex.com

ابتدا بسته‌ی نیوگت آن‌را نصب کنید:
 PM> Install-Package Rxx
سپس برای نمونه، برای کار با یک فایل استریم خواهیم داشت:
 using (new FileStream("file.txt", FileMode.Open)
                 .ReadToEndObservable()
                 .Subscribe(x => Console.WriteLine(x.Length)))
{
         Console.ReadKey();
}
متد ReadToEndObservable یکی از متدهای الحاقی کتابخانه‌ی Rxx است.
مطالب
معرفی Reactive extensions
Reactive extensions یا به صورت خلاصه Rx ،کتابخانه‌ی سورس باز تهیه شده‌ای توسط مایکروسافت است که اگر بخواهیم آن‌را به ساده‌ترین شکل ممکن تعریف کنیم، معنای Linq to events را می‌دهد و امکان مدیریت تعامل‌های پیچیده‌ی async را به صورت declaratively فراهم می‌کند. هدف آن بسط فضای نام System.Linq و تبدیل نتایج یک کوئری LINQ به یک مجموعه‌ی Observable است؛ به همراه مدیریت مسایل همزمانی آن.
این افزونه جزو موفق‌ترین کتابخانه‌های دات نتی مایکروسافت در سال‌های اخیر به شما می‌رود؛ تا حدی که معادل‌های بسیاری از آن برای زبان‌های دیگر مانند Java، JavaScript، Python، ‍CPP و غیره نیز تهیه شده‌اند.


استفاده از Rx به همراه یک کوئری LINQ

یک برنامه‌ی کنسول جدید را ایجاد کنید. سپس برای نصب کتابخانه‌ی Rx، دستور ذیل را در کنسول پاورشل نیوگت اجرا نمائید:
 PM> Install-Package Rx-Main
نصب آن از طریق نیوگت، به صورت خودکار کلیه وابستگی‌های مرتبط با آن‌را نیز به پروژه‌ی جاری اضافه می‌کند:
<?xml version="1.0" encoding="utf-8"?>
<packages>
  <package id="Rx-Core" version="2.2.4" targetFramework="net45" />
  <package id="Rx-Interfaces" version="2.2.4" targetFramework="net45" />
  <package id="Rx-Linq" version="2.2.4" targetFramework="net45" />
  <package id="Rx-Main" version="2.2.4" targetFramework="net45" />
  <package id="Rx-PlatformServices" version="2.2.4" targetFramework="net45" />
</packages>
سپس متد Main این برنامه را به نحو ذیل تغییر دهید:
using System;
using System.Linq;

namespace Rx01
{
    class Program
    {
        static void Main(string[] args)
        {
            var query = Enumerable.Range(1, 5).Select(number => number);
            foreach (var number in query)
            {
                Console.WriteLine(number);
            }
            finished();
        }

        private static void finished()
        {
            Console.WriteLine("Done!");
        }
    }
}
در اینجا یک سری عملیات متداول را مشاهده می‌کنید. بازه‌ای از اعداد توسط متد Enumerable.Range ایجاد شده و سپس به کمک یک حلقه‌، تمام آیتم‌های آن نمایش داده می‌شوند. همچنین در پایان کار نیز یک متد دیگر فراخوانی شده‌است.
اکنون اگر بخواهیم همین عملیات را توسط Rx انجام دهیم، به شکل زیر خواهد بود:
using System;
using System.Linq;
using System.Reactive.Linq;

namespace Rx01
{
    class Program
    {
        static void Main(string[] args)
        {
            var query = Enumerable.Range(1, 5).Select(number => number);
            var observableQuery = query.ToObservable();
            observableQuery.Subscribe(onNext: number => Console.WriteLine(number), onCompleted: () => finished());
        }

        private static void finished()
        {
            Console.WriteLine("Done!");
        }
    }
}
ابتدا نیاز است تا کوئری متداول LINQ را تبدیل به نمونه‌ی Observable آن کرد. اینکار را توسط متد الحاقی ToObservable که در فضای نام System.Reactive.Linq تعریف شده‌است، انجام می‌دهیم. به این ترتیب، هر زمانیکه که عددی به query اضافه می‌شود، با استفاده از متد Subscribe می‌توان تغییرات آن‌را تحت کنترل قرار داد. برای مثال در اینجا هربار که عددی در بازه‌ی 1 تا 5 تولید می‌شود، یکبار پارامتر onNext اجرا خواهد شد. برای نمونه در مثال فوق، از نتیجه‌ی آن برای نمایش مقدار دریافتی، استفاده شده‌است. سپس توسط پارامتر اختیاری onCompleted، در پایان کار، یک متد خاص را می‌توان فراخوانی کرد. خروجی برنامه در این حالت نیز به صورت ذیل است:
1
2
3
4
5
Done!
البته اگر قصد خلاصه نویسی داشته باشیم، سطر آخر متد Main، با سطر ذیل یکی است:
 observableQuery.Subscribe(Console.WriteLine, finished);

در این مثال ساده صرفا یک Syntax دیگر را نسبت به حلقه‌ی foreach متداول مشاهده کردیم که اندکی فشرده‌تر است. در هر دو حالت نیز عملیات انجام شده در تردجاری صورت گرفته‌اند. اما قابلیت‌ها و ارزش‌های واقعی Rx زمانی آشکار خواهند شد که پردازش موازی و پردازش در تردهای دیگر را در آن فعال کنیم.


الگوی Observer

Rx پیاده سازی کننده‌ی الگوی طراحی شیءگرایی به نام Observer است. برای توضیح آن یک لامپ و سوئیچ برق را درنظر بگیرید. زمانیکه لامپ مشاهده می‌کند سوئیچ برق در حالت روشن قرار گرفته‌است، روشن خواهد شد و برعکس. در اینجا به سوئیچ، subject و به لامپ، observer گفته می‌شود. هر زمان که حالت سوئیچ تغییر می‌کند، از طریق یک callback، وضعیت خود را به observer اعلام خواهد کرد. علت استفاده از callbackها، ارائه راه‌حل‌های عمومی است تا بتواند با انواع و اقسام اشیاء کار کند. به این ترتیب هر بار که شیء observer از نوع متفاوتی تعریف می‌شود (مثلا بجای لامپ یک خودرو قرار گیرد)، نیازی نخواهد بود تا subject را تغییر داد.
در Rx دو اینترفیس معادل observer و subject تعریف شده‌اند. در اینجا اینترفیس IObserver معادل observer است و اینترفیس IObservable معادل subject می‌باشد:
    class Subject : IObservable<int>
    {
        public IDisposable Subscribe(IObserver<int> observer)
        {
        }
    }
کار متد Subscribe، اتصال به Observer است و برای این حالت نیاز به کلاسی دارد که اینترفیس IObserver را پیاده سازی کند.
    class Observer : IObserver<int>
    {
        public void OnCompleted()
        {
        }

        public void OnError(Exception error)
        {
        }

        public void OnNext(int value)
        {
        }
    }
در اینجا OnCompleted زمانی اجرا می‌شود که پردازش مجموعه‌ای از اعداد int پایان یافته باشد. OnError در زمان وقوع استثنایی اجرا می‌شود و OnNext به ازای هر عدد موجود در مجموعه‌ی در حال پردازش، یکبار اجرا می‌شود. البته نیازی به پیاده سازی صریح این اینترفیس نیست و توسط متد توکار Observer.Create می‌توان به همین نتیجه رسید.
مجموعه‌های Observable کلید کار با Rx هستند. در مثال قبل ملاحظه کردیم که با استفاده از متد الحاقی ToObservable بر روی یک کوئری LINQ و یا هر نوع IEnumerable ایی،  می‌توان یک مجموعه‌ی Observable را ایجاد کرد. خروجی کوئری حاصل از آن به صورت خودکار اینترفیس IObservable را پیاده سازی می‌کند که دارای یک متد به نام Subscribe است.
در متد Subscribe کاری که به صورت خودکار صورت خواهد گرفت، ایجاد یک حلقه‌ی foreach بر روی مجموعه‌ی مورد آنالیز و سپس فراخوانی متد OnNext کلاس پیاده سازی کننده‌ی IObserver به ازای هر آیتم موجود در مجموعه است (فراخوانی observer.OnNext). در پایان کار هم فقط return this در اینجا صورت خواهد گرفت. در حین پردازش حلقه، اگر خطایی رخ دهد، متد observer.OnError انجام می‌شود.

در مثال قبل،کوئری LINQ نوشته شده، خروجی از نوع IObservable ندارد. به کمک متد الحاقی ToObservable:
public static System.IObservable<TSource> ToObservable<TSource>(
    this System.Collections.Generic.IEnumerable<TSource> source,
    System.Reactive.Concurrency.IScheduler scheduler)
به صورت خودکار، IEnumerable حاصل از کوئری LINQ را تبدیل به یک IObservable کرده‌ایم. به این ترتیب اکنون کوئری LINQ ما همانند سوئیچ برق عمل می‌کند و با تغییر آیتم‌های موجود در آن، مشاهده‌گرهایی که به آن متصل شده‌اند (از طریق فراخوانی متد Subscribe)، امکان دریافت سیگنال‌های تغییر وضعیت آن‌را خواهند داشت.
البته استفاده از متد Subscribe به نحوی که در مثال قبل ذکر شد، خلاصه شده‌ی الگوی Observer است. اگر بخواهیم دقیقا مانند الگو عمل کنیم، چنین شکلی را خواهد داشت:
 var query = Enumerable.Range(1, 5).Select(number => number);
var observableQuery = query.ToObservable();
var observer = Observer.Create<int>(onNext: number => Console.WriteLine(number));
observableQuery.Subscribe(observer);
ابتدا توسط متد ToObservable یک IObservable (سوئیچ) را ایجاد کرده‌ایم. سپس توسط کلاس Observer موجود در فضای نام System.Reactive، یک IObserver (لامپ) را ایجاد کرده‌ایم. کار اتصال سوئیچ به لامپ در متد Subscribe انجام می‌شود. اکنون هر زمانیکه تغییری در وضعیت observableQuery حاصل شود، سیگنالی را به observer ارسال می‌کند. در اینجا callbacks کار مدیریت observer را انجام می‌دهند.


پردازش نتایج یک کوئری LINQ در تردی دیگر توسط Rx

برای اجرای نتایج متد Subscribe در یک ترد جدید، می‌توان پارامتر scheduler متد ToObservable را مقدار دهی کرد:
using System;
using System.Linq;
using System.Reactive.Concurrency;
using System.Reactive.Linq;
using System.Threading;

namespace Rx01
{
    class Program
    {
        static void Main(string[] args)
        {
            Console.WriteLine("Thread-Id: {0}", Thread.CurrentThread.ManagedThreadId);
            var query = Enumerable.Range(1, 5).Select(number => number);
            var observableQuery = query.ToObservable(scheduler: NewThreadScheduler.Default);
            observableQuery.Subscribe(onNext: number =>
            {
                Console.WriteLine("number: {0}, on Thread-id: {1}", number, Thread.CurrentThread.ManagedThreadId);
            }, onCompleted: () => finished());
        }

        private static void finished()
        {
            Console.WriteLine("Done!");
        }
    }
}
خروجی این مثال به نحو ذیل است:
 Thread-Id: 1
number: 1, on Thread-id: 3
number: 2, on Thread-id: 3
number: 3, on Thread-id: 3
number: 4, on Thread-id: 3
number: 5, on Thread-id: 3
Done!
پیش از آغاز کار و در متد Main، ترد آی دی ثبت شده مساوی 1 است. سپس هربار که callback متد Subscribe فراخوانی شده‌است، ملاحظه می‌کنید که ترد آی دی آن مساوی عدد 3 است. به این معنا که کلیه نتایج در یک ترد مشخص دیگر پردازش شده‌اند.
NewThreadScheduler.Default در فضای نام System.Reactive.Concurrency واقع شده‌است.


یک نکته
در نگارش‌های آغازین Rx، مقدار scheduler را می‌شد معادل Scheduler.NewThread نیز قرار داد که در نگارش‌های جدید منسوخ شده درنظر گرفته شده و به زودی حذف خواهد شد. معادل‌های جدید آن اکنون NewThreadScheduler.Default، ThreadPoolScheduler.Default و امثال آن هستند.


مدیریت خاتمه‌ی اعمال انجام شده‌ی در تردهای دیگر توسط Rx

یکی از مواردی که حین اجرای نتیجه‌ی callbackهای پردازش شده‌ی در تردهای دیگر نیاز است بدانیم، زمان خاتمه‌ی کار آن‌ها است. برای نمونه در مثال قبل، نمایش Done پس از پایان تمام callbacks انجام شده‌است. فرض کنید، callback پایان عملیات را حذف کرده و متد finished را پس از فراخوانی متد observableQuery.Subscribe قرار دهیم:
observableQuery.Subscribe(onNext: number =>
{
   Console.WriteLine("number: {0}, on Thread-id: {1}", number,     
                              Thread.CurrentThread.ManagedThreadId);
}/*, onCompleted: () => finished()*/);
finished();
اینبار اگر برنامه را اجرا کنیم به خروجی ذیل خواهیم رسید:
 Thread-Id: 1
number: 1, on Thread-id: 3
Done!
number: 2, on Thread-id: 3
number: 3, on Thread-id: 3
number: 4, on Thread-id: 3
number: 5, on Thread-id: 3
این خروجی بدین معنا است که متد  observableQuery.Subscribeدر حین اجرا شدن در تردی دیگر، صبر نخواهد کرد تا عملیات مرتبط با آن خاتمه یابد و سپس سطر بعدی را اجرا کند. بنابراین برای حل این مشکل، تنها کافی است به آن اعلام کنیم که پس از پایان عملیات، onCompleted را اجرا کن.


مدیریت استثناهای رخ داده در حین پردازش مجموعه‌های واکنشگرا

متد Subscribe دارای چندین overload است. تا اینجا نمونه‌ای که دارای پارامترهای onNext و onCompleted بودند را بررسی کردیم. اگر بخواهیم مدیریت استثناءها را نیز در اینجا اضافه کنیم، فقط کافی است از overload دیگر آن که دارای پارامتر onError است، استفاده نمائیم:
observableQuery.Subscribe(
  onNext: number => Console.WriteLine(number),
  onError: exception => Console.WriteLine(exception.Message),
  onCompleted: () => finished());
اگر callback پارامتر onError اجرا شود، دیگر به onCompleted نخواهیم رسید. همچنین دیگر onNext ایی نیز اجرا نخواهد شد.


مدیریت ترد اجرای نتایج حاصل از Rx در یک برنامه‌ی دسکتاپ WPF یا WinForms

تا اینجا مشاهده کردیم که اجرای callbackهای observer در یک ترد دیگر، به سادگی تنظیم پارامتر scheduler متد ToObservable است. اما در برنامه‌های دسکتاپ برای به روز رسانی عناصر رابط کاربری، حتما باید در تردی قرار داشته باشیم که آن رابط کاربری در آن ایجاد شده‌است یا به عبارتی در ترد اصلی برنامه؛ در غیر اینصورت برنامه کرش خواهد کرد. مدیریت این مساله نیز در Rx بسیار ساده‌است. ابتدا نیاز است بسته‌ی Rx-WPF را نصب کرد:
 PM> Install-Package Rx-WPF
سپس توسط متد ObserveOn می‌توان مشخص کرد که نتیجه‌ی عملیات باید بر روی کدام ترد اجرا شود:
 observableQuery.ObserveOn(DispatcherScheduler.Current).Subscribe(...)
روش دیگر آن استفاده از متد ObserveOnDispatcher می‌باشد:
 observableQuery.ObserveOnDispatcher().Subscribe(...)
بنابراین مشخص سازی پارامتر scheduler متد ToObservable، به معنای اجرای query آن در یک ترد دیگر و استفاده از متد ObserveOn، به معنای مشخص سازی ترد اجرای callbackهای مشاهده‌گر است.

و یا اگر از WinForms استفاده می‌کنید، ابتدا بسته‌ی Rx خاص آن‌را نصب کنید:
 PM> Install-Package Rx-WinForms
و سپس ترد اجرای callbackها را SynchronizationContext.Current مشخص نمائید:
 observableQuery.ObserveOn(SynchronizationContext.Current).Subscribe(...)

یک نکته‌
در Rx فرض می‌شود که کوئری شما زمانبر است و callbackهای مشاهده‌گر سریع عمل می‌کنند. بنابراین هدف از callbackهای آن، پردازش‌های سنگین نیست. جهت آزمایش این مساله، اینبار query ابتدایی برنامه را به شکل ذیل تغییر دهید که در آن بازگشت زمانبر یک سری داده شبیه سازی شده‌اند.
 var query = Enumerable.Range(1, 5).Select(number =>
{
   Thread.Sleep(250);
   return number;
});
سپس با استفاده از متد ToObservable، ترد دیگری را برای اجرای واقعی آن مشخص کنید تا در حین اجرای آن برنامه در حالت هنگ به نظر نرسد و سپس نمایش آن‌را به کمک متد ObserveOn، بر روی ترد اصلی برنامه انجام دهید.
مطالب
پردازش توالی توالی‌ها در Reactive extensions
به صورت پیش فرض، Rx هر بار تنها یک مقدار را بررسی می‌کند. اما گاهی از اوقات نیاز است تا در هربار، بیشتر از یک مقدار دریافت و پردازش شوند. برای این منظور Rx متدهای الحاقی ویژه‌ای را به نام‌های Buffer ،Scan و Window تدارک دیده‌است تا بتواند از یک توالی، چندین توالی را تولید کند (توالی توالی‌ها = Sequence of sequences).


متد Scan

فرض کنید قصد دارید تعدادی عدد را با هم جمع بزنید. برای اینکار عموما عدد اول با عدد دوم جمع زده شده و سپس حاصل آن با عدد سوم جمع زده خواهد شد و به همین ترتیب تا آخر توالی. کار متد Scan نیز دقیقا به همین نحو است. هربار که قرار است توالی پردازش شود، حاصل عملیات مرحله‌ی قبل را در اختیار مصرف کننده قرار می‌دهد.
در مثال ذیل، قصد داریم حاصل جمع اعداد موجود در آرایه‌ای را بدست بیاوریم:
var sequence = new[] { 12, 3, -4, 7 }.ToObservable();
var runningSum = sequence.Scan((accumulator, value) =>
{
    Console.WriteLine("accumulator {0}", accumulator);
    Console.WriteLine("value {0}", value);
    return accumulator + value;
});
runningSum.Subscribe(result => Console.WriteLine("result {0}\n", result));
با این خروجی
result 12

accumulator 12
value 3
result 15

accumulator 15
value -4
result 11

accumulator 11
value 7
result 18
در اولین بار اجرای متد Subscribe، کار مقدار دهی accumulator با اولین عنصر آرایه صورت می‌گیرد.
در دفعات بعدی، مقدار این accumulator با عدد جاری جمع زده شده و حاصل این عملیات در تکرار آتی، مجددا توسط accumulator قابل دسترسی خواهد بود.

یک نکته: اگر علاقمند باشیم که مقدار اولیه‌ی accumulator، اولین عنصر توالی نباشد، می‌توان آن‌را توسط پارامتر seed متد Scan مقدار دهی کرد:
 var runningSum = sequence.Scan(seed: 10, accumulator: (accumulator, value) =>


متد Buffer

متد بافر، کار تقسیم یک توالی را به توالی‌های کوچکتر، بر اساس زمان، یا تعداد عنصر مشخص شده، انجام می‌دهد. برای مثال در برنامه‌های دسکتاپ شاید نیازی نباشد تا به ازای هر عنصر توالی، یکبار رابط کاربری را به روز کرد. عموما بهتر است تا تعداد مشخصی از عناصر یکجا پردازش شده و نتیجه‌ی این پردازش به تدریج نمایش داده شود.
var sequence = Enumerable.Range(1, 200)
                 .ToObservable()
                 .Buffer(count: 10);

sequence.Subscribe(onNext: numbers =>
{
   Console.WriteLine(numbers.Sum());
});
در اینجا نحوه‌ی استفاده از متد بافر را به همراه مشخص کردن تعداد اعضای بافر ملاحظه می‌کنید. هربار که onNext متد Subscribe فراخوانی شود، 10 عنصر از توالی را در اختیار خواهیم داشت (بجای یک عنصر حالت متداول بافر نشده).
به این ترتیب می‌توان فشار حجم اطلاعات ورودی با فرکانس بالا را کنترل کرد و در نتیجه از منابع موجود بهتر استفاده نمود. برای مثال اگر می‌خواهید عملیات bulk insert را انجام دهید، می‌توان بر اساس یک batch size مشخص، گروه گروه اطلاعات را به بانک اطلاعاتی اضافه کرد تا فشار کار کاهش یابد.

همینکار را بر اساس زمان نیز می‌توان انجام داد:
 var sequence = Enumerable.Range(1, 200)
                   .ToObservable()
                   .Buffer(timeSpan: TimeSpan.FromSeconds(2));
در مثال فوق هر 2 ثانیه یکبار، مجموعه‌ای از عناصر به متد onNext ارسال خواهند شد.


متد Window

متد Window نیز دقیقا همان پارامترهای متد بافر را قبول می‌کند. با این تفاوت که هربار، یک توالی obsevable را به متد onNext ارسال می‌کند.
نوع numbers پارامتر onNext، در حین بکارگیری متد بافر در مثال‌های فوق، IList of int است. اما اگر متدهای Buffer را تبدیل به متد Window کنیم، اینبار نوع numbers، معادل IObservable of int خواهد شد.
 var sequence = Enumerable.Range(1, 200)
                           .ToObservable()
                           .Window(timeSpan: TimeSpan.FromSeconds(2));

sequence.Subscribe(onNext: numbers =>
{
       numbers.Subscribe(onNext: number => Console.WriteLine(number));
});


چه زمانی باید از Buffer استفاده کرد و چه زمانی از Window؟

در متد بافر، به ازای هر توالی که به پارامتر onNext ارسال می‌شود، یکبار وهله‌ی جدیدی از توالی مدنظر در حافظه ایجاد و ارسال خواهد شد. در متد Window صرفا اشاره‌گرهایی به این توالی را در اختیار داریم؛ بنابراین مصرف حافظه‌ی کمتری را شاهد خواهیم بود. متد Window بسیار مناسب است برای اعمال aggregation. مثلا اگر نیاز است جمع، میانگین، حداقل و حداکثر عناصر دریافتی محاسبه شوند، بهتر است از متد Window استفاده شود که نهایتا قابلیت استفاده از متدهای الحاقی Sum و Max و Min را به همراه دارد. با این تفاوت که حاصل این‌ها نیز یک IObservable است که باید Subscribe آن‌را برای دریافت نتیجه فراخوانی کرد:
 var sequence = Enumerable.Range(1, 200)
                          .ToObservable()
                          .Window(10);

sequence.Subscribe(onNext: numbers =>
{
     numbers.Sum().Subscribe(onNext: number => Console.WriteLine(number));
});
در این حالت متد Window، برخلاف متد Buffer، توالی numbers را هربار کش نمی‌کند و به این ترتیب می‌توان به مصرف حافظه‌ی کمتری رسید.


کاربردهای دنیای واقعی

در اینجا دو مثال از بکارگیری متد Buffer را جهت پردازش مجموعه‌های عظیمی از اطلاعات و نمایش همزمان آن‌ها در رابط کاربری ملاحظه می‌کنید.
مثال اول: فرض کنید قصد دارید تمام فایل‌های درایو C خود را توسط یک TreeView نمایش دهید. در این حالت نباید رابط کاربری برنامه در حالت هنگ به نظر برسد. همچنین به علت زیاد بودن تعداد فایل‌ها و نمایش همزمان آن‌ها در UI، نباید CPU Usage برنامه تا حدی باشد که در کار سایر برنامه‌ها اخلال ایجاد کند. در این مثال‌ها با استفاده از Rx و متد بافر آن، هربار مثلا 1000 آیتم را بافر کرده و سپس یکجا در TreeView نمایش می‌دهند. به این ترتیب دو شرط یاد شده محقق می‌شوند.
The Rx Framework By Example

مثال دوم: خواندن تعداد زیادی رکورد از بانک اطلاعاتی به همراه نمایش همزمان آن‌ها در UI بدون اخلالی در کار سیستم و همچنین هنگ کردن برنامه.
Using Reactive Extensions for Streaming Data from Database
مطالب
مدیریت همزمانی و طول عمر توالی‌های Reactive extensions در یک برنامه‌ی دسکتاپ
پس از معرفی و مشاهده‌ی نحوه‌ی ایجاد توالی‌ها در Rx، بهتر است با نمونه‌ای از نحوه‌ی استفاده از آن در یک برنامه‌ی WPF آشنا شویم.
بنابراین ابتدا دو بسته‌ی Rx-Main و Rx-WPF را توسط نیوگت، به یک برنامه‌ی جدید WPF اضافه کنید:
 PM> Install-Package Rx-Main
PM> Install-Package Rx-WPF
فرض کنید قصد داریم محتوای یک فایل حجیم را به نحو ذیل خوانده و توسط Rx نمایش دهیم.
        private static IEnumerable<string> readFile(string filename)
        {
            using (TextReader reader = File.OpenText(filename))
            {
                string line;
                while ((line = reader.ReadLine()) != null)
                {
                    Thread.Sleep(100);
                    yield return line;
                }
            }
        }
در اینجا برای ایجاد یک توالی IEnumerable ، از yield return استفاده شده‌است. همچنین Thread.Sleep آن جهت بررسی قفل شدن رابط کاربری در حین خواندن فایل به عمد قرار گرفته است.
UI برنامه نیز به نحو ذیل است:
<Window x:Class="WpfApplicationRxTests.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        Title="MainWindow" Height="450" Width="525">
    <Grid>
        <Grid.RowDefinitions>
            <RowDefinition Height="Auto" />
            <RowDefinition  Height="*" />
            <RowDefinition Height="Auto" />
        </Grid.RowDefinitions>
        <Button Grid.Row="0" Name="btnGenerateSequence" Click="btnGenerateSequence_Click">Generate sequence</Button>
        <ListBox Grid.Row="1" Name="lstNumbers"  />
        <Button Grid.Row="2" IsEnabled="False" Name="btnStop" Click="btnStop_Click">Stop</Button>
    </Grid>
</Window>
با این کدها
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.IO;
using System.Reactive.Concurrency;
using System.Reactive.Linq;
using System.Threading;
using System.Windows;

namespace WpfApplicationRxTests
{
    public partial class MainWindow
    {
        public MainWindow()
        {
            InitializeComponent();
        }

        private static IEnumerable<string> readFile(string filename)
        {
            using (TextReader reader = File.OpenText(filename))
            {
                string line;
                while ((line = reader.ReadLine()) != null)
                {
                    Thread.Sleep(100);
                    yield return line;
                }
            }
        }

        private IDisposable _subscribe;
        private void btnGenerateSequence_Click(object sender, RoutedEventArgs e)
        {
            btnGenerateSequence.IsEnabled = false;
            btnStop.IsEnabled = true;

            var items = new ObservableCollection<string>();
            lstNumbers.ItemsSource = items;
            _subscribe = readFile("test.txt").ToObservable()
                               .SubscribeOn(ThreadPoolScheduler.Instance)
                               .ObserveOn(DispatcherScheduler.Current)
                               .Finally(finallyAction: () =>
                               {
                                   btnGenerateSequence.IsEnabled = true;
                                   btnStop.IsEnabled = false;
                               })
                               .Subscribe(onNext: line =>
                               {
                                   items.Add(line);
                               },
                               onError: ex => { },
                               onCompleted: () =>
                               {
                                   //lstNumbers.ItemsSource = items;
                               });
        }

        private void btnStop_Click(object sender, RoutedEventArgs e)
        {
            _subscribe.Dispose();
        }
    }
}

توضیحات

حاصل متد readFile را که یک توالی معمولی IEnumerable را ایجاد می‌کند، توسط فراخوانی متد ToObservable، تبدیل به یک خروجی IObservable کرده‌ایم تا بتوانیم هربار که سطری از فایل مدنظر خوانده می‌شود، نسبت به آن واکنش نشان دهیم.
متد SubscribeOn مشخص می‌کند که این توالی Observable باید بر روی چه تردی اجرا شود. در اینجا از ThreadPoolScheduler.Instance استفاده شده‌است تا در حین خواندن فایل، رابط کاربری در حالت هنگ به نظر نرسد و ترد جاری (ترد اصلی برنامه) به صورت خودکار آزاد گردد.
از متد ObserveOn با پارامتر DispatcherScheduler.Current استفاده کرده‌ایم، تا نتیجه‌ی واکنش‌های به خوانده شدن سطرهای یک فایل مفروض، در ترد اصلی برنامه صورت گیرد. در غیر اینصورت امکان کار کردن با عناصر رابط کاربری در یک ترد دیگر وجود نخواهد داشت و برنامه کرش می‌کند.
در قسمت‌های قبل، صرفا متد Subscribe را مشاهده کرده بودید. در اینجا از متد Finally نیز استفاده شده‌است. علت اینجا است که اگر در حین خواندن فایل خطایی رخ دهد، قسمت onError متد Subscribe اجرا شده و دیگر به پارامتر onCompleted آن نخواهیم رسید. اما متد Finally آن همیشه در پایان عملیات اجرا می‌شود.
خروجی حاصل از متد Subscribe، از نوع IDisposable است. Rx به صورت خودکار پس از پردازش آخرین عنصر توالی، این شیء را Dispose می‌کند. اینجا است که callback متد Finally یاد شده فراخوانی خواهد شد. اما اگر در حین خواندن یک فایل طولانی، کاربر علاقمند باشد تا عملیات را متوقف کند، تنها کافی است که به صورت صریح، این شیء را Dispose نماید. به همین جهت است که مشاهده می‌کنید، این خروجی به صورت یک فیلد تعریف شده‌است تا در متد Stop بتوانیم آن‌را در صورت نیاز Dispose کنیم.


مثال فوق را از اینجا نیز می‌توانید دریافت کنید:
WpfApplicationRxTests.zip
  
مطالب
ایجاد تایمرها در برنامه‌های Angular
عموما در برنامه‌های جاوا اسکریپتی با استفاده از متدهای setTimeout و setInterval می‌توان یک تایمر را ایجاد کرد. اما در برنامه‌های Angular با توجه به استفاده‌ی از کتابخانه‌ی RxJS، امکان ایجاد تایمرهای reactive نیز وجود دارد که در این مطلب آن‌ها را مرور خواهیم کرد.


ایجاد تایمرهای متوالی و بی‌وقفه

با استفاده از عملگر Observable.interval می‌توان یک تایمر بی‌نهایت را ایجاد کرد. پارامتر ورودی آن بر حسب میلی ثانیه است و مشترکین به آن در بازه‌های زمانی مشخص شده‌ی توسط این پارامتر، عدد جاری این بازه را دریافت می‌کنند.
یک مثال:


در این مثال می‌خواهیم تایمری را ایجاد کنیم که هر ثانیه یکبار، کدی را اجرا کند:
import { Observable } from "rxjs/Observable";
import "rxjs/add/observable/interval";
import { Subscription } from "rxjs/Subscription";

@Component()
export class UsingTimersComponent {

  private intervalSubscription: Subscription;
  interval = 0;

  startInterval() {
    const interval = Observable.interval(1000);
    this.intervalSubscription = interval.subscribe(i => this.interval += i);
  }

  stopInterval() {
    this.intervalSubscription.unsubscribe();
  }
}
با این قالب:
<div class="panel panel-default">
  <div class="panel-heading">
    <h2 class="panel-title">Observable.interval(1000)</h2>
  </div>
  <div class="panel-body">
    <div>
      <label>interval: </label> {{interval}}
    </div>
    <div>
      <button (click)="startInterval()" class="btn btn-success">Start</button>
      <button (click)="stopInterval()" class="btn btn-danger">Stop</button>
    </div>
  </div>
</div>
عملگر interval باید از مسیر rxjs/add/observable/interval دریافت شود که در ابتدای تعاریف کامپوننت مشخص شده‌است.
 پس از آن فراخوانی Observable.interval(1000) یک Observable را ایجاد می‌کند که توانایی صدور رخ‌دادهایی را در بازه‌های زمانی متوالی 1000 میلی ثانیه‌ای، دارا است.
اکنون مشترکین به آن، اعداد متوالی شروع شده‌ی از صفر را در هر ثانیه یکبار، دریافت می‌کنند:
this.intervalSubscription = interval.subscribe(i => this.interval += i);
این تایمر، به نحوی که تعریف شده‌است، تا ابد ادامه پیدا خواهد کرد. برای توقف آن نیاز است همانند روال معمول کار با Observableها، اشتراک به آن را لغو کرد:
this.intervalSubscription.unsubscribe();


مطلع شدن از پایان کار یک تایمر

با استفاده از اپراتور finally که از مسیر rxjs/add/operator/finally قابل import است، می‌توان رخ‌داد لغو اشتراک به این Observable و یا همان خاتمه‌ی تایمر را در اینجا دریافت کرد:
this.intervalSubscription = interval
      .finally(() => console.log("All done!"))
      .subscribe(i => this.interval += i);


ایجاد تایمرهای خود متوقف شونده

با استفاده از عملگر Observable.timer که در مسیر rxjs/add/observable/timer قرار دارد، می‌توان تایمری را ایجاد کرد که پس از یک تاخیر مشخص شده‌، اجرا شود و بلافاصله خاتمه یابد:
const timer = Observable.timer(1000);
timer.subscribe(data => console.log('ding!'));
در اینجا تایمری ایجاد شده‌است که پس از یک ثانیه اجرا شده و کد نمایش ding را در کنسول مرورگر اجرا می‌کند. سپس به صورت خودکار خاتمه خواهد یافت. در اینجا data نیز مساوی صفر است (اولین بار اجرای تایمر).
این تایمر امکان اجرای در بازه‌های زمانی مشخصی را نیز دارا است:
const moreThanOne$ = Observable.timer(2000, 500);
moreThanOne$.subscribe(data => console.log('timer with args', data));
اولین پارامتر آن مشخص می‌کند که این تایمر باید پس از 2 ثانیه تاخیر، شروع به کار کند و دومین آرگومان آن مشخص می‌کند که این تایمر تا ابد، با فواصل زمانی هر 500 میلی‌ثانیه یکبار، اجرا خواهد شد.


محدود کردن تعداد بار اجرای تایمر

اگر Observable.timer با پارامتر دوم آن بکار رود، بی‌نهایت بار اجرا خواهد شد. اما می‌توان این تعداد بار اجرا را توسط اپراتور take که از مسیر rxjs/add/operator/take قابل import است، محدود کرد:
let moreThanOne$ = Observable.timer(2000, 500).take(3);
moreThanOne$.subscribe(data => console.log('timer with args', data));
در اینجا تایمر تعریف شده، پس از یک وقفه‌ی آغازین 2 ثانیه‌ای شروع به کار می‌کند. سپس تنها دو بار دیگر در بازه‌های متوالی زمانی 500 میلی ثانیه یکبار، اجرا خواهد شد. یعنی جمعا سه بار با توجه به take(3) اجرا خواهد شد.


اجرای با تاخیر بازه‌های زمانی

با استفاده از اپراتور delay که از مسیر rxjs/add/operator/delay قابل import است، می‌توان هر بار اجرای callback تایمر را با یک تاخیر دریافت کرد:
const start = new Date();
const stream$ = Observable.interval(500).take(3);
stream$.delay(300).subscribe(x => {
    console.log('val',x);
    console.log( new Date() - start );
})
در اینجا تایمر از نوع interval تعریف شده، با توجه به استفاده‌ی از عملگر take، تنها سه بار اجرا می‌شود. اما این اجراها با تاخیری 300 میلی‌ثانیه‌ای به مشترکین آن‌ها اطلاع رسانی می‌گردند. به این ترتیب خروجی لاگ شده‌ی این عملیات به صورت ذیل خواهد بود:
val:0
800ms
val:1
1300ms
val:2
1800ms


ایجاد یک تایمر شمارش معکوس

فرض کنید می‌خواهید تایمری را ایجاد کنید که در طی یک شمارش معکوس، از عدد 10000 شروع شود و هر ثانیه یکبار 1000 واحد از آن کاهش یابد و زمانیکه به صفر رسید، متوقف شود.
این تایمر پس از import وابستگی‌های آن:
import { Observable } from "rxjs/Observable";
import "rxjs/add/observable/timer";
import "rxjs/add/operator/finally";
import "rxjs/add/operator/takeUntil";
import "rxjs/add/operator/map";
یک چنین تعریفی را پیدا می‌کند:
const interval = 1000;
const duration = 10 * 1000;
const stream$ = Observable.timer(0, interval)
      .finally(() => console.log("All done!"))
      .takeUntil(Observable.timer(duration + interval))
      .map(value => duration - value * interval);
stream$.subscribe(value => console.log(value));
در اینجا تایمر تعریف شده با توجه به آرگومان صفر تاخیر آن، بلافاصله شروع به کار می‌کند. همچنین با توجه به عدد interval آن، هر یک ثانیه یکبار اعداد صفر، یک و ... را به مشترکین خود ارسال خواهد کرد. اکنون می‌خواهیم این تایمر دقیقا پس از 11 ثانیه متوقف شود. یکی از روش‌های پیاده سازی آن استفاده از takeUntil است که در اینجا یک تایمر خود متوقف شوند را دریافت کرده‌است. این تایمر دقیقا پس از 11 ثانیه از شروع عملیات، یکبار اجرا شده و بلافاصله خاتمه پیدا می‌کند. همین صدور رخ‌داد، کار takeUntil را به پایان می‌رساند که این مورد نیز سبب خاتمه‌ی تایمر اصلی می‌شود.
در اینجا چون اعداد صادر شده‌ی از طرف تایمر، افزایشی هستند، نیاز است به روشی آن‌ها را تغییر داد. در یک چنین حالتی از اپراتور map استفاده می‌شود. در اینجا value، هربار مقدار افزایشی شروع شده‌ی از صفر را ارائه می‌دهد. توسط عملگر map، این خروجی افزایشی را به یک خروجی کاهشی تبدیل کرده‌ایم تا بتوان به یک تایمر شمارش معکوس رسید.


دریافت مدت زمان بین اجرای بازه‌های زمانی

Observable.timer با هر بار اجرا، اعداد شروع شده‌ی از صفر را به مشترکین ارسال می‌کند. اگر در این بین از اپراتور timeInterval قرار گرفته‌ی در مسیر rxjs/add/operator/timeInterval استفاده شود، این مقدار ارسالی از نوع مخصوص <TimeInterval<number خواهد بود که دارای خواص value و interval است:
const source = Observable.timer(0, 1000)
      .timeInterval()
      .map(x => x.value + ":" + x.interval)
      .take(5);

const subscription = source.subscribe(
      x => console.log("Next timeInterval: " + x),
      err => console.log("Error: " + err),
      () => console.log("Completed")
    );
در اینجا value همان صفر، یک و ... است و interval بیانگر زمان سپری شده‌ی بین دو صدور رخ‌داد می‌باشد.
در این مثال با استفاده از متد map، یک خروجی سفارشی تهیه شده‌است. اگر صرفا علاقمند به دریافت مقدار خاصیت interval باشید، می‌توان به صورت ذیل نیز عمل کرد:
const source = Observable.timer(0, 1000)
      .timeInterval()
      .pluck("interval")
      .take(5);
عملگر pluck که در مسیر rxjs/add/operator/pluck قرار دارد، خاصیت و یا خاصیت‌هایی از منبع را جهت بازگشت، انتخاب می‌کند. برای مثال در اینجا خاصیت interval یک شیء TimeInterval انتخاب شده‌است.


تعلیق و از سرگیری مجدد تایمرها

با قطع اشتراک از یک منبع تایمر، سبب توقف کامل آن خواهیم شد. اما اگر برای مدتی بخواهیم آن‌را در حالت تعلیق قرار دهیم، می‌توان به صورت ذیل عمل کرد:
import { Observable } from "rxjs/Observable";
import "rxjs/add/observable/never";
import "rxjs/add/observable/timer";
import { Subject } from "rxjs/Subject";

  tick: number;
  pauser = new Subject();
  tickerSource = new Subject();
  startTicker() {
    Observable.timer(0, 1000)
      .subscribe(this.tickerSource);

    this.pauser
      .switchMap(paused => paused ? Observable.never() : this.tickerSource).
      subscribe(t => this.tickerFunc(t));

    this.pauser.next(false); // resume
  }

  tickerFunc(tick) {
    this.tick = tick;
  }

  pauseTicker() {
    this.pauser.next(true);
  }

  resumeTicker() {
    this.pauser.next(false);
  }
نکته‌ی اصلی این طراحی در switchMap و Observable.never آن نهفته‌است. در اینجا وجود Subject سبب صدور رخدادی به مشترکین آن می‌شود. اگر توسط متد next آن false ارسال شود، سبب از سرگیری مجدد منبع اصلی یا همان تایمر برنامه می‌شود و اگر true ارسال شود، عملیات فراخوانی tickerFunc را با فراخوانی Observable.never به حالت تعلیق می‌برد.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید.
مطالب
آموزش Linq - بخش ششم : عملگرهای پرس و جو قسمت سوم
عملگر‌های تبدیل Conversion Operator

عملگر‌های پرس و جوی تبدیل، توالی‌هایی را که از جنس <IEnumerable<T هستند، به انواع دیگر مجموعه تبدیل می‌کنند.
از عملگر‌های پرس و جوی زیر می‌توان برای تبدیل توالی‌ها استفاده کرد :
  • OfType
  • Cast
  • ToArray
  • ToList
  • ToDictionary
  • ToLookup

عملگر OfType


این عملگر عناصری از توالی را که نوع آنها را مشخص می‌کنیم باز می‌گرداند.
امضاء عملگر پرس و جوی OfType  به صورت زیر است :
 public static IEnumerable<TResult> OfType<TResult>(this IEnumerable source)
همانطور که مشاهده می‌کنید توالی ورودی از یک نوع IEnumerable غیر جنریک می‌باشد. بدین معنی که عناصر توالی ورودی می‌توانند از نوع داده‌های مختلف باشند (توالی از اشیاء، از جنس Object).
در مثال زیر یک توالی IEnumerable (آرایه‌ای از اشیاء)، از عناصر با نوع داده‌های مختلفی را ایجاد کرده‌ایم. عملگر OfType در اینجا کلیه عناصر از جنس (string) را باز می‌گرداند. توالی خروجی یک نوع IEnumerable جنریک است(در این مثال <IEnumerable<List).
مثال :
IEnumerable input = new object[] { "Apple", 33, "Sugar", 44, 'a', new DateTime()};
IEnumerable<string> query = input.OfType<string>();
foreach (var item in query)
{
   Console.WriteLine(item);
}
خروجی مثال بالا :
Apple
Sugar
عملگر OfType را می‌توان به‌همراه  Strongly Type‌‌ها نیز استفاده کرد.
مثال :کد زیر یک ساختار سلسله مراتبی شیء گرا را نمایش می‌دهد:
 class Ingredient
  {
     public string Name { get; set; }
  }
  class DryIngredient : Ingredient
  {
     public int Grams { get; set; }
  }

  class WetIngredient : Ingredient
  {
     public int Millilitres { get; set; }
  }
کد زیر چگونگی استفاده از OfType را برای بدست آوردن یک زیر نوع (Subtype) مشخص، نشان می‌دهد (در این مثال، نوع WetIngredient):
IEnumerable<Ingredient> input = new Ingredient[]
{
   new DryIngredient { Name = "Flour" },
   new WetIngredient { Name = "Milk" },
   new WetIngredient { Name = "Water" }
};

IEnumerable<WetIngredient> query = input.OfType<WetIngredient>();
foreach (WetIngredient item in query)
{
   Console.WriteLine(item.Name);
}
خروجی مثال بالا :
Milk
Water

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر Cast


عملگر Cast همانند عملگر OfType رفتار می‌کند. این عملگر یک توالی ورودی را دریافت و بر اساس نوع مشخص شده، توالی خروجی را تولید می‌کند. همه‌ی عناصر توالی ورودی به نوع مشخص شده Cast می‌شوند. اما بر عکس عملگر OfType که عناصری را که با نوع داده‌ی ما سازگاری نداشت، نادیده می‌گرفت، این عملگر در صورت عدم موفقیت در عملیات تغییر نقش (Cast)، یک استثناء را پرتاب می‌کند.
مثال : 
IEnumerable input = new object[]
{
   "Apple", 33, "Sugar", 44, 'a', new DateTime()
};

IEnumerable<string> query = input.Cast<string>();
foreach (string item in query)
{
   Console.WriteLine(item);
}
با اجرای برنامه‌ی فوق، خطای زیر را مشاهده خواهید کرد:
 Unhandled Exception: System.InvalidCastException: Unable to cast object of type 'System.Int32' to type 'System.String'.

پیاده سازی توسط عبارت‌های جستجو


کلمه‌ی کلیدی جایگزینی برای عملگر Cast، در عبارت‌های جستجو وجود ندارد.این عملگر با استفاده از متغیر Range که در مطالب قبلی این سری معرفی شد، قابل پیاده سازی می‌باشد.
IEnumerable input = new object[]{ "Apple", "Sugar", "Flour" };
IEnumerable<string> query =
from string i in input
select i;

foreach (var item in query)
{
   Console.WriteLine(item);
}
نکته:  در مثال فوق تعریف صریح (Explicit) نوع داده، قبل از متغیر Range انجام شده است (معادل همان نوع داده در عملیات Cast).


عملگر ToArray


عملگر ToArray یک توالی ورودی را دریافت و یک توالی خروجی را به صورت آرایه تولید می‌کند. این عملگر باعث اجرای سریع پرس و جو می‌شود و رفتار پیش فرض LINQ را که اجرای با تاخیر می‌باشد، تحریف/بازنویسی (Override) می‌کند.
مثال: در این مثال یک توالی از نوع <IEnumerable<string به یک آرایه رشته‌ای تبدیل شده است (تبدیل لیست به آرایه).
 IEnumerable<string> input = new List<string> { "Apple", "Sugar", "Flour" };
string[] array = input.ToArray();

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر ToList

عملگر ToList همچون ToArray، اجرای با تاخیر را نادیده می‌گیرد. عملگر ToList همانطور که از نامش پیداست، توالی خروجی را به‌صورت لیست مهیا می‌کند.
مثال:
 IEnumerable<string> input = new[] { "Apple", "Sugar", "Flour" };
List<string> list = input.ToList();

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر ToDictionary

این عملگر توالی ورودی را به یک  دیکشنری جنریک تبدیل می‌کند (<Dictinary<TKey,TValue) .
ساده‌ترین امضاء عملگر ToDictionary، یک عبارت Lambda می‌باشد. این عبارت Lambda  نشان دهنده‌ی یک تابع است که عنصر کلید(Key) را در دیکشنری، مشخص می‌کند.
مثال:
class Recipe
{
   public int Id { get; set; }
   public string Name { get; set; }
   public int Rating { get; set; }
}

IEnumerable<Recipe> recipes = new[]
{
   new Recipe { Id = 1, Name = "Apple Pie", Rating = 5 },
   new Recipe { Id = 2, Name = "Cherry Pie", Rating = 2 },
   new Recipe { Id = 3, Name = "Beef Pie", Rating = 3 }
};

Dictionary<int, Recipe> dict = recipes.ToDictionary(x => x.Id);
foreach (KeyValuePair<int, Recipe> item in dict)
{
   Console.WriteLine($"Key={item.Key}, Recipe={item.Value}");
}
در کد بالا ، کلید دیکشنری نهایی، از نوع  int می‌باشد که بر اساس Id کلاس Recipe تنظیم شده است. مقادیر (value) دیکشنری هم همان اشیاء از جنس کلاس Recipe می‌باشند.
خروجی مثال بالا:
Key=1, Recipe=Apple Pie
Key=2, Recipe=Cherry Pie
Key=3, Recipe=Beef Pie

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر ToLookup


این عملگر رفتاری شبیه به عملگر ToDictionary را دارد، اما به جای تولید خروجی از نوع دیکشنری، نمونه‌ای از جنس ILookUp را ایجاد می‌کند.
در کد زیر خروجی ایجاد شده توسط lookup دستورالعمل‌ها (Recipes) را بر حسب  امتیاز آنها گروه بندی کرده است. در این مثال کلید، بر حسب Byte می‌باشد.
مثال :
class Recipe
{
   public int Id { get; set; }
   public string Name { get; set; }
   public byte Rating { get; set; }
}

IEnumerable<Recipe> recipes = new[]
{
   new Recipe { Id = 1, Name = "Apple Pie", Rating = 5 },
   new Recipe { Id = 1, Name = "Banana Pie", Rating = 5 },
   new Recipe { Id = 2, Name = "Cherry Pie", Rating = 2 },
   new Recipe { Id = 3, Name = "Beef Pie", Rating = 3 }
};

ILookup<byte, Recipe> look = recipes.ToLookup(x => x.Rating);
foreach (IGrouping<byte, Recipe> ratingGroup in look)
{
   byte rating = ratingGroup.Key;
   Console.WriteLine($"Rating {rating}");
   foreach (var recipe in ratingGroup)
   {
      Console.WriteLine($" - {recipe.Name}");
   }
}
خروجی مثال بالا:
 Rating 5
 - Apple Pie
 - Banana Pie
Rating 2
 - Cherry Pie
Rating 3
 - Beef Pie

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر‌های عناصر  Element Operators

این عملگر‌ها، یک توالی ورودی را دریافت و تنها یک عنصر از توالی ورودی و یا یک عنصر را به عنوان عنصر پیش فرض باز می‌گردانند. این نوع عملگر‌ها توالی خروجی را تولید نمی‌کنند.


عملگر First

این عملگر اولین عنصر توالی را باز می‌گرداند.
مثال :
Ingredient[] ingredients =
{
   new Ingredient {Name = "Sugar", Calories = 500},
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 150},
   new Ingredient {Name = "Flour", Calories = 50},
   new Ingredient {Name = "Butter", Calories = 500}
};

Ingredient element = ingredients.First();
Console.WriteLine(element.Name);
خروجی مثال بالا :
 Sugar
امضای دیگر این متد، امکان تعریف یک شرط را مهیا می‌کند. خروجی این حالت اولین عنصری است که شرط را تامین می‌کند. در کد زیر اولین عنصری که کالری آن برابر 150 باشد به خروجی ارسال می‌شود.
Ingredient[] ingredients =
{
   new Ingredient {Name = "Sugar", Calories = 500},
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 150},
   new Ingredient {Name = "Flour", Calories = 50},
   new Ingredient {Name = "Butter", Calories = 500}
};

Ingredient element = ingredients.First(x=>x.Calories==150);
Console.WriteLine(element.Name);
خروجی مثال بالا:
 Milk
در زمان استفاده از عملگر First، اگر توالی ورودی هیچ عنصری نداشته باشد، یک استثناء رخ خواهد داد:
 Unhandled Exception: System.InvalidOperationException: Sequence contains no elements
کد زیر نمونه‌ای از این حالت است:
Ingredient[] ingredients = { };
Ingredient element = ingredients.First();
در زمان استفاده‌ی از امضاء دیگر عملگر First، اگر هیچ عنصری شرط معرفی شده‌ی در پارامتر را تامین نکند، باز هم یک استثناء رخ خواهد داد:
 Unhandled Exception: System.InvalidOperationException: Sequence contains no matching element
کد زیر حالت فوق را نشان می‌دهد:
 Ingredient[] ingredients =
{
   new Ingredient {Name = "Sugar", Calories = 500},
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 150},
   new Ingredient {Name = "Flour", Calories = 50},
   new Ingredient {Name = "Butter", Calories = 500}
};
Ingredient element = ingredients.First(x=>x.Calories==1500);

پیاده سازی توسط عبارت‌های جستجو

معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر FirstOrDefault

عملگر FirstOrDefalt همانند عملگر First عمل می‌کند، اما با این تفاوت که به جای پرتاب یک استثناء در شرایط معرفی شده در عملگر First، یک مقدار پیش فرض را بر اساس نوع  عناصر توالی باز می‌گرداند. در صورتیکه توالی از نوع عددی باشد، مقدار 0 و اگر عناصر توالی از انواع ارجاعی باشند، مقدار Null و برای مقادیر منطقی، ارزش False به‌عنوان مقادیر پیش فرض باز گردانده می‌شوند.
مثال :
 Ingredient[] ingredients = { };
Ingredient element = ingredients.FirstOrDefault();
Console.WriteLine(element == null);
خروجی مثال بالا :
 True
پیاده سازی حالتی که هیچ یک از عناصر با شرط عملگر کطالبقت ندارند.
Ingredient[] ingredients =
{
   new Ingredient {Name = "Sugar", Calories = 500},
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 150},
   new Ingredient {Name = "Flour", Calories = 50},
   new Ingredient {Name = "Butter", Calories = 500}
};

Ingredient element = ingredients.FirstOrDefault(x=>x.Calories==1500);
Console.WriteLine(element==null);
خروجی مثال بالا :
 True

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


 عملگر Last

این عملگر آخرین عنصر توالی را باز می‌گرداند. همچون عملگر First، این عملگر نیز یک امضاء برای دریافت یک عبارت شرط یا پیش بینی دارد. این پیش بینی، آخرین عنصری را که شرط را تامین کند، باز می‌گرداند. باز هم مثل عملگر First، در صورتی که توالی هیچ عنصری نداشته باشد و یا عدم تامین شرط توسط عناصر توالی، استثنایی رخ خواهد داد.
مثال :
Ingredient[] ingredients =
{
   new Ingredient {Name = "Sugar", Calories = 500},
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 150},
   new Ingredient {Name = "Flour", Calories = 50},
   new Ingredient {Name = "Butter", Calories = 500}
};
Ingredient element = ingredients.Last(x=>x.Calories==500);
Console.WriteLine(element.Name);
خروجی مثال بالا :
 Flour

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر LastOrDefault

این عملگر همچون عملگر FirstOrDefault عمل می‌کند. از بروز استثناء جلوگیری کرده و مقدار پیش فرض را به خروجی ارسال می‌کند.

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر Single

عملگر Single ، تنها عنصر توالی ورودی را باز می‌گرداند.در صورتی که توالی ما بیش از یک عنصر داشته باشد و یا توالی هیچ عنصری نداشته باشد، یک استثناء رخ خواهد داد.
Unhandled Exception: System.InvalidOperationException: Sequence contains more than one matching element
Unhandled Exception: System.InvalidOperationException: Sequence contains no matching element
مثال :
Ingredient[] ingredients =
{
   new Ingredient { Name = "Sugar", Calories = 500 }
};

Ingredient element = ingredients.Single();
Console.WriteLine(element.Name);
خروجی مثال بالا :
 Sugar
عملگر Single، یک امضاء دیگر نیز دارد که یک عبارت پیش بینی را می‌پذیرد. در صورتی که بیش از یک عنصر، با پیش بینی مطابقت داشته باشد و یا هیچ عنصری شرط پیش بینی را تامین نکند، استثنائی رخ خواهد داد.
Ingredient[] ingredients =
{
   new Ingredient { Name = "Sugar", Calories = 500 },
   new Ingredient {Name = "Butter", Calories = 150},
   new Ingredient {Name = "Milk", Calories = 500}
};
Ingredient element = ingredients.Single(x => x.Calories == 150);
Console.WriteLine(element.Name);
خروجی مثال بالا :
 Butter

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر SingleOrDefault

عملگر SingleOrDefault همچون عملگر Single عمل می‌کند؛ اما با این تفاوت که اگر توالی هیچ عنصری نداشته باشد، مقدار پیش فرض نوع توالی، باز گردانده می‌شود و در صورتیکه هیچ عنصری شرط مشخص شده را تامین نکند، باز هم مقدار پیش فرض توالی، به جای رخ دادن استثناء باز گردانده می‌شود.
مثال : در این مثال هیچ عنصری با پیش بینی مشخص شده مطالبقت ندارد:
 Ingredient[] ingredients =
{
   new Ingredient { Name = "Sugar", Calories = 500 },
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 50}
};
Ingredient element = ingredients.SingleOrDefault(x => x.Calories == 9999);
Console.WriteLine(element==null);
خروجی مثال بالا :
True
توجه داشته باشید که استثنائی رخ نداده است و مقدار پیش فرض انواع ارجاعی که Null می‌باشد باز گردانده شده است.

پیاده سازی توسط عبارت‌های جستجو

معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر ElementAt


عملگر ElementAt   عنصری را در یک جایگاه مشخص شده‌ی در توالی، باز می‌گرداند.
مثال: در کد زیر سومین عنصر توالی ورودی انتخاب می‌شود:
 Ingredient[] ingredients =
{
   new Ingredient { Name = "Sugar", Calories = 500 },
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 50}
};

Ingredient element = ingredients.ElementAt(2);
Console.WriteLine(element.Name);
خروجی مثال بالا :
 Milk
باید دقت کرد که مقدار ارسالی به عملگر  ElementAt، اندیسی با نقطه‌ی آغاز صفر می‌باشد. بدین معنی که برای بدست آوردن اولین عنصر باید مقدار 0 را به عملگر ElementAt ارسال کرد. در صورتی که مقدار ارسالی با بازه اندیس‌های عناصر توالی مطابقت نداشته باشد (بزرگتر از شماره اندیس آخرین عنصر توالی باشد) یک استثناء رخ خواهد داد.
 System.ArgumentOutOfRangeException: Index was out of range. Must be non-negative and less than the size of the collection.

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر ElementAtOrDefualt

عملگر ElementAtOrDefualt نیز همچون عملگر ElementAt کار می‌کند؛ اما در صورت وارد کردن اندیسی بزرگتر از اندیس مجاز توالی، دیگر یک استثناء رخ نخواهد داد و یک مقدار پیش فرض، بر اساس نوع عناصر توالی باز گردانده می‌شود.
مثال :
Ingredient[] ingredients =
{
   new Ingredient { Name = "Sugar", Calories = 500 },
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 50}
};
Ingredient element = ingredients.ElementAtOrDefault(5);
Console.WriteLine(element==null);
خروجی مثال بالا:
 True

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگر DefaultIfEmpty
عملگر DefaultIfEmpty یک توالی را دریافت کرده و به دو شکل عمل می‌کند:
1- اگر توالی شامل حداقل یک عنصر باشد، این توالی بدون هیچ تغییری به خروجی ارسال می‌شود.
2- اگر توالی هیچ عنصری نداشته باشد، توالی خروجی خالی نخواهد بود. در این حالت توالی خروجی تنها یک عضو دارد و آن هم مقدار پیش فرضی بر اساس نوع توالی می‌باشد.
مثال :
Ingredient[] ingredients =
{
   new Ingredient { Name = "Sugar", Calories = 500 },
   new Ingredient {Name = "Egg", Calories = 100},
   new Ingredient {Name = "Milk", Calories = 50}
};

IEnumerable<Ingredient> query = ingredients.DefaultIfEmpty();
foreach (Ingredient item in query)
{
  Console.WriteLine(item.Name);
}
خروجی مثال بالا :
Sugar
Egg
Milk
همانطور که می‌بینید توالی خروجی دقیقا شبیه توالی ورودی می‌باشد.
کد زیر حالت دوم معرفی شده‌ی در تعریف DefaultIfEmpty را نشان می‌دهد.
Ingredient[] ingredients = { };
IEnumerable<Ingredient> query = ingredients.DefaultIfEmpty();
foreach (Ingredient item in query)
{
   Console.WriteLine(item == null);
}
خروجی کد بالا :
 True

پیاده سازی توسط عبارت‌های جستجو


معادل این عملگر، کلمه‌ی کلیدی جدیدی در عبارت‌های جستجو وجود ندارد و ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.
مطالب
آموزش Linq - بخش ششم: عملگرهای پرس و جو قسمت چهارم
عملگر‌های تولید  Generation Operator

عملگر‌های تولید، برای ما توالی ایجاد می‌کنند و تفاوت‌های عمده‌ای با سایر عملگرهای پرس و جو دارند که در بخش زیر به آنها اشاره می‌کنیم:
 1- هیچ توالی ورودی را دریافت نمی‌کنند.
 2- این عملگر‌ها بصورت متد الحاقی پیاده سازی نشده‌اند و بصورت متد‌های استاتیک در کلاس Enumerable قرار گرفته‌اند.
امضاء زیر مربوط به متد Empty  می‌باشد:
 public static IEnumerable<TResult> Empty<TResult>()

Empty

عملگر Empty یک توالی بدون عنصر (Empty) را بر اساس نوع مشخص شده، ایجاد می‌کند.
در کد زیر نحوه ایجاد یک توالی خالی از نوع Ingredient نشان داده شده است.
IEnumerable<Ingredient> ingredients = Enumerable.Empty<Ingredient>();
Console.WriteLine(ingredients.Count());
خروجی کد بالا :
 0
پیاده سازی توسط عبارت‌های جستجو
معادل عملگر Empty، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.

Range
عملگر پرس و جوی Range، یک توالی از مقادیر صحیح متوالی را برای ما ایجاد می‌کند. اولین پارامتر این عملگر عنصر آغاز کننده توالی است و دومین پارامتر این عملگر تعداد کل عناصر توالی تولید شده، با احتساب عنصر اول خواهد بود.
مثال:
IEnumerable<int> fiveToTen = Enumerable.Range(5,6);
foreach (var num in fiveToTen)
{
   Console.WriteLine(num);
}
خروجی مثال بالا:
5
6
7
8
9
10
همانطور که ملاحظه کردید مجموعا 6 عنصر برای توالی تولید شدند و اولین عنصر، با عدد 5 آغاز شده است.

پیاده سازی توسط عبارت‌های جستجو

معادل عملگر Range، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.

Repeat
عملگر پرس و جوی Repeat یک عدد را به تعداد بار مشخصی در توالی خروجی تکرار می‌کند.
مثال:
IEnumerable<int> fiveToTen = Enumerable.Repeat(42, 6);
foreach (var num in fiveToTen)
{
    Console.WriteLine(num);
}
خروجی مثال بالا:
42
42
42
42
42
42
پیاده سازی توسط عبارت‌های جستجو
معادل عملگر Repeat، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.


عملگرهای  کمی (Quantifier Operators)
عملگرهای Quantifier یک توالی ورودی را گرفته، آن را ارزیابی کرده و یک مقدار منطقی را باز می‌گردانند.

عملگر Contains
عملگر Contains  عناصر یک توالی را ارزیابی می‌کند و در صورتیکه مقدار مورد نظر ما در توالی وجود داشته باشد، ارزش True باز می‌گرداند.
مثال:
int[] nums = {1, 2, 3};
bool isTowThere = nums.Contains(2);
bool isFiveThere = nums.Contains(5);

Console.WriteLine(isTowThere);
Console.WriteLine(isFiveThere);
خروجی مثال بالا :
True
False

پیاده سازی توسط عبارت‌های جستجو

معادل عملگر Contains، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.

عملگر Any
عملگر Any دو امضاء مختلف را دارد:
 1- اولین امضاء: در صورتیکه توالی شامل حداقل یک عنصر باشد، ارزش True بازگردانده می‌شود.
 2- دومین امضاء: یک عبارت پیش بینی را قبول می‌کند. در صورتیکه حداقل یکی از عناصر توالی، عبارت پیش بینی را تامین کند، ارزش صحیح باز گردانده می‌شود.
مثال: بررسی امضاء اول عملگر Any
int[] nums = { 1, 2, 3 };
IEnumerable<int> noNums = Enumerable.Empty<int>();

Console.WriteLine(nums.Any());
Console.WriteLine(noNums.Any());
خروجی مثال بالا:
True
False
مثال: بررسی امضاء دوم عملگر Any
int[] nums = { 1, 2, 3 };
bool areAnyEvenNumbers = nums.Any(x => x % 2 == 0);
Console.WriteLine(areAnyEvenNumbers);
خروجی مثال بالا:
 True
در مثال بالا، عبارت پیش بینی مشخص می‌کند که اعداد زوج در توالی وجود داشته باشند یا خیر.

پیاده سازی توسط عبارت‌های جستجو
معادل عملگر Any، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.

عملگر All
عملگر پرس و جوی All، یک عبارت پیش بینی را دریافت می‌کند و عناصر توالی ورودی را بر مبنای آن ارزیابی می‌کند تا مشخص شود همه عناصر، شرط پیش بینی را تامین می‌کنند.
در کد زیر بررسی می‌کنیم که آیا همه عناصر توالی مواد غذایی، جزء مواد غذایی کم چرب می‌باشند یا خیر .
Ingredient[] ingredients =
{
new Ingredient { Name = "Sugar", Calories = 500 },
new Ingredient { Name = "Egg", Calories = 100 },
new Ingredient { Name = "Milk", Calories = 150 },
new Ingredient { Name = "Flour", Calories = 50 },
new Ingredient { Name = "Butter", Calories = 400 }
};
bool isLowFatRecipe = ingredients.All(x => x.Calories < 200);
Console.WriteLine(isLowFatRecipe);
خروحی کد بالا :
False

نکته : عملگر All به محض پیدا کردن عنصری که شرط مشخص شده را نقض کند، ارزش False را باز می‌گرداند و ادامه بررسی عناصر باقی مانده را متوقف می‌کند.

پیاده سازی توسط عبارت‌های جستجو
معادل عملگر Any، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.

عملگر SequenceEqual
عملگر SequenceEqual دو توالی را با هم مقایسه کرده و در صورتیکه عناصر هر دو توالی برابر و ترتیب قرار گیری آنها نیز یکسان باشند، ارزش True باز گردانده می‌شود.
مثال:
IEnumerable<int> sequence1 = new[] {1, 2, 3};
IEnumerable<int> sequence2 = new[] { 1, 2, 3 };
bool isSeqEqual = sequence1.SequenceEqual(sequence2);
Console.WriteLine(isSeqEqual);
خروجی مثال بالا:
 True

در صورتی که دو توالی عناصر یکسانی داشته باشند، ولی ترتیب قرار گیری عناصر با هم یکسان نباشند، عملگر ارزش False را باز می‌گرداند.
مثال :
IEnumerable<int> sequence1 = new[] { 1, 2, 3 };
IEnumerable<int> sequence2 = new[] { 3, 2, 1 };
bool isSeqEqual = sequence1.SequenceEqual(sequence2);
Console.WriteLine(isSeqEqual);
خروجی مثال بالا:
False
پیاده سازی توسط عبارت‌های جستجو
معادل عملگر SequenceEqual، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.
 
عملگر‌های تجمیع/تجمعی Aggregate Operators
عملگرهای Aggregate یک توالی ورودی را دریافت و یک مقدار عددی (Scalar Value) را باز می‌گردانند. مقدار بازگردانده شده، حاصل یک عملیات محاسباتی می‌باشد.
لیستی از عملگر‌های تجمیع ( Aggregate Operators ):
 • Count
 • LongCount
 • Sum
 • Min
 • Max
 • Average
 • Aggregate

عملگر Count
عملگر Count، تعداد عناصر توالی ورودی را باز می‌گرداند. عملگر Count، دو امضاء مختلف دارد. یکی از این امضاء‌ها یک عبارت پیش بینی را می‌پذیرد.
کد زیر، امضاء اول عملگر Count را نشان می‌دهد:
int[] nums = { 1, 2, 3 };
int numberOfElements = nums.Count();
Console.WriteLine(numberOfElements);
خروجی کد بالا:
 3

وقتی عبارت پیش بینی بکار گرفته می‌شود، عملگر Count تنها عناصری را که شرط را تامین کنند، شمارش می‌کند.
در کد زیر عملگر Count، همه عناصر زوج توالی ورودی را شمارش می‌کند:
int[] nums = { 1, 2, 3 };
int numberOfEvenElements = nums.Count(x => x % 2 == 0);
Console.WriteLine(numberOfEvenElements);
خروجی کد بالا :
1

پیاده سازی توسط عبارت‌های جستجو

معادل عملگر Count ، کلمه‌ی کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.

عملگر LongCount
این عملگر مثل عملگر Count عمل می‌کند، اما با این تفاوت که خروجی آن به جای نوع int از نوع long می‌باشد. این عملگر برای شمارش توالی‌های  ورودی بسیار بزرگ مورد استفاده قرار می‌گیرد.

پیاده سازی توسط عبارت‌های جستجو

معادل عملگر LongCount، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.

عملگر Sum

این عملگر  مجموع تمامی عناصر یک توالی را باز می‌گرداند.
در کد زیر جمع عناصر یک توالی از نوع int را مشاهده می‌کنید:
int[] nums = { 1, 2, 3 };
int total = nums.Sum();
Console.WriteLine(total);
خروجی کد بالا :
 6

عملگر Sum می‌تواند بر روی توالی‌هایی از نوع <IEnumerable<T و بر روی اعضای عددی آنها اعمال شود.
مثال:
Ingredient[] ingredients =
{
new Ingredient { Name = "Sugar", Calories = 500 },
new Ingredient { Name = "Egg", Calories = 100 },
new Ingredient { Name = "Milk", Calories = 150 },
new Ingredient { Name = "Flour", Calories = 50 },
new Ingredient { Name = "Butter", Calories = 400 }
};
int totalCalories = ingredients.Sum(x => x.Calories);
Console.WriteLine(totalCalories);
خروحی مثال بالا :
 1200

پیاده سازی توسط عبارت‌های جستجو

معادل عملگر Sum، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.

عملگر Average

این عملگر میانگین عناصر توالی‌های عددی را محاسبه می‌کند.
مثال:
int[] nums = { 1, 2, 3 };
var avg = nums.Average();
Console.WriteLine(avg);
خروجی مثلا بالا :
 2

همانطور که در کد بالا مشاهده می‌کنید، نوع متغیر avg صراحتا مشخص نشده و از نوع var استفاده شده است. تابع average بر اساس توالی ورودی، انواع مختلفی از نوع داده‌های عددی را به خروجی ارسال می‌کند (double,float,decimal).
همانند عملگر Sum، عملگر Average می‌تواند بر روی اعضای عددی توالی‌هایی که از نوع<IEnumarable<T هستند، اعمال شود.
مثال:
Ingredient[] ingredients =
{
new Ingredient { Name = "Sugar", Calories = 500 },
new Ingredient { Name = "Egg", Calories = 100 },
new Ingredient { Name = "Milk", Calories = 150 },
new Ingredient { Name = "Flour", Calories = 50 },
new Ingredient { Name = "Butter", Calories = 400 }
};
var avgCalories = ingredients.Average(x => x.Calories);
Console.WriteLine(avgCalories);
خروجی مثال بالا :
 240

پیاده سازی توسط عبارت‌های جستجو

معادل عملگر Average، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.

عملگر Min

عملگر Min کوچکترین عنصر توالی را باز می‌گرداند.
مثال:
int[] nums = { 3, 2, 1 };
var smallest = nums.Min();
Console.WriteLine(smallest);
خروجی مثال بالا:
 1
امضاء دیگر Min می‌تواند یک عبارت پیش بینی را بپذیرد:
مثال:
Ingredient[] ingredients =
{
new Ingredient { Name = "Sugar", Calories = 500 },
new Ingredient { Name = "Egg", Calories = 100 },
new Ingredient { Name = "Milk", Calories = 150 },
new Ingredient { Name = "Flour", Calories = 50 },
new Ingredient { Name = "Butter", Calories = 400 }
};
var smallestCalories = ingredients.Min(x => x.Calories);
Console.WriteLine(smallestCalories);

پیاده سازی توسط عبارت‌های جستجو
معادل عملگر Min ، کلمه کلیدی در عبارت‌های جستجو وجود ندارد.ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.

عملگر Max
عملگر Max بزرگترین عنصر توالی را باز می‌گرداند.
مثال:
int[] nums = { 1 ,3, 2 };
var largest = nums.Max();
Console.WriteLine(largest);
خروجی مثال بالا:
 3
همچون عملگر Min، عملگر Max نیز یک امضاء دارد که می‌توان از طریق آن یک عبارت پیش بینی را مشخص کرد.

پیاده سازی توسط عبارت‌های جستجو

معادل عملگر Max، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.

Aggregate
عملگر‌های تجمعی که  تا اینجا معرفی شدند، تنها یک کار را انجام می‌دادند. اما عملگر Aggregate امکان تعریف یک پرس و جوی تجمیع سفارشی و پیشرفته‌تر را که بر روی توالی ورودی اعمال می‌شود نیز مهیا می‌کند.
عملگر Aggregate  دو نسخه دارد:
 1- نسخه‌ای که اجازه استفاده از یک عدد را به عنوان مقدار Seed، به ما می‌دهد (مقدار آغازین یا Seed).
 2- نسخه‌ای که از عنصر ابتدایی توالی به عنوان مقدار Seed استفاده می‌کند.
هر دو نسخه این عملگر به یک تابع  انباره (accumulator function) جهت نگهداری نتیجه نیاز دارند.
کد زیر شبیه سازی عملگر Sum  توسط عملگر Aggregate می‌باشد:
int[] nums = {1, 2, 3};
var result = nums.Aggregate(0,
(currentElement, runningTotal) => runningTotal + currentElement);
Console.WriteLine(result);
خروجی قطعه کد بالا:
 6
در قطعه کد بالا، نسخه‌ای از عملگر aggregate استفاده شد که مقدار شروع آن با عدد صفر مقدار دهی اولیه شد‌ه‌است.
کد زیر شبیه سازی عملیات فاکتوریل را با در نظر گرفتن عنصر اول توالی، به عنوان مقدار Seed نشان می‌دهد:
 int[] nums = { 1, 2, 3 ,4,5};
var result = nums.Aggregate((runningProduct, nextfactor) => runningProduct * nextfactor);
Console.WriteLine(result);
خروجی کد بالا:
 120

پیاده سازی توسط عبارت‌های جستجو

معادل عملگر Aggregate، کلمه کلیدی در عبارت‌های جستجو وجود ندارد. ترکیب دو روش می‌تواند خروجی دلخواه را تولید کند.
مطالب
آموزش LINQ بخش ششم - عملگرهای پرس و جو قسمت اول
عملگرهای استاندارد پرس و جو

در یک طبقه بندی کلی، عملگرهای پرس و جو بر اساس ورودی و خروجی آنها به سه دسته تقسیم می‌شوند:
1- نتیجه‌ی توالی ورودی، بصورت یک توالی، به خروجی ارسال می‌شود.
2- نتیجه‌ی توالی ورودی، بصورت یک عنصر یکتا و واحد به خروجی ارسال می‌شود.
3- اثری از ورودی در توالی خروجی وجود ندارد (این عملگرها عناصر خودشان را تولید می‌کنند).

دسته‌ی آخر شاید کمی عجیب به نطر برسد. این عملگرها هیچ توالی ورودی را دریافت نمی‌کنند. مثلا می‌توان از طریق این عملگر‌ها، یک توالی از اعداد صحیح را تولید کرد.
تقسیم بندی عملگرهای پرس و جو بر اساس عملکرد به صورت زیر می‌باشد : 
  • محدود کننده (Restriction)
where
  • بازتابی (Projection)
Select,SelectMany 
  • جداکننده (Partitioning)
Take,Skip,TakeWhile,SkipWhile 
  • مرتب سازی (Ordering)
OrderBy,OrderByDescending,ThenBy,ThenByDescending,Reverse 
  • گروه بندی (Grouping)
GroupBy 
  • مجموعه (Set)
Concat,Union,Intersect,Except 
  • تبدیل (Conversion)
ToArray,ToList,ToDictionary,ToLookup,OfType,Cast 
  • عنصر(Element)
First,FirstOrDefault,Last,LastOrDefalt,Single,SingleOrDefault 
  • عنصر در (ElementAt)
ElementAtOrDefault,DefaultIfEmpty 
  • تولید (Generation)
Empty,Range,Report 
  • کمی (Quantifier)
Any,All,Contains,SequenceEqual 
  • مجموعه (Aggregate)
Count,LongCount,Sum,Min,Max,Average,Aggregate 
  • اتصال (Join)
Join,GroupJoin,Zip 

در این مطلب عملگرهای محدود کننده، بازتابی و جداکننده، بررسی خواهند شد. بعد از معرفی هر عملگر، معادل عبارت‌های پرس و جوی آنها نیز معرفی خواهند شد.

عملگرهای محدود کننده (Restriction Operators)
این عملگرها یک توالی ورودی را دریافت و یک توالی محدود شده یا به بیان دیگر فیلتر شده را تولید می‌کنند. عناصر توالی خروجی، عناصری هستند که با فیلتر اعمال شده مطابقت دارند.
Where
این عملگر، عناصری را به خروجی ارسال می‌کند که با گزاره‌ی (Predicate) تعریف شده مطابقت داشته باشند.
نکته : گزاره (Predicate) تابعی است که اگر شرط آن تامین شود، مقدار true و در غیر اینصورت مقدار false را باز می‌گرداند.
مثال : 
 Ingredient[] ingredients =
{
   new Ingredient{Name = "Sugar", Calories=500},
   new Ingredient{Name = "Egg", Calories=100},
   new Ingredient{Name = "Milk", Calories=150},
   new Ingredient{Name = "Flour", Calories=50},
   new Ingredient{Name = "Butter", Calories=200},
};

IEnumerable<Ingredient> query = ingredients.Where(x => x.Calories >= 200);
foreach (var ingredient in query)
{
   Console.WriteLine(ingredient.Name);
}
در کد فوق از عملگر where استفاده شده است. گزاره‌ی (x=>x.Calories>=200) به ازای هر غذایی که کالری آن مساوی یا بزرگتر از 200 باشد، مقدار true را باز می‌گرداند.
خروجی کد بالا:
 Sugar
Butter
عملگر where امضای دیگری دارد که اندیس عنصر ورودی توالی را نیز می‌پذیرد. در مثال قبل، اندیس Sugar برابر 0 و اندیس Butter برابر 4 است. پرس و جوی زیر خروجی مشابه مثال قبل را تولید می‌کند.
 IEnumerable<Ingredient> query = ingredients.Where((ingredient, index) => ingredient.Name == "Sugar" || index == 4);
گزاره نوشته شده در این پرس و جو  از نوع <Func<Ingredient,int,bool خواهد بود و پارامتر int، اندیس عنصر در توالی ورودی می‌باشد.

پیاده سازی توسط عبارت‌های پرس و جو
 در روش عبارت‌های پرس و جو، کلمه‌ی کلیدی where به‌همراه یک عبارت منطقی در پرس و جو ظاهر می‌شود:
 IEnumerable<Ingredient> gueryExpression =
from i in ingredients
where i.Calories >= 200
select i;


عملگرهای بازتاب (Projection Operators)

عملگرهای پرس و جوی بازتابی، یک توالی ورودی را دریافت و با تبدیل عناصر آنها، یک توالی خروجی را تولید می‌کنند.

Select
عملگر پرس و جوی select هر عنصر توالی ورودی را به یک عنصر در توالی خروجی تبدیل می‌کند. تعداد عناصر ورودی و خروجی در این حالت یکسان می‌باشند.
پرس و جوی زیر عناصر توالی ورودی Ingredient را به عناصر رشته‌ای در توالی خروجی بازتاب می‌کند. عبارت Lambda تعریف شده، نحوه‌ی بازتاب عناصر را مشخص می‌کند (هر عنصر ingredient به یک عنصر رشته‌ای بازتاب می‌شود):
 IEnumerable<string> query = ingredients.Select(x => x.Name);
  می‌توان توالی خروجی با عناصر صحیح را نیز تولید کرد:  
 IEnumerable<int> query = ingredients.Select(x => x.Name.Length);

در عملیات بازتاب می‌توان یک شیء جدید را در توالی خروجی ایجاد کرد. در کد زیر عناصر Ingredient به یک عنصر جدید از نوع IngredientNameAndLenght بازتاب شده است.
class IngredientNameAndLength
{
    public string Name { get; set; }
    public int Length { get; set; }
    public override string ToString()
    {
      return Name + " " + Length;
    }
}

IEnumerable<IngredientNameAndLength> query = ingredients.Select(x =>
new IngredientNameAndLength
{
   Name = x.Name,
   Length = x.Name.Length
});
پرس و جوی بالا را می‌توان به شکل نوع‌های بی نام نیز بازنویسی کرد. باید دقت شود که نوع بازگشتی این پرس و جو باید از نوع var باشد.
var query = ingredients.Select(x =>
new
{
   Name = x.Name,
   Length = x.Name.Length
});
خروجی کد بالا به شکل زیر است :
{ Name = Sugar, Length = 5 }
{ Name = Egg, Length = 3 }
{ Name = Milk, Length = 4 }
{ Name = Flour, Length = 5 }
{ Name = Butter, Length = 6 }

پیاده سازی توسط عبارت‌های پرس و جو

کلمه‌ی کلیدی select در عبارت‌های پرس و جو، به شکل زیر استفاده می‌شود:
var query = from i in ingredients
select new
{
    Name=i.Name,
    Length=i.Name.Length
};

SelectMany 
برعکس دستور select که به ازای هر عنصر در توالی ورودی، یک عنصر را در توالی خروجی بازتاب می‌کرد، دستور SelectMany ممکن است تعداد عناصر کمتر و یا بیشتری را در توالی خروجی بازتاب کند (انتخاب مقادیر یک مجموعه از مجموعه‌ی دیگر).
عبارت Lambda نوشته شده در عملگر Select، یک مقدار را باز می‌گرداند. اما عبارت Lambda نوشته شده در عملگر SelectMany، یک توالی فرزند (Child Sequence) را ایجاد می‌کند. توالی فرزند ممکن است حاوی تعداد مختلفی از عناصر به ازای هر عنصر در توالی ورودی باشد.
در مثال زیر عبارت Lambda یک توالی فرزند از کاراکتر‌ها ایجاد می‌کند (یک کاراکتر به ازای هر حرف از هر عنصر توالی ورودی). به‌طور مثال عنصر ورودی Sugar، پس از پردازش توسط  عبارت Lambda، یک توالی فرزند با 5 عنصر 's','u','g','e','r' فراهم می‌کند. هر رشته‌ی در توالی Ingredient می‌تواند تعداد حروف متفاوتی داشته باشد. در نتیجه عبارت Lambda، توالی‌های فرزندی با طول‌های مختلف ایجاد می‌کند.
مثال:
string[] ingredients = {"Sugar","Egg","Milk","Flour","Butter"};
IEnumerable<char> query = ingredients.SelectMany(x => x.ToCharArray());
foreach (var item in query)
{
   Console.WriteLine(item);
}
خروجی مثال بالا :
 S
u
g
a
r
E
g
g
M
i
l
k
F
l
o
u
r
B
u
t
t
e
r

پیاده سازی توسط عبارت‌های پرس و جو

در روش عبارت‌های پرس و جو یک عبارت (clause) اضافی from برای تولید یک توالی فرزند به کار برده می‌شود. خروجی کد زیر مشابه کد قبلی است:
 string[] ingredients = {"Sugar","Egg","Milk","Flour","Butter"};
IEnumerable<char> query2 = from i in ingredients
from c in i.ToCharArray()
select c;

foreach (var item in query2)
{
   Console.WriteLine(item);
}

عملگرهای جداکننده (Partitioning Operators)
عملگر‌های جداکننده، یک توالی ورودی را دریافت و آنها را از هم جدا می‌کنند.

Take
عملگر Takeیک توالی ورودی را دریافت کرده و تعداد مشخصی از توالی را باز می‌گرداند.
مثال: عملگر Take، سه عضو اول توالی Ingredient را باز می‌گرداند:
 Ingredient[] ingredients =
{
   new Ingredient{Name = "Sugar", Calories=500},
   new Ingredient{Name = "Egg", Calories=100},
   new Ingredient{Name = "Milk", Calories=150},
   new Ingredient{Name = "Flour", Calories=50},
   new Ingredient{Name = "Butter", Calories=200},
};

IEnumerable<Ingredient> query = ingredients.Take(3);
foreach (var ingredient in query)
{
   Console.WriteLine(ingredient.Name);
}
خروجی کد بالا :
 Sugar
Egg
Milk
همچون سایر عملگر‌های پرس و جو، عملگر Take هم می‌تواند بصورت زنجیروار استفاده شود. در مثال زیر ابتدا عملگر Where برای محدود کردن عناصر با شرطی خاص و سپس عملگر Take برای جدا کردن عناصر حاصل از نتیجه‌ی مرحله قبل مورد استفاده قرار گرفته است:
Ingredient[] ingredients =
{
   new Ingredient{Name = "Sugar", Calories=500},
   new Ingredient{Name = "Egg", Calories=100},
   new Ingredient{Name = "Milk", Calories=150},
   new Ingredient{Name = "Flour", Calories=50},
   new Ingredient{Name = "Butter", Calories=200},
};

IEnumerable<Ingredient> query = ingredients.Where(x=>x.Calories>100).Take(2);
foreach (var ingredient in query)
{
   Console.WriteLine(ingredient.Name);
}
خروجی کد بالا :
Sugar
Milk

پیاده سازی توسط عبارت‌های پرس و جو

کلمه‌ی کلیدی (Key word) جایگزینی برای عملگر Take وجود ندارد، ولی می‌توان با ترکیب دو روش نوشتن پرس و جو، خروجی مورد نظر را تولید کرد:
 IEnumerable<Ingredient> query =
(from i in ingredients
  where i.Calories > 100
  select i).Take(2);
TakeWhile
عملگر TakeWhile بر عکس عملگر Take تعداد مشخصی را باز می‌گرداند . این عملگر تا زمانی که گزاره با عناصر مطابقت داشته باشد، اجرا می‌شود و در غیر اینصورت خاتمه پیدا می‌کند.
کد زیر تا زمانی که خصوصیت Calorie توالی ورودی بزرگتر و مساوی 100 باشد، عناصر را جدا می‌کند.
Ingredient[] ingredients =
{
   new Ingredient{Name = "Sugar", Calories=500},
   new Ingredient{Name = "Egg", Calories=100},
   new Ingredient{Name = "Milk", Calories=150},
   new Ingredient{Name = "Flour", Calories=50},
   new Ingredient{Name = "Butter", Calories=200},
};

IEnumerable<Ingredient> query = ingredients.TakeWhile(x => x.Calories >= 100);
foreach (var ingredient in query)
{
   Console.WriteLine(ingredient.Name);
}
خروجی کد بالا :
 Sugar
Egg
Milk
همانطور که مشاهده می‌کنید، وقتی عملگر TakeWhile به عنصری می‌رسد که گزاره‌ی آن را نقض می‌کند، متوقف می‌شود (در اینجا Flour). در حالی که ممکن است عناصری بعد از Flour وجود داشته باشند که با گزاره‌ی TakeWhile تطابق داشته باشند.

پیاده سازی توسط عبارت‌های پرس و جو
برای این عملگر هم کلمه‌ی کلیدی (Key word) جایگزینی وجود ندارد و با ترکیب دو روش نوشتن پرس و جو نتیجه‌ی دلخواه حاصل می‌شود.
 
Skip
این عملگر تعداد مشخصی از عناصر را از ابتدای توالی نادیده گرفته و باقی عناصر را باز می‌گرداند.
کد زیر سه عضو اول توالی را نادیده گرفته و مابقی را باز می‌گرداند:
Ingredient[] ingredients =
{
   new Ingredient{Name = "Sugar", Calories=500},
   new Ingredient{Name = "Egg", Calories=100},
   new Ingredient{Name = "Milk", Calories=150},
   new Ingredient{Name = "Flour", Calories=50},
   new Ingredient{Name = "Butter", Calories=200},
};

IEnumerable<Ingredient> query = ingredients.Skip(3);
foreach (var ingredient in query)
{
   Console.WriteLine(ingredient.Name);
}
خروجی کد بالا :
 Flour
Butter

پیاده سازی توسط عبارت‌های پرس و جو

برای این عملگر هم کلمه‌ی کلیدی (Key word) جایگزینی وجود ندارد و با ترکیب دو روش نوشتن پرس و جو، نتیجه‌ی دلخواه حاصل می‌شود.
با ترکیب عملگر Take و Skip می‌توان اطلاعات را به‌صورت صفحه بندی به کاربر ارائه کرد. مثال زیر این حالت را نشان می‌دهد.
IEnumerable<Ingredient> firstPage = ingredients.Take(2);
IEnumerable<Ingredient> secondPage = ingredients.Skip(2).Take(2);
IEnumerable<Ingredient> thirdPage = ingredients.Skip(4).Take(2);

Console.WriteLine("First Page : ");
foreach (var ingredient in firstPage)
{
   Console.WriteLine(" - " + ingredient.Name);
}

Console.WriteLine("Second Page : ");
foreach (var ingredient in secondPage)
{
   Console.WriteLine(" - " + ingredient.Name);
}

Console.WriteLine("Third Page : ");
foreach (var ingredient in thirdPage)
{
   Console.WriteLine(" - " + ingredient.Name);
}
خروجی کد بالا :
 First Page :
 - Sugar
 - Egg
Second Page :
 - Milk
 - Flour
Third Page :
 - Butter
SkipWhile
عملگر SkipWhile، مثل عملگر TakeWhile، از یک گزاره برای ارزیابی عناصر توالی استفاده می‌کند. این عملگر تا زمانیکه عناصر توالی، گزاره را نقض نکنند، عناصر را نادیده می‌گیرد.

مثال:
Ingredient[] ingredients =
{
   new Ingredient{Name = "Sugar", Calories=500},
   new Ingredient{Name = "Egg", Calories=100},
   new Ingredient{Name = "Milk", Calories=150},
   new Ingredient{Name = "Flour", Calories=50},
   new Ingredient{Name = "Butter", Calories=200},
};

IEnumerable<Ingredient> query = ingredients.SkipWhile(x => x.Name != "Milk");
foreach (var ingredient in query)
{
   Console.WriteLine(ingredient.Name);
}
خروجی کد بالا:
 Milk
Flour
Butter
مطالب
کاهش حجم قابل ملاحظه‌ی برنامه‌های Angular با استفاده از RxJS 5.5
Angular 5.x به همراه پشتیبانی از RxJS 5.5.x منتشر شده‌است. RxJS 5.5 نیز به همراه تغییر قابل ملاحظه‌ای در نحوه‌ی import اجزای آن توسط ویژگی جدید lettable operators است. در این مطلب نحوه‌ی ارتقاء برنامه‌های قبلی به این نگارش جدید و همچنین اثر آن‌را بر اندازه‌ی برنامه‌ی نهایی تولید شده، بررسی می‌کنیم.


روش جدید import اجزای RxJS در نگارش 5.5 آن

تغییرات تعاریف عملگرها:
تا پیش از Angular 5 و RxJS 5.5 (و یا Angular CLI versions <1.5.0)، اگر نیاز به عملگری (operator/function) مانند map وجود داشت، روش import آن به صورت زیر بود:
import 'rxjs/add/operator/map';
اما پس از RxJS 5.5 امکان import آن‌ها با روش مخصوص ES 6 میسر شده‌است (به نام جمع operators دقت داشته باشید؛ چون مسیر rxjs/observable نیز وجود دارد):
import { map } from 'rxjs/operators';
بنابراین در این حالت دیگر روش import یکجای این تعاریف در فایلی مانند «rxjs-operators.ts» وجود ندارد و این تعاریف باید به ازای هر فایلی که از آن‌ها استفاده می‌کنند، مانند سایر importهای ES 6 یکبار دیگر مجددا ذکر شوند؛ مانند:
import { map, catchError, tap } from 'rxjs/operators';
در حالت کلی مسیر node_modules/rxjs/operators را برای یافتن متدهای جدید بررسی کنید.

همچنین در این نگارش، Observable بجای rxjs/Rx :
import { Observable } from 'rxjs/Rx';
از rxjs/Observable دریافت می‌شود:
import { Observable } from 'rxjs/Observable';
تا بتوان از قابلیت‌های جدید آن استفاده کرد.

تغییرات تعاریف statics:
برای صدور خطاها بجای throw قبلی:
import 'rxjs/add/observable/throw';

Observable.throw('error');
خواهیم داشت:
import { ErrorObservable } from 'rxjs/observable/ErrorObservable';

ErrorObservable.create('error');

و برای ایجاد تایمر، بجای timer پیشین:
import "rxjs/add/observable/timer";

const timerSource$ = Observable.timer(initialDelay);
خواهیم داشت:
import { timer } from 'rxjs/observable/timer';  

const timerSource$ = timer(initialDelay);
و به طور کلی مسیر node_modules\rxjs\observable را برای یافتن تعاریف static قبلی جستجو کنید.


معرفی lettable operators

Lettable Operators توابعی هستند که یک observable را دریافت و یک observable را بازگشت می‌دهند؛ به آن‌ها pipeable operators هم می‌گویند. از این جهت که در اینجا متد جدید pipe، برای ترکیب چندین تابع عملگر بر روی مقادیر observable توسط آن، ارائه شده‌است.
مزیت این روش این است که pipeable/lettable operators، یک سری تابع محض هستند و اگر مورد استفاده قرار نگیرند، به سادگی توسط سیستم و ابزار ساخت برنامه، از فایل نهایی حذف خواهند شد؛ یا اصطلاحا tree-shakable هست. اما روش پیشین تعریف این عملگرها، tree-shakable نبوده و حتی اگر توسط برنامه مورد استفاده قرار نگیرند، در بسته‌ی نهایی تولید شده، حضور خواهند داشت. Tree-shaking به معنای پروسه‌ی حذف کدهای مرده است. روش جدید استفاده‌ی از importهای ES 6، امکان تشخیص عملگرهای استفاده نشده را توسط ابزارهایی مانند TS-Lint و تنظیمات کامپایلر TypeScript به سادگی میسر می‌کنند و به این ترتیب با حذف متدها و ماژول‌های استفاده نشده، می‌توان به حجم نهایی بسیار کمتری رسید.


روش قبلی تعریف عملگرهای Observable، اصطلاحا Patching نامیده می‌شود. به این معنا که هر متد جدید import شده‌ی در برنامه، به Observable.prototype اصلی اضافه و وصله می‌شود. اما در این روش جدید، تنها متد وصله شده‌ی از پیش موجود، Observable.prototype.pipe است و تمام متدهای دیگر import شده، توابع محض هستند و نه وصله‌ای به Observable.prototype اصلی. زمانیکه وصله‌ای به Observable.prototype متصل می‌شود، دیگر امکان حذف آن توسط ابزارهای ساخت برنامه وجود ندارد (حتی اگر استفاده نشده باشند)؛ اما اگر این متدها به صورت خالص و مجزای از Observable.prototype ارائه شوند، امکان حذف کدهای مرده و استفاده نشده، به سادگی میسر خواهد شد؛ چون توابعی خالص و متکی به خود هستند.

یک نمونه مثال استفاده‌ی از pipeable/lettable operators را در کد زیر مشاهده می‌کنید:
import { from} from 'rxjs/observable/from';
import { map, scan, filter } from 'rxjs/operators';

const source$ = range(1,10);

const sumOfSquaredOddNumbers$ = source$.pipe(
   filter(n => n % 2 !== 0), 
   map(n => n * n),
   scan((acc,s) => acc + s, 0)
);
sumOfSquaredOddNumbers$.subscribe(v => console.log(v));

/*** Output ****/ 
1
10
35
84
165
این مثال، جمع به توان 2 اعداد را در یک بازه‌ی مشخص، محاسبه می‌کند. برای این منظور ابتدا یک منبع Observable توسط متد range ایجاد شده‌است.
در اینجا روش تعریف Observableها نیز تغییر کرده‌است و از متد of جهت کار با تعدادی ورودی مشخص و یا متد range برای کار با بازه‌ای از اعداد، استفاده می‌شود:
import { of } from 'rxjs/observable/of';
import { from } from 'rxjs/observable/from';
import { range } from 'rxjs/observable/range';

const source$ = of(1,2,3);
const rangeSource$ = range(0,5);
سپس توسط متد pipe، ترکیبی از متدهای RxJS را مشاهده می‌کند که بر روی منبع Observable اصلی کار می‌کنند.
متد filter، اعداد فرد بازه را انتخاب می‌کند. متد map این اعداد انتخابی را به توان 2 می‌رساند و سپس متد scan آن‌ها را با هم جمع می‌زند و نتیجه توسط متد pipe به صورت یک Observable دیگر بازگشت داده می‌شود که می‌توان مشترک آن شد و برای مثال خروجی فوق را در console درج کرد.


تغییر نام عملگرهای قبلی RxJS

تا اینجا دریافتیم که هدف اصلی pipeable/lettable operators، عدم معرفی آن‌ها به صورت یک وصله‌ی جدید جدانشدنی از Observable.prototype، به صورت توابع خالص است. اکنون که این عملگرها، تبدیل به متدهای خالص و متکی به خود شده‌اند، نباید با متدهای اصلی جاوا اسکریپت تداخل نام پیدا کنند؛ به همین جهت برای ارتقاء کدهای قدیمی خود، به این تغییر نام‌ها نیاز خواهید داشت: متد do به tap تغییر نام یافته‌است. متد switch شده‌است switchAll. بجای catch اینبار catchError داریم و finally شده‌است finalize.


مثالی از ارتقاء کدهای قدیمی به روش جدید RxJS 5.5

اگر مثال روش قدیمی مبتنی بر وصله کردن Observable.prototype، به صورت زیر باشد:
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/operator/map';
import 'rxjs/add/operator/filter';

names = allUserData.
         map(user => user.name).
         filter(name => name);
معادل جدید آن به این صورت تغییر می‌کند:
import { Observable } from 'rxjs/Observable';
import { map, filter } from 'rxjs/operators';

names = allUserData.pipe(
   map(user => user.name),
   filter(name => name),
);
زمانیکه تعریف Observable از مسیر rxjs/Observable درخواست می‌شود، به همراه عملگر وصله شده‌ی pipe نیز هست. به همین جهت نیازی به تعریف مجدد آن نیست. پس از آن متدهای map و filter، به داخل pipe منتقل می‌شوند. در این بین نیاز است تغییر نام متدها را که پیشتر نیز ذکر شد، مدنظر داشته باشید.
به عنوان یک مثال تکمیلی، کدهای سری «احراز هویت و اعتبارسنجی کاربران در برنامه‌های Angular» جهت استفاده‌ی از pipeable/lettable operators به روز رسانی شده‌اند. لیست تغییرات آن‌ها را در اینجا می‌توانید مشاهده کنید.
مطالب
مقدمه‌ای بر LINQ بخش اول
کلمه‌ی LINQ مخفف Language Integrated Query یا زبان پرس و جوی یکپارچه می‌باشد. LINQ برای اولین بار در ویژوال استودیوی 2008 و دات نت فریم ورک 3.5 برای پرکردن خلع بین دنیای اشیاء برنامه نویسی (Object Oriented World) و دنیای داده‌ها (Data World) ارائه شد.

چرا LINQ؟ 
در نگاهی کلی، مزایایی که از طریق LINQ حاصل می‌شوند عبارتند از:
• کاهش حجم کدنویسی 
• درک بهتر از عملکرد کد‌های نوشته شده
• پس از یادگیری اصول LINQ به راحتی می‌توانید از این اصول پرس و جو نویسی برای کار بر روی مجموعه داده‌های مختلف استفاده کنید
• کنترل صحت کدهای پرس و جو‌ها در زمان کامپایل ( Compile-Time Type Checking )

اجزای سازنده‌ی LINQ
دو جزء اصلی سازنده‌ی LINQ عبارت است از:
  • Elements عناصر
  • Sequences توالی‌ها
توالی‌ها می‌توانند لیستی از اطلاعات مختلف باشند. هر آیتم در لیست را عنصر می‌گوییم. توالی نمونه‌ای از یک کلاس است که اینترفیس <IEnumarable<T را پیاده سازی کرده باشد. این اینترفیس تضمین می‌کند که توالی قابلیت پیمایش عناصر را دارد.
به آرایه‌ی تعریف شده‌ی زیر دقت کنید:
int[] fibonacci = {0, 1, 1, 2, 3, 5};
متغیر fibonacci در اینجا نشان دهنده‌ی توالی و هر یک از اعداد آرایه، یک عنصر محسوب می‌شوند.
توالی می‌تواند درون حافظه‌ای باشد (In Memory Object) که به آن Local Sequence می‌گویند و یا می‌تواند یک بانک اطلاعاتی SQL Server باشد که به آن Remote Sequence می‌گویند.
در حالت Remote باید اینترفیس <IQuerable<T پیاده سازی شده باشد.
پرس و جو هایی را که بر روی توالی‌های محلی اجرا می‌شوند، اصطلاحا Local Query و یا LINQ-To-Object  نیز می‌نامند.
عملگرهای پرس و جوی  زیادی به شکل متد الحاقی در کلاس System.Linq.Enumerable طراحی شده‌اند. این مجموعه از عملگرهای پرس جو را اصطلاحا Standard Query Operator می‌گویند.
نکته‌ی مهم این است که عملگرهای پرس و جو تغییری را در توالی ورودی نمی‌دهند و نتیجه‌ی خروجی یک مجموعه جدید و یا یک مقدار عددی می‌باشد.

توالی خروجی و مقدار بازگشتی Scalar
در بخش قبل گفتیم که خروجی یک پرس و جو می‌تواند یک مجموعه و یا یک مقدار عددی باشد. در مثال زیر عملگر Count را بر روی مجموعه‌ی fibonacci  اعمال کردیم و عددی که نشان دهنده‌ی تعداد عناصر مجموعه است، بعنوان خروجی بازگردانده شده است.
int[] fibonacci = { 0, 1, 1, 2, 3, 5 };
int numberOfElements = fibonacci.Count();
Console.WriteLine($"{numberOfElements}");
IEnumerable<int> distinictNumbers = fibonacci.Distinct();
Console.WriteLine("Elements in output sequence:");
foreach (var number in distinictNumbers)
{
    Console.WriteLine(number);
}
در کد بالا توسط تابع Distinct، عناصر یکتا را از توالی ورودی استخراج کرده و بازگردانده‌ایم.
خروجی برنامه‌ی فوق به شکل زیر است :
6
Elements in output sequence:
0
1
2
3
5

مفهوم Deffer Execution  (
اجرای به تاخیر افتاده )
عمده‌ی عملگر‌های پرس و جو بلافاصله پس از ایجاد، اجرا نمی‌شوند. این عملگرها در طول اجرای برنامه اجرا خواهند شد (اجرای با تاخیر). به همین خاطر می‌توان بعد از ساخت پرس و جو  تغییرات دلخواهی را به توالی ورودی اعمال کرد.
در کد زیر  قبل از اجرای پرس و جو ، توالی ورودی ویرایش شده :
int[] fibonacci = { 0, 1, 1, 2, 3, 5 };
// ایجاد پرس و جو 
IEnumerable<int> numbersGreaterThanTwoQuery = fibonacci.Where(x => x > 2);
// در این مرحله پرس و جو ایجاد شده ولی هنوز اجرا نشده است
// تغییر عنصر اول توالی
fibonacci[0] = 99;
// حرکت بر روی عناصر توالی باعث اجرای پرس و جو می‌شود
foreach (var number in numbersGreaterThanTwoQuery)
{
   Console.WriteLine(number);
}
پرس و جو تا زمان اجرای حلقه‌ی Foreach اجرا نخواهد شد. خروجی مثال بالا به شکل زیر است :
99
3
5

به غیر از بعضی از عملگرها مثل Count,Min,Last سایر عملگر‌ها بصورت اجرای با تاخیر عمل می‌کنند. عملگری مثل Count باعث اجرای فوری پرس و جو می‌شود.
تعدادی عملگر تبدیل (Conversion Operator) هم وجود دارد که باعث می‌شوند پرس و جو بلافاصله اجرا شود :
• ToList
• ToArray
• ToLookup
• ToDictionary
عملگر‌های فوق پس از اجرا، خروجی را در یک ساختمان داده‌ی جدید باز می‌گردانند.
در کد زیر اصلاح توالی متغیر Fibonacci بعد از اجرای تابع ToArray صورت گرفته است.
int[] fibonacci = { 0, 1, 1, 2, 3, 5 };
// ساخت پرس و جو
IEnumerable<int> numbersGreaterThanTwoQuery = fibonacci.Where(x => x > 2) .ToArray();
// در این مرحله به خاطر عملگر استفاده شده پرس و جو اجرا می‌شود
// تغییر اولین عنصر توالی
fibonacci[0] = 99;
// حرکت بر روی نتیجه
foreach (var number in numbersGreaterThanTwoQuery)
{
   Console.WriteLine(number);
}
خروجی مثال بالا:
3
5
همانطور که می‌بینید عدد 99 در خروجی مشاهده نمی‌شود. علت فراخوانی عملگر ToArray است که بلافاصله باعث اجرای پرس و جو شده و خروجی را باز می‌گرداند . به همین خاطر تغییر عنصر اول توالی ورودی، تاثیری بر روی نتیجه‌ی خروجی ندارد.