مطالب
آشنایی با M.A.F - قسمت اول

در طی چند مقاله قصد بررسی نحوه‌ی تولید برنامه‌های توسعه پذیر (extensible) را با استفاده از plug-ins و یا add-ins داریم.

افزونه‌ها عموما در سه گروه قرار می‌گیرند:
الف) افزونه، سرویسی را به هاست ارائه می‌دهد. برای مثال یک میل سرور نیاز به افزونه‌هایی برای ویروس یابی یا فیلتر کردن هرزنامه‌ها دارد؛ یا یک برنامه پردازش متنی نیاز به افزونه‌ای جهت بررسی غلط‌های املایی می‌تواند داشته باشد و یا یک مرورگر وب می‌تواند با کمک افزونه‌ها قابلیت‌های پیش فرض خود را به شدت توسعه و افزایش دهد (نمونه‌ی بارز آن فایرکس است که عمده‌ترین دلیل اقبال عمومی به آن سهولت توسعه پذیری آن می‌باشد).
ب) در گروه دوم، هاست، رفتار مشخصی را ارائه داده و سپس افزونه بر اساس آن، نحوه‌ی عملکرد هاست را مشخص می‌کند. در این حالت هاست است که سرویسی را به افزونه ارائه می‌دهد. نمونه‌ی بازر آن افزونه‌های آفیس هستند که امکان اتوماسیون فرآیندهای مختلف آن‌را میسر می‌سازند. به این صورت امکان توسعه‌ی یک برنامه به شکلی که در طراحی اولیه آن اصلا انتظار آن نمی‌رفته وجود خواهد داشت. همچنین در اینجا نیازی به داشتن سورس کد برنامه‌ی اصلی نیز نمی‌باشد.
ج) گروه سوم افزونه‌ها تنها از هاست جهت نمایش خود استفاده کرده و عملا استفاده‌ی خاصی از هاست ندارد. برای مثال نوار ابزاری که خود را به windows explorer متصل می‌کند و تنها از آن جهت نمایش خود بهره می‌جوید.


در حال حاضر حداقل دو فریم ورک عمده جهت انجام این‌کار و تولید افزونه‌ها برای دات نت فریم ورک مهیا است:
الف) managed addin framework یا MAF
ب) managed extensibility framework یا MEF

فضای نام جدیدی به دات نت فریم ورک سه و نیم به نام System.AddIn اضافه شده است که به آن Managed AddIn Framework یا MAF نیز اطلاق می‌شود. از این فریم ورک در VSTO (تولید افزونه برای مجموعه‌ی آفیس) توسط خود مایکروسافت استفاده شده است.

فریم ورک توسعه‌ی افزونه‌های مدیریت شده در دات نت فریم ورک سه و نیم، مزایای زیر را در اختیار ما خواهد گذاشت:
- امکانات load و unload افزونه‌های تولید شده
- امکان تغییر افزونه‌ها در زمان اجرای برنامه اصلی بدون نیاز به بستن آن
- ارائه‌ی محیطی ایزوله با ترسیم مرزی بین افزونه و برنامه اصلی
- مدیریت طول عمر افزونه
- مدیریت سازگاری با نگارش‌های قبلی و یا بعدی یک افزونه
- امکانات به اشتراک گذاری افزونه‌ها با برنامه‌های دیگر
- تنظیمات امنیتی و مشخص سازی سطح دسترسی افزونه‌ها
و ...

یک راه حل مبتنی بر MAF می‌تواند شامل 7 پروژه باشد (که به روابط تعریف شده در آن pipeline هم گفته می‌شود):

Host : همان برنامه‌ی اصلی است که توسط یک سری افزونه، توسعه یافته است.
Host View : بیانگر انتظارات هاست از افزونه‌ها است. به عبارت دیگر افزونه‌ها باید موارد لیست شده در این پروژه را پیاده سازی کنند.
Host Side Adapter : پل ارتباطی Host View و پروژه‌ی Contract است.
Contract: اینترفیسی است که کار برقراری ارتباط بین Host و افزونه‌ها را برعهده دارد.
Add-In Side Adapter : پل ارتباطی بین Add-In View و Contract است.
Add-In View :‌ حاوی متدها و اشیایی است که جهت برقراری ارتباط با هاست از آن‌ها استفاده می‌شود.
Add-In : اسمبلی است که توسط هاست جهت توسعه‌ی قابلیت‌های خود بارگذاری می‌شود (به آن Add-On ، Extension ، Plug-In و Snap-In هم گفته می‌شود).

هدف از این جدا سازی‌ها ارائه‌ی راه حل loosely-coupledایی است که امکان ایزوله سازی، اعمال شرایط امنیتی ویژه و همچنین کنترل نگارش‌های مختلف را تسهیل می‌بخشد و این امر با استفاده از interface های معرفی شده میسر گردیده است. این pipeline از قسمت‌های ذیل تشکیل می‌شود:



قرار داد یا Contract
برای تولید یک افزونه نیاز است تا بین هاست و افزونه قراردادی بسته شود. با توجه به استفاده از MAF ، روش تعریف این قرار داد برای مثال در یک افزونه‌ی مترجم به صورت زیر باید باشد:

[AddInContract]
public interface ITranslator : IContract
{
string Translate(string input);
}

استفاده از ویژگی AddInContract و پیاده سازی اینترفیس IContract جزو مراحل کاری استفاده از MAF است. MAF هنگام تولید پویای pipeline ذکر شده به دنبال ویژگی AddInContract می‌گردد. این موارد در فضای نام System.AddIn.Pipeline تعریف شده‌اند.

دیدگاه‌ها یا Views
دیدگاه‌ها کدهایی هستند که کار تعامل مستقیم بین افزونه و هاست را بر عهده دارند. هاست یا افزونه هر کدام می‌توانند دیدگاه خود را نسبت به قرار داد بسته شده داشته باشند. این موارد نیز همانند قرار داد در اسمبلی‌های مجزایی نگهداری می‌شوند.

دیدگاه هاست نسبت به قرار داد:
public abstract class TranslatorHostView
{
public abstract string Translate(string input);
}
دیدگاه افزونه نسبت به قرار داد:
[AddInBase]
public abstract class TranslatorHostView
{
public abstract string Translate(string input);
}

هر دو کلاس فوق بر اساس قرار موجود بنا می‌شوند اما وابسته به آن نیستند. به همین جهت به صورت کلاس‌هایی abstract تعریف شده‌اند. در سمت افزونه، کلاس تعریف شده دیدگاه آن با کلاس دیدگاه سمت هاست تقریبا یکسان می‌باشد؛ اما با ویژگی AddInBase تعریف شده در فضای نام System.AddIn.Pipeline مزین گردیده است.


وفق دهنده‌ها یا Adapters
آخرین قسمت pipeline ، وفق دهنده‌ها هستند که کار آن‌ها اتصال قرار داد به دیدگاه‌ها است و توسط آن مدیریت طول عمر افزونه و همچنین تبدیل اطلاعات بین قسمت‌های مختلف انجام می‌شود. شاید در نگاه اول وجود آن‌ها زائد به نظر برسد اما این جدا سازی کدها سبب تولید افزونه‌هایی خواهد شد که به نگارش هاست و برنامه اصلی وابسته نبوده و بر عکس (version tolerance). به دو کلاس زیر دقت نمائید:

کلاس زیر با ویژگی [HostAdapter] تعریف شده در فضای نام System.AddIn.Pipeline، مزین شده است و کار آن اتصال HostView به Contract می‌باشد. برای این منظور TranslatorHostView ایی را که پیشتر معرفی کردیم باید پیاده سازی نماید. علاوه بر این با ایجاد وهله‌ای از کلاس ContractHandle ، کار مدیریت طول عمر افزونه را نیز می‌توان انجام داد.

[HostAdapter]
public class TranslatorHostViewToContract : TranslatorHostView
{
ITranslator _contract;
ContractHandle _lifetime;

public TranslatorHostViewToContract(ITranslator contract)
{
_contract = contract;
_lifetime = new ContractHandle(contract);
}

public override string Translate (string inp)
{
return _contract.Translate(inp);
}
}
کلاس سمت افزونه نیز بسیار شبیه قسمت قبل است و کار آن اتصال AddInView به Contract می‌باشد که با پیاده سازی ContractBase و Itranslator صورت خواهد گرفت. همچنین این کلاس به ویژگی AddInAdapter مزین گردیده است.

[AddInAdapter]
public class TranslatorAddInViewToContract : ContractBase, ITranslator
{
TranslatorAddInView _view;

public TranslatorAddInViewToContract(TranslatorView view)
{
_view = view;
}

public string Translate(string inp)
{
return _view.Translate(inp);
}
}

قسمت عمده‌ای از این کدها تکراری است. جهت سهولت تولید این کلاس‌ها و پروژه‌های مرتبط، تیم مربوطه برنامه‌ای را به نام pipeline builder ارائه داده است که از آدرس زیر قابل دریافت است:


این برنامه با دریافت اسمبلی مربوط بهcontract ، کار ساخت خودکار کلاس‌های adapters و views را انجام خواهد داد.

ایجاد افزونه
پس از ساخت قسمت‌های مختلف pipeline ، اکنون می‌توان افزونه را ایجاد نمود. هر افزونه باید add-in view را پیاده سازی کرده و با ویژگی AddIn مزین شود. برای مثال:

[AddIn("GoogleTranslator", Description="Universal translator",
Version="1.0.0.0", Publisher="YourName")]
public class GoogleAddIn : TranslatorAddInView
{
public string Translate(string input)
{
...
}
}

ادامه دارد ....

نظرات مطالب
Angular CLI - قسمت اول - نصب و راه اندازی
روش یافتن لیست بسته‌های سراسری نصب شده:
 npm list -g --depth=0

روش یافتن لیست بسته‌های سراسری نصب شده‌ی تاریخ مصرف گذشته:
 npm outdated -g --depth=0

روش به روز رسانی یک بسته‌ی سراسری خاص:
 npm update -g <package>


روش به روز رسانی تمام بسته‌های سراسری نصب شده:
 npm update -g
مطالب
الگوی وضعیت State Pattern
الگوی وضعیت، یکی از الگوهای رفتاری Gang Of Four است و بسیار شبیه به الگوی Strategy  می‌باشد؛ ولی با کپسوله سازی بیشتر. در الگوی استراتژی تغییر وضعیت از بیرون کلاس اعمال می‌د ولی در الگوی وضعیت، بر اساس تغییر وضعیت درونی خودش صورت می‌گیرد.
یکی از استفاده‌های این الگو برای مثال در پلیرهاست که وضعیت پخش را چون Play,Pause و ... در خود دارند. در اینجا هم از این مثال استفاده می‌کنیم:
ابتدا یک اینترفیس برای وضعیت خود بسازید که آرگومان ورودی متد آن را در مرحله بعد تعریف میکنیم:
public interface IState
{
    void PressPlay(MP3PlayerContext context);
}
سپس نوبت ایجاد کلاس اصلی یا همان دستگاه پخش که به آن Context می‌گوییم می‌رسد تا تغییر وضعیت الگو را به آن بسپاریم:
public class MP3PlayerContext
{
    public MP3PlayerContext()
    {
        this.CurrentState = new StandbyState();
    }
    
    public MP3PlayerContext(IState state)
    {
       this.CurrentState = state; 
    }
    
    public IState CurrentState { get; set; }
    
    public void Play()
    {
        this.CurrentState.PressPlay(this);
    }
}
سپس کلاس‌های مختلف خود را بر اساس اینترفیس بالا می‌سازیم:
public class StandbyState : IState
{
    public void PressPlay(MP3PlayerContext context)
    {
        context.CurrentState = new PlayingState();
    }
}

public class PlayingState : IState
{
    public void PressPlay(MP3PlayerContext context)
    {
        context.CurrentState = new StandbyState();
    }
}
در کدهای بالا، کلاس‌های Playing و StandBy در واقع شبیه سازی از عمل کلید پخش هستند که با هر بار فشردن آن، پخش به طور موقت توقف کرده و یا پخش خود را از سر می‌گیرد. کلاس Context نیز باید در ابتدا به طور پیش فرض با یکی از این مقادیر پر شود و برای دکمه پخش مشخص است که کلاس PlayingState می‌باشد.
بدین ترتیب در اولین اجرای متد Play در کلاس Context، کلاس PlayingState اجرا می‌شود و وضعیت، به StandbyState تغییر می‌کند و هر بار که مجددا متد Play اجرا گردد، تعویض بین این دو کلاس صورت می‌گیرد.
نظرات مطالب
شروع به کار با AngularJS 2.0 و TypeScript - قسمت یازدهم - کار با فرم‌ها - قسمت دوم
- data binding یعنی دقیقا به روز شدن اطلاعات با تغییرات کاربر. اگر مدنظر شما نیست، به صورت دستی آن‌را مدیریت کنید. ابتدا کار اتصال به رخداد blur را انجام دهید:
<input type="text" [(ngModel)]="myModel" (blur)="onBlurMethod()">
و بعد تعریف متد معادل آن در کلاس کامپوننت:
export class AppComponent {  
   myModel: any;  

   constructor(){
          this.myModel = '123';  
   }

   onBlurMethod(){  
     alert(this.myModel);   
   }
}

+ Observableها دارای متدی هستند به نام debounceTime که برای همین منظور طراحی شده‌است. یک مثال:
export class AppComponent {
    searchForm: ControlGroup;
    results: Observable<any[]>;

    constructor(private http: Http) {
        let searchField = new Control();
        this.searchForm = new ControlGroup({searchField});
        this.results = searchField.valueChanges
                  .debounceTime(500)
                  .switchMap((val:string) => {
                         return this.search(val);
                  });
    }
البته این مورد بر روی async validation تاثیری ندارد. برای رفع این مشکل می‌توان از راه حلی مانند «Debouncing Angular 2 Input Component» و یا «How to add debounce time to an async validator in angular 2» استفاده کرد (فعلا؛ در زمان نگارش این مطلب).
مطالب
React reconciliation
در پروژه‌های React، نقطه‌ی آغازین فرآیند rendering، قطعه کد زیر میباشد که درون فایل index.js قرار دارد:
ReactDOM.render(<App />, document.getElementById('root'));
 
توسط متد ReactDOM.render یک وهله از کامپوننت App ایجاد شده و منجر به فراخوانی متد render کامپوننت مربوطه خواهد شد. درون متد ذکر شده ممکن است چندین کامپوننت تعریف شده باشند. در نتیجه به ازای هر کامپوننت، متد render متناظر با آن فراخوانی خواهد شد. در نهایت یک ساختار سلسله مراتبی از عناصر HTML تشکیل شده و توسط آرگومان دوم متد فوق، درون عنصری با آی‌دی root درج خواهند شد. 
برای مثال کامپوننت‌های زیر را در نظر بگیرید که هر کدام درون فایل مربوط به خودشان هستند:
// List.js
import React, { Component } from 'react';
import { ActionButton } from './ActionButton';
export class List extends Component {
    constructor(props) {
        super(props);
        this.state = {
            items: [
                { id: 1, title: "Item 1" },
                { id: 2, title: "Item 2" },
                { id: 3, title: "Item 3" },
                { id: 4, title: "Item 4" },
                { id: 5, title: "Item 5" },
            ]
        };
    }

    reverse = () => {
        this.setState({ items: this.state.items.reverse() });
    }

    render() {
        console.log("Render List Component");
        return (
            <div className="list-container">
                <ActionButton callback={this.reverse} />
                <ul>
                    {this.state.items.map(item => {
                        return <li key={item.id}>
                            {item.title}
                        </li>
                    })}
                </ul>
            </div>
        );
    }
}

// ActionButton.js
import React, { Component } from 'react';
export class ActionButton extends Component {
    render() {
        console.log("Render ActionButton Component");
        return (
            <button onClick={this.props.callback}>Click me</button>
        );
    }
}
در نهایت درون کامپوننت App.js نیز همچین ساختاری خواهیم داشت:
import React from 'react';
import './App.css';
import { List } from './List';

function App() {
  console.log("Render App Component");
  return (
    <div className="App">
      <h1>Reconciliation Process</h1>
      <List />
    </div>
  );
}

export default App;

 
درون متد render هر کدام از کامپوننت‌های فوق یک console.log نوشته شده است. با اجرای برنامه خروجی زیر در کنسول مرورگر قابل مشاهده است:
Render App Component
Render List Component
Render ActionButton Component

دلیل آن نیز این است که با اجرای اپلیکیشن، React از تمامی کامپوننت‌ها درخواست فراخوانی متد renderشان را خواهد کرد. به محض اینکه محتوای HTML درون صفحه نمایش داده شد، اپلیکیشن در وضعیتی تحت عنوان reconciled قرار خواهد گرفت؛ در این مرحله، خروجی نمایش داده شده با state کامپوننت‌ها سازگار است. React منتظر خواهد بود تا تغییری رخ دهد که در بیشتر اپلیکیشن‌ها این تغییر توسط کاربر انجام خواهد گرفت که در نهایت منجر به فراخوانی متد setState میشود. متد setState در واقع state dataی یک کامپوننت را بروزرسانی میکند؛ اما اینکار کامپوننت را stale یا کهنه میکند. یعنی محتوای HTMLی نمایش داده شده به کاربر قدیمی خواهد شد و با تنها یک رخداد ممکن است چندین state data تغییر کنند. این کار باعث خواهد شد که متد render برای تمامی کامپوننت‌های تغییر کرده فراخوانی شود. اما از آنجائیکه بروزرسانی DOM عملی هزینه‌بر است، در نتیجه React محتوای قبلی (کش شده با عنوان Virtual DOM) را با محتوای جدید مقایسه میکند تا کمترین میزان بروزرسانی DOM را داشته باشد. به این فرآیند Reconciliation گفته میشود.
برای درک بهتر این فرآیند، درون کامپوننت List یک آی‌دی به عنصر ul اضافه خواهیم کرد:
<ul id="list">
    {this.state.items.map(item => {
        return <li key={item.id}>
            {item.title}
        </li>
    })}
</ul>

اکنون در حالیکه پروژه در حال اجرا است، کد زیر را درون کنسول مرورگر اجرا کنید:
document.getElementById("list").classList.add("message")

همانطور که مشخص است کد فوق کلاسی با نام message را به عنصر ul اضافه کرده است:

.message {
  border: 1px solid green;
  padding: 2rem;
}


اکنون وقتی بر روی دکمه Click me کلیک کنیم، محتوای درون کامپوننت فوق تغییر پیدا میکند، اما عنصر ul همچنان دارای کلاس message است؛ دلیل آن نیز همانطور که عنوان شد این است که React محتوای تولید شده توسط کامپوننت List را با Virtual DOM خودش مقایسه میکند و چون از لحاظ ساختار DOM با هم برابر هستند تغییری در ساختار خروجی کامپوننت ایجاد نمیکند و فقط قسمت‌هایی را که تغییر کرده‌اند، بروزرسانی خواهد کرد.


اکنون کامپوننت فوق را اینگونه تغییر خواهیم داد:

import React, { Component } from 'react';
import { ActionButton } from './ActionButton';
export class List extends Component {
    constructor(props) {
        // as before
    }

    reverse = () => {
        this.setState({ items: this.state.items.reverse(), wrapInDiv: true });
    }

    generateElement = () => {
        const list = <ul id="list">
            {this.state.items.map(item => {
                return <li key={item.id}>
                    {item.title}
                </li>
            })}
        </ul>;

        return this.state.wrapInDiv ? <div>{list}</div> : list;
    }

    render() {
        console.log("Render List Component");
        return (
            <div className="list-container">
                <ActionButton callback={this.reverse} />
                {this.generateElement()}
            </div>
        );
    }
}

  در اینجا اگر مجدداً کلاس ذکر شده را به عنصر ul اضافه کنیم و سپس بر روی دکمه کلیک کنیم، خواهیم دید که کلاس message از عنصر ul حذف خواهد شد. دلیل آن نیز این است که ساختار HTML با Virtual DOM یکی نیست و React کامپوننت موردنظر را با تغییرات جدید مجدداً رندر خواهد کرد. 

نکته: برای مشاهده تغییرات DOM می‌توانید قابلیت Paint flashing را در مرورگر Chrome از قسمت Developer Tool > More tools > Rendering فعال کنید و تغییرات را به صورت visual ببینید.
مطالب
انجام پی در پی اعمال Async به کمک Iterators - قسمت اول

تقریبا تمام اعمال کار با شبکه در Silverlight از مدل asynchronous programming پیروی می‌کنند؛ از فراخوانی یک متد وب سرویس تا دریافت اطلاعات از وب و غیره. اگر در سایر فناوری‌های موجود در دات نت فریم ورک برای مثال جهت کار با یک وب سرویس هر دو متد همزمان و غیرهمزمان در اختیار برنامه نویس هستند اما اینجا خیر. اینجا فقط روش‌های غیرهمزمان مرسوم هستند و بس. خیلی هم خوب. یک چارچوب کاری خوب باید روش استفاده‌ی صحیح از کتابخانه‌های موجود را نیز ترویج کند و این مورد حداقل در Silverlight اتفاق افتاده است.
برای مثال فراخوانی‌های زیر را در نظر بگیرید:
private int n1, n2;

private void FirstCall()
{
Service.GetRandomNumber(10, SecondCall);
}

private void SecondCall(int number)
{
n1 = number;
Service.GetRandomNumber(n1, ThirdCall);
}

private void ThirdCall(int number)
{
n2 = number;
// etc
}
عموما در اعمال Async پس از پایان عملیات در تردی دیگر، یک متد فراخوانی می‌گردد که به آن callback delegate نیز گفته می‌شود. برای مثال توسط این سه متد قصد داریم اطلاعاتی را از یک وب سرویس دریافت و استفاده کنیم. ابتدا FirstCall فراخوانی می‌شود. پس از پایان کار آن به صورت خودکار متد SecondCall فراخوانی شده و این متد نیز یک عملیات Async دیگر را شروع کرده و الی آخر. در نهایت قصد داریم توسط مقادیر بازگشت داده شده منطق خاصی را پیاده سازی کنیم. همانطور که مشاهده می‌کنید این اعمال زیبا نیستند! چقدر خوب می‌شد مانند دوران synchronous programming (!) فراخوانی‌های این متدها به صورت ذیل انجام می‌شد:
private void FetchNumbers()
{
int n1 = Service.GetRandomNumber(10);
int n2 = Service.GetRandomNumber(n1);
}
در برنامه نویسی متداول همیشه عادت داریم که اعمال به صورت A –> B –> C انجام شوند. اما در Async programming ممکن است ابتدا C انجام شود، سپس A و بعد B یا هر حالت دیگری صرفنظر از تقدم و تاخر آن‌ها در حین معرفی متدهای مرتبط در یک قطعه کد. همچنین میزان خوانایی این نوع کدنویسی نیز مطلوب نیست. مانند مثال اول ذکر شده، یک عملیات به ظاهر ساده به چندین متد منقطع تقسیم شده است. البته به کمک lambda expressions مثال اول را به شکل زیر نیز می‌توان در طی یک متد ارائه داد اما اگر تعداد فراخوانی‌ها بیشتر بود چطور؟ همچنین آیا استفاده از عدد n2 بلافاصله پس از عبارت ذکر شده مجاز است؟ آیا عملیات واقعا به پایان رسیده و مقدار مطلوب به آن انتساب داده شده است؟
private void FetchNumbers()
{
int n1, n2;

Service.GetRandomNumber(10, result =>
{
n1 = result;
Service.GetRandomNumber(n1, secondResult =>
{
n2 = secondResult;
});
});
}

به عبارتی می‌خواهیم کل اعمال انجام شده در متد FetchNumbers هنوز Async باشند (ترد اصلی برنامه را قفل نکنند) اما پی در پی انجام شوند تا مدیریت آن‌ها ساده‌تر شوند (هر لحظه دقیقا بدانیم که کجا هستیم) و همچنین کدهای تولیدی نیز خواناتر باشند.
روش استانداری که توسط الگوهای برنامه نویسی برای حل این مساله پیشنهاد می‌شود، استفاده از الگوی coroutines است. توسط این الگو می‌توان چندین متد Async را در حالت معلق قرار داده و سپس در هر زمانی که نیاز به آن‌ها بود عملیات آن‌ها را از سر گرفت.
دات نت فریم ورک حالت ویژه‌ای از coroutines را توسط Iterators پشتیبانی می‌کند (از C# 2.0 به بعد) که در ابتدا نیاز است از دیدگاه این مساله مروری بر آن‌ها داشته باشیم. مثال بعد یک enumerator را به همراه yield return ارائه داده است:

using System;
using System.Collections.Generic;
using System.Threading;

namespace CoroutinesSample
{
class Program
{
static void printAll()
{
foreach (int x in integerList())
{
Console.WriteLine(x);
}
}

static IEnumerable<int> integerList()
{
yield return 1;
Thread.Sleep(1000);
yield return 2;
yield return 3;
}

static void Main()
{
printAll();
}
}
}

کامپایلر سی شارپ در عمل یک state machine را برای پیاده سازی این عملیات به صورت خودکار تولید خواهد کرد:

private bool MoveNext()
{
switch (this.<>1__state)
{
case 0:
this.<>1__state = -1;
this.<>2__current = 1;
this.<>1__state = 1;
return true;

case 1:
this.<>1__state = -1;
Thread.Sleep(0x3e8);
this.<>2__current = 2;
this.<>1__state = 2;
return true;

case 2:
this.<>1__state = -1;
this.<>2__current = 3;
this.<>1__state = 3;
return true;

case 3:
this.<>1__state = -1;
break;
}
return false;
}

در حین استفاده از یک IEnumerator ابتدا در وضعیت شیء Current آن قرار خواهیم داشت و تا زمانیکه متد MoveNext آن فراخوانی نشود هیچ اتفاق دیگری رخ نخواهد داد. هر بار که متد MoveNext این enumerator فرخوانی گردد (برای مثال توسط یک حلقه‌ی foreach) اجرای متد integerList ادامه خواهد یافت تا به yield return بعدی برسیم (سایر اعمال تعریف شده در حالت تعلیق قرار دارند) و همینطور الی آخر.
از همین قابلیت جهت مدیریت اعمال Async پی در پی نیز می‌توان استفاده کرد. State machine فوق تا پایان اولین عملیات تعریف شده صبر می‌کند تا به yield return برسد. سپس با فراخوانی متد MoveNext به عملیات بعدی رهنمون خواهیم شد. به این صورت دیدگاهی پی در پی از یک سلسه عملیات غیرهمزمان حاصل می‌گردد.

خوب ما الان نیاز به یک کلاس داریم که بتواند enumerator ایی از این دست را به صورت خودکار مرحله به مرحله آن هم پس از پایان واقعی عملیات Async قبلی (یا مرحله‌ی قبلی)، اجرا کند. قبل از اختراع چرخ باید متذکر شد که دیگران اینکار را انجام داده‌اند و کتابخانه‌های رایگان و یا سورس بازی برای این منظور موجود است.


ادامه دارد ...

مطالب
شروع کار با Dart - قسمت 2
لطفا قسمت اول را در اینجا مطالعه بفرمائید

گام سوم: افزودن یک button
در این مرحله یک button را به صفحه html اضافه می‌کنیم. button زمانی فعال می‌شود که هیچ متنی در فیلد input موجود نباشد. زمانی که کاربر بر روی دکمه کلیک می‌کند نام Meysam Khoshbakht را در کادر قرمز رنگ می‌نویسد.
تگ <button> را بصورت زیر در زیر فیلد input ایجاد کنید
...
<div>
  <div>
    <input type="text" id="inputName" maxlength="15">
  </div>
  <div>
    <button id="generateButton">Aye! Gimme a name!</button>
  </div>
</div>
...
در زیر دستور import و بصورت top-level متغیر زیر را تعریف کنید تا یک ButtonElement در داخل آن قرار دهیم.
import 'dart:html';

ButtonElement genButton;
توضیحات
- ButtonElement یکی از انواع المنت‌های DOM می‌باشد که در کتابخانه dart:html قرار دارد
- اگر متغیری مقداردهی نشده باشد بصورت پیش فرض با null مقداردهی می‌گردد
به منظور مدیریت رویداد کلیک button کد زیر را به تابع main اضافه می‌کنیم
void main() {
  querySelector('#inputName').onInput.listen(updateBadge);
  genButton = querySelector('#generateButton');
  genButton.onClick.listen(generateBadge);
}
جهت تغییر محتوای کادر قرمز رنگ تابع top-level زیر را به piratebadge.dart اضافه می‌کنیم
...

void setBadgeName(String newName) {
  querySelector('#badgeName').text = newName;
}
جهت مدیریت رویداد کلیک button تابع زیر را بصورت top-level اضافه می‌کنیم
...

void generateBadge(Event e) {
  setBadgeName('Meysam Khoshbakht');
}
همانطور که در کدهای فوق مشاهده می‌کنید، با فشردن button تابع generateBadge فراخوانی میشود و این تابع نیز با فراخوانی تابع setBadgeName محتوای badge یا کادر قرمز رنگ را تغییر می‌دهد. همچنین می‌توانیم کد موجود در updateBadge مربوط به رویداد input فیلد input را بصورت زیر تغییر دهیم
void updateBadge(Event e) {
  String inputName = (e.target as InputElement).value;
  setBadgeName(inputName);
}
جهت بررسی پر بودن فیلد input می‌توانیم از یک if-else بصورت زیر استفاده کنیم که با استفاده از توابع رشته ای پر بودن فیلد را بررسی می‌کند.
void updateBadge(Event e) {
  String inputName = (e.target as InputElement).value;
  setBadgeName(inputName);
  if (inputName.trim().isEmpty) {
    // To do: add some code here.
  } else {
    // To do: add some code here.
  }
}
توضیحات
- کلاس String شامل توابع و ویژگی‌های مفیدی برای کار با رشته‌ها می‌باشد. مثل trim که فواصل خالی ابتدا و انتهای رشته را حذف می‌کند و isEmpty که بررسی می‌کند رشته خالی است یا خیر.
- کلاس String در کتابخانه dart:core قرار دارد که بصورت خودکار در تمامی برنامه‌های دارت import می‌شود
حال جهت مدیریت وضعیت فعال یا غیر فعال بودن button کد زیر را می‌نویسیم
void updateBadge(Event e) {
  String inputName = (e.target as InputElement).value;
  setBadgeName(inputName);
  if (inputName.trim().isEmpty) {
    genButton..disabled = false
             ..text = 'Aye! Gimme a name!';
  } else {
    genButton..disabled = true
             ..text = 'Arrr! Write yer name!';
  }
}
توضیحات
- عملگر cascade یا آبشاری (..)، به شما اجازه می‌دهد تا چندین عملیات را بر روی اعضای یک شی انجام دهیم. اگر به کد دقت کرده باشید با یک بار ذکر نام متغیر genButton ویژگی‌های disabled و text را مقدار دهی نمودیم که موجب تسریع و کاهش حجم کد نویسی می‌گردد.
همانند گام اول برنامه را اجرا کنید و نتیجه را مشاهده نمایید. با تایپ کردن در فیلد input و خالی کردن آن وضعیت button را بررسی کنید. همچنین با کلیک بر روی button نام درج شده در badge را مشاهده کنید.
 

گام چهارم: ایجاد کلاس PirateName

در این مرحله فقط کد مربوط به فایل dart را تغییر میدهیم. ابتدا کلاس PirateName را ایجاد می‌کنیم. با ایجاد نمونه ای از این کلاس، یک نام بصورت تصادفی انتخاب می‌شود و یا نامی بصورت اختیاری از طریق سازنده انتخاب می‌گردد.

نخست کتابخانه dart:math را به ابتدای فایل dart اضافه کنید

import 'dart:html';

import 'dart:math' show Random;

توضیحات

- با استفاده از کلمه کلیدی show، شما می‌توانید فقط کلاسها، توابع و یا ویژگی‌های مورد نیازتان را import کنید.

- کلاس Random یک عدد تصادفی را تولید می‌کند

در انتهای فایل کلاس زیر را تعریف کنید

...

class PirateName {
}

در داخل کلاس یک شی از کلاس Random ایجاد کنید

class PirateName {
  static final Random indexGen = new Random();
}

توضیحات

- با استفاده از static یک فیلد را در سطح کلاس تعریف می‌کنیم که بین تمامی نمونه‌های ایجاد شده از کلاس مشترک می‌باشد

- متغیرهای final فقط خواندنی می‌باشند و غیر قابل تغییر هستند.

- با استفاده از new می‌توانیم سازنده ای را فراخوانی نموده و نمونه ای را از کلاس ایجاد کنیم

دو فیلد دیگر از نوع String و با نام‌های _firstName و _appelation به کلاس اضافه می‌کنیم

class PirateName {
  static final Random indexGen = new Random();
  String _firstName;
  String _appellation;
}

متغیرهای خصوصی با (_) تعریف می‌شوند. Dart کلمه کلیدی private را ندارد.

دو لیست static به کلاس فوق اضافه می‌کنیم که شامل لیستی از name و appelation می‌باشد که می‌خواهیم آیتمی را بصورت تصادفی از آنها انتخاب کنیم.

class PirateName {
  ...
  static final List names = [
    'Anne', 'Mary', 'Jack', 'Morgan', 'Roger',
    'Bill', 'Ragnar', 'Ed', 'John', 'Jane' ];
  static final List appellations = [
    'Jackal', 'King', 'Red', 'Stalwart', 'Axe',
    'Young', 'Brave', 'Eager', 'Wily', 'Zesty'];
}

کلاس List می‌تواند شامل مجموعه ای از آیتم‌ها می‌باشد که در Dart تعریف شده است.

سازنده ای را بصورت زیر به کلاس اضافه می‌کنیم

class PirateName {
  ...
  PirateName({String firstName, String appellation}) {
    if (firstName == null) {
      _firstName = names[indexGen.nextInt(names.length)];
    } else {
      _firstName = firstName;
    }
    if (appellation == null) {
      _appellation = appellations[indexGen.nextInt(appellations.length)];
    } else {
      _appellation = appellation;
    }
  }
}

توضیحات

- سازنده تابعی همنام کلاس می‌باشد

- پارامترهایی که در {} تعریف می‌شوند اختیاری و Named Parameter می‌باشند. Named Parameter‌ها پارمترهایی هستند که جهت مقداردهی به آنها در زمان فراخوانی، از نام آنها استفاده می‌شود.

- تابع nextInt() یک عدد صحیح تصادفی جدید را تولید می‌کند.

- جهت دسترسی به عناصر لیست از [] و شماره‌ی خانه‌ی لیست استفاده می‌کنیم.

- ویژگی length تعداد آیتم‌های موجود در لیست را بر می‌گرداند.

در این مرحله یک getter برای دسترسی به pirate name ایجاد می‌کنیم

class PirateName {
  ...
  String get pirateName =>
    _firstName.isEmpty ? '' : '$_firstName the $_appellation';
}

توضیحات

- Getter‌ها متدهای خاصی جهت دسترسی به یک ویژگی به منظور خواندن مقدار آنها می‌باشند.

- عملگر سه گانه :? دستور میانبر عبارت شرطی if-else می‌باشد

- $ یک کاراکتر ویژه برای رشته‌های موجود در Dart می‌باشد و می‌تواند محتوای یک متغیر یا ویژگی را در رشته قرار دهد. در رشته '$_firstName the $_appellation' محتوای دو ویژگی _firstName و _appellation در رشته قرار گرفته و نمایش می‌یابند.

- عبارت (=> expr;) یک دستور میانبر برای { return expr; } می‌باشد.

تابع setBadgeName را بصورت زیر تغییر دهید تا یک پارامتر از نوع کلاس PirateName را به عنوان پارامتر ورودی دریافت نموده و با استفاده از Getter مربوط به ویژگی pirateName، مقدار آن را در badge name نمایش دهد.

void setBadgeName(PirateName newName) {
  querySelector('#badgeName').text = newName.pirateName;
}

تابع updateBadge را بصورت زیر تغییر دهید تا یک نمونه از کلاس PirateName را با توجه به مقدار ورودی کاربر در فیلد input تولید نموده و تابع setBadgeName رافراخوانی نماید. همانطور که در کد مشاهده می‌کنید پارامتر ورودی اختیاری firstName در زمان فراخوانی با ذکر نام پارامتر قبل از مقدار ارسالی نوشته شده است. این همان قابلیت Named Parameter می‌باشد.

void updateBadge(Event e) {
  String inputName = (e.target as InputElement).value;
  
  setBadgeName(new PirateName(firstName: inputName));
  ...
}

تابع generateBadge را بصورت زیر تغییر دهید تا به جای نام ثابت Meysam Khoshbakht، از کلاس PirateName به منظور ایجاد نام استفاده کند. همانطور که در کد می‌بینید، سازنده‌ی بدون پارامتر کلاس PirateName فراخوانی شده است.

void generateBadge(Event e) {
  setBadgeName(new PirateName());
}

همانند گام سوم برنامه را اجرا کنید و نتیجه را مشاهده نمایید.