مطالب دوره‌ها
استفاده از Async و Await در برنامه‌های دسکتاپ
امکان استفاده از قابلیت‌های غیرهمزمان دات نت 4.5 در برنامه‌های WPF نیز به روش‌های مختلفی میسر است که در ادامه دو روش مرسوم آن‌را بررسی خواهیم کرد.

تهیه مقدمات بحث

ابتدا یک برنامه‌ی WPF جدید را آغاز کنید. سپس کدهای MainWindow.xaml آن‌را به نحو ذیل تغییر دهید.
<Window x:Class="Async10.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        Title="MainWindow" Height="350" Width="525">
    <DockPanel>
        <DockPanel Dock="Top">
            <Button Name="BtnGo" Content="Go" Click="BtnGo_OnClick" />
            <ProgressBar Name="ProgressBar" IsIndeterminate="True" Visibility="Collapsed"/>
        </DockPanel>
        <TextBox Name="Results"/>
    </DockPanel>
</Window>
قصد داریم اطلاعاتی را از وب دریافت و سپس در TextBox قرار گرفته در صفحه نمایش دهیم.
در این مثال از کلاس جدید HttpClient نیز استفاده خواهیم کرد. برای استفاده از آن نیاز است ارجاعی را به اسمبلی استاندارد System.Net.Http.dll نیز به پروژه اضافه کنید.


روش اول

در ادامه کدهای فایل MainWindow.xaml.cs را به نحو ذیل تغییر داده و سپس برنامه را اجرا کنید.
using System.Net.Http;
using System.Windows;

namespace Async10
{
    public partial class MainWindow
    {
        public MainWindow()
        {
            InitializeComponent();
        }

        private void BtnGo_OnClick(object sender, RoutedEventArgs e)
        {
            BtnGo.IsEnabled = false;
            ProgressBar.Visibility = Visibility.Visible;

            var url = "https://www.dntips.ir";
            var client = new HttpClient(); // make sure you have an assembly reference to System.Net.Http.dll
            client.DefaultRequestHeaders.UserAgent.ParseAdd("Test Async");
            var task = client.GetStringAsync(url);
            task.ContinueWith(t =>
            {
                Results.Text = t.Result;

                BtnGo.IsEnabled = true;
                ProgressBar.Visibility = Visibility.Collapsed;
            });
        }
    }
}
روال رخدادگردان BtnGo_OnClick به نحو مرسوم آن نوشته شده است. بنابراین جهت دریافت نتیجه‌ی متد GetStringAsync می‌توان از متد ContinueWith بر روی task دریافت اطلاعات از وب، استفاده کرد. همچنین در اینجا مستقیما اطلاعات و نتیجه‌ی دریافتی را به عناصر UI انتساب داده‌ایم.
اگر پروژه را اجرا کنید، برنامه با استثنای زیر متوقف می‌شود:
 The calling thread cannot access this object because a different thread owns it.
چون task آغاز شده در ترد دیگری نسبت به ترد UI اجرا می‌شود، مجوز تغییری را در کدهای UI ندارد. برای حل این مشکل می‌توان از دو روش ذیل استفاده کرد:

الف) با استفاده از SynchronizationContext.Current و متد Post آن
 var context = SynchronizationContext.Current;
task.ContinueWith(t => context.Post(state =>
{
   Results.Text = t.Result;

   BtnGo.IsEnabled = true;
   ProgressBar.Visibility = Visibility.Collapsed;
}, null));
با این روش در قسمت اول آشنا شدید. SynchronizationContext.Current در اینجا چون در ابتدای متد و خارج از ContinueWith دریافت اطلاعات، اجرا می‌شود، به ترد UI یا ترد اصلی برنامه اشاره می‌کند. سپس همانطور که ملاحظه می‌کنید، توسط متد Post آن می‌توان اطلاعات را در زمینه‌ی تردی که SynchronizationContext به آن اشاره می‌کند اجرا کرد.

ب) با استفاده از امکانات TaskScheduler
 var taskScheduler = TaskScheduler.FromCurrentSynchronizationContext();
task.ContinueWith(t =>
{
   Results.Text = t.Result;

   BtnGo.IsEnabled = true;
   ProgressBar.Visibility = Visibility.Collapsed;
}, taskScheduler);
وقتی یک task اجرا می‌شود، TPL یا task parallel library نیاز دارد بداند، این task بر روی چه تردی و چه زمانی قرار است اجرا شود. به صورت پیش فرض از thread pool استفاده می‌کند، اما الزامی به آن نیست. با استفاده از TaskScheduler می‌توان بر روی نحوه‌ی رفتار تردهای TPL تاثیر گذاشت و یا حتی آن‌ها را سفارشی سازی کرد. متد FromCurrentSynchronizationContext، یک TaskScheduler جدید را در اختیار ما قرار می‌دهد که کدهای آن بر اساس SynchronizationContext.Current کار می‌کند؛ در اینجا Context به UI اشاره می‌کند و در یک برنامه‌ی وب، به یک درخواست رسیده.
برای مثال اگر در برنامه‌های وب یک Task جدید را اجرا کنید شاید اینطور به نظر برسد که به HttpContext دسترسی ندارید. این نقیصه را می‌توان توسط کار با SynchronizationContext جاری برطرف کرد.
در مثال فوق، چون taskScheduler پیش از فراخوانی متد ContinueWith ایجاد شده‌است، به ترد UI اشاره می‌کند. در این حالت برای نمایش اطلاعات در همان ترد اصلی برنامه کافی است این taskScheduler را به عنوان پارامتر متد ContinueWith معرفی کنیم.


روش دوم

در دات نت 4.5 می‌توان روال رخدادگردان تعریف شده را به صورت async نیز معرفی کرد (یعنی مجاز هستیم امضای متد پیش فرض تولید شده را تغییر دهیم):
 private async void BtnGo_OnClick(object sender, RoutedEventArgs e)
سپس استفاده از await در کدهای برنامه میسر خواهد شد:
        private async void BtnGo_OnClick(object sender, RoutedEventArgs e)
        {
            BtnGo.IsEnabled = false;
            ProgressBar.Visibility = Visibility.Visible;

            var url = "https://www.dntips.ir";
            var client = new HttpClient(); // make sure you have an assembly reference to System.Net.Http.dll
            client.DefaultRequestHeaders.UserAgent.ParseAdd("Test Async");
            Results.Text = await client.GetStringAsync(url);
            BtnGo.IsEnabled = true;
            ProgressBar.Visibility = Visibility.Collapsed;
        }
در این حالت دیگر نیازی به استفاده از ContinueWith و مباحث SynchronizationContext نیست. زیرا تمام آن‌ها به صورت توکار اعمال می‌شوند. به علاوه کدنهایی نیز بسیار خواناتر شده‌است.
مطالب
تولید خودکار کدهای سمت کلاینت بر اساس OpenAPI Specification
در سری «مستند سازی ASP.NET Core 2x API توسط OpenAPI Swagger» با نحوه‌ی تولید OpenAPI Specification، بر اساس کنترلرها و اکشن متدهای Web API خود آشنا شدیم و سپس با استفاده از ابزار Swagger-UI، یک رابط کاربری پویا را نیز برای آن تولید و سفارشی سازی کردیم. کاربرد OpenAPI Specification صرفا به مستندسازی یک Web API خلاصه نمی‌شود. بر اساس این استاندارد، ابزارهای متعددی جهت تولید کدهای سمت سرور و سمت کلاینت نیز طراحی شده‌اند که در اینجا نمونه‌ای از آن‌ها را بررسی خواهیم کرد.


تولید خودکار کدها بر اساس OpenAPI Specification

فرض کنید در حال توسعه‌ی برنامه‌ی سمت کلاینت Angular و یا سمت سرور ASP.NET Core ای هستید که هر دوی این‌ها از یک Web API استفاده می‌کنند. همچنین فرض کنید که این Web API را نیز خودتان توسعه می‌دهید. بنابراین حداقل کدی که باید در اینجا به اشتراک گذاشته شود، کدهای کلاس‌های DTO یا Data transfer objects هستند تا این کلاینت‌ها بتوانند اطلاعات Web API را به نحو صحیحی Deserialize کنند و یا برعکس، بتوانند اطلاعات را با فرمت صحیحی به سمت Web API ارسال کنند.
برای مدیریت این مساله می‌توان از دو روش استفاده کرد:
الف) استفاده از یک پروژه‌ی اشتراکی
اگر کدهای مدنظر، سمت سرور باشند، می‌توان یک پروژه‌ی اشتراکی را برای این منظور ایجاد کرد و کدهای DTO را درون آن قرار داد و سپس ارجاعی به آن را در پروژه‌های مختلف، استفاده نمود. به این ترتیب تکرار کدها، کاهش یافته و همچنین تغییرات آن نیز به تمام پروژه‌های استفاده کننده به نحو یکسانی اعمال می‌شوند. در این حالت یک اسمبلی اشتراکی تولید شده و به صورت مستقلی توزیع می‌شود.

ب) استفاده از روش لینک کردن فایل‌ها
در این روش پروژه‌های استفاده کننده از کلاس‌های DTO، فایل‌های آن‌را به پروژه‌ی خود لینک می‌کنند. در این حالت باز هم شاهد کاهش تکرار کدها و همچنین اعمال یک دست تغییرات خواهیم بود. اما در این روش دیگر یک اسمبلی اشتراکی وجود نداشته و کلاس‌های DTO هم اکنون با اسمبلی پروژه‌های استفاده کننده، یکی و کامپایل شده‌اند.

بدیهی است در هر دو روش، نیاز است بر روی کلاینت و API، کنترل کاملی وجود داشته باشد و بتوان به کدهای آن‌ها دسترسی داشت. به علاوه فایل‌های اشتراکی نیز باید بر اساس Target platform یکسانی تولید شده باشند. در این حالت دیگر نیازی به OpenAPI Specification برای تولید کدهای کلاینت دات نتی خود، نیست.

اما اگر کدهای API مدنظر در دسترس نباشند و یا بر اساس پلتفرم دیگری مانند node.js تولید شده باشد، کار یکپارچه سازی با آن دیگر با به اشتراک گذاری فایل‌های آن میسر نیست. در این حالت اگر این API به همراه یک OpenAPI Specification باشد، می‌توان از آن برای تولید خودکار کدهای کلاینت‌های آن استفاده کرد.


معرفی تعدادی از ابزارهایی که قادرند بر اساس OpenAPI Specification، کد تولید کنند

برای تولید کد از روی OpenAPI Specification، گزینه‌های متعددی در دسترس هستند:

الف) Swagger CodeGen
این ابزار را که جزئی از مجموعه ابزارهای تولید شده‌ی برفراز OpenAPI است، می‌توانید از آدرس swagger-codegen دریافت کنید. البته برای اجرای آن نیاز به Java Runtime است و یا نگارش آنلاین آن نیز در دسترس است: swagger.io
در ابزار آنلاین آن، در منوی generate بالای صفحه، گزینه‌ی تولید کد برای #C نیز موجود است.

ب)  AutoRest
محل دریافت: https://github.com/Azure/autorest
بر اساس node.js کار می‌کند و از طریق خط فرمان، قابل دسترسی است. همچنین این مورد ابزار تامین کننده‌ی گزینه‌ی Add REST client در ویژوال استودیو نیز می‌باشد. اما در کل، امکان تنظیمات آنچنانی را به همراه ندارد.

ج) NSwagStudio
محل دریافت: https://github.com/RSuter/NSwag/wiki/NSwagStudio
همانطور که در مطلب «مستند سازی ASP.NET Core 2x API توسط OpenAPI Swagger - قسمت اول - معرفی» نیز عنوان شد، NSwag یکی دیگر از تولید کننده‌های OpenAPI Specification مخصوص پروژه‌های دات نت است. NSwagStudio نیز جزئی از این مجموعه است که به کمک آن می‌توان کدهای کلاینت‌ها و DTOها را بر اساس OpenAPI Spec تولید کرد. همچنین امکان تنظیمات قابل توجهی را در مورد نحوه‌ی تولید کدهای نهایی به همراه دارد.


استفاده از NSwagStudio برای تولید کدهای DTOها

در اینجا از همان برنامه‌ای که در سری «مستند سازی ASP.NET Core 2x API توسط OpenAPI Swagger» بررسی کردیم، استفاده خواهیم کرد. بنابراین این برنامه، از پیش تنظیم شده‌است و هم اکنون به همراه یک تولید کننده‌ی OpenAPI Specification نیز می‌باشد. آن‌را اجرا کنید تا بتوان به OpenAPI Specification تولیدی آن در آدرس زیر دسترسی یافت:
 https://localhost:5001/swagger/LibraryOpenAPISpecification/swagger.json
سپس فایل msi مخصوص NSwagStudio را نیز از لینک آن در Github دریافت، نصب و اجرا کنید.


مطابق تصویر، ابتدا آدرس Swagger Specification URL یا همان آدرس فوق را وارد کنید. سپس فضای نام دلخواهی را وارد کرده و گزینه‌ی تولید کلاس‌های کلاینت را فعلا انتخاب نکنید. در لیست تنظیمات آن، گزینه‌ی Class Style نیز مهم است. برای مثال برای پروژه‌های ASP.NET Core حالت POCO را انتخاب کنید (plain old clr objects) و برای پروژه‌های مبتنی بر XAML، گزینه‌ی Inpc مناسب‌تر است چون RaisePropertyChanged‌ها را هم تولید می‌کند. در آخر بر روی دکمه‌ی Generate Outputs کلیک کنید تا خروجی ذیل حاصل شود:


یا می‌توان این خروجی را copy/paste کرد و یا می‌توان در برگه‌ی Settings، در انتهای لیست آن، مقدار output file path را مشخص کرد و سپس بر روی دکمه‌ی Generate files کلیک نمود تا فایل معادل آن تولید شود.


استفاده از NSwagStudio برای تولید کدهای کلاینت Angular استفاده کننده‌ی از API

NSwagStudio امکان تولید یک TypeScript Client را نیز دارد:

در اینجا ابتدا TypeScript Client را انتخاب می‌کنیم و سپس در تنظیمات آن، قالب Angular را انتخاب کرده و نگارش RxJS آن‌را نیز، 6 انتخاب می‌کنیم. در آخر بر روی Generate outputs کلیک می‌کنیم:


نکته‌ی جالب این خروجی، دقت داشتن به status codes درج شده‌ی در OpenAPI Spec است که در قسمت‌های چهارم و پنجم سری «مستند سازی ASP.NET Core 2x API توسط OpenAPI Swagger» آن‌ها را بررسی کردیم.
در اینجا نه تنها سرویسی جهت تعامل با API ما تولید شده‌است، بلکه معادل تایپ‌اسکریپتی DTOهای برنامه را نیز تولید کرده‌است:

مطالب
WF:Windows Workflow #۵
در این قسمت به پیاده سازی یک فرآیند سفارش ساده می‌پردازیم. ابتدا یک پروژه از نوع Workflow Console Application را ایجاد کرده و نام آن را Order Process می‌گذاریم و سپس کلاس‌های زیر را به آن اضافه می‌کنیم:
public class OrderItem
    {
        public int OrderItemID { get; set; }
        public int Quantity { get; set; }
        public string ItemCode { get; set; }
        public string Description { get; set; }
    }

    public class Order
    {
        public Order()
        {
            Items = new List<OrderItem>();
        }
        public int OrderID { get; set; }        
        public string Description { get; set; }         
        public decimal TotalWeight { get; set; }         
        public string ShippingMethod { get; set; }
        public List<OrderItem> Items { get; set; } 
    }
در اینجا دوکلاس تعریف شده است؛ یکی به نام OrderItem می‌باشد که شامل اطلاعات مربوط به میزان سفارش بوده و دیگری کلاس Order می‌باشد که شامل مشخصات سفارش است. سپس فایل OrderWF.xaml را باز کرده و شروع به ساخت فرآیند مورد نظر می‌کنیم. ابتدا یک Sequence را به درون صفحه کشیده و پس از آن در قسمت Arguments دو متغییر را تعریف می‌کنیم. یکی به نام TotalAmount و از نوع Decimal و Out می‌باشد و دیگری به نام OrderInfo که از نوع کلاس Order و In می‌باشد. سپس  یک کنترل WriteLine را به آن اضافه می‌کنیم و در خاصیت Text آن رشته "Order Received" را قرار می‌دهیم. در ادامه یک کنترل Assign را در زیر آن قرار داده و مقدار متغییر TotalAmount را مساوی صفر وارد می‌کنیم.

نکته : برای اینکه نوع متغییر OrderInfo را از نوع کلاس Order قرار دهیم٬ ابتدا DropDown مربوطه را انتخاب کرده و گزینه Browse For Type را انتخاب می‌کنیم تا پنجره مورد نظر باز شود و از طریق آن، کلاس مورد نظر را انتخاب می‌کنیم. اگر در این قسمت کلاس مورد نظر یافت نشد، نیاز است ابتدا عمل Build Project را یک بار انجام دهیم.

 بعضی از کنترل‌های Workflow در قسمت Toolbox موجود نمی‌باشند. از جمله این کنترل‌ها می‌توان به کنترل Add اشاره کرد. برای استفاده از این کنترل، ابتدا باید آن را به لیست کنترل‌ها اضافه نمود. جهت این امر٬ ابتدا در قسمت Toolbox یک Tab جدید را با نام دلخواه ایجاد کرده و سپس بر روی Tab کلیک راست نموده و گزینه Choose Items را انتخاب می‌کنیم. سپس از قسمت System.Activities.Components کنترل Add را انتخاب کرده و سپس بر روی دکمه OK کلیک می‌نمائیم. حال کنترل Add به لیست کنترل‌ها در Tab مورد نظر اضافه شده است.
در ادامه یک کنترل Switch را به فرایند خود اضافه کرده و مقدار T آن را برابر String قرار می‌دهیم؛ زیرا نوع داده‌ای که در قسمت Expression کنترل Switch قرار می‌گیرد، از نوع رشته می‌باشد. پس از اضافه کردن کنترل مورد نظر، کد زیر را به قسمت Expression کنترل اضافه خواهیم کرد:
OrderInfo.ShippingMethod
سپس در کنترل Switch، بر روی قسمت Add new case کلیک کرده و رشته‌های مورد نظر را اضافه می‌کنیم که شامل  "" NextDay"" و  ""2ndDay"" می‌باشند. اکنون در بدنه هر دو Case، کنترل Add را اضافه می‌کنیم. در هنگام اضافه کردن باید برای سه خصوصیت، نوع مشخص شود و نوع هر سه را برابر Decimal قرار می‌دهیم.
در ادامه کنترل Add را انتخاب کرده و به خاصیت Right آنها به ترتیب مقدار های 10.0m و 15.0m را اضافه می‌کنیم و برای خصوصیت Result هر دو کنترل، متغیر TotalAmount را انتخاب می‌کنیم. سپس یک کنترل Assign را به صفحه اضافه کرده و در قسمت To، متغییر  TotalAmount را قرار می‌دهیم و در قسمت Value کد زیر را:
TotalAmount + (OrderInfo.TotalWeight * 0.50m) 
و در آخر با ستفاده از کنترل WriteLine به چاپ محتوای متغییر TotalAmount می‌پر‌دازیم.

اکنون برای اینکه بتوانیم برنامه را اجرا کنیم، کد زیر را به کلاس Program.cs اضافه می‌کنیم:
static void Main(string[] args)
        {
            Order myOrder = new Order
            {
                OrderID = 1,
                Description = "Need some stuff",
                ShippingMethod = "2ndDay",
                TotalWeight = 100
            };
            IDictionary<String, object> input = new Dictionary<String, Object>
            {
                { "OrderInfo",myOrder}
            };
            IDictionary<String, Object> output = WorkflowInvoker.Invoke(new OrderWF(), input);
            Decimal total = (Decimal)output["TotalAmount"];
            Console.WriteLine("Workflow returned ${0} for my order total", total);
            Console.WriteLine("Press ENTER to exit"); 
            Console.ReadLine();

            //Activity workflow1 = new OrderWF();
            //WorkflowInvoker.Invoke(workflow1);
        }
در اینجا علت استفاده از IDictionary، نوع خروجی متد Invoke می‌باشد. در ادامه به کامل کردن این مثال پرداخته می‌شود.
اشتراک‌ها
Google App Maker ابزاری برای ساخت اپلیکیشن موبایلی بدون نیاز به برنامه نویسی

Build apps that help fill gaps, like accelerating business workflows or scaling internal operations, with G Suite’s low-code development environment. App Maker is included with G Suite Business and Enterprise editions as well as with G Suite for Education

Google App Maker ابزاری برای ساخت اپلیکیشن موبایلی بدون نیاز به برنامه نویسی
مطالب
مقایسه کارآیی روش‌های مختلف جایگزین کردن حروف در یک رشته در برنامه‌های NET.
فرض کنید قصد دارید عملیات نرمال سازی اطلاعات را بر روی یک رشته انجام داده و برای مثال اعداد فارسی و انگلیسی موجود در یک رشته را یک‌دست کنید. اولین روشی که برای اینکار به ذهن می‌رسد، استفاده از متد Replace است:
private static string toPersianNumbersUsingReplace(string data)
{
    if (string.IsNullOrWhiteSpace(data)) return string.Empty;
    return
      data
        .Replace("0", "\u06F0")
        .Replace("1", "\u06F1")
        .Replace("2", "\u06F2")
        .Replace("3", "\u06F3")
        .Replace("4", "\u06F4")
        .Replace("5", "\u06F5")
        .Replace("6", "\u06F6")
        .Replace("7", "\u06F7")
        .Replace("8", "\u06F8")
        .Replace("9", "\u06F9");
}
اما آیا این روش، کارآیی مناسبی را به همراه دارد؟ در ادامه چند روش دیگر را نیز جهت جایگزین کردن حروف، معرفی کرده و کارآیی آن‌ها را با هم مقایسه می‌کنیم.


جایگزین کردن حروف با استفاده از Replace معمولی توسط رشته‌ها

نگارش اصلی تبدیل تمام اعداد موجود در یک رشته به اعداد فارسی، به صورت زیر است که در آن یک دست سازی اعداد عربی هم درنظر گرفته شده‌اند (برای مثال طرز نگارش عدد 4 فارسی و عربی متفاوت است):
        private static string toPersianNumbersUsingReplace(string data)
        {
            if (string.IsNullOrWhiteSpace(data)) return string.Empty;
            return
                toEnglishNumbers(data)
                .Replace("0", "\u06F0")
                .Replace("1", "\u06F1")
                .Replace("2", "\u06F2")
                .Replace("3", "\u06F3")
                .Replace("4", "\u06F4")
                .Replace("5", "\u06F5")
                .Replace("6", "\u06F6")
                .Replace("7", "\u06F7")
                .Replace("8", "\u06F8")
                .Replace("9", "\u06F9");
        }

        private static string toEnglishNumbers(string data)
        {
            if (string.IsNullOrWhiteSpace(data)) return string.Empty;
            return
               data.Replace("\u0660", "0") //٠
                   .Replace("\u06F0", "0") //۰
                   .Replace("\u0661", "1") //١
                   .Replace("\u06F1", "1") //۱
                   .Replace("\u0662", "2") //٢
                   .Replace("\u06F2", "2") //۲
                   .Replace("\u0663", "3") //٣
                   .Replace("\u06F3", "3") //۳
                   .Replace("\u0664", "4") //٤
                   .Replace("\u06F4", "4") //۴
                   .Replace("\u0665", "5") //٥
                   .Replace("\u06F5", "5") //۵
                   .Replace("\u0666", "6") //٦
                   .Replace("\u06F6", "6") //۶
                   .Replace("\u0667", "7") //٧
                   .Replace("\u06F7", "7") //۷
                   .Replace("\u0668", "8") //٨
                   .Replace("\u06F8", "8") //۸
                   .Replace("\u0669", "9") //٩
                   .Replace("\u06F9", "9"); //۹
        }


جایگزین کردن حروف با استفاده از Replace معمولی توسط کاراکترها

اینبار همان حالت قبل را درنظر بگیرید؛ با این تفاوت که بجای رشته‌ها از کاراکترها استفاده شود. برای مثال بجای:
  .Replace("\u0669", "9") //٩
خواهیم داشت:
  .Replace('\u0669', '9') //٩


جایگزین کردن حروف با استفاده از String Builder

در ادامه بجای استفاده از متد Replace متداول، آرایه‌ای از حروف قابل جایگزینی را توسط یک StringBuilder ایجاد کرده و حروف را یکی یکی تبدیل می‌کنیم و به این ترتیب برخلاف متد Replace، هربار برای جایگزینی یک مورد خاص، مجددا از ابتدای رشته شروع به جستجو نمی‌شود:
        private static string toPersianNumbersUsingStringBuilder(string data)
        {
            if (string.IsNullOrWhiteSpace(data)) return string.Empty;

            var strBuilder = new StringBuilder(data);
            for (var i = 0; i < strBuilder.Length; i++)
            {
                switch (strBuilder[i])
                {
                    case '0':
                    case '\u0660':
                        strBuilder[i] = '\u06F0';
                        break;

                    case '1':
                    case '\u0661':
                        strBuilder[i] = '\u06F1';
                        break;

                    case '2':
                    case '\u0662':
                        strBuilder[i] = '\u06F2';
                        break;

                    case '3':
                    case '\u0663':
                        strBuilder[i] = '\u06F3';
                        break;

                    case '4':
                    case '\u0664':
                        strBuilder[i] = '\u06F4';
                        break;

                    case '5':
                    case '\u0665':
                        strBuilder[i] = '\u06F5';
                        break;

                    case '6':
                    case '\u0666':
                        strBuilder[i] = '\u06F6';
                        break;

                    case '7':
                    case '\u0667':
                        strBuilder[i] = '\u06F7';
                        break;

                    case '8':
                    case '\u0668':
                        strBuilder[i] = '\u06F8';
                        break;

                    case '9':
                    case '\u0669':
                        strBuilder[i] = '\u06F9';
                        break;

                    default:
                        strBuilder[i] = strBuilder[i];
                        break;
                }
            }

            return strBuilder.ToString();
        }


جایگزین کردن حروف با استفاده از ToCharArray

متد زیر دقیقا شبیه به حالت استفاده از String Builder است؛ با یک تفاوت مهم: بجای استفاده از String Builder برای تهیه‌ی آرایه‌ای از حروف قابل تغییر، از متد ToCharArray استفاده شده‌است:
        private static string toPersianNumbersUsingToCharArray(string data)
        {
            if (string.IsNullOrWhiteSpace(data)) return string.Empty;

            var letters = data.ToCharArray();
            for (var i = 0; i < letters.Length; i++)
            {
                switch (letters[i])
                {
                    case '0':
                    case '\u0660':
                        letters[i] = '\u06F0';
                        break;

                    // مانند قبل

                }
            }

            return new string(letters);
        }


جایگزین کردن حروف با استفاده از string.Create

string.Create یکی از تازه‌های NET Core. است که امکان تغییر مستقیم یک قطعه string را میسر می‌کند:
        private static string toPersianNumbersUsingStringCreate(string data)
        {
            if (string.IsNullOrWhiteSpace(data)) return string.Empty;

            return string.Create(data.Length, data, (chars, context) =>
            {
                for (var i = 0; i < data.Length; i++)
                {
                    switch (context[i])
                    {
                        case '0':
                        case '\u0660':
                            chars[i] = '\u06F0';
                            break;

                    // مانند قبل

                    }
                }
            });
        }
در کدهای فوق، ابتدا طول رشته‌ی نهایی بازگشتی از string.Create مشخص می‌شود. سپس توسط پارامتر دوم، داده‌هایی که قرار است بر روی آن‌ها کاری صورت گیرد به متد string.Create ارسال می‌شوند. در آخر عملیات نهایی در action delegate تعریف شده رخ می‌دهد. در اینجا chars، به بافر درونی رشته‌ای که بازگشت داده می‌شود، اشاره می‌کند و باید پر شود (این بافر مستقیما در دسترس است). context همان پارامتر دوم متد string.Create است.

توضیحات بیشتر:
در دات نت، رشته‌ها نوع‌های ارجاعی (reference type) غیرقابل تغییر (immutable) هستند. به این معنا که هر زمانیکه ایجاد شدند، دیگر نمی‌توان محتوای آن‌ها را تغییر داد. به همین جهت است که مجبور هستیم آن‌ها را برای مثال توسط ToCharArray به یک آرایه تبدیل کنیم و سپس این آرایه‌ی قابل تغییر را ویرایش کنیم. در حین کار با رشته‌ها، این غیرقابل تغییر بودن، سبب تخصیص حافظه‌های بیش از حدی می‌شوند. اگر بخواهیم قسمتی از یک رشته را جدا و یا جایگزین کنیم و یا تعدادی رشته را با هم جمع بزنیم، نتیجه‌ی آن نیاز به یک تخصیص حافظه‌ی جدید را دارد. راه حل استاندارد مواجه شدن با این مشکل، استفاده از StringBuilder است که از یک بافر داخلی برای انجام کارهای خودش استفاده می‌کند و زمانیکه نتیجه‌ی نهایی را از آن درخواست می‌کنیم، تخصیص حافظه‌ای را برای تولید رشته‌ی حاصل انجام می‌دهد. البته این مورد نیاز به اندازه گیری دارد و ارزش StringBuilder با حجم بالایی از اطلاعات متنی مشخص می‌شود؛ وگرنه همانطور که مشاهده می‌کنید (در نتیجه‌ی نهایی بحث در ادامه)، الزاما کدهای سریعتری را به همراه نخواهد داشت.
هدف از string.Create، ایجاد رشته‌ها از داده‌های موجود است. هدف اصلی آن کاهش تخصیص‌های حافظه و کپی کردن اطلاعات است و امضای آن به صورت زیر می‌باشد:
public static string Create<TState> (int length, TState state, System.Buffers.SpanAction<char,TState> action);
مزیت این متد، عدم نیاز به یک پیش‌بافر است؛ به این معنا که مستقیما بر روی قسمتی از حافظه کار می‌کند که ارجاعی را به رشته‌ی «بازگشتی» دارد. یعنی در حالت کار با string.Create، غیرقابل تغییر بودن رشته‌ها در دات نت دیگر صادق نخواهد بود و برای تغییر آن نیازی به تخصیص بافر، کپی کردن و تخصیص حافظه‌ی نهایی برای بازگشت نتیجه نیست. پارامتر SpanAction آن، امکان دسترسی مستقیم به این ناحیه‌ی از حافظه را میسر می‌کند.
هنگام کار با این متد، chars ای که در اختیار ما قرار می‌گیرد، یک <Span<char اشاره کننده به رشته‌ی نهایی است که قرار است بازگشت داده شود (در ابتدای کار بر اساس اندازه‌ای که مشخص می‌شود، یک رشته‌ی خالی تخصیص داده می‌شود، اما بافر پر کردن آن اینبار در دسترس است و نیازی به تخصیص و کپی جداگانه‌ای را ندارد). بنابراین روش کار با این متد، پر کردن بافر درونی رشته‌ی بازگشتی (همان chars در اینجا) به صورت مستقیم است؛ کاری که با یک رشته‌ی معمولی نمی‌توان انجام داد.
State یا همان پارامتر دوم این متد، هر چیزی می‌تواند باشد. اگر نیاز است چندین رشته را در اینجا دریافت کنید تا بتوان بر اساس آن رشته‌ی نهایی را تشکیل داد، یک struct را تعریف کرده و بجای state به آن ارسال کنید. سپس این state توسط پارامتر context مربوط به SpanAction<char, string> action قابل دریافت و استفاده‌است که در این مثال، context همان data ارسالی به این متد است.

سؤال: در حین کار با string.Create، باید از پارامتر data استفاده کنیم و یا از context دریافتی؟ به نظر در مثال فوق، data و context یکی هستند. اکنون داخل action delegate مهیا که جهت ساخت رشته‌ی نهایی بکار می‌رود، باید از data استفاده کرد و یا از context؟
 return string.Create(data.Length, data, (chars, context) => {});
در اینجا اگر در داخل action delegate، ارجاعی را به data داشته باشیم، یک closure تشکیل می‌شود و در این حالت کامپایلر برای مدیریت آن، نیاز به تولید یک کلاس را در پشت صحنه خواهد داشت که خودش سبب کاهش کارآیی می‌گردد. به همین جهت متد Create، پارامتر state را به صورت معمولی دریافت می‌کند و آن‌را توسط context در اختیار delegate قرار می‌دهد تا نیازی نباشد delegate تعریف شده، یک closure را تشکیل دهد.


نتیجه‌ی نهایی بررسی کارآیی روش‌های مختلف جایگزین کردن حروف در یک رشته

کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: ReplacePerformanceTests.zip


ستون op/s در اینجا، مهم‌ترین ستون گزارش است و به معنای تعداد عملیات قابل انجام در یک ثانیه است. از 670 هزار عملیات در ثانیه با Replace معمولی، به 5 میلیون عملیات در ثانیه رسیده‌ایم که بسیار قابل توجه‌است.
همانطور که مشاهده می‌کنید، string.Create، سریعترین نگارش موجود است. در این بین نگارشی که از ToCharArray استفاده می‌کند، قابلیت انتقال بیشتری را دارد؛ از این جهت که نگارش‌های دیگر NET. هنوز دسترسی به string.Create را ندارند. همچنین نگارش کاراکتری متد Replace، از متد رشته‌ای آن سریعتر عمل کرده‌است.
مطالب
تعریف قالب‌های جداول سفارشی و کار با منابع داده‌ای از نوع Anonymous در PdfReport
تعدادی قالب جدول پیش فرض در PdfReport تعریف شده‌اند، مانند BasicTemplate.RainyDayTemplate ،BasicTemplate.SilverTemplate و غیره. نحوه تعریف این قالب‌ها بر اساس پیاده سازی اینترفیس ITableTemplate است. برای نمونه اگر یک قالب جدید را بخواهیم ایجاد کنیم، تنها کافی است اینترفیس یاد شده را به نحو زیر پیاده سازی نمائیم:
using System.Collections.Generic;
using System.Drawing;
using iTextSharp.text;
using PdfRpt.Core.Contracts;

namespace PdfReportSamples.HexDump
{
    public class GrayTemplate : ITableTemplate
    {
        public HorizontalAlignment HeaderHorizontalAlignment
        {
            get { return HorizontalAlignment.Center; }
        }

        public BaseColor AlternatingRowBackgroundColor
        {
            get { return new BaseColor(Color.WhiteSmoke); }
        }

        public BaseColor CellBorderColor
        {
            get { return new BaseColor(Color.LightGray); }
        }

        public IList<BaseColor> HeaderBackgroundColor
        {
            get { return new List<BaseColor> { new BaseColor(ColorTranslator.FromHtml("#990000")), new BaseColor(ColorTranslator.FromHtml("#e80000")) }; }
        }

        public BaseColor RowBackgroundColor
        {
            get { return null; }
        }

        public IList<BaseColor> PreviousPageSummaryRowBackgroundColor
        {
            get { return new List<BaseColor> { new BaseColor(Color.LightSkyBlue) }; }
        }

        public IList<BaseColor> SummaryRowBackgroundColor
        {
            get { return new List<BaseColor> { new BaseColor(Color.LightSteelBlue) }; }
        }

        public IList<BaseColor> PageSummaryRowBackgroundColor
        {
            get { return new List<BaseColor> { new BaseColor(Color.Yellow) }; }
        }

        public BaseColor AlternatingRowFontColor
        {
            get { return new BaseColor(ColorTranslator.FromHtml("#333333")); }
        }

        public BaseColor HeaderFontColor
        {
            get { return new BaseColor(Color.White); }
        }

        public BaseColor RowFontColor
        {
            get { return new BaseColor(ColorTranslator.FromHtml("#333333")); }
        }

        public BaseColor PreviousPageSummaryRowFontColor
        {
            get { return new BaseColor(Color.Black); }
        }

        public BaseColor SummaryRowFontColor
        {
            get { return new BaseColor(Color.Black); }
        }

        public BaseColor PageSummaryRowFontColor
        {
            get { return new BaseColor(Color.Black); }
        }

        public bool ShowGridLines
        {
            get { return true; }
        }
    }
}
و برای استفاده از آن خواهیم داشت:
.MainTableTemplate(template =>
{
      template.CustomTemplate(new GrayTemplate());
})
چند نکته:
- در کتابخانه iTextSharp، کلاس رنگ توسط BaseColor تعریف شده است. به همین جهت خروجی رنگ‌ها را در اینجا نیز بر اساس BaseColor مشاهده می‌کنید. اگر نیاز داشتید رنگ‌های تعریف شده در فضای نام استاندارد System.Drawing را به BaseColor تبدیل کنید، فقط کافی است آن‌را به سازنده کلاس BaseColor ارسال نمائید.
- اگر علاقمند هستید که معادل رنگ‌های HTML ایی را در اینجا داشته باشید، می‌توان از متد توکار ColorTranslator.FromHtml استفاده کرد.
- برای تعریف رنگی به صورت شفاف (transparent) آن‌را مساوی null قرار دهید.
- در اینترفیس فوق، تعدادی از خروجی‌ها به صورت IList است. در این موارد می‌توان یک یا دو رنگ را حداکثر معرفی کرد. اگر دو رنگ را معرفی کنید یک گرادیان خودکار از این دو رنگ، تشکیل خواهد شد.
- اگر قالب جدید زیبایی را طراحی کردید، لطفا در این پروژه مشارکت کرده و آن‌را به صورت یک وصله ارائه دهید!


تهیه یک منبع داده ناشناس

مثال زیر را در نظر بگیرید. در اینجا قصد داریم معادل Ascii اطلاعات Hex را تهیه کنیم:
using System;
using System.Collections;
using System.Linq;

namespace PdfReportSamples.HexDump
{
    public static class PrintHex
    {
        public static char ToSafeAscii(this int b)
        {
            if (b >= 32 && b <= 126)
            {
                return (char)b;
            }
            return '_';
        }

        public static IEnumerable HexDump(this byte[] data)
        {
            int bytesPerLine = 16;
            return data
                        .Select((c, i) => new { Char = c, Chunk = i / bytesPerLine })
                        .GroupBy(c => c.Chunk)
                        .Select(g =>
                                  new
                                  {
                                      Hex = g.Select(c => String.Format("{0:X2} ", c.Char)).Aggregate((s, i) => s + i),
                                      Chars = g.Select(c => ToSafeAscii(c.Char).ToString()).Aggregate((s, i) => s + i)
                                  })
                        .Select((s, i) =>
                                        new
                                        {
                                            Offset = String.Format("{0:d6}", i * bytesPerLine),
                                            Hex = s.Hex,
                                            Chars = s.Chars
                                        });
        }
    }
}
نکته مهم این منبع داده، خروجی IEnumerable آن و Select نهایی عبارت LINQ ایی است که مشاهده می‌کنید. در اینجا اطلاعات به یک شیء ناشناس با اعضای Offset، Hex و Chars نگاشت شده‌اند.
مفهوم فوق از دات نت 3 به بعد تحت عنوان anonymous types در دسترس است. توسط این قابلیت می‌توان یک شیء را بدون نیاز به تعریف ابتدایی آن ایجاد کرد. این نوع‌های ناشناس توسط واژه‌های کلیدی new و var تولید می‌شوند. کامپایلر به صورت خودکار برای هر anonymous type یک کلاس ایجاد می‌کند.

نکته‌ای مهم حین کار با کلاس‌های ناشناس:
کلاس‌های ناشناس به صورت خودکار توسط کامپایلر تولید می‌شوند و ... از نوع internal هم تعریف خواهند شد. به عبارتی در اسمبلی‌های دیگر قابل استفاده نیستند. البته می‌توان توسط ویژگی assembly:InternalsVisibleTo ، تعاریف internal یک اسمبلی را دراختیار اسمبلی دیگری نیز گذاشت. ولی درکل باید به این موضوع دقت داشت و اگر قرار است منبع داده‌ای به این نحو تعریف شود، بهتر است داخل همان اسمبلی تعاریف گزارش باشد.

برای نمایش این نوع اطلاعات حاصل از کوئری‌های LINQ می‌توان از منبع داده پیش فرض AnonymousTypeList به نحو زیر استفاده کرد:
using System;
using System.Text;
using PdfRpt.Core.Contracts;
using PdfRpt.FluentInterface;

namespace PdfReportSamples.HexDump
{
    public class HexDumpPdfReport
    {
        public IPdfReportData CreatePdfReport()
        {
            return new PdfReport().DocumentPreferences(doc =>
            {
                doc.RunDirection(PdfRunDirection.LeftToRight);
                doc.Orientation(PageOrientation.Portrait);
                doc.PageSize(PdfPageSize.A4);
                doc.DocumentMetadata(new DocumentMetadata { Author = "Vahid", Application = "PdfRpt", Keywords = "Test", Subject = "Test Rpt", Title = "Test" });
            })
            .DefaultFonts(fonts =>
            {
                fonts.Path(Environment.GetEnvironmentVariable("SystemRoot") + "\\fonts\\COUR.ttf",
                    Environment.GetEnvironmentVariable("SystemRoot") + "\\fonts\\tahoma.TTF");
            })
            .PagesFooter(footer =>
            {
                footer.DefaultFooter(DateTime.Now.ToString("MM/dd/yyyy"));
            })
            .PagesHeader(header =>
            {
                header.DefaultHeader(defaultHeader =>
                {
                    defaultHeader.ImagePath(AppPath.ApplicationPath + "\\Images\\01.png");
                    defaultHeader.Message("Hex Dump");
                });
            })
            .MainTableTemplate(template =>
            {
                template.CustomTemplate(new GrayTemplate());
            })
            .MainTablePreferences(table =>
            {
                table.ColumnsWidthsType(TableColumnWidthType.Relative);
            })
            .MainTableDataSource(dataSource =>
            {
                var data = Encoding.UTF8.GetBytes("The quick brown fox jumps over the lazy dog.");
                var list = data.HexDump();
                dataSource.AnonymousTypeList(list);
            })
            .MainTableColumns(columns =>
            {
                columns.AddColumn(column =>
                {
                    column.PropertyName("Offset");
                    column.CellsHorizontalAlignment(HorizontalAlignment.Center);
                    column.IsVisible(true);
                    column.Order(0);
                    column.Width(0.5f);
                    column.HeaderCell("Offset");
                });

                columns.AddColumn(column =>
                {
                    column.PropertyName("Hex");
                    column.CellsHorizontalAlignment(HorizontalAlignment.Left);
                    column.IsVisible(true);
                    column.Order(1);
                    column.Width(2.5f);
                    column.HeaderCell("Hex");
                });

                columns.AddColumn(column =>
                {
                    column.PropertyName("Chars");
                    column.CellsHorizontalAlignment(HorizontalAlignment.Left);
                    column.IsVisible(true);
                    column.Order(2);
                    column.Width(1f);
                    column.HeaderCell("Chars");
                });
            })
            .MainTableEvents(events =>
            {
                events.DataSourceIsEmpty(message: "There is no data available to display.");
            })
            .Generate(data => data.AsPdfFile(AppPath.ApplicationPath + "\\Pdf\\HexDumpSampleRpt.pdf"));
        }
    }
}

توضیحات:
در اینجا منبع داده بر اساس کلاس‌های کمکی که تعریف کردیم، به نحو زیر مشخص شده است:
            .MainTableDataSource(dataSource =>
            {
                var data = Encoding.UTF8.GetBytes("The quick brown fox jumps over the lazy dog.");
                var list = data.HexDump();
                dataSource.AnonymousTypeList(list);
            })
و سپس برای معرفی ستون‌های متناظر با این منبع داده ناشناس، فقط کافی است آن‌ها را به صورت رشته‌ای معرفی کنیم:
column.PropertyName("Offset");
//...
column.PropertyName("Hex");
//...
column.PropertyName("Chars");



نکته‌ای در مورد خواص تودرتو:
در حین استفاده از AnonymousTypeList امکان تعریف خواص تو در تو نیز وجود دارد. برای مثال فرض کنید که Select نهایی به شکل زیر تعریف شده است و در اینجا OrderInfoData نیز خود یک شیء است:
.Select(x => new
{
   OrderInfo = x.OrderInfoData
})
برای استفاده از یک چنین منبع داده‌ای، ذکر مسیر خاصیت تودرتوی مورد نظر نیز مجاز است:
column.PropertyName("OrderInfo.Price");

 
مطالب دوره‌ها
آشنایی با AOP IL Weaving
IL Weaving در AOP به معنای اتصال Aspects تعریف شده، پس از کامپایل برنامه به فایل‌های باینری نهایی است. اینکار با ویرایش اسمبلی‌ها در سطح IL یا کد میانی صورت می‌گیرد. بنابراین در این حالت دیگر یک محصور کننده و پروکسی، در این بین جهت مزین سازی اشیاء، در زمان اجرای برنامه تشکیل نمی‌شود. بلکه فراخوانی Aspects به معنای فراخوانی واقعی قطعه کدهایی است که به اسمبلی‌های برنامه پس از کامپایل آن‌ها تزریق شده‌اند.
در دنیای دات نت، ابزارهای چندی امکان انجام IL Weaving را فراهم ساخته‌اند که تعدادی از آن‌ها به قرار ذیل هستند:
- PostSharp
- LOOM.NET
- Wicca
و ...

در بین این‌ها، PostSharp معروفترین فریم ورک AOP بوده و در ادامه از آن استفاده خواهیم کرد.


پیشنیاز ادامه بحث

ابتدا یک پروژه کنسول جدید را آغاز کرده و سپس در خط فرمان پاور شل نوگت در VS.NET دستور ذیل را اجرا کنید:
 PM> Install-Package PostSharp
به این ترتیب ارجاعی به PostSharp به پروژه جاری اضافه خواهد شد. البته حجم آن نسبتا بالا است؛ نزدیک به 20 مگ به همراه ابزارهای تزریق کد همراه با آن. مجوز استفاده از آن نیز تجاری و مدت دار است.


مراحل ایجاد یک Aspect برای پروسه IL Code Weaving

ابتدا یک کلاس پایه مشتق شده از کلاسی ویژه موجود در یکی از فریم ورک‌های AOP باید تعریف شود. مرحله بعد، کار اتصال این Aspect می‌باشد که توسط پردازشگر ثانویه IL Code Weaving انجام می‌شود.
در ادامه قصد داریم همان مثال LoggingInterceptor قسمت دوم این سری را با استفاده از IL Code Weaving پیاده سازی کنیم.
using System;

namespace AOP03
{
    public class MyType
    {
        public void DoSomething(string data, int i)
        {
            Console.WriteLine("DoSomething({0}, {1});", data, i);
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            new MyType().DoSomething("Test", 1);
        }
    }
}
کدهای برنامه همانند قبل است. اما اینبار بجای استفاده از Interceptors، با ارث بری از کلاس OnMethodBoundaryAspect کتابخانه PostSharp شروع خواهیم کرد:
using System;
using PostSharp.Aspects;

namespace AOP03
{
    [Serializable]
    public class LoggingAspect : OnMethodBoundaryAspect
    {
        public override void OnEntry(MethodExecutionArgs args)
        {
            Console.WriteLine("On Entry");
        }

        public override void OnExit(MethodExecutionArgs args)
        {
            Console.WriteLine("On Exit");
        }

        public override void OnSuccess(MethodExecutionArgs args)
        {
            Console.WriteLine("On Success");
        }

        public override void OnException(MethodExecutionArgs args)
        {
            Console.WriteLine("On Exception");
        }
    }
}
نیاز است این کلاس توسط ویژگی Serializable مزین شود تا توسط PostSharp قابل استفاده گردد. همانطور که ملاحظه می‌کنید، مراحل مختلف اجرای یک Aspcet در اینجا با override متدهای کلاس پایه OnMethodBoundaryAspect پیاده سازی شده‌اند. این مراحل را پیشتر در زمان استفاده از Interceptors توسط try/finally/catch بررسی کرده بودیم.
اکنون اگر برنامه را اجرا کنیم، اتفاق خاصی رخ نداده و همان خروجی معمول متد DoSomething در کنسول نمایش داده خواهد شد. بنابراین در مرحله بعد نیاز است تا این Aspect را به کدهای برنامه متصل کنیم.
کلاس OnMethodBoundaryAspect در کتابخانه PostSharp، از کلاس MulticastAttribute مشتق می‌شود. بنابراین LoggingAspect ایی را که ایجاد کرده‌ایم نیز می‌توان به صورت یک ویژگی به متد‌های مورد نظر خود افزود:
    public class MyType
    {
        [LoggingAspect]
        public void DoSomething(string data, int i)
        {
            Console.WriteLine("DoSomething({0}, {1});", data, i);
        }
    }
اکنون اگر برنامه را اجرا کنیم، با خروجی زیر مواجه خواهیم شد:
 On Entry
DoSomething(Test, 1);
On Success
On Exit
برای اینکه بتوان عملیات رخ داده را بهتر توضیح داد می‌تواند از یک دی‌کامپایلر مانند برنامه معروف Reflector استفاده کرد:
public void DoSomething(string data, int i)
{
    <>z__Aspects.a0.OnEntry(null);
    try
    {
        Console.WriteLine("DoSomething({0}, {1});", data, i);
        <>z__Aspects.a0.OnSuccess(null);
    }
    catch (Exception)
    {
        <>z__Aspects.a0.OnException(null);
        throw;
    }
    finally
    {
        <>z__Aspects.a0.OnExit(null);
    }
}
این کدی است که به صورت پویا توسط PostSharp به اسمبلی نهایی فایل اجرایی برنامه تزریق شده است.

خوب! این یک روش اتصال Aspects به برنامه است. اما اگر همانند Interceptors بخواهیم Aspect تعریف شده را سراسری اعمال کنیم چکار باید کرد (بدون نیاز به قرار دادن ویژگی بر روی تک تک متدها)؟
برای اینکار ابتدا نیاز است میدان عملکرد Aspect تعریف شده را توسط ویژگی MulticastAttributeUsage محدود کنیم تا برای مثال به خواص اعمال نشوند:
 [Serializable]
[MulticastAttributeUsage(MulticastTargets.Method, TargetMemberAttributes = MulticastAttributes.Instance)]
public class LoggingAspect : OnMethodBoundaryAspect
سپس فایل AssemblyInfo.cs استاندارد پروژه را گشوده و سطر زیر را به آن اضافه کنید:
 [assembly: LoggingAspect(AttributeTargetTypes = "AOP03.*")]
توسط AttributeTargetTypes می‌توان اعمال این Aspect را به یک فضای نام خاص نیز محدود کرد.

مزیت روش IL Code Weaving نسبت به Interceptors، کارآیی و سرعت بالاتر است. از این جهت که کدهایی که قرار است اجرا شوند، پیشتر در اسمبلی برنامه قرار گرفته‌اند و نیازی نیست تا در زمان اجرا، کدی به برنامه به صورت پویا تزریق گردد.
مطالب
بررسی Source Generators در #C - قسمت دوم - یک مثال
یک مثال: پیاده سازی INotifyPropertyChanged توسط Source Generators

هدف از اینترفیس INotifyPropertyChanged که به همراه یک رخ‌داد است:
public interface INotifyPropertyChanged  
{ 
   event PropertyChangedEventHandler PropertyChanged;  
}
مطلع سازی استفاده کننده‌ی از یک شیء، از تغییرات رخ‌داده‌ی در مقادیر خواص آن است که نمونه‌ی آن، در برنامه‌های WPF، جهت به روز رسانی UI، زیاد مورد استفاده قرار می‌گیرد. البته این رخ‌داد به خودی خود کار خاصی را انجام نمی‌دهد و برای استفاده‌ی از آن، باید مقدار زیادی کد نوشت و این مقدار کد نیز باید به ازای تک تک خواص یک کلاس مدل، تکرار شوند:
  partial class CarModel : INotifyPropertyChanged
  {

    private double _speedKmPerHour;
    
    public double SpeedKmPerHour
    {
      get => _speedKmPerHour;
      set
      {
        _speedKmPerHour = value;
        PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(nameof(SpeedKmPerHour)));
      }
    }

    public event PropertyChangedEventHandler? PropertyChanged;
  }
همچنین باید درنظر داشت که با تغییر نام خاصیتی، میزان قابل ملاحظه‌ای از این کدهای تکراری نیز باید به روز رسانی شوند که این عملیات می‌تواند ایده‌ی خوبی برای استفاده‌ی از Source Generators باشد.
اگر بخواهیم تولید این کدهای تکراری را به Source Generators محول کنیم، می‌توان برای مثال فیلد خصوصی مرتبط را نگه داشت و تولید مابقی کدها را خودکار کرد:
  partial class CarModel : INotifyPropertyChanged
  {
    private double _speedKmPerHour;    
  }
در این حالت کلاس مدل، به صورت partial تعریف می‌شود و فقط فیلد خصوصی، در کدهای ما حضور خواهد داشت. مابقی کدهای این کلاس partial به صورت خودکار توسط یک Source Generator سفارشی تولید خواهد شد. همانطور که ملاحظه می‌کنید، کاهش حجم قابل ملاحظه‌ای حاصل شده و همچنین اگر فیلد خصوصی دیگری نیز در اینجا اضافه شود، واکنش Source Generator ما آنی خواهد بود و بلافاصله کدهای مرتبط را تولید می‌کند و برنامه، بدون مشکلی کامپایل خواهد شد؛ هرچند به ظاهر INotifyPropertyChanged ذکر شده، در این کلاس اصلا پیاده سازی نشده‌است.


ایجاد پروژه‌ی Source Generator

در ابتدا برای ایجاد تولید کننده‌ی خودکار کدهای INotifyPropertyChanged، یک class library را به solution جاری اضافه می‌کنیم. سپس نیاز است ارجاعاتی را به دو بسته‌ی نیوگت زیر نیز افزود:
<Project Sdk="Microsoft.NET.Sdk">

  <ItemGroup>
    <PackageReference Include="Microsoft.CodeAnalysis.Analyzers" Version="3.3.3">
      <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
      <PrivateAssets>all</PrivateAssets>
    </PackageReference>
    <PackageReference Include="Microsoft.CodeAnalysis.CSharp" Version="4.2.0" PrivateAssets="all" />
  </ItemGroup>
</Project>
سپس کلاس جدید NotifyPropertyChangedGenerator را به نحو زیر به آن اضافه می‌کنیم:
  [Generator]
  public class NotifyPropertyChangedGenerator : ISourceGenerator
  {
    public void Initialize(GeneratorInitializationContext context)
    {
    }

    public void Execute(GeneratorExecutionContext context)
    {
- این کلاس باید اینترفیس ISourceGenerator را پیاده سازی کرده و همچنین مزین به ویژگی Generator باشد.
- اینترفیس ISourceGenerator به همراه دو متد Initialize و Execute است که در صورت نیاز باید پیاده سازی شوند.

در متد Execute، به خاصیت context.Compilation دسترسی داریم. این خاصیت تمام اطلاعاتی را که کامپایلر از Solution جاری در اختیار دارد، به توسعه دهنده ارائه می‌دهد. برای نمونه پیاده سازی متد Execute تولید کننده‌ی کد مثال جاری، چنین شکلی را دارد:
    public void Execute(GeneratorExecutionContext context)
    {
      // uncomment to debug the actual build of the target project
      // Debugger.Launch();
      var compilation = context.Compilation;
      var notifyInterface = compilation.GetTypeByMetadataName("System.ComponentModel.INotifyPropertyChanged");

      foreach (var syntaxTree in compilation.SyntaxTrees)
      {
        var semanticModel = compilation.GetSemanticModel(syntaxTree);
        var immutableHashSet = syntaxTree.GetRoot()
          .DescendantNodesAndSelf()
          .OfType<ClassDeclarationSyntax>()
          .Select(x => semanticModel.GetDeclaredSymbol(x))
          .OfType<ITypeSymbol>()
          .Where(x => x.Interfaces.Contains(notifyInterface))
          .ToImmutableHashSet();

        foreach (var typeSymbol in immutableHashSet)
        {
          var source = GeneratePropertyChanged(typeSymbol);
          context.AddSource($"{typeSymbol.Name}.Notify.cs", source);
        }
      }
    }
در اینجا با استفاده از context.Compilation به اطلاعات کامپایلر دسترسی پیدا کرده و سپس SyntaxTrees آن‌را یکی یکی، جهت یافتن کلاس‌ها و یا همان ClassDeclarationSyntax ها، پیمایش و بررسی می‌کنیم. سپس از بین این کلاس‌ها، کلاس‌هایی که INotifyPropertyChanged را پیاده سازی کرده باشند، انتخاب می‌کنیم که اطلاعات آن در پایان کار، به متد GeneratePropertyChanged جهت تولید مابقی کدهای partial class ارسال شده و کد تولیدی، به context اضافه می‌شود تا به نحو متداولی همانند سایر کدهای برنامه، به مجموعه کدهای مورد بررسی کامپایلر اضافه شود.

نکته‌ی مهم و جالب در اینجا این است که نیازی نیست تا قطعه کد جدید را به صورت SyntaxTrees در آورد و به کامپایلر اضافه کرد. می‌توان این قطعه کد را به نحو متداولی، به صورت یک قطعه رشته‌ی استاندارد #C، تولید و به کامپایلر با متد context.AddSource ارائه کرد که نمونه‌ای از آن‌را در ذیل مشاهده می‌کنید:
    private string GeneratePropertyChanged(ITypeSymbol typeSymbol)
    {
      return $@"
using System.ComponentModel;

namespace {typeSymbol.ContainingNamespace}
{{
  partial class {typeSymbol.Name}
  {{
    {GenerateProperties(typeSymbol)}
    public event PropertyChangedEventHandler? PropertyChanged;
  }}
}}";
    }

    private static string GenerateProperties(ITypeSymbol typeSymbol)
    {
      var sb = new StringBuilder();
      var suffix = "BackingField";

      foreach (var fieldSymbol in typeSymbol.GetMembers().OfType<IFieldSymbol>()
        .Where(x=>x.Name.EndsWith(suffix)))
      {
        var propertyName = fieldSymbol.Name[..^suffix.Length];
        sb.AppendLine($@"
    public {fieldSymbol.Type} {propertyName}
    {{
      get => {fieldSymbol.Name};
      set
      {{
        {fieldSymbol.Name} = value;
        PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(nameof({propertyName})));
      }}
    }}");
      }

      return sb.ToString();
    }
در اینجا در ابتدا بدنه‌ی کلاس partial تکمیل می‌شود. سپس خواص عمومی آن بر اساس فیلدهای خصوصی تعریف شده، تکمیل می‌شوند. در این مثال اگر یک فیلد خصوصی به عبارت BackingField ختم شود، به عنوان فیلدی که قرار است معادل کدهای INotifyPropertyChanged را داشته باشد، شناسایی می‌شود و به همراه کدهای تولید شده‌ی خودکار خواهد بود.

کدهای source generator ما همین مقدار بیش‌تر نیست. اکنون می‌خواهیم از آن در یک برنامه‌ی کنسول جدید (برای مثال به نام NotifyPropertyChangedGenerator.Demo) استفاده کنیم. برای اینکار نیاز است ارجاعی را به آن اضافه کنیم؛ اما این ارجاع، یک ارجاع متداول نیست و نیاز به ذکر چنین ویژگی خاصی وجود دارد:
<Project Sdk="Microsoft.NET.Sdk">

  <ItemGroup>
    <ProjectReference Include="..\NotifyPropertyChangedGenerator\NotifyPropertyChangedGenerator.csproj"
                      OutputItemType="Analyzer" ReferenceOutputAssembly="false"/>
  </ItemGroup>
</Project>
در اینجا میسر دهی پروژه‌ی تولید کننده‌ی کد، همانند سایر پروژه‌ها است؛ اما نوع آن باید آنالایزر معرفی شود. به همین جهت از خاصیت OutputItemType با مقدار Analyzer استفاده شده‌است. همچنین تنظیم ReferenceOutputAssembly به false به این معنا است که این اسمبلی ویژه، یک وابستگی و dependency واقعی پروژه‌ی جاری نیست و ما قرار نیست به صورت مستقیمی از کدهای آن استفاده کنیم.

برای آزمایش این تولید کننده‌ی کد، کلاس CarModel را به صورت زیر به پروژه‌ی کنسول آزمایشی اضافه می‌کنیم:
using System.ComponentModel;

namespace NotifyPropertyChangedGenerator.Demo
{
  public partial class CarModel : INotifyPropertyChanged
  {
    private double SpeedKmPerHourBackingField;
    private int NumberOfDoorsBackingField;
    private string ModelBackingField = "";

    public void SpeedUp() => SpeedKmPerHour *= 1.1;
  }
}
این کلاس پیاده سازی کننده‌ی INotifyPropertyChanged است؛ اما به همراه هیچ خاصیت عمومی نیست. فقط به همراه یکسری فیلد خصوصی ختم شده‌ی به «BackingField» است که توسط تولید کننده‌ی کد شناسایی شده و اطلاعات آن‌ها تکمیل می‌شود. فقط باید دقت داشت که این کلاس حتما باید به صورت partial تعریف شود تا امکان تکمیل خودکار کدهای آن وجود داشته باشد.

یک نکته:   در این حالت هرچند برنامه بدون مشکل کامپایل و اجرا می‌شود، ممکن است خطوط قرمزی را در IDE خود مشاهده کنید که عنوان می‌کند این قطعه از کد قابل کامپایل نیست. اگر با چنین صحنه‌ای مواجه شدید، یکبار solution را بسته و مجددا باز کنید تا تولید کننده‌ی کد، به خوبی شناسایی شود. البته نگارش‌های جدیدتر Visual Studio و Rider به همراه قابلیت auto reload پروژه برای کار با تولید کننده‌‌های کد هستند و دیگر شاهد چنین صحنه‌هایی نیستیم و حتی اگر برای مثال فیلد جدیدی را به CarModel اضافه کنیم، نه فقط بلافاصله کدهای متناظر آن تولید می‌شوند، بلکه خواص عمومی تولید شده در Intellisense نیز قابل دسترسی هستند.


نحوه‌ی مشاهده‌ی کدهای خودکار تولید شده

اگر علاقمند باشید تا کدهای خودکار تولید شده را مشاهده کنید، در Visual Studio، در قسمت و درخت نمایشی dependencies پروژه، گره‌ای به نام Analyzers وجود دارد که در آن برای مثال نام NotifyPropertyChangedGenerator و ذیل آن، کلاس‌های تولید شده‌ی توسط آن، قابل مشاهده و دسترسی هستند و حتی قابل دیباگ نیز می‌باشند؛ یعنی می‌توان بر روی سطور مختلف آن، break-point قرار داد.


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: SourceGeneratorTests.zip

معرفی تعدادی منبع تکمیلی
- برنامه Source generator playground
در اینجا تعدادی مثال را که توسط مایکروسافت توسعه یافته‌است، مشاهده می‌کنید که اتفاقا یکی از آن‌ها پیاده سازی تولید کننده‌ی کد اینترفیس INotifyPropertyChanged است. در این برنامه، خروجی کدهای تولیدی نیز به سادگی قابل مشاهده‌است.

- برنامه SharpLab
برای توسعه‌ی تولید کننده‌های کد، عموما نیاز است تا با Roslyn API آشنا بود. در این برنامه اگر از منوی بالای صفحه قسمت results، گزینه‌ی «syntax tree» را انتخاب کنید و سپس قسمتی از کد خود را انتخاب کنید، بلافاصله معادل Roslyn API آن، در سمت راست صفحه نمایش داده می‌شود.

- معرفی مجموعه‌ای از Source Generators
در اینجا می‌توان مجموعه‌ای از پروژه‌های سورس باز Source Generators را مشاهده و کدهای آن‌ها را مطالعه کنید و یا از آن‌ها در پروژه‌های خود استفاده نمائید.

- معرفی یک cookbook در مورد Source Generators
این cookbook توسط خود مایکروسافت تهیه شده‌است و جهت شروع به کار با این فناوری، بسیار مفید است.

- مجموعه مثال‌های Source generators از مایکروسافت
در اینجا می‌توانید مجموعه مثال‌هایی از Source generators را که توسط مایکروسافت تهیه شده‌است، مشاهده کنید. شرح و توضیحات تعدادی از آن‌ها را هم در اینجا مطالعه کنید.
مطالب دوره‌ها
انتقال خودکار Data Annotations از مدل‌ها به ViewModelهای ASP.NET MVC به کمک AutoMapper
عموما مدل‌های ASP.NET MVC یک چنین شکلی را دارند:
public class UserModel
{
    public int Id { get; set; }
 
    [Required(ErrorMessage = "(*)")]
    [Display(Name = "نام")]
    [StringLength(maximumLength: 10, MinimumLength = 3, ErrorMessage = "نام باید حداقل 3 و حداکثر 10 حرف باشد")]
    public string FirstName { get; set; }
 
    [Required(ErrorMessage = "(*)")]
    [Display(Name = "نام خانوادگی")]
    [StringLength(maximumLength: 10, MinimumLength = 3, ErrorMessage = "نام خانوادگی باید حداقل 3 و حداکثر 10 حرف باشد")]
    public string LastName { get; set; }
}
 و ViewModel مورد استفاده برای نمونه چنین ساختاری را دارد:
public class UserViewModel
{
      public string FirstName { get; set; }
      public string LastName { get; set; }
}
مشکلی که در اینجا وجود دارد، نیاز به کپی و تکرار تک تک ویژگی‌های (Data Annotations/Attributes) خاصیت‌های مدل، به خواص مشابه آن‌ها در ViewModel است؛ از این جهت که می‌خواهیم برچسب خواص ViewModel، از ویژگی Display دریافت شوند و همچنین اعتبارسنجی‌های فیلدهای اجباری و بررسی حداقل و حداکثر طول فیلدها نیز حتما اعمال شوند (هم در سمت کاربر و هم در سمت سرور).
در ادامه قصد داریم راه حلی را به کمک جایگزین سازی Provider‌های توکار ASP.NET MVC با نمونه‌ی سازگار با AutoMapper، ارائه دهیم، به نحوی که دیگر نیازی نباشد تا این ویژگی‌ها را در ViewModelها تکرار کرد.


قسمت‌هایی از ASP.NET MVC که باید جهت انتقال خودکار ویژگی‌ها تعویض شوند

ASP.NET MVC به صورت توکار دارای یک ModelMetadataProviders.Current است که از آن جهت دریافت ویژگی‌های هر خاصیت استفاده می‌کند. می‌توان این تامین کننده‌ی ویژگی‌ها را به نحو ذیل سفارشی سازی نمود.
در اینجا IConfigurationProvider همان Mapper.Engine.ConfigurationProvider مربوط به AutoMapper است. از آن جهت استخراج اطلاعات نگاشت‌های AutoMapper استفاده می‌کنیم. برای مثال کدام خاصیت Model به کدام خاصیت ViewModel نگاشت شده‌است. این‌کارها توسط متد الحاقی GetMappedAttributes انجام می‌شوند که در ادامه‌ی مطلب معرفی خواهد شد.
public class MappedMetadataProvider : DataAnnotationsModelMetadataProvider
{
    private readonly IConfigurationProvider _mapper;
 
    public MappedMetadataProvider(IConfigurationProvider mapper)
    {
        _mapper = mapper;
    }
 
    protected override ModelMetadata CreateMetadata(
        IEnumerable<Attribute> attributes,
        Type containerType,
        Func<object> modelAccessor,
        Type modelType,
        string propertyName)
    {
        var mappedAttributes =
            containerType == null ?
            attributes :
            _mapper.GetMappedAttributes(containerType, propertyName, attributes.ToList());
        return base.CreateMetadata(mappedAttributes, containerType, modelAccessor, modelType, propertyName);
    }
}

شبیه به همین کار را باید برای ModelValidatorProviders.Providers نیز انجام داد. در اینجا یکی از تامین کننده‌های ModelValidator، از نوع DataAnnotationsModelValidatorProvider است که حتما نیاز است این مورد را نیز به نحو ذیل سفارشی سازی نمود. در غیراینصورت error messages موجود در ویژگی‌های تعریف شده، به صورت خودکار منتقل نخواهند شد.
public class MappedValidatorProvider : DataAnnotationsModelValidatorProvider
{
    private readonly IConfigurationProvider _mapper;
 
    public MappedValidatorProvider(IConfigurationProvider mapper)
    {
        _mapper = mapper;
    }
 
    protected override IEnumerable<ModelValidator> GetValidators(
        ModelMetadata metadata,
        ControllerContext context,
        IEnumerable<Attribute> attributes)
    {
 
        var mappedAttributes =
            metadata.ContainerType == null ?
            attributes :
            _mapper.GetMappedAttributes(metadata.ContainerType, metadata.PropertyName, attributes.ToList());
        return base.GetValidators(metadata, context, mappedAttributes);
    }
}

و در اینجا پیاده سازی متد GetMappedAttributes را ملاحظه می‌کنید.
ASP.NET MVC هر زمانیکه قرار است توسط متدهای توکار خود مانند Html.TextBoxFor, Html.ValidationMessageFor، اطلاعات خاصیت‌ها را تبدیل به المان‌های HTML کند، از تامین کننده‌های فوق جهت دریافت اطلاعات ویژگی‌های مرتبط با هر خاصیت استفاده می‌کند. در اینجا فرصت داریم تا ویژگی‌های مدل را از تنظیمات AutoMapper دریافت کرده و سپس بجای ویژگی‌های خاصیت معادل ViewModel درخواست شده، بازگشت دهیم. به این ترتیب ASP.NET MVC تصور خواهد کرد که ViewModel ما نیز دقیقا دارای همان ویژگی‌های Model است.
public static class AutoMapperExtensions
{
    public static IEnumerable<Attribute> GetMappedAttributes(
        this IConfigurationProvider mapper,
        Type viewModelType,
        string viewModelPropertyName,
        IList<Attribute> existingAttributes)
    {
        if (viewModelType != null)
        {
            foreach (var typeMap in mapper.GetAllTypeMaps().Where(i => i.DestinationType == viewModelType))
            {
                var propertyMaps = typeMap.GetPropertyMaps()
                    .Where(propertyMap => !propertyMap.IsIgnored() && propertyMap.SourceMember != null)
                    .Where(propertyMap => propertyMap.DestinationProperty.Name == viewModelPropertyName);
 
                foreach (var propertyMap in propertyMaps)
                {
                    foreach (Attribute attribute in propertyMap.SourceMember.GetCustomAttributes(true))
                    {
                        if (existingAttributes.All(i => i.GetType() != attribute.GetType()))
                        {
                            yield return attribute;
                        }
                    }
                }
            }
        }
 
        if (existingAttributes == null)
        {
            yield break;
        }
 
        foreach (var attribute in existingAttributes)
        {
            yield return attribute;
        }
    }
}


ثبت تامین کننده‌های سفارشی سازی شده توسط AutoMapper

پس از تهیه‌ی تامین کننده‌های انتقال ویژگی‌ها، اکنون نیاز است آن‌ها را به ASP.NET MVC معرفی کنیم:
protected void Application_Start()
{
    AreaRegistration.RegisterAllAreas();
    WebApiConfig.Register(GlobalConfiguration.Configuration);
    FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
    RouteConfig.RegisterRoutes(RouteTable.Routes); 
 
    Mappings.RegisterMappings();
    ModelMetadataProviders.Current = new MappedMetadataProvider(Mapper.Engine.ConfigurationProvider);
 
    var modelValidatorProvider = ModelValidatorProviders.Providers
        .Single(provider => provider is DataAnnotationsModelValidatorProvider);
    ModelValidatorProviders.Providers.Remove(modelValidatorProvider);
    ModelValidatorProviders.Providers.Add(new MappedValidatorProvider(Mapper.Engine.ConfigurationProvider));
}
در اینجا ModelMetadataProviders.Current با MappedMetadataProvider جایگزین شده‌است.
در قسمت کار با ModelValidatorProviders.Providers، ابتدا صرفا همان تامین کننده‌ی از نوع DataAnnotationsModelValidatorProvider پیش فرض، یافت شده و حذف می‌شود. سپس تامین کننده‌ی سفارشی سازی شده‌ی خود را معرفی می‌کنیم تا جایگزین آن شود.


مثالی جهت آزمایش انتقال خودکار ویژگی‌های مدل به ViewModel

کنترلر مثال برنامه به شرح زیر است. در اینجا از متد Mapper.Map جهت تبدیل خودکار مدل کاربر به ViewModel آن استفاده شده‌است:
public class HomeController : Controller
{
    public ActionResult Index()
    {
        var model = new UserModel { FirstName = "و", Id = 1, LastName = "ن" };
        var viewModel = Mapper.Map<UserViewModel>(model);
        return View(viewModel);
    }
 
    [HttpPost]
    public ActionResult Index(UserViewModel data)
    {
        return View(data);
    }
}
با این View که جهت ثبت اطلاعات مورد استفاده قرار می‌گیرد. این View، اطلاعات مدل خود را از ViewModel معرفی شده‌ی در ابتدای بحث دریافت می‌کند:
@model Sample12.ViewModels.UserViewModel
 
@using (Html.BeginForm("Index", "Home", FormMethod.Post, htmlAttributes: new { @class = "form-horizontal", role = "form" }))
{
    <div class="row">
        <div class="form-group">
            @Html.LabelFor(d => d.FirstName, htmlAttributes: new { @class = "col-md-2 control-label" })
            <div class="col-md-10">
                @Html.TextBoxFor(d => d.FirstName)
                @Html.ValidationMessageFor(d => d.FirstName)
            </div>
        </div>
        <div class="form-group">
            @Html.LabelFor(d => d.LastName, htmlAttributes: new { @class = "col-md-2 control-label" })
            <div class="col-md-10">
                @Html.TextBoxFor(d => d.LastName)
                @Html.ValidationMessageFor(d => d.LastName)
            </div>
        </div>
        <div class="form-group">
            <div class="col-md-offset-2 col-md-10">
                <input type="submit" value="ارسال" class="btn btn-default" />
            </div>
        </div>
    </div>
}
در این حالت اگر برنامه را اجرا کنیم به شکل زیر خواهیم رسید:


در این شکل هر چند نوع مدل View مورد استفاده از ViewModel ایی تامین شده‌است که دارای هیچ ویژگی و Data Annotations/Attributes نیست، اما برچسب هر فیلد از ویژگی Display دریافت شده‌‌است. همچنین اعتبارسنجی سمت کاربر فعال بوده و برچسب‌های آن‌ها نیز به درستی دریافت شده‌اند.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
نظرات مطالب
EF Code First #7
- مشکل کلاس کانفیگ فوق در این است که از یک طرف InverseProperty تعریف کردید، از طرف دیگر در حالت تنظیمات Fluent، این مورد رعایت نشده. مثلا DriverAssistance باید به TransferencesForAssistance (مطابق InverseProperty تعریف شده) مرتبط می‌شد و الی آخر (الان همگی به یک مورد مرتبط شدن).
- در کل نیازی به کلاس کانفیگ فوق ندارید. حذفش کنید. EF می‌تونه روابط one-to-many رو بدون کانفیگ خاصی تشخیص بده. علت وجود قسمت هفتم، اعمال یک سری تنظیمات اضافه‌تر است نسبت به تنظیمات پیش فرض. مثلا اگر از نام‌های پیش فرض خرسند نیستید، اینجا می‌تونید توسط Fluent API خیلی از این موارد رو سفارشی سازی کنید و تغییر بدید. البته شرطش هم این است که از ICollection برای معرفی موارد one-to-many استفاده کنید (که اینکار در کلاس Driver انجام شده، همچنین یک سر دیگر آن به صورت virtual در کلاس مقابل وجود دارد. به علاوه مطلب نحوه تعریف صحیح کلیدهای خارجی را هم اضافه کنید تا طراحی بهتری داشته باشید).