مطالب
روش نامگذاری Smurf ایی!
اگر به یک سری از کتابخانه‌ها دقت کنید، تمام کلاس‌های آن‌ها دارای یک پیشوند تکراری هستند؛ مثلا SmurfXMLDataRow، SmurfXMLElement و الی آخر در مورد تمام کلاس‌های موجود در پروژه. به این رویه «Smurf Naming Convention» گفته می‌شود!
در این نوع کتابخانه‌ها زمانیکه کاربری بر روی دکمه‌ای کلیک می‌کند، SmurfAccountView اطلاعات SmurfAccountDTO را به SmurfAccountController منتقل می‌کند. در ادامه از خاصیت SmurfID دریافتی، مقدار SmurfOrderHistory دریافت شده و به SmurfHistoryReportingView جهت نمایش ارسال خواهد شد. اگر استثنای SmurfErrorEvent رخ دهد، توسط SmurfErrorLogger در فایلی به نام log/smurf/smurflog.log ثبت خواهد شد.

کلمه Smurf هم از شخصیتی کارتونی به همین نام اخذ شده است که در زبان مخصوص آن‌ها اکثر افعال و نام‌ها از کلمه Smurf مشتق می‌شود! برای مثال در مورد ماهیگیری کردن در یک رودخانه عنوان می‌کنند «We're going smurfing on the River Smurf today».


خوب، چکار باید کرد؟ روش صحیح معرفی نام یک شرکت در حین طراحی و نامگذاری کلاس‌های یک کتابخانه چیست؟
در مطلب بسیار جامع و عالی «اصول و قراردادهای نام‌گذاری در دات‌نت» عنوان شده است که اساس نام‌گذاری فضاهای نام باید از قاعده زیر پیروی کند:
<Company>.<Technology|Produt|Project>[.<Feature>][.<SubNamespace>]
مثلا مایکروسافت یکبار فضای نام Microsoft.Reporting.WebForms را تعریف کرده است و ... همین! دیگر به ابتدای هر کلاسی در این کتابخانه، پیشوند Microsoft یا MS و امثال آن اضافه نشده است تا بر روی اعصاب و روان استفاده کننده تاثیر منفی داشته باشد.

 
مطالب
چقدر سی‌شارپ را می‌شناسیم؟!
هر چند که #C به عنوان یک زبان ساده برای درک و یادگیری شناخته میشود، گاهی رفتاری غیرمنتظره را حتی برای توسعه دهنده‌های با تجربه خواهد داشت. در این نوشته مروری بر بعضی از این رفتارها و توضیح دلایل پشت آن خواهیم کرد.

Value 

اگر مقدار null مدیریت نشود، میتواند باعث ایجاد نتایج نامطلوب، یا باعث از کار افتادن برنامه شود. شئ null به خودی خود مخرب نیست؛ اما اگر بخواهیم به یکی از متدها یا خاصیت‌های آن دسترسی داشته باشیم، با استثنای معروف NullReferenceException روبرو می‌شویم. برای در امان ماندن، باید همیشه اطمینان داشته باشیم که پیش از استفاده از امکانات شئ، ارجاع آن null نباشد. در قطعه کد زیر برخی از رفتارهای null value آورده شده:
// Behavior 1 
object obj = null;
bool objValueEqual = obj.Equals(null);

// Behavior 2 
object obj = null;
Type objType = obj.GetType();

// Behavior 3
string str = (string)null;
bool strType = str is string;

// Behavior 4
int num = 5;
Nullable<int> nullableNum = 5;
bool typeEqual = num.GetType() == nullableNum.GetType();

// Behavior 5
Type inType = typeof(int);
Type nullableIntType = typeof(Nullable<int>);
bool typeEqual = inType == nullableIntType;
  • در رفتار اول هرچند که متد Equals از شی null در دسترس است و با مقدار null مقایسه شده اما در زمان اجرا پیغام خطای NullReferenceException را خواهیم داشت. 
  • در رفتار دوم هم پیغام خطا را خواهیم داشت. شئ با مقدار null، در زمان اجرا هیچ نوعی را برنمیگرداند. 
  • در رفتار سوم هر چند که مقدار null صریحا به رشته تبدیل شده و برای چاپ متغیر str پیام خطایی را نخواهیم داشت، اما متغیر strType در خروجی، false خواهد بود. همانطور که در رفتار دوم گفته شد، شیء با مقدار null هیچ نوعی را برنمیگرداند. 
  • خروجی رفتار چهارم true خواهد بود. به این صورت که هر دو از نوع System.int32 خواهند بود.
  • در رفتار پنجم اگر از نوع‌ها، خروجی جداگانه بگیریم، خواهیم دیدکه نوع int از System.int32 و <Nullable<int از نوع System.Nullable`1[System.Int32] میباشند، در نتیجه خروجی false است. اشیای nullable بعد از اینکه مقداری مشخص را دریافت کردند، به صورت یک شیء غیر nullable رفتار خواهند کرد.

مدیریت مقادیر null در سربارگذاری متدها   

        static void Main(string[] args)
        {
            Console.WriteLine(Method(null));
            Console.ReadLine();
        }
        private static string Method(object obj)
        {
            return "Object parameter";
        }
        private static string Method(string str)
        {
            return "String parameter";
        }
در قطعه کد بالا، فراخوانی متد سربارگذاری شده با مقدار ورودی null، باعث اجرای متدی میشود که پارامتر ورودی آن از نوع رشته است. تا زمانیکه یکی از پارامترها بتواند به دیگری تبدیل شود، برنامه بدون خطا کامپایل خواهد شد. اما اگر هیچ تبدیل نوعی بین پارامترها وجود نداشته باشد، کد کامپایل نخواهد شد. بین متدهای سربارگذاری شده، متدی که نوع پارامتر آن مشخص‌تر است، فراخوانی میشود. برای اینکه متد خاصی را مجبور به اجرا کنیم، باید مقدار null را پیش از ارسال، به نوع پارامتر آن متد تبدیل کنید.(object)null

رفتارهای ()Math.Round

var rounded = Math.Round(1.5); // 2
var rounded = Math.Round(2.5); // 2

var rounded = Math.Round(2.5, MidpointRounding.ToEven); // 2
var rounded = Math.Round(2.5, MidpointRounding.AwayFromZero); // 3

var value = 1.4f;
var rounded = Math.Round(value + 0.1f); // 1
متد Round از کلاس Math، ورودی را که عددی اعشاری است، گرد میکند. اگر مقدار اعشار کمتر از ۰.۵ باشد، به سمت پایین و اگر بیشتر از ۰.۵ باشد، به سمت بالا گرد میشود. اما اگر ورودی دقیقا مقدار اعشاری ۰.۵ را داشته باشد چطور؟ متد Round به صورت پیش‌فرض ورودی  را به نزدیکترین عدد زوج گرد میکند، به این دلیل خط‌های ۱ و ۲ از قطعه کد بالا، خروجی یکسان ۲ را خواهند داشت. این متد آرگومان دومی هم دارد که دو حالت MidpointRounding.ToEven و MidpointRounding.AwayFromZero را می‌توان برای آن مشخص کرد. ToEven همان رفتار پیش‌فرض متد است که ورودی را به نزدیکترین عدد زوج گرد میکند و از حالت AwayFromZero میشود برای گرد کردن ورودی به عدد بزرگتر استفاده کرد (خط ۵). 
در خط ۸ یک حالت خاص دیگر نیز داریم. انتظار میرود که خروجی، به نزدیکترین عدد زوج گرد شود و نتیجه ۲ باشد؛ مثل خط ۱، اما خروجی ۱ خواهد بود. وقتی ورودی‌ها را از نوع float در نظر بگیریم، مقدار 0.1f کمی کمتر از ۰.۱ خواهد بود و نتیجه محاسبه کمی کمتر از ۱.۵. برای پرهیز از این مسئله بهتر است ورودی متد Round را از نوع decimal در نظر بگیریم.
 

مقدار دهی اولیه کلاسها 

پیشنهاد میشود برای جلوگیری از وقوع استثناءها از مقدار دهی اولیه کلاسها در سازنده کلاس، بخصوص اگر سازنده استاتیک داشته باشیم، پرهیز کنیم. ترتیب مقدار دهی اولیه زمانیکه از یک کلاس یه وهله ساخته میشود، به قرار زیر است:
  • فیلدهای استاتیک (زمانیکه کلاس برای اولین بار در دسترس قرار میگیرد)
  • سازنده استاتیک (زمانیکه کلاس برای اولین بار در دسترس قرار میگیرد)
  • فیلدهایی از کلاس که در نمونه ساخته شده در دسترس قرار میگیرند.
  • سازنده کلاس که در زمان ایجاد یک نمونه از کلاس در دسترس قرار میگیرد.
در قطعه کد زیر اگر نمونه‌ای از کلاس FailingClass ساخته شود، انتظار میرود که خطای InvalidOperationException صادر شود؛ اما برنامه با خطای TypeInitializationException متوقف میشود. در واقع در زمان اجرا به صورت خودکار خطای TypeInitializationException، خطای InvalidOperationException را پوشش میدهد. اگر بجای  InvalidOperationException یک دستور ساده WriteLine داشته باشیم، سازنده کلاس FailingClass مجال کامل شدن را خواهد داشت. اما با خطایی که داخل سازنده صادر کرده‌ایم، سازنده کلاس بدون اینکه به طور کامل به پایان برسد، متوقف خواهد شد. 
    public static class Config
    {
        public static bool ThrowException { get; set; } = true;
    }

    public class FailingClass
    {
        static FailingClass()
        {
            if (Config.ThrowException)
            {
                throw new InvalidOperationException();
            }
        }
    }
حال که میدانیم خطای اصلی که در این مواقع صادر میشود چیست، شاید بخواهیم به روش زیر آن را مدیریت کنیم.
try
{
   var failedInstance = new FailingClass();
}
catch (TypeInitializationException) { }

Config.ThrowException = false;
var instance = new FailingClass();
اگر قطعه کد بالا را بدون بخش try  اجرا کنیم، برنامه ابتدا صدور خطا را false میکند و بدون مشکل از کلاس نمونه‌ای ساخته میشود. اما اگر بخش try را داشته باشیم، هر چند که خطا در بخش try گرفته میشود و تنظیم صدور خطا false است، باز هم در خط آخر و در زمان ایجاد یک نمونه از کلاس، پیام خطای TypeInitializationException خواهیم داشت. علت آن است که سازنده استاتیک کلاس فقط یک بار فراخوانی میشود و اگر در این فراخوانی خطایی رخ دهد، این خطا در اثر ایجاد سایر نمونه‌ها و یا استفاده مستقیم از کلاس، مجددا صادر خواهد شد. در نتیجه این کلاس تا زمانیکه پردازش آن در جریان است، غیرقابل استفاده خواهد بود. یک مثال دیگر از ترتیب فراخوانی‌ها را بررسی میکنیم.
public class BaseClass
{
    {
        public BaseClass()
        {
            VirtualMethod(1);
        }
        public virtual int VirtualMethod(int dividend)
        {
            return dividend / 1;
        }
    }

    public class DerivedClass : BaseClass
    {
        int divisor;
        public DerivedClass()
        {
            divisor = 1;
        }
        public override int VirtualMethod(int dividend)
        {
            return base.VirtualMethod(dividend / divisor);
        }
    }
در قطعه کد بالا هر چند که همه چیز درست به نظر میرسد، اما اگر از کلاس DerivedClass نمونه‌ای ساخته شود، با پیام خطای DivideByZeroException مواجه میشویم. علت این مشکل ترتیب مقدار دهی اولیه در کلاسهای فرزند است. ابتدا فیلدهای کلاس فرزند مقدار دهی میشوند و بعد فیلدهای کلاس پایه، بعد سازنده کلاس پایه فراخوانی میشود و پس از آن سازنده کلاس فرزند. ترتیب فراخوانی‌ها به همین جا محدود نمیشود. 
در مثال بالا متد VirtualMethod که در سازنده کلاس پایه فراخوانی شده، پیش از این که کد داخل خود را اجرا کند، متد VirtualMethod را در کلاس فرزند، فراخوانی میکند و کلاس فرزند مجالی را برای مقدار دهی متغیر divisor، در سازنده خود نخواهد داشت. در نتیجه مقدار این متغیر در متد VirtualMethod صفر خواهد ماند و باعث صدور استثناء میشود. برای پرهیز از چنین مشکلاتی بهتر است فیلدهای یک کلاس به صورت مستقیم مقدار دهی اولیه بشوند. مقدار دهی اولیه و یا فراخوانی متدهای virtual در سازنده کلاس‌ها میتواند باعث بروز رفتارهای پیش بینی نشده‌ای شوند.

چند ریختی 

 چند ریختی قابلیتی است برای کلاسهای متفاوت تا بتوانند یک اینترفیس مشابه را به صورت‌های مختلفی پیاده‌سازی کنند. اما قطعه کد زیر قاعده چند ریختی را نقض میکند. 
 class Program
    {
        static void Main(string[] args)
        {
            var instance = new DerivedClass();
            var result = instance.Method();
            result = ((BaseClass)instance).Method();
            Console.WriteLine(instance + " -> " + result); // Derived Class ...  -> Method in BaseClass
            Console.ReadLine();

        }
    }

    public class BaseClass
    {
        public virtual string Method()
        {
            return "Method in BaseClass";
        }
    }

    public class DerivedClass : BaseClass
    {
        public override string ToString()
        {
            return "Derived Class ... ";
        }

        public new string Method()
        {
            return "Method in DerivedClass";
        }
    }
در خروجی کنسول هرچند که Instance همچنان وهله‌ای از DerivedClass است اما به دلیل تبدیل در خط ۷، Method کلاس DerivedClass به وسیله کلاس پایه پنهان شده و Method کلاس پایه فراخوانی میشود. در قطعه کد زیر حالت مشابه‌ای را که در بالا داشتیم، برای interface‌ها دیده میشود.
class Program
    {
        static void Main(string[] args)
        {
            var instance = new DerivedClass();
            var result = instance.Method(); // -> Method in DerivedClass
            result = ((IInterface)instance).Method(); // -> Method belonging to IInterface
            Console.WriteLine(result);
            Console.ReadLine();
        }
    }

    public interface IInterface
    {
        string Method();
    }

    public class DerivedClass : IInterface
    {
        public string Method()
        {
            return "Method in DerivedClass";
        }
        string IInterface.Method()
        {
            return "Method belonging to IInterface";
        }
}
هرچند که به نظر میرسد دلیلی برای استفاده از روشهای گفته شده وجود ندارد، اما اگر بخواهیم بیش از یک پیاده‌سازی را برای یک متد در یک کلاس داشته باشیم، میتواند مورد توجه قرار گیرد. بخصوص اگر نیاز باشد که پیاده‌سازی دوم خودش به طور مستقلی در کلاسی دیگر استفاده شود.

Iterators 

Iterator‌ها (تکرار شونده‌ها) ساختارهایی هستند که برای حرکت در عناصر یک collection استفاده میشوند. عموما از دستور foreach استفاده و نوع جنریک <IEnumerable<T را نمایندگی میکنند. هر چند که استفاده از آنها ساده است، اما اگر کارکرد داخلی iteratorها را درک نکنیم ممکن است به دام استفاده نادرست از آنها گرفتار شویم. در قطعه کد زیر کلاس Test صدا زده میشود و مقادیر یک تا پنج به صورت یک IEnumerable از داخل بلوک using بازگشت داده میشود. 
private IEnumerable<int> GetEnumerable(StringBuilder log)
{
     using (var test = new Test(log))
      {
          return Enumerable.Range(1, 5);
      }
}

فرض کنیم کلاس Test اینترفیس IDisposable را پیاده‌سازی کرده و در سازنده و متد Dispose خود پیامهایی را به log اضافه کند. در مثالهای واقعی، کلاس Testمیتواند اتصالی به پایگاه داده باشد و رکوردهای خوانده شده، بازگشت داده شوند. توسط حلقه زیر مقدار خروجی تابع را چاپ میکنیم.
var log = new StringBuilder();
            
foreach (var number in GetEnumerable(log))
{
     log.AppendLine($"{number}");
}
انتظار میرود که خروجی به این صورت باشد که ابتدا رشته Created (از سازنده کلاس Test) چاپ شود بعد اعداد یک تا پنج و در نهایت رشته Disposed (از متد Dispose کلاس Test). به عبارتی در ابتدای کار، بلوک using، سازنده کلاس را فراخوانی کند و بعد از اینکه بلوک به پایان کارش رسید متد Dispose کلاس فراخوانی شود. اما در واقع خروجی به صورت زیر خواهد بود. 
Created
Disposed
1
2
3
4
5
این تفاوت در دنیای واقعی مهم است؛ به اینصورت که مثلا اتصال به پایگاه داده قبل از اینکه داده‌ها خوانده شوند، بسته میشود و قطعه کد به درستی عمل نخواهد کرد. تنها راه حل، پیمایش در collection داخل using و بازگشت هر مقدار به صورت مجزا است، که در زیر آمده است.
 using (var test = new Test(log))
 {
     foreach (var i in Enumerable.Range(1,5))
     {
         yield return i;
     }
 }
فقط در این صورت است که کلاس Test بعد از اتمام کار حلقه و در زمان درست به پایان میرسد. توسط کلمه کلیدی yield و برای متدی که خروجی قابل پیمایش داشته باشد میتوان چندین مقدار را بازگشت داد. ترتیب اجرای دستورات در قطعه کد بالا به این صورت است که ابتدا نمونه‌ای از کلاس Test ایجاد میشود و سازنده کلاس فراخوانی میشود، سپس حلقه foreach به تعداد مشخص شده در Range مقادیر بازگشتی را در خروجی تابع قرار میدهد. وقتی که کار حلقه تمام شد، بلوک using دستورات را ادامه خواهد داد که برابر با خاتمه دادن به تمام نمونه‌ها و منابع استفاده شده در بلوک است؛ یعنی فراخوانی متد Dispose. با استفاده از این روش خروجی به شکل زیر خواهد بود. 
Created
1
2
3
4
5
Disposed

مطالب
PowerShell 7.x - قسمت نهم - آشنایی با Crescendo
همانطور که در ابتدای این سری نیز اشاره شد، یکی از ویژگی‌های منحصربه‌فرد PowerShell، طراحی شیءگرای آن است، به‌طوریکه خروجی cmdletهای آن، به صورت آبجکت هستند. همچنین، در PowerShell امکان اجرای کامندهای native نیز وجود دارد. به عنوان مثال اگر کامند زیر را وارد کنید: 
git log --oneline
خروجی، همانطوری که در دیگر shellها انتظار میرود، نمایش داده خواهد شد؛ یعنی به صورت string. همچنین امکان intellisense را نیز برای پارامترهای کامند موردنظر نخواهیم داشت؛ چون در اصل، به اصطلاح یک legacy command است و نه یک cmdlet. برای بهره بردن از امکانات PowerShell میتوانیم این نوع کامندها را توسط یک wrapper به cmdlet تبدیل کنیم، اما آپدیت نگه‌داشتن این wrapper و نوشتن آن فرآیند سختی است. برای سهولت انجام اینکار، یک فریم‌ورک تحت عنوان Crescendo توسط مایکروسافت ارائه شده است.
یک مثال
فرض کنید میخواهیم کامند git log را به همراه تعدادی از دستورات آن به یک PowerShell cmdlet تبدیل کنیم؛ برای اینکار ابتدا نیاز است ماژول عنوان شده را نصب کنیم: 
Install-Module -Name Microsoft.PowerShell.Crescendo
بعد از نصب ماژول فوق، یکسری cmdlet به مجموعه کامندهای PowerShell اضافه خواهند شد. یکی از این کامندها New-CrescendoCommand است. با کمک این کامند، فایل JSON موردنیاز Crescendo را میتوانیم تولید کنیم: 
$Configuration = @{
    '$schema' = "https://aka.ms/PowerShell/Crescendo/Schemas/2021-11"
    Commands  = @()
}
$parameters = @{
    Verb = "Get"
    Noun = "GitLog"
    OriginalName = "git"
}
$Configuration.Commands += New-CrescendoCommand @parameters

$Configuration | ConvertTo-Json -Depth 3 | Out-File ./git-ps.json
در اینجا تعیین کرده‌ایم که کامندی که میخواهیم برایمان تولید شود، چه ویژگی‌هایی باید داشته باشد. به عنوان مثال Verb آن Get و Noun آن باید GitLog باشد (براساس استانداری که مایکروسافت برای نامگذاری cmdletها پیشنهاد میدهد). در نهایت میتوانیم به صورت Get-GitLog از آن استفاده کنیم. همچنین legacy command اصلی که میخواهیم برای آن cmdlet ایجاد کنیم نیز توسط OriginalName تعیین شده‌است. لازم به ذکر است که در ویندوز باید مسیر کامل آن را وارد کنید. سپس با اجرای دستورات فوق، خروجی زیر برایمان تولید خواهد شد: 
{
  "Commands": [
    {
      "Verb": "Get",
      "Noun": "GitLog",
      "OriginalName": "git",
      "OriginalCommandElements": null,
      "Platform": [
        "Windows",
        "Linux",
        "MacOS"
      ],
      "Elevation": null,
      "Aliases": null,
      "DefaultParameterSetName": null,
      "SupportsShouldProcess": false,
      "ConfirmImpact": null,
      "SupportsTransactions": false,
      "NoInvocation": false,
      "Description": null,
      "Usage": null,
      "Parameters": [],
      "Examples": [],
      "OriginalText": null,
      "HelpLinks": null,
      "OutputHandlers": null
    }
  ],
  "$schema": "https://aka.ms/PowerShell/Crescendo/Schemas/2021-11"
}
نکته: دقت داشته باشید که schema$ باید درون single quote نوشته شود؛ چون در غیراینصورت، key آن درون فایل تولید شده، خالی خواهد بود: 
"": "https://aka.ms/PowerShell/Crescendo/Schemas/2021-11",
با کمک این schema درون Visual Studio Code امکان Intelisense را نیز خواهیم داشت: 


اکنون باید این فایل Configuration را به Crescendo معرفی کنیم تا cmdlet را برایمان تولید کند. اینکار را توسط Export-CrescendoModule انجام خواهیم داد: 

Export-CrescendoModule -Configuration ./git-ps.json -ModuleName ./git-ps.psm1

با اجرای دستور فوق، فایل‌های git.psm1 و همچنین git.psd1 تولید خواهند شد. نیاز به بررسی فایل‌های جنریت شده نیست؛ چون تنها جایی که با آن باید در ارتباط باشیم، همان فایل JSON ابتدای بحث است که در ادامه آن را بررسی خواهیم کرد. اما قبل از آن اجازه دهید ماژول تولید شده را Import کنیم و دستور Get-GitLog را وارد کنیم: 

PP /> Import-Module ./git-ps.psd1
PS /> Get-GitLog

usage: git [-v | --version] [-h | --help] [-C <path>] [-c <name>=<value>]
           [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
           [-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]
           [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
           [--super-prefix=<path>] [--config-env=<name>=<envvar>]
           <command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)
   clone     Clone a repository into a new directory
   init      Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
   add       Add file contents to the index
   mv        Move or rename a file, a directory, or a symlink
   restore   Restore working tree files
   rm        Remove files from the working tree and from the index

examine the history and state (see also: git help revisions)
   bisect    Use binary search to find the commit that introduced a bug
   diff      Show changes between commits, commit and working tree, etc
   grep      Print lines matching a pattern
   log       Show commit logs
   show      Show various types of objects
   status    Show the working tree status

grow, mark and tweak your common history
   branch    List, create, or delete branches
   commit    Record changes to the repository
   merge     Join two or more development histories together
   rebase    Reapply commits on top of another base tip
   reset     Reset current HEAD to the specified state
   switch    Switch branches
   tag       Create, list, delete or verify a tag object signed with GPG

collaborate (see also: git help workflows)
   fetch     Download objects and refs from another repository
   pull      Fetch from and integrate with another repository or a local branch
   push      Update remote refs along with associated objects

'git help -a' and 'git help -g' list available subcommands and some
concept guides. See 'git help <command>' or 'git help <concept>'
to read about a specific subcommand or concept.
See 'git help git' for an overview of the system.

همانطور که مشاهده میکنید، خروجی دستور git، نمایش داده شده‌است. دلیل آن نیز این است که در فایل configuration، هیچ آرگومانی را به عنوان ورودی آن تعیین نکرده‌ایم. برای اضافه کردن آرگومان‌های موردنظر باید پراپرتی OrginalCommandElements را مقدار دهی کنیم: 

"OriginalCommandElements": ["log", "--oneline"],

بنابراین با فراخوانی دستور Get-GitLog، در اصل دستور git log —oneline فراخوانی خواهد شد:  

PS /> Get-GitLog

e9590e8 init

اما تا اینجا نیز خروجی به صورت رشته‌ایی است. برای داشتن یک خروجی Object، باید پراپرتی OutputHandlers را از Configuration، تغییر دهیم: 

"OutputHandlers": [
  {
    "ParameterSetName": "Default",
    "Handler": "$args[0] | ForEach-Object { $hash, $message = $_.Split(' ', 2) ; [PSCustomObject]@{ Hash = $hash; Message = $message } }"
  }
]

در اینجا توسط args$ به خروجی کامند اصلی دسترسی خواهیم داشت. این خروجی را سپس با کمک ForEach-Object، به یک شیء با پراپرتی‌های Hash و Message تبدیل کرده‌ایم. در اینجا فقط میخواستم روال تهیه یک آبجکت را از کامندهایی که خروجی JSON ندارند، نشان دهم؛ اما خوشبختانه توسط پرچم pretty در git log، امکان تهیه‌ی خروجی JSON را نیز داریم: 

git log --pretty=format:'{"commit": "%h", "author": "%an", "date": "%ad", "message": "%s"}'

در نتیجه عملاً نیازی به split کردن نیست و بجای آن میتوانیم به صورت مستقیم، خروجی را توسط ConvertFrom-Json پارز کنیم: 

"OutputHandlers": [
  {
    "ParameterSetName": "Default",
    "Handler": "$args[0] | ConvertFrom-Json"
  }
]

همچنین درون فایل schema با کمک پراپرتی Parameters، امکان تعریف پارامتر را نیز برای کامند Get-GitLog خواهیم داشت. به عنوان مثال میتوانیم فلگ reverse را نیز به کامند اصلی از طریق PowerShell ارسال کنیم: 

"Parameters": [
  {
    "Name": "reverse",
    "OriginalName": "--reverse",
    "ParameterType": "switch",
    "Description": "Reverse the order of the commits in the output."
  }
],

دقت داشته باشیم که با هربار تغییر فایل schema باید توسط دستور Export-CrescendoModule ماژول موردنظر را تولید کنید:

Export-CrescendoModule -Configuration ./git-ps.json -ModuleName ./git-ps.psm1
Import-Module ./git-ps.psd1

در نهایت cmdletمان به این صورت قابل استفاده خواهد بود:

اشتراک‌ها
کتاب Razor Components Succinctly

OVERVIEW
Razor components are specific building blocks within the Blazor framework. They can perform many roles: representing a specific piece of the user interface, a view component, or a tag helper; or representing a layout or an entire page. In Razor Components Succinctly, you will explore how to create and work with both simple and advanced Razor components. Longtime Succinctly author Ed Freitas will show you how to write a basic component using one-way data binding and events, and then two-way data binding, event callbacks, life cycle methods, and component references. Finally, you'll see how to enable component reuse by creating a component template.

TABLE OF CONTENTS
Razor Components
Setup and Fundamentals
Component Fundamentals
Component Features
Using Components
Templating

Author
Ed Freitas

ISBN
978-1-64200-211-9

Published on
April 16, 2021

Pages
102 

کتاب Razor Components Succinctly
مطالب
آشنایی با Oslo - قسمت دوم

قبل شروع این قسمت بد نیست با یک سری از وبلاگ‌های اعضای تیم Oslo آشنا شویم:


در ادامه‌ی مثال قسمت قبل، اکنون می‌خواهیم entity جدیدی به نام Project را به مدل اضافه کنیم:

//mschema to define a Project type
type Project
{
ProjectID : Integer64 = AutoNumber();
ProjectName : Text#25;
ConectionStringSource : Text;
ConectionStringDestination : Text;
DateCompared: DateTime;
Comment: Text?;
ProjectOwner: ApplicationUser;
} where identity ProjectID;

مطابق تعاریف فوق، فیلد ProjectOwner ارجاعی را به نوع ApplicationUser که پیشتر ایجاد کردیم دارد. اکنون برای مشاهده‌ی تغییرات حاصل شده نیاز به ایجاد یک جدول از روی این نوع جدید است که foreign key آن به صورت زیر تعریف می‌شود:

//this will define a SQL foreign key relationship
ProjectCollection : Project* where item.ProjectOwner in ApplicationUserCollection;

پس از افزودن این سطر، Intellipad بلافاصله اسکریپت T-SQL آن‌را برای ما ایجاد می‌کند که به شرح زیر است:

set xact_abort on;
go

begin transaction;
go

set ansi_nulls on;
go

create schema [Test1];
go

create table [Test1].[ApplicationUserCollection]
(
[UserID] bigint not null identity,
[FirstName] nvarchar(max) null,
[LastName] nvarchar(25) not null,
[Password] nvarchar(10) not null,
constraint [PK_ApplicationUserCollection] primary key clustered ([UserID])
);
go

create table [Test1].[ProjectCollection]
(
[ProjectID] bigint not null identity,
[Comment] nvarchar(max) null,
[ConectionStringDestination] nvarchar(max) not null,
[ConectionStringSource] nvarchar(max) not null,
[DateCompared] datetime2 not null,
[ProjectName] nvarchar(25) not null,
[ProjectOwner] bigint not null,
constraint [PK_ProjectCollection] primary key clustered ([ProjectID]),
constraint [FK_ProjectCollection_ProjectOwner_Test1_ApplicationUserCollection] foreign key ([ProjectOwner]) references [Test1].[ApplicationUserCollection] ([UserID])
);
go

insert into [Test1].[ApplicationUserCollection] ([FirstName], [LastName], [Password])
values (N'user1', N'name1', N'1@34')
;

insert into [Test1].[ApplicationUserCollection] ([FirstName], [LastName], [Password])
values (N'user2', N'name2', N'123@4')
;

insert into [Test1].[ApplicationUserCollection] ([FirstName], [LastName], [Password])
values (N'user3', N'name3', N'56#2')
;

insert into [Test1].[ApplicationUserCollection] ([FirstName], [LastName], [Password])
values (N'user4', N'name4', N'789@5')
;
go

commit transaction;

Go

همانطور که ملاحظه‌ می‌کنید، هنگام کار کردن با یک مدل، نگهداری و توسعه‌ی آن واقعا ساده‌تر است از ایجاد این دستورات T-SQL .

نکته:
جهت آشنایی با انواع داده‌های مجاز در زبان M می‌توان به مستندات رسمی آن مراجعه نمود:
The "Oslo" Modeling Language Specification

اکنون قصد داریم همانند مثال قسمت قبل، تعدادی رکورد آزمایشی را برای این جدول تعریف کنیم:

ProjectCollection
{
Project1{
ProjectName = "My Project 1",
ConectionStringSource = "Data Source=.;Initial Catalog=MyDB1;Integrated Security=True;",
ConectionStringDestination = "Data Source=.;Initial Catalog=MyDB2;Integrated Security=True;",
Comment="Project Comment",
DateCompared=2009-01-01T00:00:00,
ProjectOwner=ApplicationUserCollection.User1 //direct ref to User1 (FK)
},
Project2{
ProjectName = "My Project 2",
ConectionStringSource = "Data Source=.;Initial Catalog=MyDB1;Integrated Security=True;",
ConectionStringDestination = "Data Source=.;Initial Catalog=MyDB2;Integrated Security=True;",
Comment="Project Comment",
DateCompared=2009-01-01T00:00:00,
ProjectOwner=ApplicationUserCollection.User2 //direct ref to User2 (FK)
}

}

چون بین ProjectOwner و ApplicationUserCollection رابطه ایجاد کرده‌ایم، هنگام استفاده از آن‌ها، برنامه Intellipad جهت سهولت کار، IntelliSense مربوطه را نیز نمایش خواهد داد :


ادامه دارد ...

مطالب
آشنایی با NHibernate - قسمت سوم

در ادامه، تعاریف سایر موجودیت‌های سیستم ثبت سفارشات و نگاشت آن‌ها را بررسی خواهیم کرد.

کلاس Product تعریف شده در فایل جدید Product.cs در پوشه domain برنامه:

namespace NHSample1.Domain
{
public class Product
{
public int Id { get; set; }
public string Name { get; set; }
public decimal UnitPrice { get; set; }
public bool Discontinued { get; set; }
}
}
کلاس ProductMapping تعریف شده در فایل جدید ProductMapping.cs (توصیه شده است که به ازای هر کلاس یک فایل جداگانه در نظر گرفته شود)، در پوشه Mappings برنامه:

using FluentNHibernate.Mapping;
using NHSample1.Domain;

namespace NHSample1.Mappings
{
public class ProductMapping : ClassMap<Product>
{
public ProductMapping()
{
Not.LazyLoad();
Id(p => p.Id).GeneratedBy.HiLo("1000");
Map(p => p.Name).Length(50).Not.Nullable();
Map(p => p.UnitPrice).Not.Nullable();
Map(p => p.Discontinued).Not.Nullable();
}
}
}
همانطور که ملاحظه می‌کنید، روش تعریف آن‌ها همانند شیء Customer است که در قسمت‌های قبل بررسی شد و نکته جدیدی ندارد.
آزمون واحد بررسی این نگاشت نیز همانند مثال قبلی است.
کلاس ProductMapping_Fixture را در فایل جدید ProductMapping_Fixture.cs به پروژه UnitTests خود (که ارجاعات آن‌را در قسمت قبل مشخص کردیم) خواهیم افزود:

using NUnit.Framework;
using FluentNHibernate.Testing;
using NHSample1.Domain;

namespace UnitTests
{
[TestFixture]
public class ProductMapping_Fixture : FixtureBase
{
[Test]
public void can_correctly_map_product()
{
new PersistenceSpecification<Product>(Session)
.CheckProperty(p => p.Id, 1001)
.CheckProperty(p => p.Name, "Apples")
.CheckProperty(p => p.UnitPrice, 10.45m)
.CheckProperty(p => p.Discontinued, true)
.VerifyTheMappings();
}
}
}
و پس از اجرای این آزمون واحد، عبارات SQL ایی که به صورت خودکار توسط این ORM جهت بررسی عملیات نگاشت صورت خواهند گرفت به صورت زیر می‌باشند:

ProductMapping_Fixture.can_correctly_map_product : Passed
NHibernate: select next_hi from hibernate_unique_key
NHibernate: update hibernate_unique_key set next_hi = @p0 where next_hi = @p1;@p0 = 2, @p1 = 1
NHibernate: INSERT INTO "Product" (Name, UnitPrice, Discontinued, Id) VALUES (@p0, @p1, @p2, @p3);@p0 = 'Apples', @p1 = 10.45, @p2 = True, @p3 = 1001
NHibernate: SELECT product0_.Id as Id1_0_, product0_.Name as Name1_0_, product0_.UnitPrice as UnitPrice1_0_, product0_.Discontinued as Disconti4_1_0_ FROM "Product" product0_ WHERE product0_.Id=@p0;@p0 = 1001

در ادامه تعریف کلاس کارمند، نگاشت و آزمون واحد آن به صورت زیر خواهند بود:

using System;
namespace NHSample1.Domain
{
public class Employee
{
public int Id { set; get; }
public string LastName { get; set; }
public string FirstName { get; set; }
}
}


using NHSample1.Domain;
using FluentNHibernate.Mapping;

namespace NHSample1.Mappings
{
public class EmployeeMapping : ClassMap<Employee>
{
public EmployeeMapping()
{
Not.LazyLoad();
Id(e => e.Id).GeneratedBy.Assigned();
Map(e => e.LastName).Length(50);
Map(e => e.FirstName).Length(50);
}
}
}


using NUnit.Framework;
using NHSample1.Domain;
using FluentNHibernate.Testing;

namespace UnitTests
{
[TestFixture]
public class EmployeeMapping_Fixture : FixtureBase
{
[Test]
public void can_correctly_map_employee()
{
new PersistenceSpecification<Employee>(Session)
.CheckProperty(p => p.Id, 1001)
.CheckProperty(p => p.FirstName, "name1")
.CheckProperty(p => p.LastName, "lname1")
.VerifyTheMappings();
}
}
}
خروجی SQL حاصل از موفقیت آزمون واحد آن:

NHibernate: select next_hi from hibernate_unique_key
NHibernate: update hibernate_unique_key set next_hi = @p0 where next_hi = @p1;@p0 = 2, @p1 = 1
NHibernate: INSERT INTO "Employee" (LastName, FirstName, Id) VALUES (@p0, @p1, @p2);@p0 = 'lname1', @p1 = 'name1', @p2 = 1001
NHibernate: SELECT employee0_.Id as Id4_0_, employee0_.LastName as LastName4_0_, employee0_.FirstName as FirstName4_0_ FROM "Employee" employee0_ WHERE employee0_.Id=@p0;@p0 = 1001

همانطور که ملاحظه می‌کنید، این آزمون‌های واحد 4 مرحله را در یک سطر انجام می‌دهند:
الف) ایجاد یک وهله از کلاس Employee
ب) ثبت اطلاعات کارمند در دیتابیس
ج) دریافت اطلاعات کارمند در وهله‌ای جدید از شیء Employee
د) و در پایان بررسی می‌کند که آیا شیء جدید ایجاد شده با شیء اولیه مطابقت دارد یا خیر

اکنون در ادامه پیاده سازی سیستم ثبت سفارشات، به قسمت جالب این مدل می‌رسیم. قسمتی که در آن ارتباطات اشیاء و روابط one-to-many تعریف خواهند شد. تعاریف کلاس‌های OrderItem و OrderItemMapping را به صورت زیر در نظر بگیرید:

کلاس OrderItem تعریف شده در فایل جدید OrderItem.cs واقع شده در پوشه domain پروژه:
که در آن هر سفارش (order) دقیقا از یک محصول (product) تشکیل می‌شود و هر محصول می‌تواند در سفارشات متعدد و مختلفی درخواست شود.

namespace NHSample1.Domain
{
public class OrderItem
{
public int Id { get; set; }
public int Quantity { get; set; }
public Product Product { get; set; }
}
}
کلاس OrderItemMapping تعریف شده در فایل جدید OrderItemMapping.cs :

using FluentNHibernate.Mapping;
using NHSample1.Domain;

namespace NHSample1.Mappings
{
public class OrderItemMapping : ClassMap<OrderItem>
{
public OrderItemMapping()
{
Not.LazyLoad();
Id(oi => oi.Id).GeneratedBy.Assigned();
Map(oi => oi.Quantity).Not.Nullable();
References(oi => oi.Product).Not.Nullable();
}
}
}
نکته جدیدی که در این کلاس نگاشت مطرح شده است، واژه کلیدی References می‌باشد که جهت بیان این ارجاعات و وابستگی‌ها بکار می‌رود. این ارجاع بیانگر یک رابطه many-to-one بین سفارشات و محصولات است. همچنین در ادامه آن Not.Nullable ذکر شده است تا این ارجاع را اجباری نمائید (در غیر اینصورت سفارش غیر معتبر خواهد بود).
نکته‌ی دیگر مهم آن این مورد است که Id در اینجا به صورت یک کلید تعریف نشده است. یک آیتم سفارش داده شده، موجودیت به حساب نیامده و فقط یک شیء مقداری (value object) است و به خودی خود امکان وجود ندارد. هر وهله از آن تنها توسط یک سفارش قابل تعریف است. بنابراین id در اینجا فقط به عنوان یک index می‌تواند مورد استفاده قرار گیرد و فقط توسط شیء Order زمانیکه یک OrderItem به آن اضافه می‌شود، مقدار دهی خواهد شد.

اگر برای این نگاشت نیز آزمون واحد تهیه کنیم، به صورت زیر خواهد بود:

using NUnit.Framework;
using NHSample1.Domain;
using FluentNHibernate.Testing;

namespace UnitTests
{
[TestFixture]
public class OrderItemMapping_Fixture : FixtureBase
{
[Test]
public void can_correctly_map_order_item()
{
var product = new Product
{
Name = "Apples",
UnitPrice = 4.5m,
Discontinued = true
};

new PersistenceSpecification<OrderItem>(Session)
.CheckProperty(p => p.Id, 1)
.CheckProperty(p => p.Quantity, 5)
.CheckReference(p => p.Product, product)
.VerifyTheMappings();
}
}
}

مشکل! این آزمون واحد با شکست مواجه خواهد شد، زیرا هنوز مشخص نکرده‌ایم که دو شیء Product را که در قسمت CheckReference فوق برای این منظور معرفی کرده‌ایم، چگونه باید با هم مقایسه کرد. در مورد مقایسه نوع‌های اولیه و اصلی مانند int و string و امثال آن مشکلی نیست، اما باید منطق مقایسه سایر اشیاء سفارشی خود را با پیاده سازی اینترفیس IEqualityComparer دقیقا مشخص سازیم:

using System.Collections;
using NHSample1.Domain;

namespace UnitTests
{
public class CustomEqualityComparer : IEqualityComparer
{
public bool Equals(object x, object y)
{
if (ReferenceEquals(x, y)) return true;
if (x == null || y == null) return false;

if (x is Product && y is Product)
return (x as Product).Id == (y as Product).Id;

if (x is Customer && y is Customer)
return (x as Customer).Id == (y as Customer).Id;

if (x is Employee && y is Employee)
return (x as Employee).Id == (y as Employee).Id;

if (x is OrderItem && y is OrderItem)
return (x as OrderItem).Id == (y as OrderItem).Id;


return x.Equals(y);
}

public int GetHashCode(object obj)
{
//شاید وقتی دیگر
return obj.GetHashCode();
}
}
}
در اینجا فقط Id این اشیاء با هم مقایسه شده است. در صورت نیاز تمامی خاصیت‌های این اشیاء را نیز می‌توان با هم مقایسه کرد (یک سری از اشیاء بکار گرفته شده در این کلاس در ادامه بحث معرفی خواهند شد).
سپس برای بکار گیری این کلاس جدید، سطر مربوط به استفاده از PersistenceSpecification به صورت زیر تغییر خواهد کرد:

new PersistenceSpecification<OrderItem>(Session, new CustomEqualityComparer())

پس از این تغییرات و مشخص سازی نحوه‌ی مقایسه دو شیء سفارشی، آزمون واحد ما پاس شده و خروجی SQL تولید شده آن به صورت زیر می‌باشد:

NHibernate: select next_hi from hibernate_unique_key
NHibernate: update hibernate_unique_key set next_hi = @p0 where next_hi = @p1;@p0 = 2, @p1 = 1
NHibernate: INSERT INTO "Product" (Name, UnitPrice, Discontinued, Id) VALUES (@p0, @p1, @p2, @p3);@p0 = 'Apples', @p1 = 4.5, @p2 = True, @p3 = 1001
NHibernate: INSERT INTO "OrderItem" (Quantity, Product_id, Id) VALUES (@p0, @p1, @p2);@p0 = 5, @p1 = 1001, @p2 = 1
NHibernate: SELECT orderitem0_.Id as Id0_1_, orderitem0_.Quantity as Quantity0_1_, orderitem0_.Product_id as Product3_0_1_, product1_.Id as Id3_0_, product1_.Name as Name3_0_, product1_.UnitPrice as UnitPrice3_0_, product1_.Discontinued as Disconti4_3_0_ FROM "OrderItem" orderitem0_ inner join "Product" product1_ on orderitem0_.Product_id=product1_.Id WHERE orderitem0_.Id=@p0;@p0 = 1

قسمت پایانی کار تعاریف کلاس‌های نگاشت، مربوط به کلاس Order است که در ادامه بررسی خواهد شد.

using System;
using System.Collections.Generic;

namespace NHSample1.Domain
{
public class Order
{
public int Id { set; get; }
public DateTime OrderDate { get; set; }
public Employee Employee { get; set; }
public Customer Customer { get; set; }
public IList<OrderItem> OrderItems { get; set; }
}
}
نکته‌ی مهمی که در این کلاس وجود دارد استفاده از IList جهت معرفی مجموعه‌ای از آیتم‌های سفارشی است (بجای List و یا IEnumerable که در صورت استفاده خطای type cast exception در حین نگاشت حاصل می‌شد).

using NHSample1.Domain;
using FluentNHibernate.Mapping;

namespace NHSample1.Mappings
{
public class OrderMapping : ClassMap<Order>
{
public OrderMapping()
{
Not.LazyLoad();
Id(o => o.Id).GeneratedBy.GuidComb();
Map(o => o.OrderDate).Not.Nullable();
References(o => o.Employee).Not.Nullable();
References(o => o.Customer).Not.Nullable();
HasMany(o => o.OrderItems)
.AsList(index => index.Column("ListIndex").Type<int>());
}
}
}
در تعاریف نگاشت این کلاس نیز دو ارجاع به اشیاء کارمند و مشتری وجود دارد که با References مشخص شده‌اند.
قسمت جدید آن HasMany است که جهت تعریف رابطه one-to-many بکار گرفته شده است. یک سفارش رابطه many-to-one با یک مشتری و همچنین کارمندی که این رکورد را ثبت می‌کند، دارد. در اینجا مجموعه آیتم‌های یک سفارش به صورت یک لیست بازگشت داده می‌شود و ایندکس آن به ستونی به نام ListIndex در یک جدول دیتابیس نگاشت خواهد شد. نوع این ستون، int می‌باشد.

using System;
using System.Collections.Generic;
using NUnit.Framework;
using NHSample1.Domain;
using FluentNHibernate.Testing;

namespace UnitTests
{
[TestFixture]
public class OrderMapping_Fixture : FixtureBase
{
[Test]
public void can_correctly_map_an_order()
{
{
var product1 =
new Product
{
Name = "Apples",
UnitPrice = 4.5m,
Discontinued = true
};
var product2 =
new Product
{
Name = "Pears",
UnitPrice = 3.5m,
Discontinued = false
};

Session.Save(product1);
Session.Save(product2);

var items = new List<OrderItem>
{
new OrderItem
{
Id = 1,
Quantity = 100,
Product = product1
},
new OrderItem
{
Id = 2,
Quantity = 200,
Product = product2
}
};

var customer = new Customer
{
FirstName = "Vahid",
LastName = "Nasiri",
AddressLine1 = "Addr1",
AddressLine2 = "Addr2",
PostalCode = "1234",
City = "Tehran",
CountryCode = "IR"
};

var employee =
new Employee
{
FirstName = "name1",
LastName = "lname1"
};



var order = new Order
{
Customer = customer,
Employee = employee,
OrderDate = DateTime.Today,
OrderItems = items
};

new PersistenceSpecification<Order>(Session, new CustomEqualityComparer())
.CheckProperty(o => o.OrderDate, order.OrderDate)
.CheckReference(o => o.Customer, order.Customer)
.CheckReference(o => o.Employee, order.Employee)
.CheckList(o => o.OrderItems, order.OrderItems)
.VerifyTheMappings();
}
}
}
}
همانطور که ملاحظه می‌کنید در این متد آزمون واحد، نیاز به مشخص سازی منطق مقایسه اشیاء سفارش، مشتری و آیتم‌های سفارش داده شده نیز وجود دارد که پیشتر در کلاس CustomEqualityComparer معرفی شدند؛ درغیر اینصورت این آزمون واحد با شکست مواجه می‌شد.
متد آزمون واحد فوق کمی طولانی است؛ زیرا در آن باید تعاریف انواع و اقسام اشیاء مورد استفاده را مشخص نمود (و ارزش کار نیز دقیقا در همینجا مشخص می‌شود که بجای SQL نوشتن، با اشیایی که توسط کامپایلر تحت نظر هستند سر و کار داریم).
تنها نکته جدید آن استفاده از CheckList برای بررسی IList تعریف شده در قسمت قبل است.

خروجی SQL این آزمون واحد پس از اجرا و موفقیت آن به صورت زیر است:

OrderMapping_Fixture.can_correctly_map_an_order : Passed
NHibernate: select next_hi from hibernate_unique_key
NHibernate: update hibernate_unique_key set next_hi = @p0 where next_hi = @p1;@p0 = 2, @p1 = 1
NHibernate: select next_hi from hibernate_unique_key
NHibernate: update hibernate_unique_key set next_hi = @p0 where next_hi = @p1;@p0 = 3, @p1 = 2
NHibernate: INSERT INTO "Product" (Name, UnitPrice, Discontinued, Id) VALUES (@p0, @p1, @p2, @p3);@p0 = 'Apples', @p1 = 4.5, @p2 = True, @p3 = 1001
NHibernate: INSERT INTO "Product" (Name, UnitPrice, Discontinued, Id) VALUES (@p0, @p1, @p2, @p3);@p0 = 'Pears', @p1 = 3.5, @p2 = False, @p3 = 1002
NHibernate: INSERT INTO "Customer" (FirstName, LastName, AddressLine1, AddressLine2, PostalCode, City, CountryCode, Id) VALUES (@p0, @p1, @p2, @p3, @p4, @p5, @p6, @p7);@p0 = 'Vahid', @p1 = 'Nasiri', @p2 = 'Addr1', @p3 = 'Addr2', @p4 = '1234', @p5 = 'Tehran', @p6 = 'IR', @p7 = 2002
NHibernate: select next_hi from hibernate_unique_key
NHibernate: update hibernate_unique_key set next_hi = @p0 where next_hi = @p1;@p0 = 4, @p1 = 3
NHibernate: INSERT INTO "Employee" (LastName, FirstName, Id) VALUES (@p0, @p1, @p2);@p0 = 'lname1', @p1 = 'name1', @p2 = 3003
NHibernate: INSERT INTO "OrderItem" (Quantity, Product_id, Id) VALUES (@p0, @p1, @p2);@p0 = 100, @p1 = 1001, @p2 = 1
NHibernate: INSERT INTO "OrderItem" (Quantity, Product_id, Id) VALUES (@p0, @p1, @p2);@p0 = 200, @p1 = 1002, @p2 = 2
NHibernate: INSERT INTO "Order" (OrderDate, Employee_id, Customer_id, Id) VALUES (@p0, @p1, @p2, @p3);@p0 = 2009/10/10 12:00:00 ق.ظ, @p1 = 3003, @p2 = 2002, @p3 = 0
NHibernate: UPDATE "OrderItem" SET Order_id = @p0, ListIndex = @p1 WHERE Id = @p2;@p0 = 0, @p1 = 0, @p2 = 1
NHibernate: UPDATE "OrderItem" SET Order_id = @p0, ListIndex = @p1 WHERE Id = @p2;@p0 = 0, @p1 = 1, @p2 = 2
NHibernate: SELECT order0_.Id as Id1_2_, order0_.OrderDate as OrderDate1_2_, order0_.Employee_id as Employee3_1_2_, order0_.Customer_id as Customer4_1_2_, employee1_.Id as Id4_0_, employee1_.LastName as LastName4_0_, employee1_.FirstName as FirstName4_0_, customer2_.Id as Id2_1_, customer2_.FirstName as FirstName2_1_, customer2_.LastName as LastName2_1_, customer2_.AddressLine1 as AddressL4_2_1_, customer2_.AddressLine2 as AddressL5_2_1_, customer2_.PostalCode as PostalCode2_1_, customer2_.City as City2_1_, customer2_.CountryCode as CountryC8_2_1_ FROM "Order" order0_ inner join "Employee" employee1_ on order0_.Employee_id=employee1_.Id inner join "Customer" customer2_ on order0_.Customer_id=customer2_.Id WHERE order0_.Id=@p0;@p0 = 0
NHibernate: SELECT orderitems0_.Order_id as Order4_2_, orderitems0_.Id as Id2_, orderitems0_.ListIndex as ListIndex2_, orderitems0_.Id as Id0_1_, orderitems0_.Quantity as Quantity0_1_, orderitems0_.Product_id as Product3_0_1_, product1_.Id as Id3_0_, product1_.Name as Name3_0_, product1_.UnitPrice as UnitPrice3_0_, product1_.Discontinued as Disconti4_3_0_ FROM "OrderItem" orderitems0_ inner join "Product" product1_ on orderitems0_.Product_id=product1_.Id WHERE orderitems0_.Order_id=@p0;@p0 = 0

تا اینجای کار تعاریف اشیاء ، نگاشت آن‌ها و همچنین بررسی صحت این نگاشت‌ها به پایان می‌رسد.

نکته:
دیتابیس برنامه را جهت آزمون‌های واحد برنامه، از نوع SQLite ساخته شده در حافظه مشخص کردیم. اگر علاقمند باشید که database schema تولید شده توسط NHibernate را مشاهده نمائید، در متد SetupContext کلاس FixtureBase که در قسمت قبل معرفی شد، سطر آخر را به صورت زیر تغییر دهید، تا اسکریپت دیتابیس نیز به صورت خودکار در خروجی اس کیوال آزمون واحد لحاظ شود (پارامتر دوم آن مشخص می‌کند که schema ساخته شده، نمایش داده شود یا خیر):

SessionSource.BuildSchema(Session, true);
پس از این تغییر و انجام مجدد آزمون واحد، اسکریپت دیتابیس ما به صورت زیر خواهد بود (که جهت ایجاد یک دیتابیس SQLite می‌تواند مورد استفاده قرار گیرد):

drop table if exists "OrderItem"

drop table if exists "Order"

drop table if exists "Customer"

drop table if exists "Product"

drop table if exists "Employee"

drop table if exists hibernate_unique_key

create table "OrderItem" (
Id INTEGER not null,
Quantity INTEGER not null,
Product_id INTEGER not null,
Order_id INTEGER,
ListIndex INTEGER,
primary key (Id)
)

create table "Order" (
Id INTEGER not null,
OrderDate DATETIME not null,
Employee_id INTEGER not null,
Customer_id INTEGER not null,
primary key (Id)
)

create table "Customer" (
Id INTEGER not null,
FirstName TEXT not null,
LastName TEXT not null,
AddressLine1 TEXT not null,
AddressLine2 TEXT,
PostalCode TEXT not null,
City TEXT not null,
CountryCode TEXT not null,
primary key (Id)
)

create table "Product" (
Id INTEGER not null,
Name TEXT not null,
UnitPrice NUMERIC not null,
Discontinued INTEGER not null,
primary key (Id)
)

create table "Employee" (
Id INTEGER not null,
LastName TEXT,
FirstName TEXT,
primary key (Id)
)

create table hibernate_unique_key (
next_hi INTEGER
)
البته اگر مستندات SQLite را مطالعه کرده باشید می‌دانید که مفهوم کلید خارجی در این دیتابیس وجود دارد اما اعمال نمی‌شود! (برای اعمال آن باید تریگر نوشت) به همین جهت در این اسکریپت تولیدی خبری از کلید خارجی نیست.

برای اینکه از دیتابیس اس کیوال سرور استفاده کنیم، در همان متد SetupContext کلاس مذکور، سطر اول را به صورت زیر تغییر دهید (نوع دیتابیس اس کیوال سرور 2008 مشخص شده و سپس رشته اتصالی به دیتابیس ذکر گردیده است):

var cfg = Fluently.Configure().Database(
// SQLiteConfiguration.Standard.ShowSql().InMemory
MsSqlConfiguration
.MsSql2008
.ShowSql()
.ConnectionString("Data Source=(local);Initial Catalog=testdb2009;Integrated Security = true")
);

اکنون اگر مجددا آزمون واحد را اجرا نمائیم، اسکریپت تولیدی به صورت زیر خواهد بود (در اینجا مفهوم استقلال برنامه از نوع دیتابیس را به خوبی می‌توان درک کرد):

if exists (select 1 from sys.objects where object_id = OBJECT_ID(N'[FK3EF88858466CFBF7]') AND parent_object_id = OBJECT_ID('[OrderItem]'))
alter table [OrderItem] drop constraint FK3EF88858466CFBF7


if exists (select 1 from sys.objects where object_id = OBJECT_ID(N'[FK3EF888589F32DE52]') AND parent_object_id = OBJECT_ID('[OrderItem]'))
alter table [OrderItem] drop constraint FK3EF888589F32DE52


if exists (select 1 from sys.objects where object_id = OBJECT_ID(N'[FK3117099B1EBA72BC]') AND parent_object_id = OBJECT_ID('[Order]'))
alter table [Order] drop constraint FK3117099B1EBA72BC


if exists (select 1 from sys.objects where object_id = OBJECT_ID(N'[FK3117099BB2F9593A]') AND parent_object_id = OBJECT_ID('[Order]'))
alter table [Order] drop constraint FK3117099BB2F9593A


if exists (select * from dbo.sysobjects where id = object_id(N'[OrderItem]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table [OrderItem]

if exists (select * from dbo.sysobjects where id = object_id(N'[Order]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table [Order]

if exists (select * from dbo.sysobjects where id = object_id(N'[Customer]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table [Customer]

if exists (select * from dbo.sysobjects where id = object_id(N'[Product]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table [Product]

if exists (select * from dbo.sysobjects where id = object_id(N'[Employee]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table [Employee]

if exists (select * from dbo.sysobjects where id = object_id(N'hibernate_unique_key') and OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table hibernate_unique_key

create table [OrderItem] (
Id INT not null,
Quantity INT not null,
Product_id INT not null,
Order_id INT null,
ListIndex INT null,
primary key (Id)
)

create table [Order] (
Id INT not null,
OrderDate DATETIME not null,
Employee_id INT not null,
Customer_id INT not null,
primary key (Id)
)

create table [Customer] (
Id INT not null,
FirstName NVARCHAR(50) not null,
LastName NVARCHAR(50) not null,
AddressLine1 NVARCHAR(50) not null,
AddressLine2 NVARCHAR(50) null,
PostalCode NVARCHAR(10) not null,
City NVARCHAR(50) not null,
CountryCode NVARCHAR(2) not null,
primary key (Id)
)

create table [Product] (
Id INT not null,
Name NVARCHAR(50) not null,
UnitPrice DECIMAL(19,5) not null,
Discontinued BIT not null,
primary key (Id)
)

create table [Employee] (
Id INT not null,
LastName NVARCHAR(50) null,
FirstName NVARCHAR(50) null,
primary key (Id)
)

alter table [OrderItem]
add constraint FK3EF88858466CFBF7
foreign key (Product_id)
references [Product]

alter table [OrderItem]
add constraint FK3EF888589F32DE52
foreign key (Order_id)
references [Order]

alter table [Order]
add constraint FK3117099B1EBA72BC
foreign key (Employee_id)
references [Employee]

alter table [Order]
add constraint FK3117099BB2F9593A
foreign key (Customer_id)
references [Customer]

create table hibernate_unique_key (
next_hi INT
)
که نکات ذیل در مورد آن جالب توجه است:
الف) جداول مطابق نام کلاس‌های ما تولید شده‌اند.
ب) نام فیلدها دقیقا مطابق نام خواص کلاس‌های ما تشکیل شده‌اند.
ج) Id ها به صورت primary key تعریف شده‌اند (از آنجائیکه ما در هنگام تعریف نگاشت‌ها، آن‌ها را از نوع identity مشخص کرده بودیم).
د) رشته‌ها به نوع nvarchar با اندازه 50 نگاشت شده‌اند.
ه) کلیدهای خارجی بر اساس نام جدول با پسوند _id تشکیل شده‌اند.




ادامه دارد ...


نظرات مطالب
ASP.NET MVC #8


دلیل Null بودن رو متوجه نمی‌شم؟