مطالب
مبانی TypeScript؛ اینترفیس‌ها
اینترفیس، مانند قراردادی است که یک نوع را تعریف می‌کند. کامپایلر از اینترفیس‌ها جهت بررسی نوع‌ها و اجبار به رعایت قرارداد استفاده می‌کند. در این حالت اگر متدها یا خواص معرفی شده‌ی در نوع اینترفیس، توسط استفاده کننده بکار گرفته نشوند، خطایی توسط کامپایلر گزارش خواهد شد.
از آنجائیکه اینترفیس‌ها به معنای نوع‌های سفارشی هستند و جاوا اسکریپت از آن‌ها پشتیبانی نمی‌کند، توسط کامپایلر TypeScript، به هیچ نوع کد معادلی در جاوا اسکریپت، ترجمه و تبدیل نخواهند شد. کامپایلر TypeScript تنها از آن‌ها جهت بررسی نوع‌ها استفاده می‌کند.
اینترفیس‌ها به صورت مجموعه‌ای از تعاریف خواص و متدها، بدون پیاده سازی آن‌ها تعریف می‌شوند. پیاده سازی این اینترفیس‌ها، توسط کلاس‌ها و یا سایر اشیاء صورت خواهند گرفت. برای مثال یک قرارداد اجاره، مشخص می‌کند که آخر هر ماه چه مقداری را باید پرداخت کرد. اما این قرار داد مشخص نمی‌کند که چگونه باید این پرداخت صورت گیرد و از هر شخصی به شخص دیگری می‌تواند متفاوت باشد. به این حالت duck typing هم می‌گویند. به این معنا که قرار داد، شکل یک شیء را مشخص می‌کند و تا زمانیکه پیاده سازی کننده‌ی آن بتواند این قرارداد را تامین کند، می‌تواند بجای نوع اصلی نیز بکار گرفته شود.


Duck typing چیست؟

duck typing به این معنا است که اگر پرنده‌ای بتواند مانند یک اردک راه برود، شنا کند و صدا در بیاورد، یک اردک نامیده می‌شود. بنابراین همینقدر که یک شیء بتواند قراردادی را پیاده سازی کند، نوع آن با نوع اینترفیس یکی درنظر گرفته می‌شود. برای نمونه به مثال ذیل دقت کنید:
interface Duck {
    walk: () => void;
    swim: () => void;
    quack: () => void;
}

let probablyADuck = {
    walk: () => console.log('walking like a duck'),
    swim: () => console.log('swimming like a duck'),
    quack: () => console.log('quacking like a duck')
}

function FlyOverWater(bird: Duck) { }

FlyOverWater(probablyADuck); // works!
در این مثال اینترفیس Duck، متدهایی را تعریف کرده‌است که یک Duck می‌تواند انجام دهد.
در ادامه متغیر و شیءایی بدون تعریف نوع آن ایجاد شده‌است که همان متدهای اینترفیس Duck را پیاده سازی می‌کند و امضای آن‌ها با امضای متدهای اینترفیس Duck یکی هستند.
سپس متد FlyOverWater تعریف شده که در آن، نوع پارامتر ورودی آن به صورت صریحی به نوع اینترفیس Duck مقید شده‌است.
در سطر بعدی، این متد با دریافت شیء probablyADuck فراخوانی شده‌است و چون این شیء تمام اجزای قرارداد Duck را پیاده سازی کرده‌است، مشکلی در اجرای آن نخواهد بود. به این حالت duck typing می‌گویند.


نحوه‌ی تعریف یک اینترفیس در TypeScript

تعریف یک اینترفیس با واژه‌ی کلیدی interface شروع شده و سپس خواص و متدهای مدنظر این قرارداد، به همراه نوع آن‌ها تعریف خواهند شد:
interface Book {
    id: number;
    title: string;
    author: string;
    pages?: number;
    markDamaged: (reason: string) => void;
}
در این مثال خواص id، title و author اجباری هستند و پیاده سازی کننده موظف است آن‌ها را به همراه داشته باشد.
در اینترفیس‌های TypeScript می‌توان خواص اختیاری و optional را نیز تعریف کرد. نمونه‌ی آن خاصیت pages در این مثال است که با ? مشخص شده‌است و نمونه‌ی آن‌را در حین تعریف پارامترهای اختیاری متدها نیز پیشتر ملاحظه کرده بودید.
تعریف متدها در یک اینترفیس، با مشخص سازی نام آن متد و ذکر یک کولن و سپس مشخص سازی امضای پارامترهای دریافتی  انجام می‌شود. نوع خروجی متد، در سمت راست علامت <= قرار خواهد گرفت.


استفاده از اینترفیس‌ها برای تعریف نوع خروجی توابع

در مثال زیر، متد CreateCustomerID دارای دو پارامتر ورودی از نوع‌های رشته‌ای و عددی است و خروجی آن نیز از نوع رشته‌ای تعریف شده‌است:
function CreateCustomerID(name: string, id: number): string {
    return name + id;
}
در ادامه تعریف متغیری را مشاهده می‌کنید که نوع آن، متدی است که با امضای متد CreateCustomerID یکسان است:
 let IdGenerator: (chars: string, nums: number) => string;
به این ترتیب امکان انتساب متد CreateCustomerID به متغیر IdGenerator وجود خواهد داشت:
IdGenerator = CreateCustomerID;
جهت مدیریت بهتر یک چنین تعریف‌هایی و همچنین امکان استفاده‌ی مجدد از آن‌ها، می‌توان از اینترفیس‌ها کمک گرفت:
interface StringGenerator {
     (chars: string, nums: number): string;
}
اینترفیس StringGenerator نام بهتر و با قابلیت استفاده‌ی مجددی را به نوع متدی که قابل انتساب است به متغیر IdGenerator، تعریف می‌کند. در اینجا syntax تعریف نوع متد، در اینترفیس StringGenerator اندکی با حالت‌های قبلی متفاوت است. در اینجا بجای استفاده از <= جهت مشخص کردن نوع خروجی متد، از کولن استفاده شده‌است.
اکنون می‌توان نحوه‌ی تعریف متغیر IdGenerator را به صورت زیر Refactor کرد و تغییر داد:
 let IdGenerator: StringGenerator;
به عنوان نمونه می‌توان یک چنین تغییری را در نحوه‌ی تعریف اینترفیس Book ابتدای بحث و تغییر متد markDamaged آن نیز اعمال کرد.


بسط و توسعه‌ی اینترفیس‌ها

بسط و توسعه‌ی اینترفیس‌ها شبیه به مباحث ارث بری هستند. به این ترتیب که با بسط یک اینترفیس از طریق اینترفیسی دیگر، می‌توان به نوعی مرکب رسید:
interface LibraryResource {
   catalogNumber: number;
}

interface LibraryBook {
   title: string;
}

interface Encyclopedia extends LibraryResource, LibraryBook {
   volume: number;
}
در این مثال، ابتدا دو اینترفیس منابع و کتاب‌های یک کتابخانه تعریف شده‌اند. سپس اینترفیس جدیدی به نام Encyclopedia با بسط این دو اینترفیس توسط واژه‌ی کلیدی extends ایجاد شده‌است.
این نوع مرکب، علاوه بر دارا بودن خاصیت volume مختص به خودش، اکنون حاوی دو خاصیت موجود در سایر اینترفیس‌های ذکر شده‌ی در قسمت extends نیز هست.
حال اگر متغیر جدیدی را از نوع Encyclopedia تعریف کنیم، جهت برآورده شده تمام اجزای قرارداد، لازم است هر سه خاصیت را مقدار دهی نمائیم:
let refBook: Encyclopedia = {
   catalogNumber: 1234,
   title: 'The Book of Everything',
   volume: 1
}


نوع کلاس‌ها

مبحث کلاس‌ها به صورت جداگانه‌ای در این سری بررسی خواهند شد. اما جهت تکمیل بحث جاری نیاز است اشاره‌ی کوتاهی به آنها شود.
همانطور که عنوان شد، اینترفیس‌ها تنها شکل و قرارداد پیاده سازی یک شیء را تعریف می‌کنند؛ بدون ارائه‌ی پیاده سازی خاصی از آن‌‌ها. تا اینجا در بحث جاری، اشیاء را توسط object literals داخل {} تعریف کردیم (مانند متغیر refBook مثال قبل). اما کلاس‌ها روش بهتری برای انجام این‌کار و تعریف اشیاء هستند.
در ذیل تعریف اینترفیس کتابدار را با تک متد doWork آن ملاحظه می‌کنید:
interface Librarian {
   doWork: () => void;
}
متد doWork دارای پارامتری نیست و خروجی نیز ندارد. سپس با استفاده از واژه‌ی کلیدی class، یک کلاس جدید را ایجاد کرده‌ایم که با استفاده‌ی واژه‌ی کلیدی implements، یک پیاده سازی مشخص از اینترفیس Librarian را ارائه می‌دهد:
class ElementarySchoolLibrarian implements Librarian {
   doWork() {
     console.log('Reading to and teaching children...');
   }
}
اکنون داخل این کلاس، پیاده سازی خاصی از متد doWork مشخص شده‌ی در قرارداد و اینترفیس Librarian را مشاهده می‌کنید.
در ادامه برای ایجاد شیءایی از روی این تعریف، به نحو ذیل عمل می‌کنیم:
 let kidsLibrarian: Librarian = new ElementarySchoolLibrarian();
kidsLibrarian.doWork();
در اینجا متغیر kidsLibrarian از نوع اینترفیس کتابدار تعریف شده‌است. به این معنا که شیءایی که به آن انتساب داده می‌شود باید این اینترفیس را پیاده سازی کند. این شیء نیز توسط واژه‌ی کلیدی new، نمونه سازی/وهله سازی می‌شود. در ادامه می‌توان به متدها و خواص شیء kidsLibrarian دسترسی یافت و آن‌ها را فراخوانی کرد.
مطالب
بررسی Source Generators در #C - قسمت اول - معرفی
Source Generators که به همراه C# 9.0 ارائه شدند، یک فناوری نوین meta-programming است و به عنوان جزئی از پروسه‌ی استاندارد کامپایل برنامه، ظاهر می‌شود. هدف اصلی از ارائه‌ی Source Generators، تولید کدهای تکراری مورد استفاده‌ی در برنامه‌ها است. برای مثال بجای انجام کارهای تکراری مانند پیاده سازی متدهای GetHashCode، ToString و یا حتی یک AutoMapper و یا Serializer، برای تمام کلاس‌های برنامه، Source Generators می‌توانند آن‌ها را به صورت خودکار پیاده سازی کنند و همچنین با هر تغییری در کدهای کلاس‌ها، این پیاده سازی‌ها به صورت خودکار به روز خواهند شد. مزیت این روش نه فقط تولید پویای کدها است، بلکه سبب بهبود کارآیی برنامه هم خواهند شد؛ از این جهت که برای مثال می‌توان اعمالی مانند Serialization را بدون انجام Reflection در زمان اجرا، توسط آن‌ها پیاده سازی کرد.


زمانیکه پروسه‌ی کامپایل برنامه شروع می‌شود، در این بین، به مرحله‌ی جدیدی به نام «تولید کدها» می‌رسد. در این حالت، کامپایلر تمام اطلاعاتی را که در مورد پروژه‌ی جاری در اختیار دارد، به تولید کننده‌ی کد معرفی شده‌ی به آن ارائه می‌دهد. بر اساس این اطلاعات غنی ارائه شده‌ی توسط کامپایلر، تولید کننده‌ی کد، شروع به تولید کدهای جدیدی کرده و آن‌ها را در اختیار ادامه‌ی پروسه‌ی کامپایل، قرار می‌دهد. پس از آن، کامپایلر با این کدهای جدید، همانند سایر کدهای موجود در پروژه رفتار کرده و عملکرد عادی خودش را ادامه می‌دهد.

یک برنامه می‌تواند از چندین Source Generators نیز استفاده کند که روش قرار گرفتن آن‌‌ها را در پروسه‌ی کامپایل، در شکل زیر مشاهده می‌کنید:



Source Generators از یکدیگر کاملا مستقل هستند و اطلاعات آن‌ها Immutable است. یعنی نمی‌توان اطلاعات تولیدی توسط یک Source Generator را در دیگری تغییر داد و تمام فایل‌های تولیدی توسط انواع Source Generators موجود، به پروسه‌ی کامپایل نهایی اضافه می‌شوند. هرچند زمانیکه فایلی توسط یک تولید کننده‌ی کد، به کامپایلر اضافه می‌شود، بلافاصله اطلاعات آن در کل برنامه و IDE و تمام Source Generators موجود دیگر، قابل مشاهده و استفاده است.


مقایسه‌ای بین تولید کننده‌های کد و فناوری IL Weaving

Source Generators، تنها راه و روش تولید کد، نیستند و پیش از آن روش‌هایی مانند استفاده از T4 templates ، Fody ، PostSharp و امثال آن نیز ارائه شده‌است. در ادامه مقایسه‌ای را بین تولید کننده‌های کد و فناوری IL Weaving را که پیشتر در سری AOP در این سایت مطالعه کرده‌اید، مشاهده می‌کنید:
تولید کننده‌های کد:
- تنها می‌توانند فایل‌های جدید را اضافه کنند. یعنی «در حین» پروسه‌ی کامپایل ظاهر می‌شوند و به عنوان یک مکمل، تاثیر گذارند. برای مثال نمی‌توانند محتوای یک خاصیت یا متد از پیش موجود را تغییر دهند. اما می‌توانند هر نوع کد partial ای را «تکمیل» کنند.
- محتوای اضافه شده‌ی توسط یک تولید کننده‌ی کد، بلافاصله توسط Compiler شناسایی شده و بررسی می‌شود و همچنین در Intellisense ظاهر شده و به سادگی قابل دسترسی است. همچنین، قابلیت دیباگ نیز دارد.

IL Weaving:
- می‌توانند bytecode برنامه را تغییر دهند. یعنی «پس از» پروسه‌ی کامپایل ظاهر شده و کدهایی را به اسمبلی نهایی تولید شده اضافه می‌کنند. در این حالت محدودیتی از لحاظ محل تغییر کدها وجود ندارد. برای مثال می‌توان بدنه‌ی یک متد یا خاصیت را بطور کامل بازنویسی کرد و کارکردهایی مانند تزریق کدهای caching و logging را دارند.
- کدهایی که توسط این پروسه اضافه می‌شوند، در حین کدنویسی متداول، قابلیت دسترسی ندارند؛ چون پس از پروسه‌ی کامپایل، به فایل باینری نهایی تولیدی، اضافه می‌شوند. بنابراین قابلیت دیباگ به همراه سایر کدهای برنامه را نیز ندارند. به علاوه چون توسط کامپایلر در حین پروسه‌ی کامپایل، بررسی نمی‌شوند، ممکن است به همراه قطعه کدهای غیرقابل اجرایی نیز باشند و دیباگ آن‌ها بسیار مشکل است.



آینده‌ی Reflection به چه صورتی خواهد شد؟

هرچند Reflection کار تولید کدی را انجام نمی‌دهد، اما یکی از کارهای متداول با آن، یافتن و محاسبه‌ی اطلاعات خواص و فیلدهای اشیاء، در زمان اجرا است و مزیت کار کردن با آن نیز این است که اگر خاصیتی یا فیلدی تغییر کند، نیازی به بازنویسی قسمت‌های پیاده سازی شده‌ی با Reflection نیست. به همین جهت برای مثال تقریبا تمام کتابخانه‌های Serialization، از Reflection برای پیاده سازی اعمال خود استفاده می‌کنند.
امروز، تمام اینگونه عملیات را توسط Source Generators نیز می‌توان انجام داد و این فناوری جدید، قابلیت به روز رسانی خودکار کدهای تولیدی را با کم و زیاد شدن خواص و فیلدهای کلاس‌ها دارد و نمونه‌ای از آن، Source Generator توکار مرتبط با کار با JSON در دات نت 6 است که به شدت سبب بهبود کارآیی برنامه، در مقایسه با استفاده‌ی از Reflection می‌شود؛ چون اینبار تمام محاسبات دقیق مرتبط با Serialization به صورت خودکار در زمان کامپایل برنامه انجام می‌شود و جزئی از خروجی برنامه‌ی نهایی خواهد شد و دیگر نیازی به محاسبه‌ی هرباره‌ی اطلاعات مورد نیاز، در زمان اجرای برنامه نیست.
نمونه‌ای از روش دسترسی به اطلاعات کلاس‌ها و خواص و فیلدهای آن‌ها را در زمان کامپایل برنامه توسط Source Generators، در مثال قسمت بعد، مشاهده خواهید کرد.


وضعیت T4 templates چگونه خواهد شد؟

در سال‌های آغازین ارائه‌ی دات نت، استفاده از T4 templates جهت تولید کدها بسیار مرسوم بود؛ اما با ارائه‌ی Source Generators، این ابزار نیز منسوخ شده در نظر گرفته می‌‌شود.
T4 Templates همانند Source Generators تنها کدها و فایل‌های جدیدی را تولید می‌کنند و توانایی تغییر کدهای موجود را ندارند. اما مشکل مهم آن، داشتن Syntax ای خاص است که توسط اکثر IDEها پشتیبانی نمی‌شود. همچنین عموما اجرای آن‌ها نیز دستی است و برخلاف Source Generators، با تغییرات کدها، به صورت خودکار به روز نمی‌شوند.


تغییرات زبان #C در جهت پشتیبانی از تولید کننده‌های کد

از سال‌های اول ارائه‌ی زبان #C، واژه‌ی کلیدی partial، جهت فراهم آوردن امکان تقسیم کدهای یک کلاس، به چندین فایل، میسر شد که از این قابلیت در فناوری T4 Templates زیاد استفاده می‌شد. اکنون با ارائه‌ی تولید کننده‌های کد، واژه‌ی کلیدی partial را می‌توان به متدها نیز افزود تا پیاده سازی اصلی آن‌ها، در فایلی دیگر، توسط تولید کننده‌های کد انجام شود. تا C# 8.0 امکان افزودن واژه‌ی کلیدی partial به متدهای خصوصی یک کلاس و آن هم از نوع void وجود داشت و در C# 9.0 به متدهای عمومی کلاس‌ها نیز اضافه شده‌است و اکنون این متدها می‌توانند void هم نباشند:
partial class MyType
{
   partial void OnModelCreating(string input); // C# 8.0

   public partial bool IsPet(string input);  // C# 9.0
}

partial class MyType
{
   public partial bool IsPet(string input) =>
     input is "dog" or "cat" or "fish";
}
نظرات مطالب
ASP.NET MVC #11
سلام،
چند عدد سوال داشتم:

1- از آنجایی که بنده در مورد استفاده کمتر از منابع سرور و ... خیلی حساسم و در پی یافتن بهینه‌ترین روش کدینگ هستم ، سوالی برام پیش اومده :
 آیا تعریف یک پراپرتی با دسترسی private  از نوع EntityFrameWorkContext در سطح کلاس کنترلر (یا سطح کلاس سرویس یا کلا در سطح یک کلاس) و استفاده از آن در متدهای کلاس و استفاده نکردن از using در داخل متدها از نظر حرفه ای درست می‌باشد ؟
(این روش رو در چند جا مشاهده کردم و شک کردم که نکنه روش بنده که همیشه using می‌زنم بهینه نیست....)
{بهترین روش چیه ؟}

2- اگر از استفاده غیرضروری از منابع سرور صرف نظر کنیم ؛ اگر ما ViewModel استفاده نکنیم و درون اکشن‌های ویرایش مثلا اینجوری کد بزنیم :

public ActionResult Edit(Member member)
{
var updatedItem = db.Members.FirstOrDefault(c => c.id == 1);

updatedItem.Name = member.Name;
updatedItem.Family = member.Family;

db.saveChanges();

return View();

}
آیا به دلیل استفاده نکردن از پراپرتی‌های غیر ضروری ، مشکل امنیتی برطرف میشه ؟
(بدین صورت اگر کاربر شیطونی کنه و مثلا فیلدای IsAdmin رو دستی بسازه و .... ازش استفاده نمیشه و مشکلی پیش نمیاد)
(نهایتا Model.IsValid هم می‌تونیم در اینجا استفاده کنیم)

مسلما موقع ثبت هم مقدار پروپرتی‌های حساس رو خودمون دستی پر می‌کنیم و اصلا کاری به ورودی دریافتی اکشن نخواهیم داشت.
public ActionResult Create(Member member)
{

If (Model.IsValid)
{

   db.Members.AddObject(new Member{ Name = member.Name , Family = member.Family , IsAdmin = False});
   db.saveChanges();

// ...

}

return View();

}

3- سفارشی سازی پیام‌های خطای اعتبار سنجی فرم رو هم من که تست کردم ، همش انگلیسی پیام میده!
و متن فارسی منو نادیده می‌گیره ...
یک توضیح بیشتر اگر مرحمت کنین ، ممنون میشم.

با تشکر
نظرات مطالب
شروع به کار با DNTFrameworkCore - قسمت 2 - طراحی موجودیت‌های سیستم
موجودیت طرف‌حساب
public class Party : Entity, INumberedEntity
{
    public const int MaxFirstNameLength = 50;
    public const int MaxLastNameLength = 50;
    public const int MaxDescriptionLength = 1024;

    public string Number { get; set; }
    public string FirstName { get; set; }
    public string LastName { get; set; }
    public string Description { get; set; }
    //...
}
موجودیت مشتری
public class Customer : TrackableEntity, IAggregateRoot, IPassivable
{
    public bool IsActive { get; set; }
    public byte[] RowVersion { get; set; }
    //...
    public Party Party { get; set; }
}

موجودیت پرسنل
public class Personnel : TrackableEntity, IAggregateRoot, IPassivable
{
    public bool IsActive { get; set; }
    public byte[] RowVersion { get; set; }
    //...
    public Party Party { get; set; }
}

تنظیمات مرتبط با ارتباط آنها
builder.HasOne(c => c.Party).WithOne().HasForeignKey<Customer>(c => c.Id)
.OnDelete(DeleteBehavior.Restrict);
builder.HasOne(p => p.Party).WithOne().HasForeignKey<Personnel>(p => p.Id)
    .OnDelete(DeleteBehavior.Restrict);


مطالب
Functional Programming یا برنامه نویسی تابعی - قسمت اول
 آشنایی

این قسمت از مقاله به ایده اصلی برنامه نویسی تابعی و دلیل وجودی آن خواهد پرداخت. هیچ شکی نیست که بزرگترین چالش در توسعه نرم افزار‌های بزرگ، پیچیدگی آن است. تغییرات همیش اجتناب ناپذیر هستند. به خصوص زمانی که صحبت از پیاده سازی امکان جدیدی باشد، پیچیدگی اضافه خواهد شد. در نتیجه منجر به سخت شدن فهمیدن کد می‌شود، زمان توسعه را بالاتر می‌برد و باگ‌های ناخواسته را به وجود خواهد آورد. همچنین تغییر هر چیزی در دنیای نرم افزار بدون به وجود آوردن رفتار‌های ناخواسته و یا اثرات جانبی، تقریبا غیر ممکن است. در نهایت همه این موارد می‌توانند سرعت توسعه را پایین برده و حتی باعث شکست پروژه‌های نرم افزاری شوند. سبک‌های کد نویسی دستوری (Imperative) مانند برنامه نویسی شیء گرا، میتوانند به کاهش این پیچیدگی‌ها تا حد خوبی کمک کنند. البته در صورتیکه به طور صحیحی پیاده شوند. در واقع با ایجاد Abstraction در این مدل برنامه نویسی، پیچیدگی‌ها را مخفی میکنیم.


سیر تکاملی الگو‌های برنامه نویسی


برنامه نویسی شیء گرا در خون برنامه نویس‌های سی شارپ جاری است؛ ما معمولا ساعت‌ها درباره اینکه چگونه میتوانیم با استفاده از ارث بری و ترتیب پیاده کلاس‌ها، یک هدف خاص برسیم، بر روی کپسوله سازی تمرکز میکنیم و انتزاع (Abstraction) و چند ریختی ( Polymorphism ) را برای تغییر وضعیت برنامه استفاده میکنیم. در این مدل همیشه احتمال این وجود دارد که چند ترد به صورت همزمان به یک ناحیه از حافظه دسترسی داشته باشند و تغییری در آن به وجود بیاورند و باعث به وجود آمدن شرایط Race Condition شوند. البته همگی به خوبی میدانیم که میتوانیم یک برنامه‌ی کاملا Thread-Safe هم داشته باشیم که به خوبی مباحث همزمانی و همروندی را مدیریت کند؛ اما یک مساله اساسی در مورد کارآیی باقی می‌ماند. گرچه Parallelism به ما کمک میکند که کارآیی برنامه خود را افزایش دهیم، اما refactor کردن کد‌های موجود، به حالت موازی، کاری سخت و پردردسر خواهد بود.


راهکار چیست؟

برنامه نویسی تابعی، یک الگوی برنامه نویسی است که از یک ایده قدیمی (قبل از اولین کامپیوتر‌ها !) برگرفته شده‌است؛ زمانیکه دو ریاضیدان، یک تئوری به نام  lambda calculus را معرفی کردند، که یک چارچوب محاسباتی می‌باشد؛ عملیاتی ریاضی را انجام می‌دهد و نتیجه را محاسبه میکند، بدون اینکه تغییری را در وضعیت داده‌ها و وضعیت، به وجود بیاورد. با این کار، فهمیدن کد‌ها آسانتر خواهد بود و اثرات جانبی را کمتر خواهد کرد، همچین نوشتن تست‌ها ساده‌تر خواهند شد.


زبان‌های تابعی

جالب است اگر زبان‌های برنامه نویسی را که از برنامه نویسی تابعی پشتیبانی میکنند، بررسی کنیم، مانند Lisp , Clojure, Erlang, Haskel، هر کدام از این زبان‌ها جنبه‌های مختلفی از برنامه نویسی تابعی را پوشش میدهند. #F یک عضو از خانواده ML می‌باشد که بر روی دات نت فریمورک در سال 2002 پیاده سازی شده. ولی جالب است بدانید بیشتر زبان‌های همه کاره مانند #C به اندازه کافی انعطاف پذیر هستند تا بتوان الگوهای مختلفی را توسط آن‌ها پیاده کرد. از آنجایی که اکثرا ما از #C برای توسعه نرم افزارهایمان استفاده میکنیم، ترکیب ایده‌های برنامه نویسی تابعی میتواند راهکار جالبی برای حل مشکلات ما باشد.


مفاهیم پایه ای

قبلا درباره توابع ریاضی صحت کردیم. در زبان‌های برنامه نویسی هم ایده همان است؛ ورودی‌های مشخص و خروجی مورد انتظار، بدون تغییری در حالت برنامه. به این مفاهیم شفافیت و صداقت توابع میگوییم که در ادامه با آن بیشتر آشنا میشویم. به این نکته توجه داشته باشید که منظور از تابع در #C فقط Method نیست؛ Func , Action , Delegate هم نوعی تابع هستند.


شفافیت توابع (Referential Transparency)

به طور ساده با نگاه کردن به ورودی‌های تابع و نام آن‌ها باید بتوانیم کاری را که انجام میدهد، حدس بزنیم. یعنی یک تابع باید بر اساس ورودی‌های آن کاری را انجام دهد و نباید یک پارامتر Global آن را تحت تاثیر قرار دهد. پارامتر‌های Global میتوانند یک Property در سطح یک کلاس باشند، یا یک شیء که وضعیت آن تحت کنترل تابع نیست؛ مانند شی DateTime. به مثال زیر توجه کنید:
public int CalculateElapsedDays(DateTime from)
{
   DateTime now = DateTime.Now;
   return (now - from).Days;
}
این تابع شفاف نیست. چرا؟ چون امروز، یک خروجی را میدهد و فردا یک خروجی دیگر را! به بیان دیگر وابسته به یک شیء سراسری DateTime.Now است.
آیا میتوانید این تابع را شفاف کنیم؟ بله!
چطور؟ به سادگی! با تغییر پارامتر‌های ورودی:
 public static int CalculateElapsedDays(DateTime from, DateTime now) => (now - from).Days;
در مثال بالا، ما وابستگی به یک شیء سراسری را از بین بردیم.


صداقت توابع (Function Honesty)

صداقت یک تابع یعنی یک تابع باید همه اطلاعات مربوط به ورودی‌ها و خروجی‌ها را پوشش دهد. به این مثال دقت کنید:
public int Divide(int numerator, int denominator)
{
   return numerator / denominator;
}
آیا این تابع شفاف است؟ بله.
آیا این همه مواردی را که از آن انتظار داریم پوشش میدهد؟ احتمالا خیر!

اگر دو عدد صحیح را به این تابع بفرستیم، احتمالا مشکلی پیش نخواهد آمد. اما همانطور که حدس میزنید اگر پارامتر دوم 0 باشد چه اتفاقی خواهد افتاد؟
var result = Divide(1,0);
قطعا خطای Divide By Zero را خواهیم گرفت. امضای این تابع به ما اطلاعاتی درباره خطاهای احتمالی نمی‌دهد.

چگونه مشکل را حل کنیم؟ تایپ ورودی را به شکل زیر تغییر دهیم:
public static int Divide(int numerator, NonZeroInt denominator)
{
   return numerator / denominator.Value;
}
NonZeroInt یک نوع ورودی اختصاصی است که خودمان طراحی کرده‌ایم که تمام مقادیر را به جز صفر، قبول میکند.

به طور کلی تمرین زیادی لازم داریم تا بتوانیم با این مفاهیم به طور عمیق آشنا شویم. در این مقاله قصد دارم جنبه‌های ابتدایی برنامه نویسی تابعی مانند  Functions as first class values ، High Order Functions و Pure Functions را مورد بررسی قرار دهم.

Functions as first-class values

ترجمه فارسی این کلمه ما را از معنی اصلی آن خیلی دور می‌کند؛ احتمالا یک ترجمه ساد‌ه‌ی آم میتواند «تابع، ارزش اولیه کلاس» باشد!
وقتی توابع first-class values باشند، یعنی می‌توانند به عنوان ورودی سایر توابع استفاده شوند، می‌توانند به یک متغیر انتساب داده شوند، دقیقا مثل یک مقدار. برای مثال:
Func<int, bool> isMod2 = x => x % 2 == 0;
var list = Enumerable.Range(1, 10);
var evenNumbers = list.Where(isMod2);
در این مثال، تابع، First-class value می‌باشد؛ چون شما می‌توانید آن را به یک متغیر نسبت دهید و به عنوان ورودی به تابع بعدی بدهید. در مدل برنامه نویسی تابعی، تلقی شدن توابع به عنوان مقدار، ضروری است. چون به ما امکان تعریف توابع High-Order را میدهد.


High-Order Functions (HOF)

توابع مرتبه بالا! یک یا چند تابع را به عنوان ورودی می‌گیرند و یک تابع را به عنوان نتیجه بر میگرداند. در مثال بالا Extension Method ، Where یک تابع High-Order می‌باشد.
پیاده سازی Where احتمالا به شکل زیر می‌باشد:
public static IEnumerable<T> Where<T>(this IEnumerable<T> ts, Func<T, bool> predicate)
{
   foreach (T t in ts)
      if (predicate(t))
         yield return t;
}
1. وظیفه چرخیدن روی آیتم‌های لیست، مربوط به Where می‌باشد.
2. ملاک تشخیص اینکه چه آیتم‌هایی در لیست باید وجود داشته باشند، به عهده متدی می‌باشد که آن را فراخوانی میکند.

در این مثال، تابع Where، تابع ورودی را به ازای هر المان، در لیست فراخوانی میکند. این تابع می‌تواند طوری طراحی شود که تابع ورودی را به صورت شرطی اعمال کند. آزمایش این حالت به عهده شما می‌باشد. اما به صورت کلی انتظار می‌رود که قدرت توابع High-Order را درک کرده باشید.


Pure Functions

توابع خالص در واقع توابع ریاضی هستند که دو مفهوم ابتدایی که قبلا درباره آن‌ها صحبت کردیم را دنبال می‌کنند؛ شفافیت و صداقت توابع. توابع خالص نباید هیچوقت اثر جانبی (side effect) ای داشته باشند. این یعنی نباید یک global state را تغییر دهند و یا از آن‌ها به عنوان پارامتر ورودی استفاده کنند. توابع خالص به راحتی قابل تست شدن هستند. چون به ازای یک ورودی، یک خروجی ثابت را بر میگردانند. ترتیب محاسبات اهمیتی ندارد! این‌ها بازیگران اصلی یک برنامه تابعی می‌باشد که می‌توانند برای اجرای موازی، محاسبه متاخر ( Lazy Evaluation ) و کش کردن ( memoization ) استفاده شوند.

در ادامه این سری مقالات، به پیاده سازی‌ها و الگوهای رایج برنامه نویسی تابعی با #C بیشتر خواهیم پرداخت.
اشتراک‌ها
نکته‌ای در بکارگیری & بر روی متغیرهای bool به مناسبت 200 امین سالگرد تولد George Boole

bool totalSuccess = First() & Second();
If you want both operations to happen regardless of whether the first succeeded then using && would be wrong. (And similarly if you want to know if either succeeded, you’d use | instead of ||.)

نکته‌ای در بکارگیری & بر روی متغیرهای bool به مناسبت 200 امین سالگرد تولد George Boole
مطالب
روش استفاده‌ی صحیح از HttpClient در برنامه‌های دات نت
اگر در کدهای خود قطعه کد ذیل را دارید:
using(var client = new HttpClient())
{
   // do something with http client
}
استفاده‌ی از using در اینجا، نه‌تنها غیرضروری و اشتباه است، بلکه سبب از کار افتادن زود هنگام برنامه‌ی شما با صدور استثنای ذیل خواهد شد:
 Unable to connect to the remote server
System.Net.Sockets.SocketException: Only one usage of each socket address (protocol/network address/port) is normally permitted.


HttpClient خود را Dispose نکنید

کلاس HttpClient اینترفیس IDisposable را پیاده سازی می‌کند. بنابراین روش استفاده‌ی اصولی آن باید به صورت ذیل و با پیاده سازی خودکار رهاسازی منابع مرتبط با آن باشد:
using (var client = new HttpClient())
{
       var result = await client.GetAsync("http://example.com/");
}
اما در این حال فرض کنید به همین روش تعدادی درخواست را ارسال کرده‌اید:
for (int i = 0; i < 10; i++)
{
      using (var client = new HttpClient())
      {
            var result = await client.GetAsync("http://example.com/");
            Console.WriteLine(result.StatusCode);
      }
}
مشکل این روش، در ایجاد سوکت‌های متعددی است که حتی پس از بسته شدن برنامه نیز باز، باقی خواهند ماند:
  TCP    192.168.1.6:13996      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:13997      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:13998      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:13999      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:14000      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:14001      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:14002      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:14003      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:14004      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:14005      93.184.216.34:http     TIME_WAIT
این یک نمونه‌ی خروجی برنامه‌ی فوق، توسط دستور netstat «پس از بسته شدن کامل برنامه» است.

بنابراین اگر برنامه‌ی شما تعداد زیادی کاربر دارد و یا تعداد زیادی درخواست را به روش فوق ارسال می‌کند، سیستم عامل به حد اشباع ایجاد سوکت‌های جدید خواهد رسید.
این مشکل نیز ارتباطی به طراحی این کلاس و یا زبان #C و حتی استفاده‌ی از using نیز ندارد. این رفتار، رفتار معمول سیستم عامل، با سوکت‌های ایجاد شده‌است. TIME_WAIT ایی را که در اینجا ملاحظه می‌کنید، به معنای بسته شدن اتصال از طرف برنامه‌ی ما است؛ اما سیستم عامل هنوز منتظر نتیجه‌ی نهایی، از طرف دیگر اتصال است که آیا قرار است بسته‌ی TCP ایی را دریافت کند یا خیر و یا شاید در بین راه تاخیری وجود داشته‌است. برای نمونه ویندوز به مدت 240 ثانیه یک اتصال را در این حالت حفظ خواهد کرد، که مقدار آن نیز در اینجا تنظیم می‌شود:
 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay]

بنابراین روش توصیه شده‌ی کار با HttpClient، داشتن یک وهله‌ی سراسری از آن در برنامه و عدم Dispose آن است. HttpClient نیز thread-safe طراحی شده‌است و دسترسی به یک شیء سراسری آن در برنامه‌های چند ریسمانی مشکلی را ایجاد نمی‌کند. همچنین Dispose آن نیز غیرضروری است و پس از پایان برنامه به صورت خودکار توسط سیستم عامل انجام خواهد شد.


تمام اجزای HttpClient به صورت Thread-safe طراحی نشده‌اند

تا اینجا به این نتیجه رسیدیم که روش صحیح کار کردن با HttpClient، نیاز به داشتن یک وهله‌ی Singleton از آن‌را در سراسر برنامه دارد و Dispose صریح آن، بجز اشباع سوکت‌های سیستم عامل و ناپایدار کردن تمام برنامه‌هایی که از آن سرویس می‌گیرند، حاصلی را به همراه نخواهد داشت. در این بین مطابق مستندات HttpClient، استفاده‌ی از متدهای ذیل این کلاس thread-safe هستند:
CancelPendingRequests
DeleteAsync
GetAsync
GetByteArrayAsync
GetStreamAsync
GetStringAsync
PostAsync
PutAsync
SendAsync
اما تغییر این خواص در کلاس HttpClient به هیچ عنوان thread-safe نبوده و در برنامه‌های چند ریسمانی و چند کاربری، مشکل ساز می‌شوند:
BaseAddress
DefaultRequestHeaders
MaxResponseContentBufferSize
Timeout
بنابراین در طراحی کلاس مدیریت کننده‌ی HttpClient برنامه‌ی خود نیاز است به ازای هر BaseAddress‌، یک HttpClient خاص آن‌را ایجاد کرد و HttpClientهای سراسری نمی‌توانند BaseAddress‌های خود را نیز به اشتراک گذاشته و تغییری را در آن ایجاد کنند.


استفاده‌ی سراسری و مجدد از HttpClient، تغییرات DNS را متوجه نمی‌شود

با طراحی یک کلاس مدیریت کننده‌ی سراسری HttpClient با طول عمر Singelton، به یک مشکل دیگر نیز برخواهیم خورد: چون در اینجا از اتصالات، استفاده‌ی مجدد می‌شوند، دیگر تغییرات DNS را لحاظ نخواهند کرد.
برای حل این مشکل، در زمان ایجاد یک HttpClient سراسری، به ازای یک BaseAddress مشخص، باید از ServicePointManager کوئری گرفته و زمان اجاره‌ی اتصال آن‌را دقیقا مشخص کنیم:
var sp = ServicePointManager.FindServicePoint(new Uri("http://thisisasample.com"));
sp.ConnectionLeaseTimeout = 60*1000; //In milliseconds
با این‌کار هرچند هنوز هم از اتصالات استفاده‌ی مجدد می‌شود، اما این استفاده‌ی مجدد، نامحدود نبوده و مدت معینی را پیدا می‌کند.


طراحی یک کلاس، برای مدیریت سراسری وهله‌های HttpClient‌

تا اینجا به صورت خلاصه به نکات ذیل رسیدیم:
- HttpClient باید به صورت یک وهله‌ی سراسری Singleton مورد استفاده قرار گیرد. هر وهله سازی مجدد آن 35ms زمان می‌برد.
- Dispose یک HttpClient غیرضروری است.
- HttpClient تقریبا thread safe طراحی شده‌است؛ اما تعدادی از خواص آن مانند BaseAddress‌  اینگونه نیستند.
- برای رفع مشکل اتصالات چسبنده (اتصالاتی که هیچگاه پایان نمی‌یابند)، نیاز است timeout آن‌را تنظیم کرد.

بنابراین بهتر است این نکات را در یک کلاس به صورت ذیل کپسوله کنیم:
using System;
using System.Collections.Generic;
using System.Net.Http;

namespace HttpClientTips
{
    public interface IHttpClientFactory : IDisposable
    {
        HttpClient GetOrCreate(
            Uri baseAddress,
            IDictionary<string, string> defaultRequestHeaders = null,
            TimeSpan? timeout = null,
            long? maxResponseContentBufferSize = null,
            HttpMessageHandler handler = null);
    }
}

using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Net;
using System.Net.Http;
using System.Threading;

namespace HttpClientTips
{
    /// <summary>
    /// Lifetime of this class should be set to `Singleton`.
    /// </summary>
    public class HttpClientFactory : IHttpClientFactory
    {
        // 'GetOrAdd' call on the dictionary is not thread safe and we might end up creating the HttpClient more than
        // once. To prevent this Lazy<> is used. In the worst case multiple Lazy<> objects are created for multiple
        // threads but only one of the objects succeeds in creating the HttpClient.
        private readonly ConcurrentDictionary<Uri, Lazy<HttpClient>> _httpClients =
                         new ConcurrentDictionary<Uri, Lazy<HttpClient>>();
        private const int ConnectionLeaseTimeout = 60 * 1000; // 1 minute

        public HttpClientFactory()
        {
            // Default is 2 minutes: https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager.dnsrefreshtimeout(v=vs.110).aspx
            ServicePointManager.DnsRefreshTimeout = (int)TimeSpan.FromMinutes(1).TotalMilliseconds;
            // Increases the concurrent outbound connections
            ServicePointManager.DefaultConnectionLimit = 1024;
        }

        public HttpClient GetOrCreate(
           Uri baseAddress,
           IDictionary<string, string> defaultRequestHeaders = null,
           TimeSpan? timeout = null,
           long? maxResponseContentBufferSize = null,
           HttpMessageHandler handler = null)
        {
            return _httpClients.GetOrAdd(baseAddress,
                             uri => new Lazy<HttpClient>(() =>
                             {
                                 // Reusing a single HttpClient instance across a multi-threaded application means
                                 // you can't change the values of the stateful properties (which are not thread safe),
                                 // like BaseAddress, DefaultRequestHeaders, MaxResponseContentBufferSize and Timeout.
                                 // So you can only use them if they are constant across your application and need their own instance if being varied.
                                 var client = handler == null ? new HttpClient { BaseAddress = baseAddress } :
                                               new HttpClient(handler, disposeHandler: false) { BaseAddress = baseAddress };
                                 setRequestTimeout(timeout, client);
                                 setMaxResponseBufferSize(maxResponseContentBufferSize, client);
                                 setDefaultHeaders(defaultRequestHeaders, client);
                                 setConnectionLeaseTimeout(baseAddress, client);
                                 return client;
                             },
                             LazyThreadSafetyMode.ExecutionAndPublication)).Value;
        }

        public void Dispose()
        {
            foreach (var httpClient in _httpClients.Values)
            {
                httpClient.Value.Dispose();
            }
        }

        private static void setConnectionLeaseTimeout(Uri baseAddress, HttpClient client)
        {
            // This ensures connections are used efficiently but not indefinitely.
            client.DefaultRequestHeaders.ConnectionClose = false; // keeps the connection open -> more efficient use of the client
            ServicePointManager.FindServicePoint(baseAddress).ConnectionLeaseTimeout = ConnectionLeaseTimeout; // ensures connections are not used indefinitely.
        }

        private static void setDefaultHeaders(IDictionary<string, string> defaultRequestHeaders, HttpClient client)
        {
            if (defaultRequestHeaders == null)
            {
                return;
            }
            foreach (var item in defaultRequestHeaders)
            {
                client.DefaultRequestHeaders.Add(item.Key, item.Value);
            }
        }

        private static void setMaxResponseBufferSize(long? maxResponseContentBufferSize, HttpClient client)
        {
            if (maxResponseContentBufferSize.HasValue)
            {
                client.MaxResponseContentBufferSize = maxResponseContentBufferSize.Value;
            }
        }

        private static void setRequestTimeout(TimeSpan? timeout, HttpClient client)
        {
            if (timeout.HasValue)
            {
                client.Timeout = timeout.Value;
            }
        }
    }
}
در اینجا به ازای هر baseAddress جدید، یک HttpClient خاص آن ایجاد می‌شود تا در کل برنامه مورد استفاده‌ی مجدد قرار گیرد. برای مدیریت thread-safe ایجاد HttpClientها نیز از نکته‌ی مطلب «الگویی برای مدیریت دسترسی همزمان به ConcurrentDictionary» استفاده شده‌است. همچنین نکات تنظیم ConnectionLeaseTimeout و سایر خواص غیر thread-safe کلاس HttpClient نیز در اینجا لحاظ شده‌اند.

پس از تدارک این کلاس، نحوه‌ی معرفی آن به سیستم باید به صورت Singleton باشد. برای مثال اگر از ASP.NET Core استفاده می‌کنید، آن‌را به صورت ذیل ثبت کنید:
namespace HttpClientTips.Web
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.AddSingleton<IHttpClientFactory, HttpClientFactory>();
            services.AddMvc();
        }

اکنون، یک نمونه، نحوه‌ی استفاده‌ی از اینترفیس IHttpClientFactory تزریقی به صورت ذیل می‌باشد:
namespace HttpClientTips.Web.Controllers
{
    public class HomeController : Controller
    {
        private readonly IHttpClientFactory _httpClientFactory;
        public HomeController(IHttpClientFactory httpClientFactory)
        {
            _httpClientFactory = httpClientFactory;
        }

        public async Task<IActionResult> Index()
        {
            var host = new Uri("http://localhost:5000");
            var httpClient = _httpClientFactory.GetOrCreate(host);
            var responseMessage = await httpClient.GetAsync("home/about").ConfigureAwait(false);
            var responseContent = await responseMessage.Content.ReadAsStringAsync().ConfigureAwait(false);
            return Content(responseContent);
        }
سرویس IHttpClientFactory یک HttpClient را به ازای host درخواستی ایجاد کرده و در طول عمر برنامه از آن استفاده‌ی مجدد می‌کند. به همین جهت دیگر مشکل اشباع سوکت‌ها در این سیستم رخ نخواهند داد.


برای مطالعه‌ی بیشتر

You're using HttpClient wrong and it is destabilizing your software
Disposable, Finalizers, and HttpClient
Using HttpClient as it was intended (because you’re not)
Singleton HttpClient? Beware of this serious behaviour and how to fix it
Beware of the .NET HttpClient
Effectively Using HttpClient
مطالب دوره‌ها
نگاهی به SignalR Hubs
Hubs کلاس‌هایی هستند جهت پیاده سازی push services در SignalR و همانطور که در قسمت قبل عنوان شد، در سطحی بالاتر از اتصال ماندگار (persistent connection) قرار می‌گیرند. کلاس‌های Hubs بر مبنای یک سری قرار داد پیش فرض کار می‌کنند (ایده Convention-over-configuration) تا استفاده نهایی از آن‌ها را ساده‌تر کنند.
Hubs به نوعی یک فریم ورک سطح بالای RPC نیز محسوب می‌شوند (Remote Procedure Calls) و آن‌را برای انتقال انواع و اقسام داده‌ها بین سرور و کلاینت و یا فراخوانی متدی در سمت کلاینت یا سرور، بسیار مناسب می‌سازد. برای مثال اگر قرار باشد با persistent connection به صورت مستقیم کار کنیم، نیاز است تا بسیاری از مسایل serialization و deserialization اطلاعات را خودمان پیاده سازی و اعمال نمائیم.


قرار دادهای پیش فرض Hubs

- متدهای public کلاس‌های Hubs از طریق دنیای خارج قابل فراخوانی هستند.
- ارسال اطلاعات به کلاینت‌ها از طریق فراخوانی متدهای سمت کلاینت انجام خواهد شد. (نحوه تعریف این متدها در سمت سرور بر اساس قابلیت‌های dynamic اضافه شده به دات نت 4 است که در ادامه در مورد آن بیشتر بحث خواهد شد)


مراحل اولیه نوشتن یک Hub
الف) یک کلاس Hub را تهیه کنید. این کلاس، از کلاس پایه Hub تعریف شده در فضای نام Microsoft.AspNet.SignalR باید مشتق شود. همچنین این کلاس می‌تواند توسط ویژگی خاصی به نام HubName نیز مزین گردد تا در حین برپایی اولیه سرویس، از طریق زیرساخت‌های SignalR به نامی دیگر (یک alias یا نام مستعار خاص) قابل شناسایی باشد. متدهای یک هاب می‌توانند نوع‌های ساده یا پیچیده‌ای را بازگشت دهند و همه چیز در اینجا نهایتا به فرمت JSON رد و بدل خواهد شد (فرمت پیش فرض که در پشت صحنه از کتابخانه معروف JSON.NET استفاده می‌کند؛ این کتابخانه سورس باز به دلیل کیفیت بالای آن، از زمان ارائه MVC4 به عنوان جزئی از مجموعه کارهای مایکروسافت قرار گرفته است).
ب) مسیریابی و Routing را تعریف و اصلاح نمائید.
و ... از نتیجه استفاده کنید.


تهیه اولین برنامه با SignalR

ابتدا یک پروژه خالی ASP.NET را آغاز کنید (مهم نیست MVC باشد یا WebForms). برای سادگی بیشتر، در اینجا یک ASP.NET Empty Web application درنظر گرفته شده است. در ادامه قصد داریم یک برنامه Chat را تهیه کنیم؛ از این جهت که توسط یک برنامه Chat بسیاری از مفاهیم مرتبط با SignalR را می‌توان در عمل توضیح داد.
اگر از VS 2012 استفاده می‌کنید، گزینه SignalR Hub class جزئی از آیتم‌های جدید قابل افزودن به پروژه است (منوی پروژه، گزینه new item آن) و پس از انتخاب این قالب خاص، تمامی ارجاعات لازم نیز به صورت خودکار به پروژه جاری اضافه خواهند شد.


و اگر از VS 2010 استفاده می‌کنید، نیاز است از طریق NuGet ارجاعات لازم را به پروژه خود اضافه نمائید:
 PM> Install-Package Microsoft.AspNet.SignalR
اکنون یک کلاس خالی جدید را به نام ChatHub، به آن اضافه کنید. سپس کدهای آن را به نحو ذیل تغییر دهید:
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace SignalR02
{
    [HubName("chat")]
    public class ChatHub : Hub
    {
        public void SendMessage(string message)
        {
            Clients.All.hello(message);
        }
    }
}
همانطور که ملاحظه می‌کنید این کلاس از کلاس پایه Hub مشتق شده و توسط ویژگی HubName، نام مستعار chat را یافته است.
کلاس پایه Hub یک سری متد و خاصیت را در اختیار کلاس‌های مشتق شده از آن قرار می‌دهد. ساده‌ترین راه برای آشنایی با این متدها و خواص مهیا، کلیک راست بر روی نام کلاس پایه Hub و انتخاب گزینه Go to definition است.
برای نمونه در کلاس ChatHub فوق، از خاصیت Clients برای دسترسی به تمامی آن‌ها و سپس فراخوانی متد dynamic ایی به نام hello که هنوز وجود خارجی ندارد، استفاده شده است.
اهمیتی ندارد که این کلاس در اسمبلی اصلی برنامه وب قرار گیرد یا مثلا در یک class library به نام Services. همینقدر که از کلاس Hub مشتق شود به صورت خودکار در ابتدای برنامه اسکن گردیده و یافت خواهد شد.

مرحله بعد، افزودن فایل global.asax به برنامه است. زیرا برای کار با SignalR نیاز است تنظیمات Routing و مسیریابی خاص آن‌را اضافه نمائیم. پس از افرودن فایل global.asax، به فایل Global.asax.cs مراجعه کرده و در متد Application_Start آن تغییرات ذیل را اعمال نمائید:
using System;
using System.Web;
using System.Web.Routing;

namespace SignalR02
{
    public class Global : HttpApplication
    {
        protected void Application_Start(object sender, EventArgs e)
        {
            // Register the default hubs route: ~/signalr
            RouteTable.Routes.MapHubs();
        }
    }
}

یک نکته مهم
 اگر از ASP.NET MVC استفاده می‌کنید، این تنظیم مسیریابی باید پیش از تعاریف پیش فرض موجود قرار گیرد. در غیراینصورت مسیریابی‌های SignalR کار نخواهند کرد.

اکنون برای آزمایش برنامه، برنامه را اجرا کرده و مسیر ذیل را فراخوانی کنید:
 http://localhost/signalr/hubs
در این حال اگر برنامه را برای مثال با مرورگر chrome باز کنید، در این آدرس، فایل جاوا اسکریپتی SignalR، قابل مشاهده خواهد بود. مرورگر IE پیغام می‌دهد که فایل را نمی‌تواند باز کند. اگر به انتهای خروجی آدرس مراجعه کنید، چنین سطری قابل مشاهده است:
  proxies.chat = this.createHubProxy('chat');
و کلمه chat دقیقا از مقدار معرفی شده توسط ویژگی HubName دریافت گردیده است.

تا اینجا ما موفق شدیم اولین Hub خود را تشکیل دهیم.


بررسی پروتکل Hub

اکنون که اولین Hub خود را ایجاد کرده‌ایم، بد نیست اندکی با زیر ساخت آن نیز آشنا شویم.
مطابق مسیریابی تعریف شده در Application_Start، مسیر ابتدایی دسترسی به SignalR با افزودن اسلش SignalR به انتهای مسیر ریشه سایت بدست می‌آید و اگر به این آدرس یک اسلش hubs را نیز اضافه کنیم، فایل js metadata مرتبط را نیز می‌توان دریافت و مشاهده کرد.

زمانیکه یک کلاینت قصد اتصال به یک Hub را دارد، دو مرحله رخ خواهد داد:
الف) negotiate: در این حالت امکانات قابل پشتیبانی از طرف سرور مورد پرسش قرار می‌گیرند و سپس بهترین حالت انتقال، انتخاب می‌گردد. این انتخاب‌ها به ترتیب از چپ به راست خواهند بود:
 Web socket -> SSE -> Forever frame -> long polling


به این معنا که اگر برای مثال امکانات Web sockets مهیا بود، در همینجا کار انتخاب نحوه انتقال اطلاعات خاتمه یافته و Web sockets انتخاب می‌شود.
تمام این مراحل نیز خودکار است و نیازی نیست تا برای تنظیمات آن کار خاصی صورت گیرد. البته در سمت کلاینت، امکان انتخاب یکی از موارد یاد شده به صورت صریح نیز وجود دارد.
ب) connect: اتصالی ماندگار برقرار می‌گردد.

در پروتکل Hub تمام اطلاعات JSON encoded هستند و یک سری مخفف‌هایی را در این بین نیز ممکن است مشاهده نمائید که معنای آن‌ها به شرح زیر است:
 C: cursor
M: Messages
H: Hub name
M: Method name
A: Method args
T: Time out
D: Disconnect
این مراحل را در قسمت بعد، پس از ایجاد یک کلاینت، بهتر می‌توان توضیح داد.


روش‌های مختلف ارسال اطلاعات به کلاینت‌ها

به چندین روش می‌توان اطلاعاتی را به کلاینت‌ها ارسال کرد:
1) استفاده از خاصیت Clients موجود در کلاس Hub
2) استفاده از خواص و متد‌های dynamic
در این حالت اطلاعات متد dynamic و پارامترهای آن به صورت JSON encoded به کلاینت ارسال می‌شوند (به همین جهت اهمیتی ندارند که در سرور وجود خارجی دارند یا خیر و به صورت dynamic تعریف شده‌اند).
using Microsoft.AspNet.SignalR;
using Microsoft.AspNet.SignalR.Hubs;

namespace SignalR02
{
    [HubName("chat")]
    public class ChatHub : Hub
    {
        public void SendMessage(string message)
        {
            var msg = string.Format("{0}:{1}", Context.ConnectionId, message);
            Clients.All.hello(msg);
        }
    }
}
برای نمونه در اینجا متد hello به صورت dynamic تعریف شده است (جزئی از متدهای خاصیت All نیست و اصلا در سمت سرور وجود خارجی ندارد) و خواص Context و Clients، هر دو در کلاس پایه Hub قرار دارند.
حالت Clients.All به معنای ارسال پیامی به تمام کلاینت‌های متصل به هاب ما هستند.

3) روش‌های دیگر، استفاده از خاصیت dynamic دیگری به نام Caller است که می‌توان بر روی آن متد دلخواهی را تعریف و فراخوانی کرد.
 //این دو عبارت هر دو یکی هستند
Clients.Caller.hello(msg);
Clients.Client(Context.ConnectionId).hello(msg);
انجام اینکار با روش ارائه شده در سطر دومی که ملاحظه می‌کنید، در عمل یکی است؛ از این جهت که Context.ConnectionId همان ConnectionId فراخوان می‌باشد.
در اینجا پیامی صرفا به فراخوان جاری سرویس ارسال می‌گردد.

4) استفاده از خاصیت dynamic ایی به نام Clients.Others
 Clients.Others.hello(msg);
در این حالت، پیام، به تمام کلاینت‌های متصل، منهای کلاینت فراخوان ارسال می‌گردد.

5) استفاده از متد Clients.AllExcept
این متد می‌تواند آرایه‌ای از ConnectionId‌هایی را بپذیرد که قرار نیست پیام ارسالی ما را دریافت کنند.

6) ارسال اطلاعات به گروه‌ها
تعداد مشخصی از ConnectionIdها یک گروه را تشکیل می‌دهند؛ مثلا اعضای یک chat room.
        public void JoinRoom(string room)
        {
            this.Groups.Add(Context.ConnectionId, room);
        }

        public void SendMessageToRoom(string room, string msg)
        {
            this.Clients.Group(room).hello(msg);
        }
در اینجا نحوه الحاق یک کلاینت به یک room یا گروه را مشاهده می‌کنید. همچنین با مشخص بودن نام گروه، می‌توان صرفا اطلاعاتی را به اعضای آن گروه خاص ارسال کرد.
خاصیت Group در کلاس پایه Hub تعریف شده است.
نکته مهمی را که در اینجا باید درنظر داشت این است که اطلاعات گروه‌ها به صورت دائمی در سرور ذخیره نمی‌شوند. برای مثال اگر سرور ری استارت شود، این اطلاعات از دست خواهند رفت.


آشنایی با مراحل طول عمر یک Hub

اگر به تعاریف کلاس پایه Hub دقت کنیم:
    public abstract class Hub : IHub, IDisposable
    {
        protected Hub();
        public HubConnectionContext Clients { get; set; }
        public HubCallerContext Context { get; set; }
        public IGroupManager Groups { get; set; }

        public void Dispose();
        protected virtual void Dispose(bool disposing);
        public virtual Task OnConnected();
        public virtual Task OnDisconnected();
        public virtual Task OnReconnected();
    }
در اینجا، تعدادی از متدها virtual تعریف شده‌اند که تمامی آن‌ها را در کلاس مشتق شده نهایی می‌توان override و مورد استفاده قرار داد. به این ترتیب می‌توان به اجزا و مراحل مختلف طول عمر یک Hub مانند برقراری اتصال یا قطع شدن آن، دسترسی یافت. تمام این متدها نیز با Task معرفی شده‌اند؛ که معنای غیرهمزمان بودن پردازش آن‌ها را بیان می‌کند.
تعدادی از این متدها را می‌توان جهت مقاصد logging برنامه مورد استفاده قرار داد و یا در متد OnDisconnected اگر اطلاعاتی را در بانک اطلاعاتی ذخیره کرده‌ایم، بر این اساس می‌توان وضعیت نهایی را تغییر داد.


ارسال اطلاعات از یک Hub به Hub دیگر در برنامه

فرض کنید یک Hub دوم را به نام MinitorHub به برنامه اضافه کرده‌اید. اکنون قصد داریم از داخل ChatHub فوق، اطلاعاتی را به آن ارسال کنیم. روش کار به نحو زیر است:
        public override System.Threading.Tasks.Task OnDisconnected()
        {
            sendMonitorData("OnDisconnected", Context.ConnectionId);
            return base.OnDisconnected();
        }

        private void sendMonitorData(string type, string connection)
        {
            var ctx = GlobalHost.ConnectionManager.GetHubContext<MonitorHub>();
            ctx.Clients.All.newEvenet(type, connection);
        }
در اینجا با override کردن OnDisconnected به رویداد خاتمه اتصال یک کلاینت دسترسی یافته‌ایم. سپس قصد داریم این اطلاعات را توسط متد sendMonitorData به Hub دومی به نام MonitorHub ارسال کنیم که نحوه پیاده سازی آن‌را در کدهای فوق ملاحظه می‌کنید. GlobalHost.ConnectionManager یک dependency resolver توکار تعریف شده در SignalR است.
مورد استفاده دیگر این روش، ارسال اطلاعات به کلاینت‌ها از طریق کدهای یک برنامه تحت وب است (که در همان پروژه هاب واقع شده است). برای مثال در یک اکشن متد یا یک روال رویدادگردان کلیک نیز می‌توان از GlobalHost.ConnectionManager استفاده کرد.