مطالب
استفاده از Razor در فایل Css
در مقاله «استفاده از Razor در فایل‌های JavaScript و CSS» با نحوه‌ی استفاده از Razor در فایل‌های Js و Css آشنا شدید. در مقاله‌ی جاری با روش دیگری، با نحوه‌ی استفاده از Syntax Razor در فایل‌های Css آشنا خواهید شد.

در ابتدا بعد از ایجاد یک پروژه‌ی جدید، نیاز دارید تا اسمبلی RazorEngin را توسط Package Manager Console به پروژه اضافه نماید.
Install-Package RazorEngine -Version 3.7.0



در گام بعدی نیاز است در کنترلری، یک اکشن متد را تعریف نماید که خروجی آن از نوع رشته خواهد بود و دستورات زیر در آن تعریف می‌شوند:
using System.Web.Mvc;
using RazorEngine;

namespace dynamicCSS.Controllers
{
    public class StyleController : Controller
    {
        /// <summary>
        /// نام متد ارجاعی به فایل سی اس اس 
        /// </summary>
        /// <returns></returns>
        public string Index()
        {
            //The ContentType property specifies the HTTP content type for the response. If no ContentType is specified, the default is text/HTML.  
            Response.ContentType = "text/css";
            //با استفاه از متد           
            //ReadAllText
            //فایل رو خوانده و سپس از متد 
            //Parse in Razor Class
            //به صورت رشته برگشت خواهیم داد
             return Razor.Parse(System.IO.File.ReadAllText(Server.MapPath("/Content/Site.css")));
        }
    }
}
در خط 21، فایل Css موجود در پوشه‌ی Content واقع در ریشه‌ی پروژه، خوانده شده و با متد Parse در کلاس Razor پردازش و بازگشت داده می‌شود. در کد زیر تمامی متدهای موجود در کلاس Razor را می‌توانید ملاحظه کنید:
#region Assembly RazorEngine.dll, v2.1.4039.23635
// Your Address\dynamicCSS\packages\RazorEngine.2.1\lib\.NetFramework 4.0\RazorEngine.dll
#endregion

using RazorEngine.Templating;
using System;
using System.Collections.Generic;

namespace RazorEngine
{
    public static class Razor
    {
        public static TemplateService DefaultTemplateService { get; }
        public static IDictionary<string, TemplateService> Services { get; }

        public static void AddResolver(Func<string, string> resolverDelegate);
        public static void AddResolver(ITemplateResolver resolver);
        public static void Compile(string template, string name);
        public static void Compile(string template, Type modelType, string name);
        public static void CompileWithAnonymous(string template, string name);
        public static string Parse(string template, string name = null);
        public static string Parse<T>(string template, T model, string name = null);
        public static string Run(string name);
        public static string Run<T>(T model, string name);
        public static void SetActivator(Func<Type, ITemplate> activator);
        public static void SetActivator(IActivator activator);
        public static void SetTemplateBase(Type type);
    }
}


در این حالت می‌توان از دستورات Razor در فایل Css نیز استفاده کرد:
@{
    // در اینجا دو متغییر با کلمه کلیدی 
    // var
    // ساخته و به صورت پیش فرض مقدار دهی نمودیم
    var  redColor = "red";
    var sizeMode = "100px";
}

h1 {
 // روش استفاده از متغییر‌ها 
  color: @redColor !important;
  font-size : @sizeModel !impotant;
 }
و در انتها می‌بایست در Layout پروژه، آدرس فایل Css را مشخص کرد:
//تغییر ادرس فایل به اکشن متد در  کنترلر
//Home
//<link href="/Content/Site.Css" rel="stylesheet" />
//شکل صحیح آدرس دهی
<link href="@Url.Action("Style", "Home")" rel="stylesheet" />

نکته: در صورتیکه متغیری بعد از دستورات استفاده شده تعریف گردد، با خطای زیر روبرو خواهید شد:




در خروجی نهایی تگ h1  با فونت 100 پیکسل و رنگ قرمز به نمایش در می‌آید:


Image

 

 :در صورتیکه خروجی نهایی به شکل صحیح اجرا نگردید، برای تست صحیح بودن گام‌های قبلی می‌توانید اکشن متد را در مرورگر اجرا کنید
 localhost:1599/Home/Style
مطالب
نحوه‌ی محاسبه‌ی هش کلمات عبور کاربران در ASP.NET Identity
روش‌های زیادی برای ذخیره سازی کلمات عبور وجود دارند که اغلب آن‌ها نیز نادرست هستند. برای نمونه شاید ذخیره سازی کلمات عبور، به صورت رمزنگاری شده، ایده‌ی خوبی به نظر برسد؛ اما با دسترسی به این کلمات عبور، امکان رمزگشایی آن‌ها، توسط مهاجم وجود داشته و همین مساله می‌تواند امنیت افرادی را که در چندین سایت، از یک کلمه‌ی عبور استفاده می‌کنند، به خطر اندازد.
در این حالت هش کردن کلمات عبور ایده‌ی بهتر است. هش‌ها روش‌هایی یک طرفه هستند که با داشتن نتیجه‌ی نهایی آن‌ها، نمی‌توان به اصل کلمه‌ی عبور مورد استفاده دسترسی پیدا کرد. برای بهبود امنیت هش‌های تولیدی، می‌توان از مفهومی به نام Salt نیز استفاده نمود. Salt در اصل یک رشته‌ی تصادفی است که پیش از هش شدن نهایی کلمه‌ی عبور، به آن اضافه شده و سپس حاصل این جمع، هش خواهد شد. اهمیت این مساله در بالا بردن زمان یافتن کلمه‌ی عبور اصلی از روی هش نهایی است (توسط روش‌هایی مانند brute force یا امتحان کردن بازه‌ی وسیعی از عبارات قابل تصور).
اما واقعیت این است که حتی استفاده از یک Salt نیز نمی‌تواند امنیت بازیابی کلمات عبور هش شده را تضمین کند. برای مثال نرم افزارهایی موجود هستند که با استفاده از پرداش موازی قادرند بیش از 60 میلیارد هش را در یک ثانیه آزمایش کنند و البته این کارآیی، برای کار با هش‌های متداولی مانند MD5 و SHA1 بهینه سازی شده‌است.


روش هش کردن کلمات عبور در ASP.NET Identity

ASP.NET Identity 2.x که در حال حاضر آخرین نگارش تکامل یافته‌ی روش‌های امنیتی توصیه شده‌ی توسط مایکروسافت، برای برنامه‌های وب است، از استانداردی به نام RFC 2898 و الگوریتم PKDBF2 برای هش کردن کلمات عبور استفاده می‌کند. مهم‌ترین مزیت این روش خاص، کندتر شدن الگوریتم آن با بالا رفتن تعداد سعی‌های ممکن است؛ برخلاف الگوریتم‌هایی مانند MD5 یا SHA1 که اساسا برای رسیدن به نتیجه، در کمترین زمان ممکن طراحی شده‌اند.
PBKDF2 یا password-based key derivation function جزئی از استاندارد RSA نیز هست (PKCS #5 version 2.0). در این الگوریتم، تعداد بار تکرار، یک Salt و یک کلمه‌ی عبور تصادفی جهت بالا بردن انتروپی (بی‌نظمی) کلمه‌ی عبور اصلی، به آن اضافه می‌شوند. از تعداد بار تکرار برای تکرار الگوریتم هش کردن اطلاعات، به تعداد باری که مشخص شده‌است، استفاده می‌گردد. همین تکرار است که سبب کندشدن محاسبه‌ی هش می‌گردد. عدد معمولی که برای این حالت توصیه شده‌است، 50 هزار است.
این استاندارد در دات نت توسط کلاس Rfc2898DeriveBytes پیاده سازی شده‌است که در ذیل مثالی را در مورد نحوه‌ی استفاده‌ی عمومی از آن، مشاهده می‌کنید:
using System;
using System.Diagnostics;
using System.Security.Cryptography;
using System.Text;
 
namespace IdentityHash
{
    public static class PBKDF2
    {
        public static byte[] GenerateSalt()
        {
            using (var randomNumberGenerator = new RNGCryptoServiceProvider())
            {
                var randomNumber = new byte[32];
                randomNumberGenerator.GetBytes(randomNumber);
                return randomNumber;
            }
        }
 
        public static byte[] HashPassword(byte[] toBeHashed, byte[] salt, int numberOfRounds)
        {
            using (var rfc2898 = new Rfc2898DeriveBytes(toBeHashed, salt, numberOfRounds))
            {
                return rfc2898.GetBytes(32);
 
            }
        }
    }
 
    class Program
    {
        static void Main(string[] args)
        {
            var passwordToHash = "VeryComplexPassword";
            hashPassword(passwordToHash, 50000);
            Console.ReadLine();
        }
 
        private static void hashPassword(string passwordToHash, int numberOfRounds)
        {
            var sw = new Stopwatch();
            sw.Start();
            var hashedPassword = PBKDF2.HashPassword(
                                        Encoding.UTF8.GetBytes(passwordToHash),
                                        PBKDF2.GenerateSalt(),
                                        numberOfRounds);
            sw.Stop();
            Console.WriteLine();
            Console.WriteLine("Password to hash : {0}", passwordToHash);
            Console.WriteLine("Hashed Password : {0}", Convert.ToBase64String(hashedPassword));
            Console.WriteLine("Iterations <{0}> Elapsed Time : {1}ms", numberOfRounds, sw.ElapsedMilliseconds);
        }
    }
}
شیء Rfc2898DeriveBytes برای تشکیل، نیاز به کلمه‌ی عبوری که قرار است هش شود به صورت آرایه‌ای از بایت‌ها، یک Salt و یک عدد اتفاقی دارد. این Salt توسط شیء RNGCryptoServiceProvider ایجاد شده‌است و همچنین نیازی نیست تا به صورت مخفی نگه‌داری شود. آن‌را  می‌توان در فیلدی مجزا، در کنار کلمه‌ی عبور اصلی ذخیره سازی کرد. نتیجه‌ی نهایی، توسط متد rfc2898.GetBytes دریافت می‌گردد. پارامتر 32 آن به معنای 256 بیت بودن اندازه‌ی هش تولیدی است. 32 حداقل مقداری است که بهتر است انتخاب شود.
پیش فرض‌های پیاده سازی Rfc2898DeriveBytes استفاده از الگوریتم SHA1 با 1000 بار تکرار است؛ چیزی که دقیقا در ASP.NET Identity 2.x بکار رفته‌است.


تفاوت‌های الگوریتم‌های هش کردن اطلاعات در نگارش‌های مختلف ASP.NET Identity

اگر به سورس نگارش سوم ASP.NET Identity مراجعه کنیم، یک چنین کامنتی در ابتدای آن قابل مشاهده است:
 /* =======================
* HASHED PASSWORD FORMATS
* =======================
*
* Version 2:
* PBKDF2 with HMAC-SHA1, 128-bit salt, 256-bit subkey, 1000 iterations.
* (See also: SDL crypto guidelines v5.1, Part III)
* Format: { 0x00, salt, subkey }
*
* Version 3:
* PBKDF2 with HMAC-SHA256, 128-bit salt, 256-bit subkey, 10000 iterations.
* Format: { 0x01, prf (UInt32), iter count (UInt32), salt length (UInt32), salt, subkey }
* (All UInt32s are stored big-endian.)
*/
در نگارش دوم آن از الگوریتم PBKDF2 با هزار بار تکرار و در نگارش سوم با 10 هزار بار تکرار، استفاده شده‌است. در این بین، الگوریتم پیش فرض HMAC-SHA1 نگارش‌های 2 نیز به HMAC-SHA256 در نگارش 3، تغییر کرده‌است.
در یک چنین حالتی بانک اطلاعاتی ASP.NET Identity 2.x شما با نگارش بعدی سازگار نخواهد بود و تمام کلمات عبور آن باید مجددا ریست شده و مطابق فرمت جدید هش شوند. بنابراین امکان انتخاب الگوریتم هش کردن را نیز پیش بینی کرده‌اند.

در نگارش دوم ASP.NET Identity، متد هش کردن یک کلمه‌ی عبور، چنین شکلی را دارد:
public static string HashPassword(string password, int numberOfRounds = 1000)
{
    if (password == null)
        throw new ArgumentNullException("password");
 
    byte[] saltBytes;
    byte[] hashedPasswordBytes;
    using (var rfc2898DeriveBytes = new Rfc2898DeriveBytes(password, 16, numberOfRounds))
    {
        saltBytes = rfc2898DeriveBytes.Salt;
        hashedPasswordBytes = rfc2898DeriveBytes.GetBytes(32);
    }
    var outArray = new byte[49];
    Buffer.BlockCopy(saltBytes, 0, outArray, 1, 16);
    Buffer.BlockCopy(hashedPasswordBytes, 0, outArray, 17, 32);
    return Convert.ToBase64String(outArray);
}
تفاوت این روش با مثال ابتدای بحث، مشخص کردن طول salt در متد Rfc2898DeriveBytes است؛ بجای محاسبه‌ی اولیه‌ی آن. در این حالت متد Rfc2898DeriveBytes مقدار salt را به صورت خودکار محاسبه می‌کند. این salt بجای ذخیره شدن در یک فیلد جداگانه، به ابتدای مقدار هش شده اضافه گردیده و به صورت یک رشته‌ی base64 ذخیره می‌شود. در نگارش سوم، از کلاس ویژه‌ی RandomNumberGenerator برای محاسبه‌ی Salt استفاده شده‌است.
مطالب
Functional Programming یا برنامه نویسی تابعی - قسمت اول
 آشنایی

این قسمت از مقاله به ایده اصلی برنامه نویسی تابعی و دلیل وجودی آن خواهد پرداخت. هیچ شکی نیست که بزرگترین چالش در توسعه نرم افزار‌های بزرگ، پیچیدگی آن است. تغییرات همیش اجتناب ناپذیر هستند. به خصوص زمانی که صحبت از پیاده سازی امکان جدیدی باشد، پیچیدگی اضافه خواهد شد. در نتیجه منجر به سخت شدن فهمیدن کد می‌شود، زمان توسعه را بالاتر می‌برد و باگ‌های ناخواسته را به وجود خواهد آورد. همچنین تغییر هر چیزی در دنیای نرم افزار بدون به وجود آوردن رفتار‌های ناخواسته و یا اثرات جانبی، تقریبا غیر ممکن است. در نهایت همه این موارد می‌توانند سرعت توسعه را پایین برده و حتی باعث شکست پروژه‌های نرم افزاری شوند. سبک‌های کد نویسی دستوری (Imperative) مانند برنامه نویسی شیء گرا، میتوانند به کاهش این پیچیدگی‌ها تا حد خوبی کمک کنند. البته در صورتیکه به طور صحیحی پیاده شوند. در واقع با ایجاد Abstraction در این مدل برنامه نویسی، پیچیدگی‌ها را مخفی میکنیم.


سیر تکاملی الگو‌های برنامه نویسی


برنامه نویسی شیء گرا در خون برنامه نویس‌های سی شارپ جاری است؛ ما معمولا ساعت‌ها درباره اینکه چگونه میتوانیم با استفاده از ارث بری و ترتیب پیاده کلاس‌ها، یک هدف خاص برسیم، بر روی کپسوله سازی تمرکز میکنیم و انتزاع (Abstraction) و چند ریختی ( Polymorphism ) را برای تغییر وضعیت برنامه استفاده میکنیم. در این مدل همیشه احتمال این وجود دارد که چند ترد به صورت همزمان به یک ناحیه از حافظه دسترسی داشته باشند و تغییری در آن به وجود بیاورند و باعث به وجود آمدن شرایط Race Condition شوند. البته همگی به خوبی میدانیم که میتوانیم یک برنامه‌ی کاملا Thread-Safe هم داشته باشیم که به خوبی مباحث همزمانی و همروندی را مدیریت کند؛ اما یک مساله اساسی در مورد کارآیی باقی می‌ماند. گرچه Parallelism به ما کمک میکند که کارآیی برنامه خود را افزایش دهیم، اما refactor کردن کد‌های موجود، به حالت موازی، کاری سخت و پردردسر خواهد بود.


راهکار چیست؟

برنامه نویسی تابعی، یک الگوی برنامه نویسی است که از یک ایده قدیمی (قبل از اولین کامپیوتر‌ها !) برگرفته شده‌است؛ زمانیکه دو ریاضیدان، یک تئوری به نام  lambda calculus را معرفی کردند، که یک چارچوب محاسباتی می‌باشد؛ عملیاتی ریاضی را انجام می‌دهد و نتیجه را محاسبه میکند، بدون اینکه تغییری را در وضعیت داده‌ها و وضعیت، به وجود بیاورد. با این کار، فهمیدن کد‌ها آسانتر خواهد بود و اثرات جانبی را کمتر خواهد کرد، همچین نوشتن تست‌ها ساده‌تر خواهند شد.


زبان‌های تابعی

جالب است اگر زبان‌های برنامه نویسی را که از برنامه نویسی تابعی پشتیبانی میکنند، بررسی کنیم، مانند Lisp , Clojure, Erlang, Haskel، هر کدام از این زبان‌ها جنبه‌های مختلفی از برنامه نویسی تابعی را پوشش میدهند. #F یک عضو از خانواده ML می‌باشد که بر روی دات نت فریمورک در سال 2002 پیاده سازی شده. ولی جالب است بدانید بیشتر زبان‌های همه کاره مانند #C به اندازه کافی انعطاف پذیر هستند تا بتوان الگوهای مختلفی را توسط آن‌ها پیاده کرد. از آنجایی که اکثرا ما از #C برای توسعه نرم افزارهایمان استفاده میکنیم، ترکیب ایده‌های برنامه نویسی تابعی میتواند راهکار جالبی برای حل مشکلات ما باشد.


مفاهیم پایه ای

قبلا درباره توابع ریاضی صحت کردیم. در زبان‌های برنامه نویسی هم ایده همان است؛ ورودی‌های مشخص و خروجی مورد انتظار، بدون تغییری در حالت برنامه. به این مفاهیم شفافیت و صداقت توابع میگوییم که در ادامه با آن بیشتر آشنا میشویم. به این نکته توجه داشته باشید که منظور از تابع در #C فقط Method نیست؛ Func , Action , Delegate هم نوعی تابع هستند.


شفافیت توابع (Referential Transparency)

به طور ساده با نگاه کردن به ورودی‌های تابع و نام آن‌ها باید بتوانیم کاری را که انجام میدهد، حدس بزنیم. یعنی یک تابع باید بر اساس ورودی‌های آن کاری را انجام دهد و نباید یک پارامتر Global آن را تحت تاثیر قرار دهد. پارامتر‌های Global میتوانند یک Property در سطح یک کلاس باشند، یا یک شیء که وضعیت آن تحت کنترل تابع نیست؛ مانند شی DateTime. به مثال زیر توجه کنید:
public int CalculateElapsedDays(DateTime from)
{
   DateTime now = DateTime.Now;
   return (now - from).Days;
}
این تابع شفاف نیست. چرا؟ چون امروز، یک خروجی را میدهد و فردا یک خروجی دیگر را! به بیان دیگر وابسته به یک شیء سراسری DateTime.Now است.
آیا میتوانید این تابع را شفاف کنیم؟ بله!
چطور؟ به سادگی! با تغییر پارامتر‌های ورودی:
 public static int CalculateElapsedDays(DateTime from, DateTime now) => (now - from).Days;
در مثال بالا، ما وابستگی به یک شیء سراسری را از بین بردیم.


صداقت توابع (Function Honesty)

صداقت یک تابع یعنی یک تابع باید همه اطلاعات مربوط به ورودی‌ها و خروجی‌ها را پوشش دهد. به این مثال دقت کنید:
public int Divide(int numerator, int denominator)
{
   return numerator / denominator;
}
آیا این تابع شفاف است؟ بله.
آیا این همه مواردی را که از آن انتظار داریم پوشش میدهد؟ احتمالا خیر!

اگر دو عدد صحیح را به این تابع بفرستیم، احتمالا مشکلی پیش نخواهد آمد. اما همانطور که حدس میزنید اگر پارامتر دوم 0 باشد چه اتفاقی خواهد افتاد؟
var result = Divide(1,0);
قطعا خطای Divide By Zero را خواهیم گرفت. امضای این تابع به ما اطلاعاتی درباره خطاهای احتمالی نمی‌دهد.

چگونه مشکل را حل کنیم؟ تایپ ورودی را به شکل زیر تغییر دهیم:
public static int Divide(int numerator, NonZeroInt denominator)
{
   return numerator / denominator.Value;
}
NonZeroInt یک نوع ورودی اختصاصی است که خودمان طراحی کرده‌ایم که تمام مقادیر را به جز صفر، قبول میکند.

به طور کلی تمرین زیادی لازم داریم تا بتوانیم با این مفاهیم به طور عمیق آشنا شویم. در این مقاله قصد دارم جنبه‌های ابتدایی برنامه نویسی تابعی مانند  Functions as first class values ، High Order Functions و Pure Functions را مورد بررسی قرار دهم.

Functions as first-class values

ترجمه فارسی این کلمه ما را از معنی اصلی آن خیلی دور می‌کند؛ احتمالا یک ترجمه ساد‌ه‌ی آم میتواند «تابع، ارزش اولیه کلاس» باشد!
وقتی توابع first-class values باشند، یعنی می‌توانند به عنوان ورودی سایر توابع استفاده شوند، می‌توانند به یک متغیر انتساب داده شوند، دقیقا مثل یک مقدار. برای مثال:
Func<int, bool> isMod2 = x => x % 2 == 0;
var list = Enumerable.Range(1, 10);
var evenNumbers = list.Where(isMod2);
در این مثال، تابع، First-class value می‌باشد؛ چون شما می‌توانید آن را به یک متغیر نسبت دهید و به عنوان ورودی به تابع بعدی بدهید. در مدل برنامه نویسی تابعی، تلقی شدن توابع به عنوان مقدار، ضروری است. چون به ما امکان تعریف توابع High-Order را میدهد.


High-Order Functions (HOF)

توابع مرتبه بالا! یک یا چند تابع را به عنوان ورودی می‌گیرند و یک تابع را به عنوان نتیجه بر میگرداند. در مثال بالا Extension Method ، Where یک تابع High-Order می‌باشد.
پیاده سازی Where احتمالا به شکل زیر می‌باشد:
public static IEnumerable<T> Where<T>(this IEnumerable<T> ts, Func<T, bool> predicate)
{
   foreach (T t in ts)
      if (predicate(t))
         yield return t;
}
1. وظیفه چرخیدن روی آیتم‌های لیست، مربوط به Where می‌باشد.
2. ملاک تشخیص اینکه چه آیتم‌هایی در لیست باید وجود داشته باشند، به عهده متدی می‌باشد که آن را فراخوانی میکند.

در این مثال، تابع Where، تابع ورودی را به ازای هر المان، در لیست فراخوانی میکند. این تابع می‌تواند طوری طراحی شود که تابع ورودی را به صورت شرطی اعمال کند. آزمایش این حالت به عهده شما می‌باشد. اما به صورت کلی انتظار می‌رود که قدرت توابع High-Order را درک کرده باشید.


Pure Functions

توابع خالص در واقع توابع ریاضی هستند که دو مفهوم ابتدایی که قبلا درباره آن‌ها صحبت کردیم را دنبال می‌کنند؛ شفافیت و صداقت توابع. توابع خالص نباید هیچوقت اثر جانبی (side effect) ای داشته باشند. این یعنی نباید یک global state را تغییر دهند و یا از آن‌ها به عنوان پارامتر ورودی استفاده کنند. توابع خالص به راحتی قابل تست شدن هستند. چون به ازای یک ورودی، یک خروجی ثابت را بر میگردانند. ترتیب محاسبات اهمیتی ندارد! این‌ها بازیگران اصلی یک برنامه تابعی می‌باشد که می‌توانند برای اجرای موازی، محاسبه متاخر ( Lazy Evaluation ) و کش کردن ( memoization ) استفاده شوند.

در ادامه این سری مقالات، به پیاده سازی‌ها و الگوهای رایج برنامه نویسی تابعی با #C بیشتر خواهیم پرداخت.
نظرات مطالب
صفحه بندی، مرتب سازی و جستجوی پویای اطلاعات به کمک Kendo UI Grid
یک نکته درباره‌ی فیلترینگ اولیه (پیشفرض)
اگر خواستید که به صورت پیشفرض (قرار دادن یک یا چند فیلتر به صورت پیش فرض) گرید بر اساس یک Enum فیلتر شود مقدار Enum ارسالی از سمت سرور به رشته تبدیل شود و مقدار ایندکس آن ارسال نشود
این Enum
public enum RequestStatus : byte
{
    Checking,
    Accepted,
    Rejected
}

var query = _context.Products.Select(x => new { x.Status.ToString(), ... });
بعد در سمت کلاینت و filed ها
"Status": { type: "string" },
و فیلتر کردن اولیه
filter: [
    { field: "Status", operator: "eq", value: "Checking" },
],

و بعد قسمت Column ها
field: "Status",
    values: [
    { text: "در حال بررسی", value: "Checking" },
    { text: "تایید شده", value: "Accepted" },
    { text: "رد شده", value: "Rejected" },
],
title: 'وضعیت'

مطالب
تخمین مدت زمان خوانده شدن یک مطلب
پس از انتشار مطلب «Pro Agile .NET Development With Scrum - قسمت اول» شاید این سؤال در ابتدای کار برای خواننده پیش بیاید که ... چقدر باید برای خواندن آن وقت بگذارم؟ برای پاسخ به این سؤال باید درنظر داشت که یک انسان معمولی، می‌تواند بین 200 تا 250 کلمه را در دقیقه، مطالعه کند. بنابراین در ابتدا باید محاسبه کرد که یک متن، چه تعدادی کلمه دارد؟
شاید عنوان کنید که کافی است متن ورودی را بر اساس فاصله‌ی بین کلمات تقسیم بندی کرده و سپس تعداد کلمات بدست آمده را محاسبه کنیم:
 var words = text.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries);
return words.Length;
این روش با آزمون زیر کار نکرده و با شکست مواجه می‌شود:
[TestMethod]
public void TestInvalidChars()
{
    const string data = "To be . ! < > ( ) ! ! , ; : ' ? + -";
    Assert.AreEqual(2, data.WordsCount());
}
در اینجا ! ، و امثال آن نیز یک کلمه درنظر گرفته می‌شوند. برای حل این مشکل کافی است آرایه‌ی split را کمی تکمیل‌تر کنیم تا حروف غیرمجاز را درنظر نگیرد:
 var words = text.Split(
    new[] { ' ', ',', ';', '.', '!', '"', '(', ')', '?', ':', '\'', '«' , '»', '+', '-' },
    StringSplitOptions.RemoveEmptyEntries);
return words.Length;
تا اینجا مشکل !، >< حل شد، اما در مورد متن ذیل چطور؟
[TestMethod]
public void TestSimpleHtmlSpacesWithNewLine()
{
    const string data = "<b>this is&nbsp;a&nbsp;&nbsp;test.</b>\n\r<b>this is&nbsp;a&nbsp;&nbsp;test.</b>";
    Assert.AreEqual(8, data.WordsCount());
}
مطالب ثبت شده، عموما توسط HTML Editorها ثبت می‌شوند. بنابراین دارای انواع و اقسام تگ‌ها بوده و همچنین ممکن است در این بین new line هم وجود داشته باشد که در این حالت، test\n\rtest باید دو کلمه محاسبه شود و نه یک کلمه.
اگر این موارد را در نظر بگیریم، به کلاس ذیل خواهیم رسید:
using System;
using System.Text.RegularExpressions;
 
namespace ReadingTime
{
    public static class CalculateWordsCount
    {
        private static readonly Regex _matchAllTags =
            new Regex(@"<(.|\n)*?>", RegexOptions.IgnoreCase | RegexOptions.Compiled);
 
        public static int WordsCount(this string text)
        {
            if (string.IsNullOrWhiteSpace(text))
            {
                return 0;
            }
 
            text = text.cleanTags().Trim();
            text = text.Replace("\t", " ");
            text = text.Replace("\n", " ");
            text = text.Replace("\r", " ");
 
            var words = text.Split(
                new[] { ' ', ',', ';', '.', '!', '"', '(', ')', '?', ':', '\'', '«' , '»', '+', '-' },
                StringSplitOptions.RemoveEmptyEntries);
            return words.Length;
        }
 
        private static string cleanTags(this string data)
        {
            return data.Replace("\n", "\n ").removeHtmlTags();
        }
 
        private static string removeHtmlTags(this string text)
        {
            return string.IsNullOrEmpty(text) ?
                        string.Empty :
                        _matchAllTags.Replace(text, " ").Replace("&nbsp;", " ");
        }
    }
}
در اینجا حذف تگ‌های HTML و همچنین پردازش خطوط جدید و حروف غیرمجاز درنظر گرفته شده‌اند.

پس از اینکه موفق به شمارش تعداد کلمات یک متن HTML ایی شدیم، اکنون می‌توان این تعداد را تقسیم بر 180 (یک عدد معمول و متداول) کرد تا زمان خواندن کل متن بدست آید. سپس با استفاده از متد toReadableString می‌توان آن‌را به شکل قابل خواندن‌تری نمایش داد.
using System;
 
namespace ReadingTime
{
    public static class CalculateReadingTime
    {
        public static string MinReadTime(this string text, int wordsPerMinute = 180)
        {
            var wordsCount = text.WordsCount();
            var minutes = wordsCount / wordsPerMinute;
            return minutes == 0 ? "کمتر از یک دقیقه" : TimeSpan.FromMinutes(minutes).toReadableString();
        }
 
        private static string toReadableString(this TimeSpan span)
        {
            var formatted = string.Format("{0}{1}{2}{3}",
                span.Duration().Days > 0 ? string.Format("{0:0} روز و ", span.Days) : string.Empty,
                span.Duration().Hours > 0 ? string.Format("{0:0} ساعت و ", span.Hours) : string.Empty,
                span.Duration().Minutes > 0 ? string.Format("{0:0} دقیقه و ", span.Minutes) : string.Empty,
                span.Duration().Seconds > 0 ? string.Format("{0:0} ثانیه", span.Seconds) : string.Empty);
 
            if (formatted.EndsWith("و "))
            {
                formatted = formatted.Substring(0, formatted.Length - 2);
            }
 
            if (string.IsNullOrEmpty(formatted))
            {
                formatted = "0 ثانیه";
            }
            return formatted.Trim();
        }
    }
}

کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید:
ReadingTime.zip
 
مطالب
اصول پایگاه داده - تراکنش ها
در این مقاله آموزشی قصد داریم به یکی از مهمترین و اساسی‌ترین مفاهیم تعریف شده در پایگاه داده بنام تراکنش‌ها بپردازیم. بعنوان تعریف می‌توان اینگونه بیان نمود که تراکنش یک واحد کاری منطقی است که عملی را بر روی پایگاه داده انجام می‌دهد. عموما تراکنش‌ها دنباله ای از عملیات پایگاه داده هستند که رویه هم رفته انجام یک کار یا وظیفه را بر عهده دارند. نکته مهمی که در مورد تراکنش‌ها مطرح می‌شود اینست که آنها باید به گونه ای مدیریت شوند که پایگاه داده را از یک وضعیت سازگار و درست (consistent) به وضعیت سازگار دیگری ببرند. به بیان دیگر اگر تراکنش از چند عملیات تشکیل شده باشد، پس از پایان اجرای تمامی عملیات مربوط به تراکنش نباید در داده‌های پایگاه داده هیچ تناقضی با قوانین پایگاه داده (integrity rules) بوجود بیاید. مزیت استفاده از تراکنش نیز همین مسئله است که به توسعه دهنده نرم افزار این اطمینان را می‌دهد که صحت و درستی پایگاه داده در اثر اجرای دستورات او از بین نخواهد رفت. علاوه بر آن اگر در حین اجرای یکی از دستورات خللی ایجاد گردد، پایگاه داده دوباره به وضعیت سازگار قبلی خود باز گردانده خواهد شد. نسل‌های اولیه سیستم‌های مدیریت پایگاه داده فاقد پیاده سازی تراکنش بودند و بهمین دلیل توسعه دهندگان کار بسیار مشکلی در شبیه سازی این واحد‌های یکپارچه منطقی داشتند. خوشبختانه اکثر DBMS‌های امروزی این مفهوم مهم را پشتیبانی می‌کنند و نیازی به نگرانی در مورد پیاده سازی آن نیست. تنها کاری که لازم است انجام گیرد کسب مهارت در زمینه استفاده از آنهاست.
تعریف تراکنش‌ها و مشخص کردن عملیات موجود در آنها اغلب توسط خود توسعه دهنده برنامه صورت می‌گیرد. اوست که تعیین می‌کند تراکنشش باید چه عملیاتی را با چه ترتیبی انجام دهد. اما در کنار این قسم از تراکنش‌ها که توسط کاربران تعریف می‌شود، تراکنش‌های دیگری نیز وجود دارند که توسط خود سیستم مدیریت پایگاه داده تعریف می‌شوند. به این قبیل تراکنش‌ها که واحد‌های کاری بسیار کوچک و عموما تجزیه ناپذیری هستند تراکنش‌های خودکار یا auto transactions گفته می‌شود. بعنوان مثال اگر ما تراکنشی را تعریف کرده باشیم که شامل یک عمل خواندن و یک عمل درج باشد، در هنگام اجرا سیستم این تراکنش را به دو تراکنش کوچکتر می‌شکند که در یکی عمل خواندن و در دیگری عملی نوشتن و درج را انجام می‌دهد. البته توجه داشته باشید که اگر چه این دو عملیات جدا و مستقل از هم اجرا می‌شوند اما رابطه منطقی آنها با یکدیگر  حفظ می‌شود و در صورت خللی در یکی از آنها اثر دیگری نیز بازگردانده شده و پایگاه داده دوباره به حالت قبل از جرا برگردانده می‌شود. به این کار عمل undo شدن تراکنش گفته می‌شود. 
 
گفتیم که تعریف تراکنش توسط کاربر صورت می‌پذیرد و مدیریت آن بر عهده پایگاه داده قرار می‌گیرد. در این میان نکته حائز اهمیتی وجود دارد که در اینجا باید به آن اشاره شود. اندازه تراکنش نقشی بسیار موثر در کارایی پایگاه داده ایفا می‌کند. توجه داشته باشید که اندازه تراکنش‌ها نباید خیلی بزرگ باشد. چراکه منجر به بزرگ شدن بیرویه فایل مربوط به ثبت وقایع پایگاه داده (log file) می‌گردد. تمامی علیات تاثیر گذار بر روی پایگاه داده در این فایل ثبت می‌شوند تا در موقع لزوم بتوان با استفاده از عمل بازیابی و ترمیم پایگاه داده (recovery) را انجام داد. بزرگ بودن این فایل در هنگام ترمیم می‌تواند بر روی کارایی تاثیر گذار باشد. علاوه بر این موضوع اندازه تراکنش‌ها اثر سوء دیگری نیز می‌تواند در پی داشته باشد و آن محدود نمودن درجه همروندی است. یعنی اگر اندازه تراکنش بیش از حد معمول باشد ممکن است بر روی تعداد تراکنش هایی که می‌توانند بطور موازی و همزمان اجرا شوند تاثیر منفی بگذارد. چرا که معمولا در آغاز تراکنش بر روی منابعی که مورد استفاده تراکنش قرار می‌گیرد قفل گذاری می‌شود تا بگونه ای مسئله نواحی بحرانی حل شود. این قفل‌ها زمانی آزاد می‌شوند که تمامی عملیات داخل تراکنش بطور کامل اجرا شده باشند یا اینکه مشکلی در حین اجرا بوجود آید. در این صورت هرچه تراکنش بزرگ‌تر باشد اجرای آن بیشتر طول خواهد کشید و در نتیجه قفل‌های آن نیز دیر‌تر آزاد می‌شوند. بدین ترتیب سایر تراکنش هایی که می‌خواهند از منابع مشترک استفاده کنند باید تا پایان اجرای تراکنش بزرگ ما منتظر بمانند. این مسئله یعنی کاهش درجه اجرای موازی با همروندی که اگر در سیستم‌های بزرگ به آن دقت نشود به گلوگاهی تبدیل خواهد شد و کارایی را به نحو قابل توجهی کاهش می‌دهد.
 
 تعریف تراکنش‌ها :
بدنه اصلی هر تراکنش را چهار کلمه کلیدی تشکیل می‌دهند که البته ممکن است صریحا در تعریف توسط کاربر لحاظ نشوند اما این چهار کلمه کلیدی باید در تمامی تراکنش‌ها چه بصورت صریح و چه بصورت ضمنی آورده شوند. این کلمات عبارتند از BEGIN TRANSACTION، END TRANSACTION، ROLLBACK و COMMIT. کلمات کلیدی BEGIN TRANSACTION و END TRANSACTION  همانطور که از نامشان پیداست آغاز و پایان یک تراکنش را نشان می‌دهد. اینکه تراکنش از چه نقطه ای آغاز و در چه نقطه ای به پایان رسیده است برای مدیریت آن بسیار مهم و حیاتی است بخصوص در مواقعی که در حین انجام مشکلی پیش بیاید. از کلمه کلیدی ROLLBACK هنگامی استفاده می‌کنیم که بخواهیم تغییراتی که تا این لحظه بر روی پایگاه داده صورت گرفته است را مجددا بی اثر کنیم و پایگاه داده را به حالت پیش از شروع تراکنش بازگردانیم. توجه داشته باشید که در برخی از مواقع ممکن است این کلمه را خودمان در بدنه تراکنش مستقیما قرار دهیم. بعنوان مثال یک خطای منطقی را در بخشی از روال انجام تراکنش با یک عبارت شرطی تشخیص می‌دهیم و با استفاده از ROLLBACK به مدیریت پایگاه داده اعلام می‌کنیم که عملیات بازگردانی را انجام بده. گاهی ممکن است ما صریحا این کلمه را در تراکنش نیاورده باشیم اما درحین انجام تراکنش خطایی رخ دهد، در این صورت خود سیستم مدیریت پایگاه داده خطا را شناسایی کرده و عملیات مربوط به ROLLBACK را انجام می‌دهد تا صحت و سازگاری پایگاه داده حفظ گردد. کلمه کلیدی COMMIT نیز باید در انتهای تراکنش آورده شود تا به مدیریت پایگاه داده اعلام شود که عملیات کامل شده است و تغییرات باید در پایگاه داده بطور فیزیکی اعمال شوند. توجه داشته باشید که تا زمانی که مدیریت پایگاه داده به دستور COMMIT نرسیده باشد، تغییرات را جهت اعمال بر روی حافظه فیزیکی به واحد مدیریت حافظه نمی‌دهد و بنابراین این تغییرات تا پیش از COMMIT از چشم سایر کاربران مخفی خواهد ماند.
 
نکته ای که در اینجا وجود دارد این است که فرمان COMMIT به معنی این نیست که بلافاصله تغییرات بر روی دیسک و حافظه جانبی نوشته می‌شود. بلکه به این معنی است که تمامی عملیات تراکنش با موفقیت انجام شده است و سیستم مدیریت پایگاه می‌تواند آنها را برای نوشته شدن در حافظه جانبی به واحد مدیریت حافظه تحویل دهد. در اینجاست که یکی دیگر از پیچیدگی‌های طراحی سیستم مدیریت پایگاه داده روشن می‌شود و آن اینست که این سیستم باید بنحوی این داده‌ها را در فاصله بین COMMIT و نوشته شدن در حافظه برای سایر کاربران قابل مشاهده نماید. 
 
در ادامه نمونه ای از یک تراکنش را مشاهده می‌کنید :
BEGIN TRANSACTION;
INSERT INTO SP RELATION {S#  S#(‘S5’), P#  P#(‘P1’), 
                    QTY  QTY(1000)}};
IF any error occurred THEN GOTO UNDO; END IF;
UPDATE P WHERE P# = P#(‘P1’)
    TOTAL:=TOTAL + QTY(1000);
IF any error occurred THEN GOTO UNDO; END IF;
COMMIT;
GOTO FINISH;
UNDO:  ROLLBACK;
FINISH: RETURN;
همانطور که مشاهده می‌کنید تراکنش بالا دارای تمامی بخش‌های اصلی تراکنش که ذکر شد می‌باشد. البته این امکان وجود دارد که صراحتا این کلمات را در تعریف بدنه تراکنش نیاوریم. بعنوان مثال می‌توان از آوردن COMMIT صرف نظر کرد. در این صورت خود سیستم مدیریت پایگاه داده پس از اجرای آخرین دستور تراکنش در صورتی که هیچ خطایی رخ نداده باشد بطور خودکار عمل COMMIT را انجام می‌دهد. این امر در مورد ROLLBACK و END نیز صادق است. اما در مورد BEGIN TRANSACTION نکته ای وجود دارد و آن اینست که ما باید به پایگاه داده اعلام کنیم که بطور خودکار در پایان یک تراکنش برای شروع تراکنش بعدی BEGIN TRANSACTION را لحاظ کند. این کار را باید با دستور SET IMPLICIT TRANSACTION ON انجام دهیم.
گفتیم که وقوع خطا می‌تواند توسط برنامه نویس شناسایی شود و یا توسط سیستم. یک نمونه از تشخیص خطا توسط برنامه نویس را در مثال بالا مشاهده می‌کنید. عموما دراین قبیل خطا‌ها پس از انجام عمل ROLLBACK تراکنش UNDO شده و اجرای آن متوقف می‌شود که اصطلاحا می‌گوییم تراکنش ABORT می‌شود. اما در مورد خطاهایی که خود سیستم تشخیص می‌دهد وضع به این منوال نیست. در شرایط خطا، سیستم پس از UNDO کردن تراکنش عموما آن را ABORT نمی‌کند بلکه مجددا اجرا می‌کند که به این عمل REDO گفته می‌شود. در بخش‌های بعدی بطور کامل در مورد دو عمل REDO  و UNDO بحث خواهیم کرد.
 
ویژگی‌های تراکنش‌ها :
هر تراکنشی که در سیستم اجرا میشود باید دارای چهار ویژگی باشد. در حقیقت این ویژگی‌ها باید به نحوی تامین شوند تا مقصود و هدف کلی تراکنش‌ها که بردن پایگاه داده از یک وضعیت صحیح به وضعیت صحیح دیگری است برآورده شود. در ادامه هر کدام را یک به یک شرح می‌دهیم :
 
Atomicity:
اولین ویژگی ای که یک تراکنش باید داشته باشد اینست که اثری که بر روی پایگاه داده ما می‌گذارد اثری کامل و بدون نقص باشد. به این معنا که اگر قرار است مجموعه از عملیات تغییراتی را اعمال کنند باید تمامی آن تغییرات بر روی جداول اعمال شوند. در صورتی که حتی یکی از عملیات با مشکل مواجه شود باید تاثیرات عملیات قبلی بازگردانده شوند. به بیانی ساده‌تر در تراکنش یا تمامی عملیات باید بطور کامل انجام شوند و یا هیچ یک از آنها نباید اجرا شده و اثرگذار باشند. به این ویژگی Atomicity گفته می‌شود.
 
توجه داشته باشید که در حین اجرای یک تراکنش احتمالا پایگاه داده به وضعیت غیر سازگار و نادرست خواهد رفت. یکی از وظایف سیستم مدیریت پایگاه داده اینست که این وضعیت ناسازگار را از دید سایر تراکنش‌ها مخفی بسازد تا زمانی که تراکنش COMMIT شود.
 
در مورد Atomicity در برخی مقالات و مطالب آموزشی گفته می‌شود که این مفهوم یعنی تراکنش نباید قابل شکسته شدن باشد که این تعریف چندان صحیحی از Atomicity نمی‌باشد. چراکه یک تراکنش در حین اجرا ممکن است بار‌ها و بارها شکسته شود و یا از یک تراکنش بر روی تراکنش دیگری سوئیچ شود. بنابراین مراد از Atomicity همان واحد کاری کامل است نه واحد کاری غیر قابل شکسته شدن.
 
 
Consistency:
تراکنش باید تغییرات را به گونه ای اعمال کند که پایگاه داده را از وضعیت صحیح به وضعیت صحیح دیگری ببرد.از آنجا که صحت پایگاه داده را قوانین جامعیت پایگاه داده (integrity rules) تضمین می‌کنند بنابراین تراکنش باید تغییرات را بگونه ای اعمال کند که این قوانین نقض نشوند. به این خاصیت از تراکنش‌ها Consistency گفته می‌شود.
 
Isolation:
عموما برنامه‌های مبتنی بر پایگاه در دنیای واقعی برنامه هایی چند کاربره هستند که در برخی از آنها ممکن است میلیون‌ها تراکنش بطور همزمان با یکدیگر در حال اجرا باشند. در چنین حجم بالایی یکی از مسائلی که مطرح می‌شود اینست که تراکنش‌های موازی تاثیر سوئی بر روی یکدیگر نداشته باشند. بعنوان مثال یکی از مشکلاتی که در اجرای همروند و موازی تراکنش‌ها ممکن است رخ دهد مشکل lost update می‌باشد. بر همین اساس یکی دیگر از ویژگی هایی که یک تراکنش باید داشته باشد که اینست که اثر سوئی بر روی تراکنش‌های همروند دیگر نداشته باشد. به این ویژگی Isolation گفته می‌شود.
در مورد ایزولاسیون (isolation) تراکنش‌ها باید گفت که ایزولاسیون سطوح و درجه بندی هایی دارد که هر کدام از این سطوح مشخص می‌کنند که تراکنش‌ها تا چه حدی اجازه دارند بر روی هم تاثیر گذار باشند. در واقع این سطوح، میزان عایق بندی تراکنش‌ها را نسبت به یکدیگر مشخص می‌کنند. هرچه درجه ایزولاسیون بالاتر باشند به این معنی است که تراکنش‌ها تاثیر کمتری بر روی یکدیگر خواهند داشت. خوب در ظاهر ممکن است این قضیه بسیار خوب در نظر بیاید چرا که به ما اطمینان  می دهد که اثر ناخواسته ای بر روی یکدیگر نخواهند داشت. اما باید این نکته را نیز در نظر بگیریم که هر چه درجه ایزولاسیون بالاتر باشد درجه همروندی (concurrency) پایین می‌آید و این به معنای کاهش امکان پردازش موازی تراکنش‌ها می‌باشد. این مسئله در مورد پایگاه‌های داده بسیار بزرگ که میلیون‌ها تراکنش همزمان در خواست اجرا داده می‌شوند به یک مسئله بحرانی و یک گلوگاه می‌تواند تبدیل شود. بنابراین تعیین درجه ایزولاسیون بسیار مهم است و باید با درنظر گرفته شرایط پروژه انجام گیرد. 
اینکه پایگاه داده ما در چه سطحی از ایزولاسیون باید عمل نماید توسط کاربر تعیین می‌شود. البته بحث در مورد ارجای موازی تراکنش‌ها و ایزولاسیون آنها بسیار مفصل است و انشاالله در مطلبی دیگر به آن خواهیم پرداخت.
 
 
Durability:
تغییراتی که تراکنش‌ها بر روی پایگاه داده می‌گذارند باید بعد از COMMIT شدن آن پایدار و قابل مشاهده باشند. به این خاصیت durability گفته می‌شود.
 
وضعیت‌های یک تراکنش :
تراکنش‌ها در سیستم همانند یک موجودیت (entity) فعال است هستند. همانطور که می‌دانید ساده‌ترین موجودیت فعال در سیستم فرآیند‌ها (process) می‌باشند که cpu را بعنوان یک ابزار در اختیار گرفته و وظایفی را انجام می‌دهند. تراکنش نیز یک موجودیت فعال می‌باشد و همانند سایر موجودیت‌های فعال دارای وضعیت هایی (state) می‌باشند که در ادامه هریک شرح داده شده اند :
 
فعال (Active) : تراکنشی که در حالت اجرا است در وضعیت فعال می‌باشد.
کامیت جزئی (Partially Committed): پس از اجرای آخرین دستور تراکنش به وضعیت کامیت جزئی می‌رود.
شکست (Failed): در این وضعیت، در روند اجرا خطایی رخ داده و اجرای ادامه تراکنش امکان پذیر نمی‌باشد.
خاتمه (Aborted): پس از تشخیص خطا تراکنش می‌تواند به وضعیت Aborted که در انجا اجرا متوفق شده و تغییرات ROLLBACK می‌شوند.
Committed: در این وضعیت اجرای تراکنش با موفقیت انجام شده و تراکنش پایان می‌پذیرد.
 
در ادامه نمودار حالت تراکنش‌ها نشاد داده شده است :


نکته ای که در اینجا لازم به ذکر است اینست که در حالت پس از حالت شکست به دو شکل امکان ادامه کار وجود دارد. در صورتی که خطای منطقی در تراکنش دیده شود که عموما توسط کاربر تشخیص داده می‌شود تراکش پس از شکست به حالت خاتمه برده می‌شود و کار تمام است. اما در برخی از شرایط خطایی سیستم توسط خود سیستم رخ می‌دهد. که در چنین حالاتی پس از شکست تراکنش مجددا تراکنش ممکن است به حالت فعال برگردانده شود و اجرای ان دوباره از ابتدای تراکنش شروع شود. به این وضعیت اصطلاحا REDO شدن تراکنش گفته می‌شود که در بخش RECOVERY و ترمیم پایگاه داده باید به آن پرداخته شود.
 
اعمال زمان COMMIT:
در زمان COMMIT (بصورت صریح و یا ضمنی)  باید اعمالی انجام شود که در اینجا به آن می‌پردازیم. اولین کاری که صورت می‌گیرد اینست که سیگنالی به DBMS ارسال می‌شود مبنی بر اینکه تراکنش با موفقیت به پایان رسیده است. پس از اینکار سیستم مدیریت پایگاه داده شروع به آزاد کردن قفل هایی می‌کند که در طول اجرای تراکنش بر روی منابع مختلف پایگاه داده زده شده است تا از تاثیر سوء تراکنش‌ها بر روی یکدیگر جلوگیری به عمل آید. علاوه بر کار ذکر شده تغییراتی که توسط تراکنش داده شده است باید پایدار و قابل رویت توسط سایر تراکنش‌ها گردد.
همانطور که در بخش ابتدایی این مطلب آموزشی اشاره کردیم COMMIT به معنی نوشته شدن تغییرات بر روی دیسک سخت نیست. سیستم مدیریت پایگاه داده تنها درخواست نوشتن داده‌ها را به سیستم مدیریت حافظه می‌دهد و نوشتن ان بر عهده مدیریت حافظه می‌باشد. سیستم مدیریت پایگاه داده باید اطلاع داشته باشد که چه تغییراتی نوشته شده است و چه تغییراتی هنوز در حافظه نوشته نشده است. بنابراین یکی دیگر از پیچیدگی‌های طراحی سیستم‌های مدیریت پایگاه داده اینست که تغییراتی را برای سایرین قابل رویت کند که هنوز در حافظه سخت نوشته نشده است.
 
اعمال زمان ROLLBACK:
در زمان ROLLBACK ناموفق بودن تراکنش باید به DBMS اطلاع داده شود. پس از انکه سیستم مدیریت پایگاه داده مطلع شد تمامی تغییرات اعمال شده تا آن لحظه را UNDO می‌کند. البته توجه داشته باشید که در این زمان همانند زمان COMMIT قفل‌ها نیز آزاد می‌شوند تا سایر تراکنش‌ها بتوانند از منابع در اختیار این تراکنش استفاده کنند و درجه همروندی پایین نیاید.
 
پردازش پیام‌ها در زمان اجرای تراکنش‌ها :
به مثال زیر توجه کنید. 

 Read Sav_Amt
  Sav_Amt := Sav-Amt - 500
    if Sav-Amt <0 then do
       put (“insufficient fund”)
       rollback
       end
    else do
      Write Sav_Amt
      Read Chk_Amt
      Chk_Amt := Chk_Amt + 500
      Write Chk-Amt
      put (“transfer complete”)
End transaction
در تراکنش بالا مبلغ 500 دلار از حساب فردی برداشته شده و به حساب دیگر او منتقل می‌شود. همانطور که مشاهده می‌کنید در خلال اجرای یک تراکنش ممکن است پیام هایی را به کاربر نمایش دهیم. حال در نظر بگیرید که در حین اجرا ما پیامی را در خروجی نمایش می‌دهیم و پس از آن تراکنش با شکست مواجه شده و ROLLBACK می‌گردد. در این شرایط پیامی به کاربر مبنی بر انتقال موفق نمایش داده شده است در حالی که در عمل تراکنش با شکست رو به رو شده است. برای حل این مشکل در ضمن کار پیام‌های مختلفی که در خروجی باید نمایش داده شوند بافر می‌شوند تا پس از COMMIT یا ROLLBACK شدن به کاربر نمایش داده شوند. توجه داشته باشید که در زمان  بافر کردن پیام ها، انها در دو گره پیام‌های مربوط به COMMIT و پیام‌های زمان ROLLBACK تقسیم می‌شوند تا هرکدام در شرایط خود نمایش داد شوند. این عمل توسط زیر سیستمی از DBMS بنام سیستم مدیریت ارتباطات داده ای (Data Communication Manager) انجام می‌گیرد.
 
انواع تراکنش‌ها :
تراکنش‌ها انواع و اقسام مختلفی دارند که به سبب پیچیدگی بعضی از آنها به لحاظ پیاده سازی ممکن است آنها را در برخی از پایگاه داده‌ها نداشته باشیم.
 
Flat Transactions:
ساده‌ترین نوع تراکنش‌ها می‌باشند که در تمامی پایگاه‌های داده پشتیبانی می‌شوند و مثال هایی که تا کنون در این نقاله زده شد از این دست می‌باشند.
 
Distributed Transactions:
این قبیل تراکنش‌ها مربوط به پایگاه داده‌های توزیع شده می‌باشند که داده‌های آنها بر روی ماشین‌های مختلفی قرار دارند. بر روی هریک از این ماشین‌ها ممکن است DBMS‌های مختلفی نیز نصب شده باشد که هر یک سیستم مدیریتی مربطو به خود را دارند. از آنجایی که هر یک از این ماشین‌ها یک سیستم مدیریت پایگاه داده مستقل دارند بنابراین قوانین جامعیتی محلی ای را نیز باید لحاظ نمایند. البته باید توجه داشت که علاوع بر این قوانین محلی یک سری قوانین سراسری نیز وجود خواهد داشت که مربوط به کل پایگاه داده توزیع شده می‌باشد. بعنوان مثال سیستم در یکی سیستم دانشگاهی که در شهر‌های مختلفی توزیع شده است، ممکن است بخواهیم تعداد کل دانشجویان ثبت نام شده در سیستم از هزار نفر بیشتر نباشد. عموما درچنین سیستم هایی یک DBMS مدیریت کننده نیز وجود دارد که مسئول برقراری هماهنگی بین سایر DBMS‌ها و نیز اعمال اینگونه قوانین جامعیتی سراسری می‌باشد.  
تراکنش‌های توزیع شده یک یا چند تراکنش جزئی تشکیل شده اند که ممکن است هریک از آنها مربوط به یکی از DBMS‌های سیستم باشد. چنین تراکنش هایی معمولا ابتدا توسط سیستم مدیریتی مرکزی دریافت می‌شوند و سپس هرکدام از پرس و جو‌های داخلی آن به DBMS مربوطه ارسال می‌گردد. اجرای هرکدام از پرس و جو‌های جزئی (که خود می‌توانند تراکنشی مستقل نیر باشند) بطور مستقل و محلی بر روی ماشین مربوطه اجرا شده و در انتها نیز نتیجه اجرا به سیستم مدیریتی باز گردانده می‌شود. سیستم مدیریتی مرکزی منتظر می‌ماند که تمامی تراکنش‌ها اعلام COMMIT کنند تا از انجام موفقیت آمیز همه انها اطمینان حاصل نماید. پس از کسب اطمینان کل تراکنش توسط این سیستم مرکزی COMMIT شده و در نتیجه تغییرات بر روی پایگاه داده توزیه شده اعمال می‌شوند. به این سیاست COMMIT کردن، کامیت دو مرحله ای یا Two-phase Commit گفته می‌شود. توجه داشته باشید که در صورتی که هریک از DBMS‌ها اعلام شکست نمایند تمامی تراکنش توزیع شده ROLLBACK می‌گردد.  
tx_begin();
            execute T1  //at site D
            execute T2  //at site C
            Execute T3  //at site B
            …
tX_commit ();
همانطور که در مثال بالا مشاهده می‌کنید تراکنش اصلی از سه تراکنش T1، T2 و T3 تشکیل شده که مر بوط به سه سایت متفاوت می‌باشند. در زمانی تراکنش اصلی COMMIT خواهد شد که هر سه سایت اعلام موفقیت کنند.
 
تراکنش‌های تو در تو (Nested Transaction):
این نوع از تراکنش نسبت به دو نوع تراکنش قبلی پیچیدگی بیشتری به لحاظ پیاده سازی و مدیریت دارند. این گونه تراکنش‌ها عموما واحد‌های کاری بزرگی هستند که در داخل آنها درختی از تراکنش‌های تو در تو را داریم که مجموعه تمامی انها در نهایت یک کار واحد بلحاظ منطقی را انجام می‌دهند. هر یک از تراکنش‌های داخلی بعنوان یک گره در این ساختار درختی قرار دارند که می‌توانند پدر و یا فرزندانی داشته باشند.
 
در تراکنش‌های تو در تو شرایطی حاکم است.
هر گره در ساختار درختی تراکنش تنها قادر به دیدن برادر‌های خود می‌باشد. به بیان دیگر فرزندان برادران خود را نمی‌بیند و نسبت به انها هیچ اطلاعی ندارد. 
در تراکنش‌های تو در تو امکان اجرای موازی فرزندان یک گره وجود دارد.
امکان اجرای موازی تراکنش‌ها منجر می‌شود به این که تراکنش‌های داخلی قادر به دیدن خروجی حاصل از اجرا همدیگر نباشند.
هر تراکنشی به طور مستقل ویژگی atomicity را دارد اما پایداری (durability) و کامیت شدن آنها وابسته به پدرانشان می‌باشد.
در صورتی که پدری تصمیم بگیرد می‌تواند تمامی زیر تراکنش هایش را خاتمه (abort) دهد.
در تراکنش‌های موازی COMMIT شدن یک گره پدر به دو صورت امکان پذیر است. 
 
حالت AND: در این حالت یک تراکنش در صورتی کامیت خواهد شده که تمامی فرزندان آن با موفقیت اجرا و COMMIT شده باشند.
حالت OR: در این حالت اگر حتی یکی از تراکنش‌های فرزند نیز موفق به COMMIT شده باشد تراکنش پدر نیز COMMIT خواهد شد.
 
تراکنش‌های چند سطحی (Multi-level Transactions) :
این نوع نیز همانند تراکنش‌های تو در تو پیچیده است. از نظر ساختاری تراکنش‌های چند سطحی مشابه تراکنش‌های تو در تو می‌باشند ولی به لحاظ مفهومی با یکدیگر متفاوت هستند. اولین تفاوت موجود بین این دو نوع اینست که هر زیر تراکنشی قادر است خروجی زیر تراکنش‌های دیگر را ببیند. این مسئله باعث می‌شود که تنوانیم زیر تراکنش‌ها را بصورت همروند و موازی اجرا کنیم که این دومین تفاوت مفهومی بین این دو می‌باشد. هنگامی که زیر تراکنش کامل شد (COMMIT) تمامی قفل‌های مربوط به خود را آزاد می‌کند که این مورد نیز در مورد تراکنش‌های تو در تو صادق نمی‌باشد. یکی از مهمترین تفاوت‌های دیگر بین این دو نوع در اینست که در تراکنش‌های چند سطحی تمامی برگ‌ها در یک سطح از درخت قرار دارند و تنها تراکنش‌های برگ هستند که مستقیما به پایگاه داده مراجعه می‌کنند. در مورد کایت شدن نیز شروط مربوط به تراکنش‌های تو در تو در اینجا وجود ندارند و زیر تراکنش‌ها می‌توانند بدون هیچ شرطی کامیت شوند.
 
تراکنش‌های زنجیره ای (Chained Transaction):
همانطور که از نام این نوع از تراکنش‌ها پیداست، این تراکنش‌ها از زنجیره ای از زیر تراکنش‌های پی در پی تشکیل شده اند. تا زمانی که تمامی حلقه‌های این زنجیر با موفقیت اجرا نشوند سیستم به حالت سازگاری نخواهد نرفت. دراین نوع از تراکنش‌های COMMIT هر حلقه باعث پایداری شدن (durable) داده‌های در پایگاه داده خواهد شد. این مسئله ممکن است پایگاه داده را به وضعیت ناسازگاری ببرد. در هنگام کامیت شدن هر حلقه قفل‌های مربوط به آن نیز آزاد می‌شود.
 
حلقه‌های مختلف زنجیره تراکنشی می‌توانند با یکدیگر تبادل اطلاعات کنند. البته توجه داشته باشید که منابعی که هر کدام از آنها بر روی آن کار می‌کنند با دیگری متفاوت می‌باشد. بعنوان نمونه تراکنشی را نظر بگیرد که قصد دارد متوسط مبلغ مکالمه تلفن همراه مشترکان یک مخابرات را محاسبه کند. بدلیل تعداد بالای مشترکان ممکن است این تراکنش را در قالب یک تراکنش زنجیره ای پیاده سازی کنیم که هر حلقه از آن مسئول محاسبه این مبلغ برای ده هزار نفر از کاربران باشد. توجه داشته باشید که برای بدست آوردن مقدار متوسط نیاز داریم که هر زیر تراکنش‌ها قادر به تبادل اطلاعات باشند. از طرفی منابع مورد استفاده آنها (رکورد ها) با یکدیگر متفاوت خواهد بود و نمی‌توانند تغییرات یکدیگر را ببینند. سوالی که مطرح می‌شود اینست که مبادله اطلاعات بین حلقه‌های تراکنش به چه صورت باید انجام شود؟ در جواب این سوال باید گفت که مبادله اطلاعات بین تراکنش‌ها از طریق متغیر‌های رابطه ای که هما متغیر‌های پایگاه داده هستند انجام می‌گیرد.
 
 
SavePoint:
در برخی شرایط ممکن است بخواهیم در هنگام ROLLBACK مجددا به ابتدای تراکنش باز نگردیم تا مجبور باشیم دوباره کار را از ابتدا از سر بگیریم. بعنوان مثال تا قسمتی از تراکنش پیش رفتیم، به خطایی بر خورد می‌کنیم و می‌خواهیم از نقطه ای خاص از تراکنش کا را از سر بگیریم. در چنین کاربرد هایی از ابزاری بنام SavePoint استفاده می‌کنم.
 
برای روشن‌تر شدن مفهوم SavePoint فرض کنید قصد داریم بلیطی از تهران به سیدنی رزرو کنیم. برای این منظور ابتدا عمل رزرواسیون را از تهران به دوبی انجام می‌دهیم و سپس از دوبی به سنگاپور و در نهایت از سنگاپور به سیدنی. حال در این بین می‌توانیم در نقطه تهران – دوبی SavePoint قرار دهیم تا در صورت بروز هرگونه خطا مجددا رزرواسیون را از ابتدا آغاز نکنیم. اگر در هنگام رزرو بلیط دوبی – سنگاپور خطایی بروز دهد می‌توانیم به نقطه تهران – دوبی ROLLBACK کنیم و از آنجا مسیر دیگری را انتخاب کنیم. توجه داشته باشید که ROLLBACK به SavePoint وضعیت پایگاه داده به همان نقطه بازگردانده می‌شود. 
begin transaction();
            s1;
            sp1:= create savepoint(0);
            s2;
            sp2:= create savepoint(0);
            if (condition)
            rollback (spi);
            …
            …
            commit
Auto Transaction:
این قبیل تراکنش‌ها تراکنش‌های کوچکی هستند  که توسط سیستم تعریف می‌شوند. بعنوان مثال سیستم برای انجام دستورات زیر تراکنش تعریف می‌کند :
Alter table, Create, delete, insert, open, drop, fetch, grant, revoke, select, truncate table, update
یکی از علت‌های این امر اینست که در صورت بروز خطا در حین این تراکنش‌های خود کار امکان اجرای مجدد هر کدام فراهم گردد.
 
شروع تراکنش‌ها :
همانطور که گفته شد برای شروع تراکنش‌ها می‌توانیم صراحتا از BEGIN TRANSACTION استفاده کنیم. البته راهکار دیگری نیز وجود دارد که در آن می‌توانیم به DBMS اعلام کنیم که با پایان یک تراکنش پیش از شروع تراکنش بعدی BEGIN TRANSACTION را قرار بده. برای این منظور از دستور زیر استفاده می‌کنیم :
Set implicit_transaction on
برخی از ویژگی‌های تراکنش‌ها را می‌توان تغییر داد. بعنوان مثال می‌توان گفت که تراکنش جاری تنها اجازه خواندن از پایگاه داده را دارد. در این حالت از دستور زیر می‌توان استفاده نمود : 
SET TRANSACTION READ ONLY
همچنین میتوان اجازه تغییر را  به آن داد :
SET TRANSACTION READ WRITE
علاوه بر موارد بالا می‌توان سطح ایزولاسیون تراکنش را با دستود SET تغییر داد. این سطوح در زیر آورده شده اند که بحث در مورد آنها را به مقاله دیگر در مقوله همروندی موکول می‌کنیم. 
READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, SERIALIZABLE
موفق و پیروز باشید