مطالب
الگوریتم‌های داده کاوی در SQL Server Data Tools یا SSDT - قسمت سوم - الگوریتم‌های Decision trees و Linear Regression

در قسمت قبل با الگوریتم Naive Bayes به عنوان الگوریتمی جهت شروع امر داده کاوی آشنا شدیم. در این قسمت به الگوریتم‌های Decision trees و Linear Regression می‌پردازیم.


مقدمه 

خودتان را جای یک متصدی اعطای وام بانکی درنظر بگیرید. یک زوج جوان برای دریافت وام به بانک مراجعه می‌کنند. برای اعطای وام، ممکن است جوان بودن آن‌ها یک علامت مثبت نباشد. حال شما شروع به مصاحبه با آن‌ها می‌کنید و متوجه می‌شوید که ازدواج کرده‌اند. متاهل بودن آن‌ها یک نکته مثبت است. همچنین متوجه می‌شوید که هر دو یک شغل دارند و به مدت سه سال است که مشغول همان کار هستند. درست حدس زدید، پایداری شغل می‌تواند یک نکته مثبت باشد. پس از بررسی حساب بانکی آن‌ها متوجه می‌شوید که در یکسال اخیر سه چک برگشتی دارند. این موضوع، یک منفی بزرگ را سر راه قرار می‌دهد. درنهایت، شما جهت تصمیم گیری برای اعطای وام، براساس تجربه کاری خود در ذهنتان یک درخت ایجاد می‌کنید که رتبه بندی امتیاز برای اعطای وام را تسهیل می‌کند. کاری که الگوریتم Decision Trees انجام می‌دهد شبیه به همین کار است.


چرا الگوریتم درخت تصمیم؟

این الگوریتم به دلایل سرعت و کارآیی بالا در آماده سازی داده‌ها و دقت بالا و درک راحت الگو توسط انسان، محبوب‌ترین تکنیک داده کاوی است. رایج‌ترین کاری که معمولا با استفاده از این الگوریتم انجام می‌گردد دسته بندی داده‌ها است. برای مثال متقاضی وام می‌تواند به دو دسته با درجه ریسک پایین و درجه ریسک بالا تقسیم شود و این الگوریتم به ما کمک می‌کند تا قاعده‌ای برای انجام این دسته بندی بر اساس داده‌های قبلی پیدا نماییم.


تفسیر الگوریتم

درختی که توسط این الگوریتم تولید می‌شود به شکل زیر تفسیر می‌گردد: هر نود شامل یک نوار هیستوگرام (پیشینه نما) با رنگ‌های مختلف می‌باشد که حالات مختلفی از خروجی را نشان می‌دهد. هر مسیر از ریشه به یک نود یک قاعده را شرح می‌دهد.


شرح نوار ابزار


  • کمبوی مربوط به ،Tree شامل درخت‌های تصمیم مربوط به خروجی‌ها (ویژگی‌هایی که می‌خواهیم پیش بینی کنیم) می‌باشد.
  • Default Expansion اندازه درخت را مشخص می‌کند. به عبارتی مشخص می‌کند که درخت چند سطحی باشد.
  • هیستوگرام تعداد حالات ویژگی قابل پیش بینی را مشخص می‌کند که از طریق آن می‌توان در یک نگاه با توجه به رنگ حالت مورد نظر در هر نود، یک مسیر مشخص را در درخت طی کرد. برای مثال فرض کنید که یک ویژگی دارای 10 حالت باشد که برای شما 5 حالت از این 10 حالت مهمتر است. بنابراین تعداد را روی 5 تنظیم می‌کنیم. مابقی حالات در یک گروه قرار گرفته به رنگ خاکستری نشان داده می‌شوند.
  • کمبوی Background جهت کنترل رنگ پیش زمینه نود‌ها می‌باشد. در حالت پیش فرض، این کمبو تمامی حالات ویژگی مورد پیش بینی را در نظر می‌گیرد. در این حالت رنگ تیره‌تر نود نشان دهنده تعداد موردها در آن نود می‌باشد. هرچه این رنگ تیره‌تر باشد، یعنی موارد بیشتری در آن دسته قرار می‌گیرند. شما همچنین می‌توانید یک حالت خاص از ویژگی مورد پیش بینی را انتخاب کنید. در این حالت رنگ پس زمینه هر نود احتمال پیش بینی با توجه به حالت انتخاب شده را نشان می‌دهد. نود با پس زمینه پر رنگ‌تر احتمال بالاتری با توجه به حالت انتخاب شده دارد. 


آموزش بیش از اندازه

این الگوریتم، درخت را به صورت بازگشتی رشد می‌دهد. درنتیجه گاهی اوقات ممکن است که با یک درخت بزرگ مواجه شوید. این درخت می‌تواند شامل سطح‌ها و شاخه‌های زیادی باشد. بنابراین شامل قوانین زیادی هم خواهد بود. اما در نظر داشته باشید که ارتباط مستقیمی بین کیفیت پیش بینی و اندازه درخت وجود ندارد. حقیقت امر این است، هرگاه که درخت بیش از اندازه عمیق شود، بجای اینکه تعمیم قوانین صورت گیرد، آموزش حالات مختلف نشان داده می‌شود و این خوب نیست. الگوریتم درخت تصمیم مایکروسافت ویژگی دارد به نام forward pruning که رشد درخت را با استفاده از امتیاز بایزین کنترل می‌کند. به عبارتی زمانیکه اطلاعات کافی برای بخش کردن یک نود وجود نداشته باشد، از این امر جلوگیری می‌کند. این کار توسط پارامتر Complexity_Penalty انجام می‌گردد که مقداری اعشاری بین 0 و 1 را می‌گیرد. هرچه مقدار بالاتری به این پارامتر اختصاص داده شود، محدودیت بیشتری برای تقسیم درخت درنظر گرفته می‌شود و بنابراین سایز درخت کوچکتر می‌گردد.


پارامترهای الگوریتم درخت تصمیم

دسترسی به این پارامترها از طریق تب mining models  امکان پذیر می‌باشد. با کلیک بر روی الگوریتم پنجره، properties  آن نمایش داده خواهد شد حال می‌توان به بخش Algorithm Parameters  رفت و پارامترها را مقداردهی کرد. 

Complexity_Penalty : که توضیح آن در بخش "آموزش بیش از اندازه" آورده شد.

Minimum_Support : جهت تعیین مینیمم اندازه هر نود به کار می‌رود. برای مثال اگر مقدار 20 را به آن بدهیم، آنگاه هر تقسیم بندی که منجر به تولید نودهای فرزندی با اندازه کمتر از 20 شود، انجام نمی‌گردد. اغلب در مواردی که مجموعه داده دارای حالات گوناگون زیادی است، می‌توان مقدار این متغیر را بالا برد تا از آموزش بیش از اندازه جلوگیری کرد. پیش فرض این پارامتر 10 می‌باشد.

Score_Method : این پارامتر مشخص می‌کند که از کدام روش برای محاسبه امتیاز جهت بخش بندی درخت استفاده کنیم. سه مقدار 1، 3 و 4 را می‌گیرد. 1 از امتیاز انتروپی استفاده می‌کند، 3 از بایزین k2 و 4 از بایزین Dirichlet equivalent .

Split_Method : سه مقدار 1 تا 3 را می‌گیرد. فرض کنید که وضعیت تحصیل در یک مجموعه داده سه حالت را دارد: دیپلم، لیسانس، فوق لیسانس. اگر مقدار 1 را برای این پارامتر تعیین نماییم آنگاه حالت دودویی برای تقسیم نودها درخت درنظر گرفته می‌شود. یعنی دو حالت دیپلم و غیر دیپلم. حال اگر مقدار 2 را نظر بگیریم آنگاه تقسیم نودها براساس تمامی حالات درنظر گرفته می‌شود؛ در اینجا سه تا. مقدار 3 که مقدار پیش فرض نیز می‌باشد، انتخاب حالت 1 یا 2 را به عهده الگوریتم می‌گذارد.

Maximum_Input_Attributes : ماکزیمم ورودی را می‌توان از این طریق تعیین کرد. اگر تعداد ورودی‌ها بیشتر از این مقدار باشد، آنگاه فقط ورودی‌های مهم درنظر گرفته شده و مابقی نادیده گرفته می‌شوند.


Linear Regression:

این الگوریتم شبیه الگوریتم درخت تصمیم است. به همین دلیل هم در این مقاله گنجانده شده‌است؛ البته با این تفاوت که نوار هیستوگرام ندارد و در عوض دارای یک نوار الماسی است که توزیع متغیرهای قابل پیش بینی را نشان می‌دهد. این الگوریتم فقط برای ویژگی‌های continuous کاربرد دارد. خود الماس نیز نشان دهنده توزیع مقدار نود می‌باشد. عرض الماس دوبرابر انحراف معیار می‌باشد. بنابراین اگر الماس نازک باشد، پیش بینی برپایه آن نود دقیق‌تر است. هر نود شامل یک فرمول رگرسیون است که می‌توان از آن در داده کاوی بهره جست.

درکل رگرسیون شبیه به دسته بندی است با این تفاوت که رگرسیون می‌تواند ویژگی‌های پیوسته را پیش بینی کند. 
مطالب
کار با Areas در ASP.NET Core
کار با Areas را تا ASP.NET MVC 5.x می‌توانید در مطلب «ASP.NET MVC #14» مطالعه کنید. در ASP.NET Core، کلیات آن ثابت مانده‌است و تنظیمات ابتدایی آن اندکی تغییر کرده‌اند.


مفهوم Areas

Areas یکی از روش‌های ساماندهی برنامه‌های بزرگ، به نواحی کوچکتری مانند قسمت‌های مدیریتی، پشتیبانی از کاربران و غیره است. به این ترتیب می‌توان کنترلرها، Viewها و مدل‌های هر قسمت را از قسمتی دیگر، جدا کرد و مدیریت پروژه را ساده‌تر نمود. هر Area دارای ساختار پوشه‌های مرتبط به خود می‌باشد و به این نحو است که جداسازی این نواحی مختلف را میسر می‌کند؛ تا بهتر مشخص باشد که هر المانی متعلق است به چه ناحیه‌ای. به علاوه در این حالت می‌توان پروژه را بین چندین توسعه دهنده‌ی مختلف نیز تقسیم کرد؛ بدون اینکه در کار یکدیگر تداخلی ایجاد کنند.


ایجاد Areas

اگر با ASP.NET MVC 5.x کار کرده باشید، می‌دانید که ویژوال استودیو با کلیک راست بر روی پروژه‌ی جاری، گزینه افزودن یک Area جدید را به همراه دارد. یک چنین قابلیتی تا ASP.NET Core 1.1 به ابزارهای همراه آن افزوده نشده‌است. بنابراین تمام مراحل ذیل را باید دستی ایجاد کنید و هنوز قالب از پیش تعریف شده و ساده کننده‌‌ای برای اینکار وجود ندارد:


همانطور که در تصویر نیز ملاحظه می‌کنید، نیاز است در ریشه‌ی پروژه، پوشه‌ی جدیدی را به نام Areas ایجاد کرد. سپس در داخل این پوشه می‌توان نواحی مختلفی را با پوشه بندی‌های مجزایی ایجاد نمود. برای مثال در اینجا ناحیه‌ی Blog ایجاد شده‌است که در این ناحیه نیز پوشه‌های Controllers و Views آن باید به صورت دستی ایجاد شوند.


افزودن مسیریابی مرتبط با Areas

پس از اضافه کردن دستی پوشه‌های Areas و ناحیه‌ی جدید، به همراه ساختار پوشه‌های کنترلرها و Viewهای آن، اکنون نیاز است این ناحیه‌ی جدید را به سیستم مسیریابی معرفی نمود. برای این منظور به فایل آغازین برنامه مراجعه کرده و در متد Configure آن، تعریف جدید ذیل را اضافه می‌کنیم:
app.UseMvc(routes =>
{
    routes.MapRoute(
        name: "areas",
        template: "{area:exists}/{controller=Home}/{action=Index}/{id?}");
 
    routes.MapRoute(
        name: "default",
        template: "{controller=Home}/{action=Index}/{id?}"); 
});
مسیریابی پیش‌فرض را در مطلب «ارتقاء به ASP.NET Core 1.0 - قسمت 9 - بررسی تغییرات مسیریابی» پیشتر بررسی کرده‌ایم. در اینجا پیش از این مسیریابی، مسیریابی جدید areas تعریف شده‌است. قید exists در اینجا به معنای تنها استفاده‌ی از نواحی تعریف شده‌ی در برنامه‌ی جاری است و الگوی تعریف شده، تمام آن‌ها را شامل می‌شود و دیگر نیازی به تعریف مسیریابی جداگانه‌ای به ازای ایجاد هر Area جدید نیست (برخلاف ASP.NET MVC 5.x).


علامتگذاری کنترلرهای یک ناحیه

تمام اصول کار کردن با کنترلرهای یک ناحیه، مانند سایر کنترلرهای دیگر برنامه‌است؛ با یک تفاوت:
[Area("Blog")]
public class HomeController : Controller
{
    public IActionResult Index()
    {
        return View();
    }
}
در ASP.NET Core حتما نیاز است توسط ویژگی جدید Area، نام ناحیه‌ی کنترلر را صریحا مشخص کرد؛ در غیراینصورت، صرفنظر از محل تعریف این کنترلر، اطلاعات آن متعلق به هیچ ناحیه‌ای نبوده و وارد سیستم مسیریابی Areas نمی‌شود.

یک نکته: اگر از Attribute routing استفاده می‌کنید، توکن مرتبط با نواحی، [area] نام دارد:
 [Route("[area]/app/[controller]/actions/[action]/{id:weekday?}")]


فعالسازی Layout و Tag Helpers در Areas

اگر در همین حال، برنامه را اجرا و به مسیر http://localhost/blog مراجعه کنید، هرچند اطلاعات View متناظر با کنترلر Home و اکشن متد Index آن نمایش داده می‌شوند، اما این View نه layout دارد و نه Tag helpers آن پردازش شده‌اند. برای فعالسازی این دو مورد، دو فایل ViewStart.cshtml_ و ViewImports.cshtml_ را از پوشه‌ی views اصلی پروژه، به پوشه‌ی views این Area جدید کپی کنید. فایل ViewStart، نام و مسیر فایل layout پیش فرض ناحیه را مشخص می‌کند و فایل ViewImports حاوی تعاریف فعالسازی Tag helpers است:
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
 هر Area می‌تواند layout خاص خودش را داشته باشد؛ اما اگر فایل ViewStart آن به نحو ذیل مقدار دهی شود، به فایل اصلی واقع در پوشه‌ی Views/Shared/_Layout.cshtml ریشه‌ی پروژه، اشاره می‌کند.
 @{
 Layout = "_Layout";
}
و برای تغییر و یا مقداردهی صریح آن می‌توان به صورت ذیل عمل کرد:
 @{
 Layout = "~/Areas/Blog/Views/Shared/_Layout.cshtml";
}


Areas و تاثیر آن‌ها در حین لینک دهی به قسمت‌های مختلف برنامه

اگر قرار است لینکی به قسمتی واقع در همان Area جاری مرتبط شود، نیازی نیست تا هیچ نکته‌ی خاصی را درنظر گرفت و تولید لینک‌ها به نحو صحیحی صورت می‌گیرند:
 <a asp-action="Index" asp-controller="Home">Link</a>
اما اگر می‌خواهیم به ناحیه‌ی جدیدی به نام Services و کنترلر و اکشن متد خاصی از آن، از یک ناحیه‌ی دیگر لینک دهیم، نیاز است asp-area را صریحا ذکر کرد:
 <a asp-area="Services" asp-controller="Home" asp-action="Index">Go to Services’ Home Page</a>
به علاوه  اگر قصد تعریف لینکی را به یک اکشن متد واقع در کنترلری که در هیچ ناحیه‌ای قرار ندارد، داشته باشیم، باید asp-area آن‌را خالی ذکر کنیم:
 <a asp-action="Index" asp-controller="Home" asp-area="">Link</a>


تاثیر Areas بر روی تنظیمات توزیع برنامه

فایل‌های View موجود در Areas نیز باید در حین توزیع نهایی برنامه ارائه شوند؛ مگر اینکه آن‌ها را از پیش کامپایل کرده باشیم. اگر از حالت از پیش کامپایل کردن Viewها استفاده نمی‌شود، نیاز است قسمت publishOptions فایل project.json را به نحو ذیل در جهت الحاق فایل‌های Viewهای نواحی مختلف، ویرایش و تکمیل کرد:
"publishOptions": {
     "include": [
       "Areas/**/*.cshtml",
       ....
       ....
     ]
مطالب
NoSQL و مایکروسافت
روشی را که مایکروسافت برای پرداختن به مقوله NoSQL تاکنون انتخاب کرده است، قرار دادن ویژگی‌هایی خاصی از دنیای NoSQL مانند امکان تعریف اسکیمای متغیر، داخل مهم‌ترین بانک اطلاعاتی رابطه‌ای آن، یعنی SQL Server است، که در ادامه به آن خواهیم پرداخت. همچنین در سمت محصولات پردازش ابری آن نیز امکان دسترسی به محصولات NoSQL کاملی وجود دارد.

1) Azure table storage
Azure table storage در حقیقت یک Key-value store ابری است و برای کار با آن از اینترفیس پروتکل استاندارد OData استفاده می‌شود. علت استفاده و طراحی یک سیستم Key-value store در اینجا، مناسب بودن اینگونه سیستم‌ها جهت مقاصد عمومی است و به این ترتیب می‌توان به بازه بیشتری از مصرف کنندگان، خدمات ارائه داد.
پیش از ارائه Azure table storage، مایکروسافت سرویس خاصی را به نام SQL Server Data Services که به آن SQL Azure نیز گفته می‌شود، معرفی کرد. این سرویس نیز یک Key-Value store است؛ هرچند از SQL Server به عنوان مخزن نگهداری اطلاعات آن استفاده می‌کند.


2) SQL Azure XML Columns
فیلدهای XML از سال 2005 به امکانات توکار SQL Server اضافه شدند و این نوع فیلدها، بسیاری از مزایای دنیای NoSQL را درون SQL Server رابطه‌ای مهیا می‌سازند. برای مثال با تعریف یک فیلد به صورت XML، می‌توان از هر ردیف به ردیفی دیگر، اطلاعات متفاوتی را ذخیره کرد؛ به این ترتیب امکان کار با یک فیلد که می‌تواند اطلاعات یک شیء را قبول کند و در حقیقت امکان تعریف اسکیمای پویا و متغیر را در کنار امکانات یک بانک اطلاعاتی رابطه‌ای که از اسکیمای ثابت پشتیبانی می‌کند، میسر می‌شود. در این حالت در هر ردیف می‌توان تعدادی ستون ثابت را با یک ستون XML با اسکیمای کاملا پویا ترکیب کرد.
همچنین SQL Server در این حالت قابلیتی را ارائه می‌دهد که در بسیاری از بانک‌های اطلاعاتی NoSQL میسر نیست. در اینجا در صورت نیاز و لزوم می‌توان اسکیمای کاملا مشخصی را به یک فیلد XML نیز انتساب داد؛ هر چند این مورد اختیاری است و می‌توان یک un typed XML را نیز بکار برد. به علاوه امکانات کوئری گرفتن توکار از این اطلاعات را به کمک XPath ترکیب شده با T-SQL، نیز فراموش نکنید.
بنابراین اگر یکی از اهداف اصلی گرایش شما به سمت دنیای NoSQL، استفاده از امکان تعریف اطلاعاتی با اسکیمای متغیر و پویا است، فیلدهای نوع XML اس کیوال سرور را مدنظر داشته باشید.
یک مثال عملی: فناوری Azure Dev Fabric's Table Storage (نسخه Developer ویندوز Azure که روی ویندوزهای معمولی اجرا می‌شود؛ یک شبیه ساز خانگی) به کمک SQL Server و فیلدهای XML آن طراحی شده است.


3) SQL Azure Federations
در اینجا منظور از Federations در حقیقت همان پیاده سازی قابلیت Sharding بانک‌های اطلاعاتی NoSQL توسط SQL Azure است که برای توزیع اطلاعات بر روی سرورهای مختلف طراحی شده است. به این ترتیب دو قابلیت Partitioning و همچنین Replication به صورت خودکار در دسترس خواهند بود. هر Partition در اینجا، یک SQL Azure کامل است. بنابراین چندین بانک اطلاعاتی فیزیکی، یک بانک اطلاعاتی کلی را تشکیل خواهند داد.
هرچند در اینجا Sharding  (که به آن Federation member گفته می‌شود) و در پی آن مفهوم «عاقبت یک دست شدن اطلاعات» وجود دارد، اما درون یک Shard یا یک Federation member، مفهوم ACID پیاده سازی شده است. از این جهت که هر Shard واقعا یک بانک اطلاعاتی رابطه‌ای است. اینجا است که مفهوم برنامه‌های  Multi-tenancy را برای درک آن باید درنظر داشت. برای نمونه یک برنامه وب را درنظر بگیرید که قسمت اصلی اطلاعات کاربران آن بر روی یک Shard قرار دارد و سایر اطلاعات بر روی سایر Shards پراکنده شده‌اند. در این حالت است که یک برنامه وب با وجود مفهوم ACID در یک Shard می‌تواند سریع پاسخ دهد که آیا کاربری پیشتر در سایت ثبت نام کرده است یا خیر و از ثبت نام‌های غیرمجاز جلوگیری به عمل آورد.
در اینجا تنها موردی که پشتیبانی نشده‌است، کوئری‌های Fan-out می‌باشد که پیشتر در مورد آن بحث شد. از این جهت که با نحوه خاصی که Sharding آن طراحی شده است، نیازی به تهیه کوئری‌هایی که به صورت موازی بر روی کلیه Shards برای جمع آوری اطلاعات اجرا می‌شوند، نیست. هر چند از هر shard با استفاده از برنامه‌های دات نت، می‌توان به صورت جداگانه نیز کوئری گرفت.


4) OData
اگر به CouchDB و امکان دسترسی به امکانات آن از طریق وب دقت کنید، در محصولات مایکروسافت نیز این دسترسی REST API پیاده سازی شده‌اند.
OData یک RESTful API است برای دسترسی به اطلاعاتی که به شکل XML یا JSON بازگشت داده می‌شوند. انواع و اقسام کلاینت‌هایی برای کار با آن از جاوا اسکریپت گرفته تا سیستم‌های موبایل، دات نت و جاوا، وجود دارند. از این API نه فقط برای خواندن اطلاعات، بلکه برای ثبت و به روز رسانی داده‌ها نیز استفاده می‌شود. در سیستم‌های جاری مایکروسافت، بسیاری از فناوری‌ها، اطلاعات خود را به صورت OData دراختیار مصرف کنندگان قرار می‌دهند مانند Azure table storage، کار با SQL Azure از طریق WCF Data Services (جایی که OData از آن نشات گرفته شده)، Azure Data Market (برای ارائه فیدهایی از اطلاعات خصوصا رایگان)، ابزارهای گزارشگیری مانند SQL Server reporting services، لیست‌های شیرپوینت و غیره.
به این ترتیب به بسیاری از قابلیت‌های دنیای NoSQL مانند کار با اطلاعات JSON بدون ترک دنیای رابطه‌ای می‌توان دسترسی داشت.


5) امکان اجرای MongoDB و امثال آن روی سکوی کاری Azure
امکان توزیع MongoDB بر روی یک Worker role سکوی کاری Azure وجود دارد. در این حالت بانک‌های اطلاعاتی این سیستم‌ها بر روی Azure Blob Storage قرار می‌گیرند که به آن‌ها Azure drive نیز گفته می‌شود. همین روش برای سایر بانک‌های اطلاعاتی NoSQL نیز قابل اجرا است.
به علاوه امکان اجرای Hadoop نیز بر روی Azure وجود دارد. مایکروسافت به کمک شرکتی به نام HortonWorks نسخه ویندوزی Hadoop را توسعه داده‌اند. HortonWorks را افرادی تشکیل داده‌اند که پیشتر در شرکت یاهو بر روی پروژه Hadoop کار می‌کرده‌اند.


6) قابلیت‌های فرا رابطه‌ای SQL Server
الف) فیلدهای XML (که در ابتدای این مطلب به آن پرداخته شد). به این ترتیب می‌توان به یک اسکیمای انعطاف پذیر، بدون از دست دادن ضمانت ACID رسید.
ب) فیلد HierarchyId برای ذخیره سازی اطلاعات چند سطحی. برای مثال در بانک‌های اطلاعاتی NoSQL سندگرا، یک سند می‌تواند سند دیگری را در خود ذخیره کند و الی آخر.
ج) Sparse columns؛ ستون‌های اسپارس تقریبا شبیه به Key-value stores عمل می‌کنند و یا حتی Wide column stores نیز با آن قابل مقایسه است. در اینجا هنوز اسکیما وجود دارد، اما برای نمونه علت استفاده از Wide column stores این نیست که واقعا نمی‌دانید ساختار داده‌های مورد استفاده چیست، بلکه در این حالت می‌دانیم که در هر ردیف تنها از تعداد معدودی از فیلدها استفاده خواهیم کرد. به همین جهت در هر ردیف تمام فیلدها قرار نمی‌گیرند، چون در اینصورت تعدادی از آن‌ها همواره خالی باقی می‌ماندند. مایکروسافت این مشکل را با ستون‌های اسپارس حل کرده است؛ در اینجا هر چند ساختار کلی مشخص است، اما مواردی که هر بار استفاده می‌شوند، تعداد محدودی می‌باشند. به این صورت SQL Server تنها برای ستون‌های دارای مقدار، فضایی را اختصاص می‌دهد. به این ترتیب از لحاظ فیزیکی و ذخیره سازی نهایی، به همان مزیت Wide column stores خواهیم رسید.
د) FileStreams در اس کیوال سرور بسیار شبیه به پیوست‌های سندهای بانک‌های اطلاعاتی NoSQL سندگرا هستند. در اینجا نیز اطلاعات در فایل سیستم ذخیره می‌شوند اما ارجاعی به آن‌ها در جداول مرتبط وجود خواهند داشت.


7) SQL Server Parallel Data Warehouse Edition
SQL PDW، نگارش خاصی از SQL Server است که در آن یک شبکه از SQL Serverها به صورت یک وهله منطقی SQL Server در اختیار برنامه نویس‌ها قرار می‌گیرد.
این نگارش، از فناوری خاصی به نام MPP یا massively parallel processing برای پردازش کوئری‌ها استفاده می‌کند. در اینجا همانند بانک‌های اطلاعاتی NoSQL، یک کوئری به نود اصلی ارسال شده و به صورت موازی بر روی تمام نودها پردازش گردیده (همان مفهوم Map Reduce که پیشتر در مورد آن بحث شد) و نتیجه در اختیار مصرف کننده قرار خواهد گرفت. نکته مهم آن نیز در عدم نیاز به نوشتن کدی جهت رخ دادن این عملیات از طرف برنامه نویس‌ها است و موتور پردازشی آن جزئی از سیستم اصلی است. تنها کافی است یک کوئری SQL صادر گردد تا نتیجه نهایی از تمام سرورها جمع آوری و بازگردانده شود.
این نگارش ویژه تنها به صورت یک Appliance به فروش می‌رسد (به صورت سخت افزار و نرم افزار باهم) که در آن CPU‌ها، فضاهای ذخیره سازی اطلاعات و جزئیات شبکه به دقت از پیش تنظیم شده‌اند.
مسیرراه‌ها
ASP.NET Core
ASP.NET Core 1.0
ASP.NET Core 2.0
روش ارتقاء
ASP.NET Core Identity 

کار با Areas در ASP.NET Core
کار با کوکی‌ها در ASP.NET Core
بررسی روش آپلود فایل‌ها در ASP.NET Core
ارسال ایمیل در ASP.NET Core
نوشتن Middleware سفارشی در ASP.NET Core
نوشتن TagHelperهای سفارشی برای ASP.NET Core
بررسی تغییرات Reflection در NET Core.
استفاده‌ی گسترده از DateTimeOffset در NET Core.
بررسی روش دسترسی به HttpContext در ASP.NET Core
توزیع پروژه‌های ASP.NET Core 1.1 بدون ارائه فایل‌های View آن
تغییرات رمزنگاری اطلاعات در NET Core.
ساخت بسته‌های نیوگت مخصوص NET Core.
تهیه قالب برای ارسال ایمیل‌ها در ASP.NET Core توسط Razor Viewها
روش یافتن لیست تمام کنترلرها و اکشن متدهای یک برنامه‌ی ASP.NET Core
بررسی روش آپلود فایل‌ها از طریق یک برنامه‌ی Angular به یک برنامه‌ی ASP.NET Core
سفارشی سازی صفحه‌ی اول برنامه‌های Angular CLI توسط ASP.NET Core
تغییرات Encoding در NET Core.
تغییرات متدهای بازگشت فایل‌ها به سمت کلاینت در ASP.NET Core
پیاده سازی برنامه‌های چند مستاجری در ASP.NET Core
مقدمه‌ای بر تزریق وابستگی‌ها درASP.NET Core 
نمایش خطاهای اعتبارسنجی سمت سرور ASP.NET Core در برنامه‌های Angular
احراز هویت و اعتبارسنجی کاربران در برنامه‌های Angular - قسمت اول - معرفی و ایجاد ساختار برنامه
روش استفاده‌ی صحیح از HttpClient در برنامه‌های دات نت
اجرای سرویسهای NodeJS در ASP.NET Core
بررسی خطاهای ممکن در حین راه اندازی اولیه برنامه‌های ASP.NET Core در IIS 
تست کردن متدهای یک Controller به کمک PowerShell
کار با Visual Studio در ASP.NET Core

نظرات مطالب
بررسی روش ارتقاء به NET Core 1.1.
پس از به‌روزرسانی و توزیع در IIS با خطای :
Unhandled Exception: System.IO.FileNotFoundException: Could not load file or assembly 'Microsoft.AspNetCore.Hosting, Version=1.1.0.0, Culture=neutral, PublicKeyToken=adb9793829ddae60'. The system cannot find the file specified.
   at Sample1.Web.Program.Main(String[] args)
مواجه شدم.

و جهت رفع مشکل :


اما خطا همچنان پابرجاست.

پکیج هایی که باید نصب باشد :


و فایل Project.json:


{
  "dependencies": {
    "Sample1.DataLayer": "1.0.0-*",
    "Sample1.PrsLayer.SysB.UserMg": "1.0.0-*",
    "Sample1.PrsLayer.SysBase": "1.0.0-*",
    "Sample1.PrsLayer.SysS.Setting": "1.0.0-*",
    "Sample1.SrvLayer.SysB.UserMg": "1.0.0-*",
    "Sample1.SrvLayer.SysBase": "1.0.0-*",
    "Sample1.SrvLayer.SysS.Setting": "1.0.0-*",
    "CoreCompat.System.Drawing": "1.0.0-beta006",
    "Sample1.ExternalResources": "1.0.0-*",
    "Sample1.SrvLayer.SysA.BookMg": "1.0.0-*",
    "Sample1.SrvLayer.UploadService": "1.0.0-*",
    "Sample1.PrsLayer.SysA.BookMg": "1.0.0-*",
    "Sample1.IocConfig": "1.0.0-*",
    "Sample1.MapperConfig": "1.0.0-*",
    "Sample1.PrsLayer.SysU.UiMg": "1.0.0-*",
    "Sample1.SrvLayer.SysU.UiMg": "1.0.0-*",
    "Sample1.PrsLayer.SysI.SubscribeNewsletter": "1.0.0-*",
    "Sample1.SrvLayer.SysI.SubscribeNewsletter": "1.0.0-*",
    "Wangkanai.Detection": "1.0.0-*",
    "Wangkanai.Detection.Abstractions": "1.0.0-*",
    "Wangkanai.Detection.Device": "1.0.0-*",
    "Wangkanai.Detection.Engine": "1.0.0-*",
    "Wangkanai.Detection.Platform": "1.0.0-*",
    "Wangkanai.Detection.Browser": "1.0.0-*",
    "StructureMap.Microsoft.DependencyInjection": "1.2.0",
    "CacheManager.Core": "0.9.1",
    "CacheManager.Microsoft.Extensions.Caching.Memory": "0.9.1",
    "CacheManager.Serialization.Json": "0.9.1",
    "Newtonsoft.Json": "9.0.2-beta1",
    "Microsoft.AspNetCore.SpaServices": "1.0.0-beta-000019",
    "AutoMapper": "5.1.1",
    "EFSecondLevelCache.Core": "1.0.1",
    "Microsoft.AspNetCore.Diagnostics.Elm": "0.2.0",
    "Microsoft.AspNetCore.Mvc": "1.1.0",
    "Microsoft.AspNetCore.Mvc.Localization": "1.1.0",
    "Microsoft.AspNetCore.Server.IISIntegration": "1.1.0",
    "Microsoft.AspNetCore.Session": "1.1.0",
    "Microsoft.AspNetCore.StaticFiles": "1.1.0",
    "Microsoft.Extensions.Configuration.FileExtensions": "1.1.0",
    "Microsoft.Extensions.Configuration.Json": "1.1.0",
    "Microsoft.Extensions.FileProviders.Embedded": "1.1.0",
    "Microsoft.Extensions.Logging.Console": "1.1.0",
    "Microsoft.Extensions.Logging.Debug": "1.1.0",
    "Microsoft.Net.Http.Headers": "1.1.0",
    "Microsoft.VisualStudio.Web.BrowserLink.Loader": "14.1.0",
    "System.Globalization": "4.3.0",
    "System.IO": "4.3.0",
    "System.Linq": "4.3.0",
    "System.Reflection": "4.3.0",
    "System.Runtime": "4.3.0",
    "System.Runtime.Extensions": "4.3.0",
    "System.Runtime.WindowsRuntime": "4.3.0",
    "System.Text.RegularExpressions": "4.3.0",
    "System.Threading.Tasks": "4.3.0",
    "Microsoft.VisualStudio.Web.CodeGenerators.Mvc": {
      "version": "1.1.0-preview4-final",
      "type": "build"
    },
    "Elmah.Io.AspNetCore": "1.0.1-pre-24",
    "Elmah.Io.Extensions.Logging": "1.0.17-pre",
    "Microsoft.VisualStudio.Web.CodeGeneration.Tools": {
      "version": "1.1.0-preview4-final",
      "type": "build"
    }
  },
  "tools": {
    "Microsoft.EntityFrameworkCore.Tools.DotNet": {
      "version": "1.1.0-preview4-final",
      "imports": [
        "portable-net45+win8"
      ]
    },
    "Microsoft.Extensions.SecretManager.Tools": "1.1.0-preview4-final",
    "Microsoft.VisualStudio.Web.CodeGeneration.Tools": {
      "version": "1.1.0-preview4-final",
      "imports": [
        "portable-net45+win8"
      ]
    },
    "Microsoft.AspNetCore.Server.IISIntegration.Tools": "1.1.0-preview4-final"
  },
  "frameworks": {
    "netcoreapp1.1": {
      "dependencies": {
        "Microsoft.NETCore.App": {
          "type": "platform",
          "version": "1.1.0"
        }
      },
      "imports": [
        "dotnet5.6",
        "portable-net45+win8"
      ]
    }
  },
  "buildOptions": {
    "emitEntryPoint": true,
    "preserveCompilationContext": true,
    "embed": "Views/**/*.cshtml,Areas/**/Views/**/*.cshtml",
    "define": [ "DEBUG" ]
  },
  "runtimeOptions": {
    "configProperties": {
      "System.GC.Server": true
    }
  },
  "publishOptions": {
    "include": [
      "wwwroot",
      "Views",
      "Areas/**/Views",
      "appsettings.json",
      "web.config"
    ]
  },
  "configurations": {
    "Release": {
      "buildOptions": {
        "optimize": true,
        "platform": "anycpu"
      }
    }
  },
  "scripts": {
    "precompile": [
      //"dotnet bundle"
    ],
    "prepublish": [
      //"bower install"
    ],
    "postpublish": [ "dotnet publish-iis --publish-folder %publish:OutputPath% --framework %publish:FullTargetFramework%" ]
  }
}
مطالب
آموزش زبان Rust - قسمت 2 - نصب Rust و ایجاد یک پروژه‌ی جدید
نصب Rust

برای نصب rust، متناسب با سیستم عامل خود، ابتدا وارد سایت rustup  شوید و فایل دانلود متناسب با سیستم عامل مورد نظرتان را دانلود و نصب کنید.

Cargo  چیست و چه کاربردی دارد؟

Cargo همراه با زبان برنامه نویسی Rust گنجانده شده‌، همزمان نصب می‌شود و برای ایجاد، ساخت و مدیریت پروژه‌های Rust استفاده می‌گردد. این یک رابط سطح بالا برای کار با کدهای Rust را ارائه می‌دهد که شروع به کار با Rust و مدیریت پروژه‌های خود را برای توسعه دهندگان آسان‌تر می‌کند.
Cargo سیستم ساخت و package manager مخصوص زبان برنامه نویسی Rust است. ابزاری است که به توسعه دهندگان Rust کمک می‌کند تا پروژه‌های خود را با خودکارسازی کارهایی مانند کامپایل کد، مدیریت وابستگی‌ها، اجرای آزمایش‌ها و ایجاد بسته‌های قابل توزیع، مدیریت کنند.

برخی از ویژگی‌های Cargo

Dependency management: برنامه Cargo می‌تواند به‌طور خودکار وابستگی‌های پروژه‌های Rust را دانلود کرده، بسازد و مدیریت کند. این باعث می‌شود توسعه دهندگان به راحتی کتابخانه‌ها و ماژول‌های جدیدی را به پروژه‌های خود اضافه کنند.

Building and testing: برنامه Cargo می‌تواند پروژه‌های Rust را بسازد و test‌ها را به صورت خودکار اجرا کند. همچنین گزینه‌هایی را برای ساختن ساخت‌های بهینه یا اشکال زدایی فراهم می‌کند.

Packaging: برنامه Cargo می‌تواند بسته‌های قابل توزیعی را مانند tarballs یا بسته‌های باینری را برای پروژه‌های Rust ایجاد کند.

Customization: برنامه Cargo به توسعه دهندگان اجازه می‌دهد تا فرآیند ساخت برنامه‌ی خود را با تعیین گزینه‌های ساخت مختلف، در فایل پیکربندی Cargo.toml سفارشی کنند. به‌طور کلی Cargo توسعه و مدیریت پروژه‌های Rust را با ارائه یک ابزار کارآمد برای خودکارسازی بسیاری از وظایف توسعه رایج، ساده می‌کند.


ایجاد اولین پروژه‌ی Rust

بعد از نصب rust برای ایجاد یک پروژه جدید، terminal سیستم عامل را باز کنید و دستور زیر را در آن وارد کنید:
cargo new  project_name
هنگامیکه یک پروژه‌ی جدید Rust را با استفاده از نام پروژه‌ی مورد نظر ایجاد می‌کنید، یک دایرکتوری با نام داده شده، حاوی فایل‌ها و دایرکتوری‌های زیر ایجاد می‌گردد:
Cargo.toml : این فایل manifest پروژه است که در آن نام پروژه، نسخه، وابستگی‌ها و سایر ابرداده‌ها را مشخص می‌کنید. فایل Cargo.toml حاوی یک metadata درباره پروژه است؛ مانند نام، نسخه، نویسندگان و وابستگی‌های آن. در اینجا مثالی از شکل ظاهری یک فایل Cargo.toml آورده شده است:
[package]
name = "my-project"
version = "0.1.0"
authors = ["John Doe <johndoe@example.com>"]

[dependencies]
serde = "1.0"
serde_json = "1.0"
بخش [package] حاوی یک metadata در مورد خود پروژه، از جمله نام، نسخه، نویسندگان و جزئیات دیگر است.
بخش [dependencies] وابستگی‌های پروژه را فهرست می‌کند. در این مثال، پروژه به پکیج‌های serde و serde_json بستگی دارد که برای serialization و deserialization داده‌ها استفاده می‌شوند.
src directory: این دایرکتوری حاوی کد منبع پروژه شما است. به طور پیش فرض، شامل یک فایل main.rs است که نقطه ورود برنامه شما است.
target directory: این فهرست شامل فایل‌های باینری کامپایل شده تولید شده توسط کامپایلر Rust می‌باشد.

هنگامی که cargo build یا cargo run را اجرا می‌کنید، Cargo به طور خودکار یک دایرکتوری target/debug را برای ذخیره‌ی فایل‌های باینری کامپایل شده ایجاد می‌کند. اگر cargo build --release را اجرا کنید، Cargo بجای آن، یک دایرکتوری target/release را ایجاد می‌کند. بعلاوه، اگر هنگام ایجاد پروژه‌ی خود از نسخه‌ی خاصی از Rust (مانند نسخه‌ی 2018) استفاده کنید، Cargo یک فیلد نسخه را در فایل Cargo.toml شما برای تعیین نسخه، اضافه می‌کند. 
مطالب
کار با Docker بر روی ویندوز - قسمت سوم - نصب Docker بر روی ویندوز سرور
در قسمت قبل، Docker for Windows را بر روی ویندوز 10 نصب کردیم تا بتوانیم از هر دوی Linux Containers و Windows Containers استفاده کنیم. در این قسمت، نحوه‌ی نصب Docker را بر روی ویندوز سرور، صرفا جهت اجرای Windows Containers، بررسی می‌کنیم؛ از این جهت که در دنیای واقعی، عموما Linux Containers را بر روی سرورهای لینوکسی و Windows Containers را بر روی سرورهای ویندوزی اجرا می‌کنند.


Docker for Windows چگونه از هر دوی کانتینرهای ویندوزی و لینوکسی پشتیبانی می‌کند؟

زمانیکه docker for windows را اجرا می‌کنیم، سرویسی را ایجاد می‌کند که سبب اجرای پروسه‌ی ویژه‌ای به نام com.docker.proxy.exe می‌شود:


هنگامیکه برای مثال فرمان docker run nginx را توسط Docker CLI اجرا می‌کنیم، Docker CLI از طریق واسط یاد شده، دستورات را به MobyLinuxVM منتقل می‌کند. به این صورت است که امکان اجرای Linux Containers، بر روی ویندوز میسر می‌شوند:


اکنون اگر به Windows Containers سوئیچ کنیم (از طریق کلیک راست بر روی آیکن Docker در قسمت Tray Icons ویندوز)، پروسه‌ی dockerd.exe یا docker daemon شروع به کار خواهد کرد:


اینبار اگر مجددا از Docker CLI برای اجرای مثلا IIS Container استفاده کنیم، دستور ما از طریق واسط‌های com.docker.proxy و dockerd‌، به کانتینر ویندوزی منتقل و اجرا می‌شود:



نگاهی به معماری Docker بر روی ویندوز سرور

داکر بر روی ویندوز سرور، تنها به همراه موتور مدیریت کننده‌ی Windows Containers است:


در اینجا با صدور فرمان‌های Docker CLI، پیام‌ها مستقیما به dockerd یا موتور داکر بر روی ویندوز سرور ارسال شده و سپس کار اجرا و مدیریت یک Windows Container انجام می‌شود.


نصب Docker بر روی ویندوز سرور

جزئیات مفصل و به روز Windows Containers را همواره می‌توانید در این آدرس در سایت مستندات مجازی سازی مایکروسافت مطالعه کنید (قسمت Container Host Deployment - Windows Server آن). پیشنیاز کار با آن نیز نصب حداقل ویندوز سرور 2016 می‌باشد و بهتر است تمام به روز رسانی‌های آن‌را نیز نصب کرده باشید؛ چون تعدادی از بهبودهای کار با کانتینرهای آن، به همراه به روز رسانی‌ها آن ارائه شده‌اند.
برای شروع به نصب، نیاز است کنسول PowerShell ویندوز را با دسترسی Admin اجرا کنید.
سپس اولین دستوراتی را که نیاز است اجرا کنید، کار نصب موتور Docker و CLI آن‌را به صورت خودکار بر روی ویندوز سرور انجام می‌دهند:
Install-Module -Name DockerMsftProvider -Repository PSGallery -Force
Install-Package -Name docker -ProviderName DockerMsftProvider
Restart-Computer -Force
- که پس از نصب و ری‌استارت سیستم، نتیجه‌ی آن‌را در پوشه‌ی c:\Program Files\Docker می‌توانید ملاحظه کنید.
- به علاوه اگر دستور *get-service *docker را در کنسول PowerShell صادر کنید، مشاهده خواهید کرد که سرویس جدیدی را به نام Docker نیز نصب و راه اندازی کرده‌است که به dockerd.exe اشاره می‌کند.
- و یا اگر در کنسول PowerShell دستور docker را صادر کنید، ملاحظه خواهید کرد که CLI آن، فعال و قابل استفاده‌است. برای مثال، دستور docker version را صادر کنید تا بتوانید نگارش docker نصب شده را ملاحظه نمائید.


اجرای Image مخصوص NET Core. بر روی ویندوز سرور

تگ‌های مختلف Image مخصوص NET Core. را در اینجا ملاحظه می‌کنید. در ادامه قصد داریم tag مرتبط با nanoserver آن‌را نصب کنیم (با حجم 802MB):
docker run microsoft/dotnet:nanoserver
زمانیکه این دستور را اجرا می‌کنیم، پس از اجرای آن، ابتدا یک \:C را نمایش می‌دهد و بعد خاتمه یافته و به command prompt بازگشت داده می‌شویم. برای مشاهده‌ی علت آن، اگر دستور docker ps -a را اجرا کنیم، در ستون command آن، قسمتی از دستوری را که اجرا کرده‌است، می‌توان مشاهده کرد. برای مشاهده‌ی کامل این دستور، نیاز است دستور docker ps -a --no-trunc را اجرا کنیم. در اینجا سوئیچ no-trunc به معنای no truncate است یا عدم حذف قسمت انتهایی یک دستور طولانی. در این حالت مشاهده خواهیم کرد که این دستور، کار اجرای cmd.exe واقع در پوشه‌ی ویندوز را انجام می‌دهد (یا همان command prompt معمولی ویندوز). چون دستور docker run فوق به آن متصل نشده‌است، این پروسه ابتدا \:c را نمایش می‌دهد و سپس خاتمه پیدا می‌کند. برای رفع این مشکل، از interactive command که در قسمت قبل توضیح دادیم، استفاده خواهیم کرد:
docker run -it microsoft/dotnet:nanoserver
اینبار اگر این دستور را اجرا کنیم، به command prompt آغاز شده‌ی توسط آن، متصل خواهیم شد. اکنون اگر در همینجا (داخل container در حال اجرا) دستور dotnet --info را صادر کنید، می‌توان مشخصات NET Core SDK. نصب شده را مشاهده کرد. برای خروج از آن نیز دستور exit را صادر کنید.


چرا حجم Image مخصوص NET Core. نگارش nanoserver آن حدود 800 مگابایت است؟

در مثال قبلی، دسترسی به command prompt مجزایی نسبت به command prompt اصلی سیستم، در داخل یک container، شاید اندکی غیر منتظره بود و اکنون این سؤال مطرح می‌شود که یک image، شامل چه چیزهایی است؟
یک image شاید در ابتدای کار صرفا شامل فایل‌های اجرایی یک برنامه‌ی خاص به نظر برسد؛ اما زمانیکه قرار است تبدیل به یک container قابل اجرا شود، شامل بسیاری از فایل‌های دیگر نیز خواهد شد. برای درک این موضوع نیاز است لایه‌های نرم افزاری که یک سیستم را تشکیل می‌دهند، بررسی کنیم:


در این تصویر از پایین‌ترین لایه‌ای را که با سخت افزار ارتباط برقرار می‌کند تا بالاترین لایه‌ی موجود نرم افزاری را مشاهده می‌کنید. دراینجا هر چیزی را که در ناحیه‌ی کرنل قرار نمی‌گیرد، User Space می‌نامند. برنامه‌های قرار گرفته‌ی در User Space برای کار با سخت افزار نیاز است با کرنل ارتباط برقرار کنند و برای این منظور از System Calls استفاده می‌کنند که عموما کتابخانه‌هایی هستند که جزئی از سیستم عامل می‌باشند؛ مانند API ویندوز. برای مثال MongoDB توسط Win32 API و System Calls، فرامینی را به کرنل منتقل می‌کند.
در روش متداول توزیع و نصب نرم افزار، ما عموما همان بالاترین سطح را توزیع و نصب می‌کنیم؛ برای مثال خود MongoDB را. در اینجا نصاب MongoDB فرض می‌کند که در سیستم جاری، تمام لایه‌های دیگر، موجود و آماده‌ی استفاده هستند و اگر اینگونه نباشد، به مشکل برخواهد خورد و اجرا نمی‌شود. برای اجتناب از یک چنین مشکلاتی مانند عدم حضور وابستگی‌هایی که یک برنامه برای اجرا نیاز دارد، imageهای docker، نحوه‌ی توزیع نرم افزارها را تغییر داده‌اند. اینبار یک image بجای توزیع فقط MongoDB، شامل تمام قسمت‌های مورد نیاز User Space نیز هست:


به این ترتیب دیگر مشکلاتی مانند عدم وجود یک وابستگی یا حتی وجود یک وابستگی غیرسازگار با نرم افزار مدنظر، وجود نخواهند داشت. حتی می‌توان تصویر فوق را به صورت زیر نیز خلاصه کرد:


به همین جهت بود که برای مثال در قسمت قبل موفق شدیم IIS مخصوص ویندوز سرور با تگ nanoserver را بر روی ویندوز 10 که بسیاری از وابستگی‌های مرتبط را به همراه ندارد، با موفقیت اجرا کنیم.
به علاوه چون یک container صرفا به معنای یک running process از یک image است، هر فایل اجرایی داخل آن image را نیز می‌توان به صورت یک container اجرا کرد؛ مانند cmd.exe داخل image مرتبط با NET Core. که آن‌را بررسی کردیم.


کارآیی Docker Containers نسبت به ماشین‌های مجازی بسیار بیشتر است

مزیت دیگر یک چنین توزیعی این است که اگر چندین container در حال اجرا را داشته باشیم:


 در نهایت تمام آن‌ها فقط با یک لایه‌ی کرنل کار می‌کنند و آن هم کرنل اصلی سیستم جاری است. به همین جهت کارآیی docker containers نسبت به ماشین‌های مجازی بیشتر است؛ چون هر ماشین مجازی، کرنل مجازی خاص خودش را نسبت به یک ماشین مجازی در حال اجرای دیگر دارد. در اینجا برای ایجاد یک لایه ایزوله‌ی اجرای برنامه‌ها، تنها کافی است یک container جدید را اجرا کنیم و در این حالت وارد فاز بوت شدن یک سیستم عامل کامل، مانند ماشین‌های مجازی نمی‌شویم.

شاید مطابق تصویر فوق اینطور به نظر برسد که هرچند تمام این containers از یک کرنل استفاده می‌کنند، اما اگر قرار باشد هر کدام OS Apps & Libs خاص خودشان را در حافظه بارگذاری کنند، با کمبود شدید منابع روبرو شویم. دقیقا مانند حالتیکه چند ماشین مجازی را اجرا کرده‌ایم و دیگر سیستم اصلی قادر به پاسخگویی به درخواست‌های رسیده به علت کمبود منابع نیست. اما در واقعیت، یک image داکر، از لایه‌های مختلفی تشکیل می‌شود که فقط خواندنی هستند و غیرقابل تغییر و زمانیکه docker یک لایه‌ی فقط خواندنی را در حافظه بارگذاری کرد، اگر container دیگری، از همان لایه‌ی تعریف شده‌، در image خود نیز استفاده می‌کند، لایه‌ی بارگذاری شده‌ی فقط خواندنی در حال اجرای موجود را با آن به اشتراک می‌گذارد (مانند تصویر زیر). به این ترتیب میزان مصرف منابع docker containers نسبت به ماشین‌های مجازی بسیار کمتر است:



روش کنترل پروسه‌ای که درون یک کانتینر اجرا می‌شود

با اجرای دستور docker run -it microsoft/dotnet:nanoserver ابتدا به command prompt داخلی و مخصوص این container منتقل می‌شویم و سپس می‌توان برای مثال با NET Core CLI. کار کرد. اما امکان اجرای این CLI به صورت زیر نیز وجود دارد:
docker run -it microsoft/dotnet:nanoserver dotnet --info
این دستور، مشخصات SDK نصب شده را نمایش می‌دهد و سپس مجددا به command prompt سیستم اصلی (که به آن میزبان، host و یا container host نیز گفته می‌شود) بازگشت داده خواهیم شد؛ چون کار NET Core CLI. خاتمه یافته‌است، پروسه‌ی متعلق به آن نیز خاتمه می‌یابد.
بدیهی است در این حالت تمام فایل‌های اجرایی داخل این container را نیز می‌توان اجرا کرد. برای مثال می‌توان کنسول پاورشل داخل این container را اجرا کرد:
docker run -it microsoft/dotnet:nanoserver powershell
زمانیکه به این کنسول دسترسی پیدا کردید، برای مثال دستور get-process را اجرا کنید. به این ترتیب می‌توانید لیست تمام پروسه‌هایی ر که هم اکنون داخل این container در حال اجرا هستند، مشاهده کنید.


هر کانتینر دارای یک File System ایزوله‌ی خاص خود است

تا اینجا دریافتیم که هر image، به همراه فایل‌های user space مورد نیاز خود نیز می‌باشد. به عبارتی هر image یک file system را نیز ارائه می‌دهد که تنها درون همان container قابل دسترسی می‌باشد و از مابقی سیستم جاری ایزوله شده‌است.
برای آزمایش آن، کنسول پاورشل را در سیستم میزبان (سیستم عامل اصلی که docker را اجرا می‌کند)، باز کرده و دستور \:ls c را صادر کنید. به این ترتیب می‌توانید لیست پوشه‌ها و فایل‌های موجود در درایو C میزبان را مشاهده نمائید. سپس دستور docker run -it microsoft/dotnet:nanoserver powershell را اجرا کنید تا به powershell داخل کانتینر NET Core. دسترسی پیدا کنیم. اکنون دستور \:ls c را مجددا اجرا کنید. خروجی آن کاملا متفاوت است نسبت به گزارشی که پیشتر بر روی سیستم میزبان تهیه کردیم؛ دقیقا مانند اینکه هارد درایو یک container متفاوت است با هارد درایو سیستم میزبان.


این تصویر زمانی تهیه شده‌است که دستور docker run یاد شده را صادر کرده‌ایم و درون powershell آن قرار داریم. همانطور که مشاهده می‌کنید یک Disk جدید، به ازای این Container در حال اجرا، به سیستم میزبان اضافه شده‌است. این Disk زمانیکه در powershell داخل container، دستور exit را صادر کنیم، بلافاصله محو می‌شود. چون پروسه‌ی container، به این ترتیب خاتمه یافته‌است.
اگر دستور docker run یاد شده را دو بار اجرا کنیم، دو Disk جدید ظاهر خواهند شد:


یک نکته: اگر بر روی این درایوهای مجازی کلیک راست کرده، گزینه‌ی change drive letter or path را انتخاب نموده و یک drive letter را به آن‌ها نسبت دهید، می‌توانید محتویات داخل آن‌ها را توسط Windows Explorer ویندوز میزبان نیز به صورت یک درایو جدید، مشاهده کنید.


خلاصه‌ای از ایزوله سازی‌های کانتینرها تا به اینجا

تا اینجا یک چنین ایزوله سازی‌هایی را بررسی کردیم:
- ایزوله سازی File System و وجود یک disk مجازی مجزا به ازای هر کانتینر در حال اجرا.

- پروسه‌های کانتینرها از پروسه‌های میزبان ایزوله هستند. برای مثال اگر دستور get-process را داخل یک container اجرا کنید، خروجی آن با خروجی اجرای این دستور بر روی سیستم میزبان یکی نیست. یعنی نمی‌توان از داخل کانتینرها، به پروسه‌های میزبان دسترسی داشت و دخل و تصرفی را در آن‌ها انجام داد که از لحاظ امنیتی بسیار مفید است. هر چند اگر به task manager ویندوز میزبان مراجعه کنید، می‌توان پروسه‌های داخل یک container را توسط Job Object ID یکسان آن‌ها تشخیص دهید (مثال آخر قسمت قبل)، اما یک container، قابلیت شمارش پروسه‌های خارج از مرز خود را ندارد.

- ایزوله سازی شبکه مانند کارت شبکه‌ی مجازی کانتینر IIS که در قسمت قبل بررسی کردیم. برای آزمایش آن دستور ipconfig را در داخل container و سپس در سیستم میزبان اجرا کنید. نتیجه‌ای را که مشاهده خواهید کرد، کاملا متفاوت است. یعنی network stack این دو کاملا از هم مجزا است. شبیه به اینکه به یک سیستم، چندین کارت شبکه را متصل کرده باشید. اینکار در اینجا با تعریف virtual network adaptors انجام می‌شود و لیست آن‌ها را در قسمت «All Control Panel Items\Network Connections» سیستم میزبان می‌توانید مشاهده کنید. یکی از مهم‌ترین مزایای آن این است که اگر در یک container، وب سروری را بر روی پورت 80 آن اجرا کنید، مهم نیست که در سیستم میزبان، یک IIS در حال سرویس دهی بر روی پورت 80 هم اکنون موجود است. این دو پورت با هم تداخل نمی‌کنند.

- در حالت کار با Windows Containers، رجیستری کانتینر نیز از میزبان آن مجزا است و یا متغیرهای محیطی این‌ها یکی نیست. برای مثال دستور \:ls env را در کانتینر و سیستم میزبان اجرا کنید تا environment variables را گزارش گیری کنید. خروجی این دو کاملا متفاوت است. برای مثال حداقل computer name، user name‌های قابل مشاهده‌ی در این گزارش‌ها، متفاوت است و یا دستور \:ls hkcu را در هر دو اجرا کنید تا خروجی رجیستری متعلق به کاربر جاری هر کدام را مشاهده کنید که در هر دو متفاوت است.

- در حالت کار با Linux Containers هر چیزی که ذیل عنوان namespace مطرح می‌شود مانند شبکه، PID، User، UTS، Mount و غیره شامل ایزوله سازی می‌شوند.


دو نوع Windows Containers وجود دارند

در ویندوز، Windows Server Containers و Hyper-V Containers وجود دارند. در این قسمت تمام کارهایی را که بر روی ویندوز سرور انجام دادیم، در حقیقت بر روی Windows Server Containers انجام شدند و تمام Containerهای ویندوزی را که در قسمت قبل بر روی ویندوز 10 ایجاد کردیم، از نوع Hyper-V Containers بودند.
تفاوت مهم این‌ها در مورد نحوه‌ی پیاده سازی ایزوله سازی آن‌ها است. در حالت Windows Server Containers، کار ایزوله سازی پروسه‌ها توسط کرنل اشتراکی بین کانتینرها صورت می‌گیرد اما در Hyper-V Containers، این ایزوله سازی توسط hypervisor آن انجام می‌شود؛ هرچند نسبت به ماشین‌های مجازی متداول بسیار سریع‌تر است، اما بحث به اشتراک گذاری کرنل هاست را که پیشتر در این قسمت بررسی کردیم، در این حالت شاهد نخواهیم بود. ویندوز سرور 2016 می‌تواند هر دوی این ایزوله سازی‌ها را پشتیبانی کند، اما ویندوز 10، فقط نوع Hyper-V را پشتیبانی می‌کند.


روش اجرای Hyper-V Containers بر روی ویندوز سرور

در صورت نیاز برای کار با Hyper-V Containers، نیاز است مانند قسمت قبل، ابتدا Hyper-V را بر روی ویندوز سرور، فعالسازی کرد:
Install-WindowsFeature hyper-v
Restart-Computer -Force
اکنون برای اجرای دستور docker run ای که توسط Hyper-V مدیریت می‌شود، می‌توان به صورت زیر، از سوئیچ isolation استفاده کرد:
docker run -it --isolation=hyperv microsoft/dotnet:nanoserver powershell
در این حالت اگر به disk management سیستم میزبان مراجعه کنید، دیگر حالت اضافه شدن disk مجازی را مشاهده نمی‌کنید. همچنین اگر به task manager ویندوز میزبان مراجعه کنید، دیگر لیست پروسه‌های داخل container را نیز در اینجا نمی‌بینید. علت آن روش ایزوله سازی متفاوت آن با Windows Server Containers است و بیشتر شبیه به ماشین‌های مجازی عمل می‌کند. در کل اگر نیاز به حداکثر و شدیدترین حالت ایزوله سازی را دارید، از این روش استفاده کنید.
مطالب
Angular CLI - قسمت ششم - استفاده از کتابخانه‌های ثالث
در قسمت قبل با نحوه‌ی ساخت و توزیع برنامه‌های Angular، توسط Angular CLI آشنا شدیم. یکی از فایل‌هایی که توسط سیستم build آن تولید می‌شود، فایل vendor.bundle.js است که شامل کدهای اصلی Angular و همچنین کتابخانه‌های ثالث مورد استفاده‌است و با توجه به اینکه در حالت پیش فرض کار با Angular CLI قرار نیست فایل تنظیمات webpack آن‌را استخراج و ویرایش کنیم، چگونه باید سایر کتابخانه‌های ثالث مورد نیاز را به این سیستم build معرفی کرد؟


استفاده از کتابخانه‌های جاوا اسکریپتی ثالث

برای استفاده از کتابخانه‌های جاوا اسکریپتی ثالث، نیاز است آن‌ها را به فایل angular-cli.json. معرفی کنیم:
  "apps": [
    {
      "assets": [
        "assets",
        "favicon.ico"
      ],
      "styles": [
        "styles.css"
      ],
      "scripts": [],
در اینجا امکان معرفی فایل‌های اسکریپت و همچنین شیوه‌نامه‌های اضافی بیشتری (علاوه بر فایل src\styles.css پیش فرض پروژه) جهت معرفی آن‌ها به سیستم build برنامه موجود است.
به علاوه تعریف پوشه‌ی src\assets را نیز در اینجا مشاهده می‌کنید؛ به همراه فایل‌های اضافی دیگری مانند src\favicon.ico که ذیل آن ذکر شده‌است.


یک مثال: معرفی کتابخانه‌ی ng2-bootstrap به Angular CLI

دریافت و نصب بسته‌های مورد نیاز
مرحله‌ی اول کار با یک کتابخانه‌ی ثالث نوشته شده‌ی برای Angular مانند ngx-bootstrap، دریافت و نصب بسته‌ی npm آن می‌باشد. به همین جهت به ریشه‌ی پروژه وارد شده و دستورات ذیل را صادر کنید تا بوت استرپ و همچنین کامپوننت‌های +Angular 2.0 آن نصب شوند:
> npm install bootstrap --save
> npm install ngx-bootstrap --save

پرچم save در اینجا سبب به روز رسانی خودکار فایل package.json می‌شود:
"dependencies": {
   "bootstrap": "^3.3.7",
   "ngx-bootstrap": "^1.6.6",

معرفی بسته‌های نصب شده به تنظیمات Angular CLI
پس از آن، همانطور که عنوان شد نیاز است به فایل angular-cli.json. مراجعه کرده و شیوه‌نامه‌ی بوت استرپ را تعریف کنیم:
  "apps": [
    {
      "styles": [
    "../node_modules/bootstrap/dist/css/bootstrap.min.css",
        "styles.css"
      ],

چون از ngx-bootstrap استفاده می‌کنیم، نیازی به مقدار دهی مستقیم []:"scripts" فایل angular-cli.json. نیست. ولی اگر خواستید اینکار را انجام دهید، روش آن به صورت ذیل است (که البته نیاز به نصب بسته‌ی jQuery را نیز خواهد داشت):
"scripts": [
   "../node_modules/jquery/dist/jquery.js",
   "../node_modules/bootstrap/dist/js/bootstrap.js"
],

بنابراین تا اینجا بسته‌های بوت استرپ و همچنین ngx-bootstarp نصب شدند و شیوه‌نامه‌ی بوت استرپ به فایل angular-cli.json اضافه گردید (نیازی هم به تکمیل قسمت scripts نیست).


استفاده از ماژول‌های مختلف بسته‌ی نصب شده در برنامه
در ادامه نیاز است تا ماژولی را از ngx-bootstarp را به قسمت imports فایل src\app\app.component.ts اضافه کرد. هرکدام از کامپوننت‌های این بسته به صورت یک ماژول مجزا تعریف شده‌اند. بنابراین برای استفاده‌ی از آن‌ها نیاز است برنامه را از وجودشان مطلع کرد. برای مثال روش استفاده‌ی از AlertModule آن به صورت ذیل است:
import { AlertModule } from 'ngx-bootstrap';

@NgModule({
  declarations: [
    AppComponent
  ],
  imports: [
    BrowserModule,
    FormsModule,
    HttpModule,

    AlertModule.forRoot()
  ],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule { }
در اینجا ابتدا AlertModule از ngx-bootstrap دریافت شده و سپس به قسمت imports فایل src\app\app.component.ts اضافه گردیده‌است.

آزمایش برنامه و اجرای آن
برای آزمایش مراحل فوق، فایل src/app/app.component.html را گشوده و به صورت ذیل تغییر دهید:
<h1>
  {{title}}
</h1>

<button class="btn btn-primary">Hello!</button>

<alert type="success">Alert success!</alert>
در اینجا یک دکمه‌ی جدید با شیوه‌نامه‌های بوت استرپ اضافه شده‌اند (جهت بررسی عملکرد بوت استرپ) و همچنین یک Alert نیز از مجموعه کامپوننت‌های ngx-bootstrap به صفحه اضافه شده‌است.
اکنون اگر دستور ng serve -o را اجرا کنیم، خروجی ذیل حاصل خواهد شد:



مستندات و مثال‌های بیشتری را از ماژول‌های ngx-bootstarp، در اینجا می‌توانید بررسی کنید.
مطالب
ساخت بسته‌های نیوگت مخصوص NET Core.
فایل‌های nuspec مخصوص سایر نگارش‌های دات نت، در NET Core. ندید گرفته شده و پردازش نمی‌شوند. در اینجا نیز تمام تنظیمات تولید بسته‌های نیوگت، در فایل project.json درج می‌شوند که در ادامه آن‌ها را بررسی خواهیم کرد.


فعالسازی تولید خودکار بسته‌های نیوگت در پروژه‌های NET Core.

پس از تهیه‌ی یک کتابخانه‌ی مبتنی بر NET Core.، تنها کاری که در جهت تولید خودکار بسته‌های نیوگت باید انجام شود، افزودن مدخل postcompile ذیل به فایل project.json است:
    "scripts": {
        "postcompile": [
            "dotnet pack --no-build --configuration %compile:Configuration%"
        ]
    }
پس از آن هربار که پروژه کامپایل شود، به صورت خودکار فایل nupkg نهایی در پوشه‌ی bin\Release تشکیل می‌شود.
در این‌حالت اگر فایل nupkg تولیدی را توسط برنامه‌های zip باز کنید، مشاهده خواهید کرد که فایل nuspec خودکاری نیز در آن درج شده‌است؛ اما ... مشخصات ثبت شده‌ی در آن ناقص هستند و شامل مواردی مانند نام پروژه، نام نویسنده، مجوز استفاده‌ی از پروژه، آدرس پروژه و امثال آن‌ها نیستند. در نگارش‌های دیگر دات نت، این مشخصات از فایل nuspec تهیه شده‌ی توسط ما جمع آوری و درج می‌شود. اما در اینجا خیر.


تکمیل فایل project.json برای درج مشخصات پروژه و تکمیل اطلاعات فایل nuspec

هرچند به ظاهر دیگر فایل nuspec دستی تهیه شده در اینجا پردازش نمی‌شود، اما تمام اطلاعات آن‌را در فایل project.json نیز می‌توان درج کرد:
{
    "version": "1.1.1.0",
    "authors": [ "Vahid Nasiri" ],
    "packOptions": {
        "owners": [ "Vahid Nasiri" ],
        "tags": [ "PdfReport", "Excel", "Export", "iTextSharp", "PDF", "Report", "Reporting", "Persian", ".NET Core" ],
        "licenseUrl": "http://www.gnu.org/licenses/old-licenses/lgpl-2.0-standalone.html",
        "projectUrl": "https://github.com/VahidN/iTextSharp.LGPLv2.Core"
    },
    "description": " iTextSharp.LGPLv2.Core  is an unofficial port of the last LGPL version of the iTextSharp (V4.1.6) to .NET Core.",

    "scripts": {
        "postcompile": [
            "dotnet pack --no-build --configuration %compile:Configuration%"
        ]
    }
}
در اینجا یک نمونه از مشخصات فایل project.json ایی را مشاهده می‌کنید که در آن مواردی مانند نویسندگان، برچسب‌هایی که در سایت نیوگت لیست خواهند شد، آدرس مجوز پروژه، آدرس مخزن کد پروژه و توضیحات آن، تکمیل شده‌اند. قسمت postcompile، دقیقا همین اطلاعات را جهت تولید فایل خودکار nuspec نهایی، استفاده می‌کند.


تکمیل تنظیمات Build پروژه

بهتر است کتابخانه‌های خود را در حالت release و همچنین بهینه سازی شده، توزیع کنید. به همین منظور نیاز است مدخل ذیل را نیز به فایل project.json اضافه کرد:
    "configurations": {
        "Release": {
            "buildOptions": {
                "optimize": true,
                "platform": "anycpu"
            }
        }
    },


افزودن مستندات XML ایی کتابخانه

به احتمال زیاد XML-Docهای هر متد (کامنت‌های مخصوص دات نتی هر متد یا خاصیت عمومی) را نیز به کدهای خود افزوده‌اید. برای اینکه فایل XML نهایی آن به صورت خودکار تولید شده و همچنین در بسته‌ی نیوگت نهایی درج شود، نیاز است مدخل xmlDoc را به buildOptions اضافه کنید:
    "buildOptions": {
        "xmlDoc": true
    },
در این حالت هر عنصری با سطح دسترسی public، باید دارای کامنت باشد. اگر می‌خواهید مجبور به انجام اینکار نشوید و کامپایلر اخطار صادر نکند، می‌توانید از اخطار شماره‌ی 1591 صرفنظر کنید:
    "buildOptions": {
        "xmlDoc": true,
        "nowarn": [ "1591" ] // 1591: missing xml comment for publicly visible type or member
    },


برای مطالعه‌ی بیشتر
project.json reference
مطالب
معرفی Actor Based Programming و توسعه نرم افزار های مقیاس پذیر و دارای عملیات همزمان بسیار زیاد - قسمت اول
مقدمه : 
زمانیکه هدفمان تولید سامانه‌ی نرم افزاری باشد که تعداد بسیار زیادی از کاربران با آن سرو کار دارند و اتفاقاً این سامانه قرار است عملیات بسیار حساسی (نظیر عملیات بانکی و مالی، مخابراتی و ...) را انجام دهد و عدم سرویس دهی مناسب آن قابل تحمل نبوده و باعث خسارات مالی، نارضایتی و ... گردد می‌بایست از روش‌های خاصی برای توسعه‌ی این گونه سیستم‌ها استفاده نمود. این نرم افزار‌ها برای اینکه بتوانند به تعداد درخواست‌های بسیار زیاد همزمان پاسخگو باشند و سرویس خود را با کیفیت مناسب ارائه دهند، می‌بایست دارای ویژگی‌های خاصی نظیر مقیاس پذیری (scalable) و تحمل پذیری در مقابل خطا (fault tolerance)  باشند.
خوب حالا که صورت مسئله مشخص شد، یکی از راه حل‌های موجود را که مدل Actor Based است، بررسی می‌کنیم.
مدل Actor Based یکـی از مـدل هـای اسـتاندارد بـرای توسـعه‌ی نـرم افزارهـایی بـا قابلیـت اطمینـان بسـیار بالا، تحمل پذیر درمقابـل خطـا و پاسـخ دهـی بسـیار سـریع مـی باشـد. در ایـن مـدل، وظـایف نـرم افـزار بـه مجموعــه‌ای از Actor هــا تقســیم (توزیع) گردیـده و هــر یــک از Actor هــا بــه صــورتی کــاملاً ایزولـه، در نــخ(thread) خـاص خودشـان اجـرا شـده و بخشـی از وظـایف سیسـتم را انجـام مـی دهنـد. سـپس بـا اتصـال Actor هـا بـه یکـدیگر، یـک خـط لولـه (Pipeline) تشـکیل شـده و بـا اسـتفاده از مکـانیزم هـای ارسـال و دریافت پیـام، امکـان همکـاری و برقـراری ارتبـاط بـین Actor هـا فـراهم شـده و در نتیجـه وظیفـه‌ی اصـلی و کلی نرم افـزار بـا حرکـت در یـک خـط لولـه و عبـور از Actor هـای مختلـف بـه صـورت مـوازی و همزمـان انجام خواهد شد. با توجه بـه اینکـه هـر یـک از پیـام‌هـای وارده بـه یـک Actor در یـک thread جداگانـه اجـرا مـی‌شـود، امکــان اینکــه در یــک لحظــه چنــدین Thread در یــک Actor در حــال اجــرا باشـنـد و جــود دارد و درنتیجه باید مکانیزم‌هایی وجود داشته باشد کـه تضـمین کنـد پیـام هـای وارد شـده بـه خـط لولـه، بـه ترتیـب معین شده، اجـرا و از خط لوله خارج می‌شوند. 
در این مدل هر یک از Actor هـا مـی تواننـد بـه صـورت توزیـع شـده و بـر روی سـروری مجزا اجـرا شـوند. خوشـبختانه فریمـورک هـای متفـاوت و بسـیار قـوی جهـت توسـعه بـه روش Actor Base وجـود دارند؛ بـه عنـوان مثال TPL DataFlow در Net. یکـی از نمونه‌های ساده آن بـوده کـه در سـال 2012 توسط Microsoft معرفـی شـد و Akka هم یک نمونه‌ی بسیار پخته‌تر و در بستر جاوا مطرح می‌باشد که پیاده سازی دات نتی آن هم با نام Akka.net موجود است. Erlang نیز محصول Ericsson بوده و دنیای خاص خود را دارد.
در این روش وظیفه توسعه دهنده این است که اولاً یک خط لوله از اکتور‌ها را تشکیل داده (کانفیگ)  و یک عمل بزرگ را به چندین عمل کوچک‌تر تقسیم نموده و هر کدام را به یک اکتور جهت اجرا ارسال نماید. تصویر نمونه زیر یک خط لوله متشکل از 4 اکتور را نشان می‌دهد که از طریق ارسال پیام با یکدیگر در ارتباط هستند تا با همکاری یکدیگر عملی را انجام دهند. این ساختار، Pipeline یا خط لوله نامیده می‌شود. 

در قسمت بعدی با جزئیات بیشتر و با نمونه‌های عملی این روش را بررسی می‌کنیم.