اشتراک‌ها
AutoMapper 5.0 Beta منتشر شد

The end result is a 10X performance boost in speed, but without sacrificing all of the runtime exception logic that makes AutoMapper so useful. 

AutoMapper 5.0 Beta منتشر شد
مطالب
آشنایی با Fluent interfaces

تعریف مقدماتی fluent interface در ویکی پدیا به شرح زیر است: (+)

In software engineering, a fluent interface (as first coined by Eric Evans and Martin Fowler) is a way of implementing an object oriented API in a way that aims to provide for more readable code.

به صورت خلاصه هدف آن فراهم آوردن روشی است که بتوان متدها را زنجیر وار فراخوانی کرد و به این ترتیب خوانایی کد نوشته شده را بالا برد. پیاده سازی آن هم شامل دو نکته است:
الف) نوع متد تعریف شده باید مساوی با نام کلاس جاری باشد.
ب) در این حالت خروجی متد‌های ما کلمه کلیدی this خواهند بود.

برای مثال:
using System;

namespace FluentInt
{
public class FluentApiTest
{
private int _val;

public FluentApiTest Number(int val)
{
_val = val;
return this;
}

public FluentApiTest Abs()
{
_val = Math.Abs(_val);
return this;
}

public bool IsEqualTo(int val)
{
return val == _val;
}
}
}
مثالی هم از استفاده‌ی آن به صورت زیر می‌تواند باشد:
if (new FluentApiTest().Number(-10).Abs().IsEqualTo(10))
{
Console.WriteLine("Abs(-10)==10");
}
که در آن توانستیم تمام متدها را زنجیر وار و با خوانایی خوبی شبیه به نوشتن جملات انگلیسی در کنار هم قرار دهیم.
خوب! این مطلبی است که همه جا پیدا می‌کنید و مطلب جدیدی هم نیست. اما موردی را که سخت می‌شود یافت این است که طراحی کلاس فوق ایراد دارد. برای مثال شما می‌توانید ترکیب‌های زیر را هم تشکیل دهید و کار می‌کند؛ یا به عبارتی برنامه کامپایل می‌شود و این خوب نیست:
if(new FluentApiTest().Abs().Number(-10).IsEqualTo(10)) ...
if (new FluentApiTest().Abs().IsEqualTo(10)) ...
می‌شود در کدهای برنامه یک سری throw new exception را هم قرار داد که ... هی! اول باید اون رو فراخوانی کنی بعد این رو!
ولی ... این روش هم صحیح نیست. از ابتدای کار نباید بتوان متد بی‌ربطی را در طول این زنجیره مشاهده کرد. اگر قرار نیست استفاده گردد، نباید هم در intellisense ظاهر شود و پس از آن هم نباید قابل کامپایل باشد.

بنابراین صورت مساله به این ترتیب اصلاح می‌شود:
می‌خواهیم پس از نوشتن FluentApiTest و قرار دادن یک نقطه، در intellisense فقط Number ظاهر شود و نه هیچ متد دیگری. پس از ذکر متد Number فقط متد Abs یا مواردی شبیه به آن مانند Sqrt ظاهر شوند. پس از انتخاب مثلا Abs آنگاه متد IsEqualTo توسط Intellisense قابل دسترسی باشد. در روش اول فوق، به صورت دوستانه همه چیز در دسترس است و هر ترکیب قابل کامپایلی را می‌شود با متدها ساخت که این مورد نظر ما نیست.
اینبار پیاده سازی اولیه به شرح زیر تغییر خواهد کرد:
using System;

namespace FluentInt
{
public class FluentApiTest
{
public MathMethods<FluentApiTest> Number(int val)
{
return new MathMethods<FluentApiTest>(this, val);
}
}

public class MathMethods<TParent>
{
private int _val;
private readonly TParent _parent;

public MathMethods(TParent parent, int val)
{
_val = val;
_parent = parent;
}

public Restrictions<MathMethods<TParent>> Abs()
{
_val = Math.Abs(_val);
return new Restrictions<MathMethods<TParent>>(this, _val);
}
}

public class Restrictions<TParent>
{
private readonly int _val;
private readonly TParent _parent;

public Restrictions(TParent parent, int val)
{
_val = val;
_parent = parent;
}

public bool IsEqualTo(int val)
{
return _val == val;
}
}
}
در اینجا هم به همان کاربرد اولیه می‌رسیم:
if (new FluentApiTest().Number(-10).Abs().IsEqualTo(10))
{
Console.WriteLine("Abs(-10)==10");
}
با این تفاوت که intellisense هربار فقط یک متد مرتبط در طول زنجیره را نمایش می‌دهد و تمام متدها در همان ابتدای کار قابل انتخاب نیستند.
در پیاده سازی کلاس MathMethods از Generics استفاده شده به این جهت که بتوان نوع متد Number را بر همین اساس تعیین کرد تا متدهای کلاس MathMethods در Intellisense (یا به قولی در طول زنجیره مورد نظر) ظاهر شوند. کلاس Restrictions نیز به همین ترتیب معرفی شده است و از آن جهت تعریف نوع متد Abs استفاده کردیم. هر کلاس جدید در طول زنجیره، توسط سازنده خود به وهله‌ای از کلاس قبلی به همراه مقادیر پاس شده دسترسی خواهد داشت. به این ترتیب زنجیره‌ای را تشکیل داده‌ایم که سازمان یافته است و نمی‌توان در آن متدی را بی‌جهت پیش یا پس از دیگری صدا زد و همچنین دیگر نیازی به بررسی نحوه‌ی فراخوانی‌های یک مصرف کننده نیز نخواهد بود زیرا برنامه کامپایل نمی‌شود.
مطالب
Feature Toggle
در بسیاری از پروژه‌های نرم افزاری ما ممکن است یک امکان (Feature) را برای بازه‌ی زمانی خاصی بنا به درخواست مشتری یا ضوابط خودمان نیاز داشته باشیم و در زمان دیگری یا برای مشتری دیگری نیاز نداشته باشیم و باید قابلیت مورد نظر غیر فعال باشد. یا حتی ممکن است قابلیتی را به تازگی افزوده باشیم، ولی در زمان اجرا خطایی داشته باشد و مجبور باشیم فورا آن را از دسترش خارج کنیم. به این فرایند در اصلاح Feature Toggle میگویند که البته نام‌های دیگری از جمله (feature switch, feature flag, feature flipper, conditional feature ) هم دارد. مارتین فاولر آن را این چنین تعریف میکند:
"Feature Toggling" is a set of patterns which can help a team to deliver new functionality to users rapidly but safely
"Feature Toggling" تکنیک قدرتمندی است که به ما این اجازه را میدهد تا رفتار سیستم را بدون تغییر کد عوض کنیم.
ساده‌ترین الگوی پیاده سازی Feature Toggling چیزی شبیه به نمونه زیر می‌باشد. یک اینترفیس که باید مشخصه یا متدی برای بررسی فعال بودن و نبودن داشته باشد.
 public interface IFeatureToggle {
   bool FeatureEnabled {get;}  
}
برای اینکه اصل قابل تنظیم بودن (Configurable) را هم رعایت کرده باشیم، بررسی فعال بودن کامپوننت را از طریق وب کانفیگ انجام میدهیم.
class ShowMessageToggle : IFeatureToggle  
 {   
    public bool FeatureEnabled {
     get{
           return  bool.Parse(ConfigurationManager.AppSettings["ShowMessageEnabled"]);      
        }
 }
و حالا کافی است در هر جایی که قصد استفاده از آن کلاس را داشته باشیم، فعال بودن و نبودنش را بررسی کنیم.
class Program
 {
 static void Main(string[] args)
   {
     var toggle = new ShowMessageToggle();
     if (toggle.FeatureEnabled)
     {
        Console.WriteLine("This feature is enabled")
     }
     else
     {  
         Console.WriteLine("This feature is disabled");            
     }
   }  
 }
مثال بالا ساده‌ترین نحوه‌ی استفاده از Feature Toggling بود. اما شبیه الگوی IOC که ابزارهای زیادی برای پیاده سازی آن عرضه شده است، برای این الگو هم ابزارهای جالبی تولید شده است که به‌راحتی این قابلیت را در پروژه‌های ما ایجاد و نگهداری میکند. لیستی از این ابزارها و پکیج‌ها را از اینجا میتوانید ببینید.
بطور مثال برای کار با FeatureToggle ابتدا آنرا با دستور زیر نصب میکنیم:
Install-Package FeatureToggle
سپس کلاس مورد نظر را از کلاس پایه SimpleFeatureToggle ارث بری میکنیم.
MyAwesomeFeature : SimpleFeatureToggle {}
در  فایل کانفیگ برنامه یک تنظیم جدید را با نام کلاس مذکور ایجاد میکنیم:
<add key="MyAwesomeFeature " value="true" />
حالا هرجای برنامه نیاز داشتید میتوانید فعال بودن و نبودن قابلیت‌های مختلف را بررسی کنید.
if (!myAwesomeFeature.FeatureEnabled)
{ // code to disable stuff (e.g. UI buttons, etc) }
شما به همین سادگی و سرعت، میتوانید قابلیت Feature Toggle را در پروژه‌هایتان راه اندازی کنید.

لیست منابع
 http://nugetmusthaves.com/Tag/toggle 
http://featureflags.io/dotnet-feature-flags/ 
http://martinfowler.com/articles/feature-toggles.html
مطالب
پیاده سازی پروژه‌ای مبتنی بر CQRS و ES
در قسمت قبلی با معماری CQRS و Event Sourcing بصورت مختصر آشنا شدیم. برای درک بیشتر مطلب پیشین، احتیاج به پیاده سازی آن به صورت عملیاتی و نه فقط تئوری محض میباشد و در این مرحله قصد پیاده سازی این مدل را به ساده‌ترین صورت ممکن داریم.
برای مطالعه‌ی ادامه‌ی این مقاله، نیاز به آشنایی با مباحث مطرح شده در قسمت قبل وجود دارد. پس از توضیحات اضافه بر روی قسمت‌های زیر گذشته و فرض بر آن است که آشنایی با این قسمت‌ها وجود دارد.
از این مدل میتوان در زبان‌های مختلف برنامه نویسی و همچنین سیستم‌های مختلف اعم از وب اپلیکیشن و ... استفاده نمود. همچنین برای استفاده از این مدل نیاز قطعی به استفاده از فریم ورک خاصی نیست. در صورت نیاز میتوانید پیاده سازی سفارشی خاص خود را داشته باشید. اما برای ساده‌تر شدن و هرچه سریعتر شدن مراحل از فریمورک SimpleCqrs استفاده میکنیم. هر چند بر خلاف نامش امکانات فراوانی را در اختیار برنامه نویسان قرار میدهد و حتی در پروژه‌های واقعی نیز میتوان از آن استفاده نمود.
برای سریعتر شدن کار میخواهیم پیاده سازی این مدل را در یک پروژه‌ی Console انجام دهیم و همچنین پس از ایجاد، پکیج‌های زیر را نصب مینماییم:
Unity, SimpleCqrs, SimpleCqrs.Unity
میخواهیم طبق مراحل گفته شده‌ی در قسمت قبل، به پیاده سازی این مدل بپردازیم و هدف، اضافه کردن یک Account به سیستم خواهد بود.
ابتدا باید DomainObject مورد نظر نوشته شود:
using System;
using SimpleCqrs.Domain;

namespace CqrsPattern.Cqrs.Command
{
    public class Account : AggregateRoot
    {
        public Account(Guid id)
        {
            Apply(new AccountCreatedEvent { AggregateRootId = id });
        }

        public void SetName(string firstName, string lastName)
        {
            Apply(new AccountNameSetEvent { FirstName = firstName, LastName = lastName });
        }

        public void OnAccountCreated(AccountCreatedEvent evt)
        {
            Id = evt.AggregateRootId;
        }
    }
}
نکته: میخواهیم عملیات اضافه کردن یک Account، با استفاده از دو event مربوطه به نام AccountCreatedEvent و مقدار دهی آن با استفاده از AccountNameSetEvent انجام شود.
eventهای فوق را در ادامه اضافه خواهیم داد (از توضیحات بیشتر صرفنظر شده و به مقاله‌ی قسمت قبل رجوع شود).
حال احتیاج به پیاده سازی Command مربوطه برای انجام وظیفه‌ی خود داریم که هدف آن، اضافه کردن یک Account  به سیستم مورد نظر میباشد.
فرض کنید برای اضافه شدن Account، پراپرتی‌های FirstName و LastName باید مقدار دهی شوند:
using SimpleCqrs.Commanding;

namespace CqrsPattern.Cqrs.Command
{
    public class CreateAccountCommand : ICommand
    {
        public string FirstName { get; set; }
        public string LastName { get; set; }
    }
}

حال CommandHandler که وظیفه‌ی تفسیر کردن Command مربوطه را به عهده دارد، پیاده سازی خواهد شد:
using System;
using SimpleCqrs.Commanding;
using SimpleCqrs.Domain;

namespace CqrsPattern.Cqrs.Command
{
    public class CreateAccountCommandHandler : CommandHandler<CreateAccountCommand>
    {
        private readonly IDomainRepository repository;

        public CreateAccountCommandHandler(IDomainRepository repository)
        {
            this.repository = repository;
        }

        public override void Handle(CreateAccountCommand command)
        {
            var account = new Account(Guid.NewGuid());
            account.SetName(command.FirstName, command.LastName);

            repository.Save(account);
        }
    }
}
نکته: از طریق account.SetName فراخوانی Event مربوطه انجام شده‌است و همچنین repository.Save به raise کردن EventHandler میپردازد.
event مربوط به اضافه شدن Account را به صورت زیر پیاده سازی مینماییم:
using SimpleCqrs.Eventing;

namespace CqrsPattern.Cqrs.Command
{
    public class AccountCreatedEvent : DomainEvent { }
}
و همچنین event مربوط به مقدار دهی پراپرتی‌ها نیز به صورت زیر خواهد بود:
using SimpleCqrs.Eventing;

namespace CqrsPattern.Cqrs.Command
{
    public class AccountNameSetEvent : DomainEvent
    {
        public string FirstName { get; set; }
        public string LastName { get; set; }
    }
}
در این بخش، پیاده سازی EventHandler را خواهیم داشت. طبق مطلب پیشین هر Domain باید EventHnadler ی داشته باشد که از Event هایش ارث بری کرده و هر کدام از Event‌ها عملا در قسمت Handle مربوط به خودش پردازش خواهد شد.
using System.Linq;
using SimpleCqrs.Eventing;
using CqrsPattern.Cqrs.Db;

namespace CqrsPattern.Cqrs.Command
{
    public class AccountEventHandler : IHandleDomainEvents<AccountCreatedEvent>,
                                             IHandleDomainEvents<AccountNameSetEvent>
    {
        private readonly FakeAccountTable accountTable;

        public AccountEventHandler(FakeAccountTable accountTable)
        {
            this.accountTable = accountTable;
        }

        public void Handle(AccountCreatedEvent domainEvent)
        {
            accountTable.Add(new FakeAccountTableRow { Id = domainEvent.AggregateRootId });
        }

        public void Handle(AccountNameSetEvent domainEvent)
        {
            var account = accountTable.Single(x => x.Id == domainEvent.AggregateRootId);
            account.Name = domainEvent.FirstName + " " + domainEvent.LastName;
        }
    }
}
نکته: از آنجاییکه پیاده سازی ذخیره کردن Account با استفاده از دو event فوق انجام شده، بعد از Raise شدن EventHandler هر دو متد Handle، وظیفه‌ی Command مربوطه را به عهده دارند (بنابراین وظیفه‌ی هر Command میتواند با استفاده از event‌های مختلفی انجام شود).
برای اینکه نخواهیم وارد فاز‌های مربوط به دیتابیس شویم، موقتا یک db به صورت fake شده را پیاده سازی مینماییم؛ به صورت زیر:
using System.Collections.Generic;

namespace CqrsPattern.Cqrs.Db
{
    public class FakeAccountTable : List<FakeAccountTableRow>
    { }
}
using System;

namespace CqrsPattern.Cqrs.Db
{
    public class FakeAccountTableRow
    {
        public Guid Id { get; set; }
        public string Name { get; set; }
    }
}

و همچنین نیاز به ServiceLocator برای نمونه گرفتن از RunTime ی که از آن ارث بری کرده است داریم (برای سادگی کار از الگوی ServiceLocator استفاده میکنیم، ServiceLocator جز Anti-Pattern  ها محسوب میشود و معمولا در پروژه‌های واقعی از آن استفاده نمیشود)
using SimpleCqrs;
using SimpleCqrs.Unity;

namespace CqrsPattern
{
    public class SampleRunTime : SimpleCqrsRuntime<UnityServiceLocator> { }
}
حال احتیاج به پیاده سازی قسمت Queryداریم به همراه ReadModel و سرویسی برای فراخوانی آن
using System;

namespace CqrsPattern.Cqrs.Query
{
    public class AccountReadModel
    {
        public string Name { get; set; }
        public Guid Id { get; set; }
    }
}
using CqrsPattern.Cqrs.Db;
using System.Collections.Generic;
using System.Linq;

namespace CqrsPattern.Cqrs.Query
{
    public class AccountReportReadService
    {
        private FakeAccountTable fakeAccountDb;

        public AccountReportReadService(FakeAccountTable fakeAccountDb)
        {
            this.fakeAccountDb = fakeAccountDb;
        }

        public IEnumerable<AccountReadModel> GetAccounts()
        {
            return from a in fakeAccountDb
                   select new AccountReadModel { Id = a.Id, Name = a.Name };
        }
    }
}

در قسمت Main نرم افزار نیاز به register کردن FakeTable خود داریم و همانطور که ملاحظه میکنید Command مورد نظر را نمونه سازی کرده و آن را روی CommandBus قرار میدهیم تا مراحل پیاده سازی شده در قسمت‌های فوق انجام شود و همچنین بعد از اتمام command ارسال شده از طریق Service مورد نظر اطلاعات ذخیره شده بازگردانی میشود
using System;
using SimpleCqrs.Commanding;
using CqrsPattern.Cqrs.Query;
using CqrsPattern.Cqrs.Command;

namespace CqrsPattern
{
    class Program
    {
        static void Main(string[] args)
        {
            var runtime = new SampleRunTime();

            runtime.Start();

            var fakeAccountTable = new FakeAccountTable();
            runtime.ServiceLocator.Register(fakeAccountTable);
            runtime.ServiceLocator.Register(new AccountReportReadService(fakeAccountTable));
            var commandBus = runtime.ServiceLocator.Resolve<ICommandBus>();

            var cmd = new CreateAccountCommand { FirstName = "Ali", LastName = "Kh" };

            commandBus.Send(cmd);

            var accountReportReadModel = runtime.ServiceLocator.Resolve<AccountReportReadService>();

            Console.WriteLine("Accounts in database");
            Console.WriteLine("####################");
            foreach (var account in accountReportReadModel.GetAccounts())
            {
                Console.WriteLine(" Id: {0} Name: {1}", account.Id, account.Name);
            }

            runtime.Shutdown();

            Console.ReadLine();
        }
    }
}
اینگونه کل عملیات‌های لازم انجام خواهد شد.

خلاصه:
1) Command مربوطه را نمونه سازی کرده و روی CommandBus قرار میدهیم.
2) CommandHandler فراخوانی شده و فانکشن Handle آن باعث نمونه سازی از AggregateRoot میشود.
public override void Handle(CreateAccountCommand command)
        {
            var account = new Account(Guid.NewGuid()); //line 1
            account.SetName(command.FirstName, command.LastName); //line 2
            repository.Save(account); //line 3
        }
در خط نخست Constructor کلاس Account باعث Apply شدن event مربوطه میشود.
public Account(Guid id)
        {
            Apply(new AccountCreatedEvent { AggregateRootId = id });
        }
و در خط دوم account.SetName  برای Apply شدن event مربوط به مقدار دهی property‌ها میباشد.
public void SetName(string firstName, string lastName)
        {
            Apply(new AccountNameSetEvent { FirstName = firstName, LastName = lastName });
        }
و همچنین در خط  سوم و پس از repository.Save باعث میشود event‌های pending شده Raise شده و توسط متد Handle مربوط به EventHandler پردازش شده و عملیات‌های زیر انجام شوند:
public void Handle(AccountCreatedEvent domainEvent)
        {
            accountTable.Add(new FakeAccountTableRow { Id = domainEvent.AggregateRootId });
        }

        public void Handle(AccountNameSetEvent domainEvent)
        {
            var account = accountTable.Single(x => x.Id == domainEvent.AggregateRootId);
            account.Name = domainEvent.FirstName + " " + domainEvent.LastName;
        }
رکورد مورد نظر ثبت شده و event بعدی، پراپرتی‌هایش را مقدار دهی مینماید  و بصورت InMemory درون FakeAccountTable ذخیره میشود (پر واضح است که در یک پروژه‌ی واقعی به جای ذخیره شدن در یک Collection باید درون دیتایس واقعی ذخیره سازی شود).
و پس از اتمام عملیات انجام شده، بصورت زیر در Main برنامه اطلاعات ذخیره شده بازگردانده خواهد شد:
var accountReportReadModel = runtime.ServiceLocator.Resolve<AccountReportReadService>();
var accounts = accountReportReadModel.GetAccounts();

در ادامه برای مطالعه بیشتر میتوان به Scale out کردن این سیستم و استفاده از فریمورک‌های  messaging چون Redis یا Kafka پرداخت و همچنین اعمال Load Balancing را در اینگونه سیستم‌ها انجام داد.
نکته: Cqrs-Pattern را میتوانید از اینجا clone نمایید
مطالب
مدیریت حالت در برنامه‌های Blazor توسط الگوی Observer - قسمت دوم
در قسمت قبل، روشی را بر اساس الگوی Observer، برای به اشتراک گذاری حالت و مدیریت سراسری آن، بررسی کردیم. در این روش می‌توان چندین مخزن حالت را نیز داشت؛ اما هر کدام مستقل از هم عمل می‌کنند. برای تکمیل آن فرض کنید قرار است عمل افزودن مقدار یک شمارشگر، در دو مخزن حالت متفاوت و مجزای از هم، در هر کدام سبب بروز تغییر حالتی خاص شود که در این مطلب روش مدیریت آن‌را بررسی خواهیم کرد.


نیاز به یک Dispatcher برای تعامل با بیش از یک مخزن حالت


در اینجا برای نمونه دو مخزن حالت تعریف شده‌اند؛ اما روش تعامل با این مخازن حالت، دیگر مانند قبل نیست. برای نمونه در اثر تعامل یک کاربر با View ای خاص، رخدادی صادر شده و اینبار مدیریت این رخداد توسط یک Action (که عموما یک پیام رشته‌ای است)، به Dispatcher مرکزی ارسال می‌شود (و نه مستقیما به مخزن حالت خاصی). اکنون این Dispatcher، اکشن رسیده را به مخازن کد مشترک به آن ارسال می‌کند تا عمل متناسب با آن اکشن درخواستی را انجام دهند. مابقی آن همانند قبل است که پس از تغییر حالت در هر کدام از مخازن حالت، کار به روز رسانی UI، در کامپوننت‌های مشترک صورت خواهد گرفت. بدیهی است در اینجا مخازن حالت، مجاز به صرفنظر کردن از یک اکشن خاص هستند و الزامی به پیاده سازی آن ندارند. هدف اصلی این است که اگر اکشنی قرار بود در تمام مخازن حالت پیاده سازی شود و حالت‌های آن‌ها را تغییر دهد، روشی را برای مدیریت آن داشته باشیم.
بنابراین اگر به این الگوی جدید دقت کنید، چیزی نیست بجز یک الگوی Observer دو سطحی:
الف) Dispatcher ای (Subject) که مشترک‌هایی را مانند مخازن حالت دارد (Observers).
ب) مخازن حالتی (Subjects) که مشترک‌هایی را مانند کامپوننت‌ها دارند (Observers).

اگر پیشتر با React کار کرده باشید، این الگو را تحت عناوینی مانند Flux و یا Redux می‌شناسید و در اینجا می‌خواهیم پیاده سازی #C آن‌را بررسی کنیم:


در الگوی Flux، در اثر تعامل یک کاربر با کامپوننتی، اکشنی به سمت یک Dispatcher ارسال می‌شود. سپس Dispatcher این اکشن را به مخزن حالتی جهت مدیریت آن ارسال می‌کند که در نهایت سبب تغییر حالت آن شده و به روز رسانی UI را در پی خواهد داشت.


پیاده سازی یک Dispatcher برای تعامل با بیش از یک مخزن حالت

پیش از هر کاری نیاز است قالب اکشن‌های ارسالی را که قرار است توسط مخازن حالت مورد پردازش قرار گیرند، مشخص کنیم:
namespace BlazorStateManagement.Stores
{
    public interface IAction
    {
        public string Name { get; }
    }
}
عموما هر اکشنی با نام و یا پیامی مشخص می‌شود. بر این اساس می‌توان اکشن افزودن و یا کاهش مقادیر شمارشگر را به صورت زیر تعریف کرد:
namespace BlazorStateManagement.Stores.CounterStore
{
    public class IncrementAction : IAction
    {
        public const string Increment = nameof(Increment);

        public string Name { get; } = Increment;
    }

    public class DecrementAction : IAction
    {
        public const string Decrement = nameof(Decrement);

        public string Name { get; } = Decrement;
    }
}
مزیت تعریف و استفاده از یک کلاس در اینجا این است که اگر نیاز بود به همراه اکشنی، اطلاعات اضافه‌تری نیز به سمت مخازن کد ارسال شوند، می‌توان آن‌ها را داخل هر کدام از کلاس‌ها، بسته به نیاز برنامه تعریف کرد و صرفا محدود به Name و یا یک مقدار رشته‌ای معرف آن، نخواهند بود.

پس از تعریف ساختار یک اکشن، اکنون نوبت به پیاده سازی راه حلی برای ارسال آن به تمام مخازن حالت برنامه است:
using System;

namespace BlazorStateManagement.Stores
{
    public interface IActionDispatcher
    {
        void Dispatch(IAction action);
        void Subscribe(Action<IAction> actionHandler);
        void Unsubscribe(Action<IAction> actionHandler);
    }

    public class ActionDispatcher : IActionDispatcher
    {
        private Action<IAction> _actionHandlers;

        public void Subscribe(Action<IAction> actionHandler) => _actionHandlers += actionHandler;

        public void Unsubscribe(Action<IAction> actionHandler) => _actionHandlers -= actionHandler;

        public void Dispatch(IAction action) => _actionHandlers?.Invoke(action);
    }
}
پیاده سازی ActionDispatcher ای را که ملاحظه می‌کنید، دقیقا مشابه CounterStore قسمت قبل است و در اینجا توسط متد Subscribe، مخازن حالت برنامه مشترک آن شده و یا توسط متد Unsubscribe، قطع اشتراک می‌کنند. همچنین متد Dispatch نیز شبیه به متد BroadcastStateChange قسمت قبل عمل می‌کند و سبب می‌شود تا اکشن ارسالی به آن، به تمام مشترکین این سرویس، ارسال شود.
این سرویس را نیز با طول عمر Scoped به سیستم تزریق وابستگی‌های برنامه معرفی می‌کنیم که سبب می‌شود تا پایان عمر برنامه (بسته شدن مرورگر یا ریفرش کامل صفحه‌ی جاری)، در حافظه باقی مانده و وهله سازی مجدد نشود. به همین جهت تزریق آن در مخازن حالت مختلف برنامه، دقیقا حالت یک Dispatcher اشتراکی را پیدا خواهد کرد.
namespace BlazorStateManagement.Client
{
    public class Program
    {
        public static async Task Main(string[] args)
        {
            var builder = WebAssemblyHostBuilder.CreateDefault(args);
            // ...
            builder.Services.AddScoped<IActionDispatcher, ActionDispatcher>();
            // ...
        }
    }
}


استفاده از IActionDispatcher در مخازن حالت برنامه

در ادامه می‌خواهیم مخازن حالت برنامه را تحت کنترل سرویس IActionDispatcher قرار دهیم تا کاربر بتواند اکشنی را به Dispatcher ارسال کند و سپس Dispatcher این درخواست را به تمام مخازن حالت موجود، جهت بروز واکنشی (در صورت نیاز)، اطلاعات رسانی نماید.
برای این منظور سرویس ICounterStore قسمت قبل ، به صورت زیر تغییر می‌کند که اینترفیس IDisposable را پیاده سازی کرده و همچنین دیگر به همراه متدهای عمومی افزایش و یا کاهش مقدار نیست:
using System;

namespace BlazorStateManagement.Stores.CounterStore
{
    public interface ICounterStore : IDisposable
    {
        CounterState State { get; }

        void AddStateChangeListener(Action listener);
        void BroadcastStateChange();
        void RemoveStateChangeListener(Action listener);
    }
}
بر این اساس، پیاده سازی CounterStore به صورت زیر تغییر خواهد کرد:
using System;

namespace BlazorStateManagement.Stores.CounterStore
{
    public class CounterStore : ICounterStore
    {
        private readonly CounterState _state = new();
        private bool _isDisposed;
        private Action _listeners;
        private readonly IActionDispatcher _actionDispatcher;

        public CounterStore(IActionDispatcher actionDispatcher)
        {
            _actionDispatcher = actionDispatcher ?? throw new ArgumentNullException(nameof(actionDispatcher));
            _actionDispatcher.Subscribe(HandleActions);
        }

        private void HandleActions(IAction action)
        {
            switch (action)
            {
                case IncrementAction:
                    IncrementCount();
                    break;
                case DecrementAction:
                    DecrementCount();
                    break;
            }
        }

        public CounterState State => _state;

        private void IncrementCount()
        {
            _state.Count++;
            BroadcastStateChange();
        }

        private void DecrementCount()
        {
            _state.Count--;
            BroadcastStateChange();
        }

        public void AddStateChangeListener(Action listener) => _listeners += listener;

        public void RemoveStateChangeListener(Action listener) => _listeners -= listener;

        public void BroadcastStateChange() => _listeners.Invoke();

        public void Dispose()
        {
            Dispose(disposing: true);
            GC.SuppressFinalize(this);
        }

        protected virtual void Dispose(bool disposing)
        {
            if (!_isDisposed)
            {
                try
                {
                    if (disposing)
                    {
                        _actionDispatcher.Unsubscribe(HandleActions);
                    }
                }
                finally
                {
                    _isDisposed = true;
                }
            }
        }
    }
}
توضیحات:
- با توجه به اینکه CounterStore یک سرویس ثبت شده‌ی در سیستم است، می‌تواند از مزیت تزریق سایر سرویس‌ها در سازنده‌ی خودش بهره‌مند شود؛ مانند تزریق سرویس جدید IActionDispatcher.
- پس از تزریق سرویس جدید IActionDispatcher، متدهای Subscribe آن‌را در سازنده‌ی کلاس و Unsubscribe آن‌را در حین Dispose سرویس، فراخوانی می‌کنیم. البته فراخوانی و یا پیاده سازی Unsubscribe و Dispose در اینجا غیرضروری است؛ چون طول عمر این کلاس با طول عمر برنامه یکی است.
- بر اساس این الگوی جدید، هر اکشنی که به سمت Dispatcher مرکزی ارسال می‌شود، در نهایت به متد HandleActions یکی از مخازن حالت تعریف شده، خواهد رسید:
        private void HandleActions(IAction action)
        {
            switch (action)
            {
                case IncrementAction:
                    IncrementCount();
                    break;
                case DecrementAction:
                    DecrementCount();
                    break;
            }
        }
در اینجا می‌توان با استفاده از patterns matching، بر اساس نوع اکشن مدنظر، عملیات خاصی را انجام داد. فقط در اینجا دیگر متدهای IncrementCount و DecrementCount، عمومی نیستند. به همین جهت باید به کامپوننت شمارشگر مراجعه کرد و تعریف قبلی:
@inject ICounterStore CounterStore

@code {

    private void IncrementCount()
    {
        CounterStore.IncrementCount();
    }
را به صورت زیر تغییر داد:
- ابتدا در انتهای فایل Client\_Imports.razor، فضای نام سرویس جدید IActionDispatcher را اضافه می‌کنیم:
@using BlazorStateManagement.Stores
- سپس از آن جهت ارسال IncrementAction به مخازن حالت برنامه استفاده خواهیم کرد:
// ...
@inject IActionDispatcher ActionDispatcher


@code {

    private void IncrementCount()
    {
        ActionDispatcher.Dispatch(new IncrementAction());
    }
با این تغییر جدید، هربار که بر روی دکمه‌ی افزایش مقدار شمارشگر، کلیک می‌شود، در آخر یک IncrementAction به تمام مخازن حالت موجود در برنامه ارسال خواهد شد و آن‌ها بر اساس نیازشان تصمیم خواهند گرفت که آیا به آن واکنش نشان دهند یا خیر.

کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: BlazorStateManagement-Part-2.zip
اشتراک‌ها
ReSharper Ultimate 2019.1 منتشر شد

Support for the recently released Visual Studio 2019 RTM, including but not limited to supporting the “async packages auto-load” API in Visual Studio 2019. 

ReSharper Ultimate 2019.1 منتشر شد
اشتراک‌ها
FluentValidation 9.0 منتشر شد

FluentValidation 9.0 is a major release that included several breaking changes. Please review this document before upgrading from FluentValidation 8.x to 9. 

FluentValidation 9.0 منتشر شد
مطالب
پیاده سازی CQRS توسط MediatR - قسمت دوم
در این مطلب قصد داریم به بررسی امکانات داخلی فریمورک MediatR بپردازیم. سورس این قسمت مقاله در این ریپازیتوری قابل دسترسی است.

نصب و راه اندازی


در ابتدا یک پروژه جدید ASP.NET Core از نوع API را ایجاد میکنیم و با استفاده از Nuget Package Manager ، پکیج MediatR را داخل پروژه نصب میکنیم:
Install-Package MediatR

بعد از نصب نیاز داریم تا نیازمندی‌های این فریمورک را داخل DI Container خود Register کنیم. اگر از DI Container پیشفرض ASP.NET Core استفاده کنیم ، کافیست پکیج متناسب آن با Microsoft.Extensions.DependencyInjection را نصب کرده و به‌راحتی نیازمندی‌های MediatR را فراهم سازیم:
Install-Package MediatR.Extensions.Microsoft.DependencyInjection
بعد از نصب کافیست این کد را به متد ConfigureServices فایل Startup.cs پروژه خود اضافه کنید تا نیازمندی‌های MediatR داخل DI Container شما Register شوند:
public void ConfigureServices(IServiceCollection services)
{
    services.AddMvc();
    services.AddMediatR();
}

* اگر از DI Container‌های دیگری استفاده میکنید، میتوانید با استفاده از توضیحات این لینک MediatR را داخل Container مورد نظرتان Register کنید.

IRequest

همانطور که در مطلب قبل گفتیم، در CQRS متدهای برنامه به 2 قسمت Command و Query تقسیم میشوند. در MediatR اینترفیسی بنام IRequest ایجاد شده‌است و تمامی Class‌های Command/Query ما که درخواست انجام کاری را میدهند، از این interface ارث بری خواهند کرد.

دلیل نامگذاری این interface به IRequest این است که ما درخواست افزودن یک مشتری جدید را ایجاد میکنیم و قسمت دیگری از برنامه، وظیفه پاسخگویی به این درخواست را برعهده خواهد داشت.

IRequest دارای 2 Overload از نوع Generic و Non-Generic است.
پیاده سازی Non-Generic آن برای درخواست‌هایی است که Response برگشتی ندارند ( معمولا Command‌ها ) و منتظر جوابی از سمت آن‌ها نیستیم و پیاده سازی Generic آن، نوع Response ای را که بعد از پردازش درخواست برگشت داده میشود، مشخص میسازد.

برای مثال قصد داریم مشتری جدیدی را در برنامه خود ایجاد کنیم. کلاس Customer به این صورت تعریف شده است:
public class Customer
{
    public int Id { get; set; }

    public string FirstName { get; set; }

    public string LastName { get; set; }

    public DateTime RegistrationDate { get; set; }
}

و Dto متناسب با آن نیز به این صورت تعریف شده است :
public class CustomerDto
{
    public int Id { get; set; }

    public string FirstName { get; set; }

    public string LastName { get; set; }

    public string RegistrationDate { get; set; }
}

افزودن مشتری، یک Command است؛ زیرا باعث افزودن رکوردی جدیدی به دیتابیس و تغییر State برنامه میشود. کلاس جدیدی به اسم CreateCustomerCommand ایجاد کرده و از IRequest ارث بری میکنیم و نوع Response برگشتی آن را CustomerDto قرار میدهیم:
public class CreateCustomerCommand : IRequest<CustomerDto>
{
    public CreateCustomerCommand(string firstName, string lastName)
    {
        FirstName = firstName;
        LastName = lastName;
    }

    public string FirstName { get; }

    public string LastName { get; }
}

کلاس CreateCustomerCommand نیازمندی‌های خود را از طریق Constructor مشخص میسازد. برای ایجاد کردن یک مشتری حداقل چیزی که لازم است، Firstname و Lastname آن است و بعد از ارسال مقادیر مورد نیاز به سازنده این کلاس، مقادیر بدلیل get-only بودن قابل تغییر نیستند.
در اینجا مفهوم immutability بطور کامل رعایت شده است.

Immutability


IRequestHandler


هر Request نیاز به یک Handler دارد تا آن را پردازش کند. در MediatR کلاس‌هایی که وظیفه پردازش یک IRequest را دارند، از اینترفیس IRequestHandler ارث بری کرده و متد Handle آن را پیاده سازی میکنند. اگر متد شما Synchronous است میتوانید از کلاس RequestHandler بطور مستقیم ارث بری کنید.

در ادامه مثال قبلی، کلاسی به اسم CreateCustomerCommandHandler ایجاد و از IRequestHandler ارث بری میکنیم و منطق افزودن مشتری به دیتابیس را پیاده سازی میکنیم:
public class CreateCustomerCommandHandler : IRequestHandler<CreateCustomerCommand, CustomerDto>
{
    readonly ApplicationDbContext _context;
    readonly IMapper _mapper;

    public CreateCustomerCommandHandler(ApplicationDbContext context, IMapper mapper)
    {
        _context = context;
        _mapper = mapper;
    }

    public async Task<CustomerDto> Handle(CreateCustomerCommand createCustomerCommand, CancellationToken cancellationToken)
    {
        Customer customer = _mapper.Map<Customer>(createCustomerCommand);

        await _context.Customers.AddAsync(customer, cancellationToken);
        await _context.SaveChangesAsync(cancellationToken);

        return _mapper.Map<CustomerDto>(customer);
    }
}

ورودی اول IRequestHandler، کلاسی است که درخواست، آن را پردازش خواهد کرد و پارامتر ورودی دوم، کلاسی است که در نتیجه پردازش بعنوان Response برگشت داده خواهد شد.

همانطور که میبینید در این Handler از DbContext مربوط به Entity Framework برای ثبت اطلاعات داخل دیتابیس و IMapper مربوط به AutoMapper برای نگاشت CreateCustomerCommand به Customer استفاده شده است.

تنظیمات Profile مربوط به AutoMapper ما به این صورت است تا در هنگام نگاشت CreateCustomerCommand ، مقدار RegistrationDate مربوط به Customer برابر با زمان فعلی قرار داده شود و برای نگاشت Customer به CustomerDto نیز ، تاریخ RegistrationDate با فرمتی قابل فهم به کاربران نمایش داده شود :
public class DomainProfile : Profile
{
    public DomainProfile()
    {
        CreateMap<CreateCustomerCommand, Customer>()
            .ForMember(c => c.RegistrationDate, opt =>
                opt.MapFrom(_ => DateTime.Now));

        CreateMap<Customer, CustomerDto>()
            .ForMember(cd => cd.RegistrationDate, opt =>
                opt.MapFrom(c => c.RegistrationDate.ToShortDateString()));
    }
}

در نهایت با inject کردن اینترفیس IMediator به کنترلر خود و فرستادن یک درخواست POST به این اکشن، درخواست ایجاد مشتری را توسط متد Send میدهیم :
[HttpPost]
public async Task<IActionResult> CreateCustomer([FromBody] CreateCustomerCommand createCustomerCommand)
{
    CustomerDto customer = await _mediator.Send(createCustomerCommand);
    return CreatedAtAction(nameof(GetCustomerById), new { customerId = customer.Id }, customer);
}

همانطور که میبینید ما در اینجا فقط درخواست، فرستاده‌ایم و وظیفه پیدا کردن Handler این درخواست را فریمورک MediatR برعهده گرفته‌است و ما هیچ جایی بطور مستقیم Handler خود را صدا نزده ایم. ( Hollywood Principle: Don't Call Us, We Call You )


روند پیاده سازی Query‌ها نیز دقیقا شبیه به Command است و نمونه‌ای از آن داخل ریپازیتوری ذکر شده‌ی در ابتدای مطلب وجود دارد.
اینترفیس IMediator علاوه بر متد Send ، دارای متد دیگری بنام Publish نیز هست که وظیفه Raise کردن Event‌ها را برعهده دارد که در مقالات بعدی از آن استفاده خواهیم کرد.

چند نکته :
1- در نامگذاری Command‌ها، کلمه Command در انتهای نام آن‌ها آورده میشود؛ مثال: CreateCustomerCommand
2- در نامگذاری Query‌ها، کلمه Query در انتهای نام آن‌ها آورده میشود؛ مثال : GetCustomerByIdQuery
3- در نامگذاری Handler‌ها، از ترکیب Command/Query + Handler استفاده میکنیم؛ مثال : CreateCustomerCommandHandler, GetCustomerByIdQueryHandler
4- در این قسمت Request‌های ما بدون هیچ Validation ای وارد Handler هایشان میشدند که این نیاز اکثر برنامه‌ها نیست. در قسمت بعدی با استفاده از Fluent Validation پارامترهای Request هایمان را بطور خودکار اعتبارسنجی میکنیم.
اشتراک‌ها
ASP.NET Core و دانت ۷، ریلیز نهایی

What’s new?

Here’s a sampling of the great new features and improvements in ASP.NET Core for .NET 7:

ASP.NET Core  و دانت ۷، ریلیز نهایی