نظرات مطالب
سه مطلب کوتاه
هر ssl certificate حتما دارای یک تاریخ انقضاء است. احتمالا سایت مورد نظر شما مجوز خودش را به روز نکرده است. سایت‌های دست چندم ممکن است از این نوع مشکلات داشته باشند.
مطالب
Roslyn #1
معرفی Roslyn

سکوی کامپایلر دات نت یا Roslyn (با تلفظ «رازلین») بازنویسی مجدد کامپایلرهای VB.NET و #C توسط همین زبان‌ها است. این سکوی کامپایلر به همراه یک سری کتابخانه و اسمبلی ارائه می‌شود که امکان آنالیز زبان‌های مدیریت شده را به صورت مستقل و یا یکپارچه‌ی با ویژوال استودیو، فراهم می‌کنند. برای نمونه در VS.NET 2015 تمام سرویس‌های زبان‌های موجود، با Roslyn API جایگزین و بازنویسی شده‌اند. نمونه‌هایی از این سرویس‌های زبان‌ها، شامل  Intellisense و مرور کدها مانند go to references and definitions، به همراه امکانات Refactoring می‌شوند. به علاوه به کمک Roslyn می‌توان یک کامپایلر و ابزارهای مرتبط با آن، مانند FxCop را تولید کرد و یا در نهایت یک فایل اسمبلی نهایی را از آن تحویل گرفت.


چرا مایکروسافت Roslyn را تولید کرد؟

پیش از پروژه‌ی Roslyn، کامپایلرهای VB.NET و #C با زبان ++C نوشته شده بودند؛ از این جهت که در اواخر دهه‌ی 90 که کار تولید سکوی دات نت در حال انجام بود، هنوز امکانات کافی برای نوشتن این کامپایلرها با زبان‌های مدیریت شده وجود نداشت و همچنین زبان محبوب کامپایلر نویسی در آن دوران نیز ++C بود. این انتخاب در دراز مدت مشکلاتی مانند کاهش انعطاف پذیری و productivity تیم کامپایلر نویس را با افزایش تعداد سطرهای کامپایلر نوشته شده به همراه داشت و افزودن ویژگی‌های جدید را به زبان‌های VB.NET و #C سخت‌تر و سخت‌تر کرده بود. همچنین در اینجا برنامه نویس‌های تیم کامپایلر مدام مجبور بودند که بین زبان‌های مدیریت شده و مدیریت نشده سوئیچ کنند و امکان استفاده‌ی همزمان از زبان‌هایی را که در حال توسعه‌ی آن هستند، نداشتند.
این مسایل سبب شدند تا در طی بیش از یک دهه، چندین نوع کامپایلر از صفر نوشته شوند:
- کامپایلرهای خط فرمانی مانند csc.exe و vbc.exe
- کامپایلر پشت صحنه‌ی ویژوال استودیو (برای مثال کشیدن یک خط قرمز زیر مشکلات دستوری موجود)
- کامپایلر snippet‌ها در immediate window ویژوال استودیو

هر کدام از این کامپایلرها هم برای حل مسایلی خاص طراحی شده‌اند. کامپایلرهای خط فرمانی، با چندین فایل ورودی، به همراه ارائه‌ی تعدادی زیادی خطا و اخطار کار می‌کنند. کامپایلر پشت صحنه‌ی ویژوال استودیوهای تا پیش از نسخه‌ی 2015، تنها با یک تک فایل در حال استفاده، کار می‌کند و همچنین باید به خطاهای رخ داده نیز مقاوم باشد و بیش از اندازه گزارش خطا ندهد. برای مثال زمانیکه کاربر در حالت تایپ یک سطر است، بدیهی است تا اتمام کار، این سطر فاقد ارزش دستوری صحیحی است و کامپایلر باید به این مساله دقت داشته باشد و یا کامپایلر snippet‌ها تنها جهت ارزیابی یک تک سطر از دستورات وارد شده، طراحی شده‌است.

با توجه به این مسایل، مایکروسافت از بازنویسی سکوی کامپایلر دات نت این اهداف را دنبال می‌کند:
- بالا بردن سرعت افزودن قابلیت‌های جدید به زبان‌های موجود
- سبک کردن حجم کاری کامپایلر نویسی و کاهش تعداد آن‌ها به یک مورد
- بالا بردن دسترسی پذیری به API کامپایلرها
برای مثال اکنون برنامه نویس‌ها بجای اینکه یک فایل cs را به کامپایلر csc.exe ارائه کنند و یک خروجی باینری دریافت کنند، امکان دسترسی به syntax trees، semantic analysis و تمام مسایل پشت صحنه‌ی یک کامپایلر را دارند.
- ساده سازی تولید افزونه‌های مرتبط با زبان‌های مدیریت شده.
اکنون برای تولید یک آنالیز کننده‌ی سفارشی، نیازی نیست هر توسعه دهنده‌ای شروع به نوشتن امکانات پایه‌ای یک کامپایلر کند. این امکانات به صورت یک API عمومی در دسترس برنامه نویس‌ها قرار گرفته‌اند.
- آموزش مسایل درونی یک کامپایلر و همچنین ایجاد اکوسیستمی از برنامه نویس‌های علاقمند در اطراف آن.
همانطور که اطلاع دارید، Roslyn به صورت سورس باز در GitHub در دسترس عموم است.


تفاوت Roslyn با کامپایلرهای سنتی

اکثر کامپایلرهای موجود به صورت یک جعبه‌ی سیاه عمل می‌کنند. به این معنا که تعدادی فایل ورودی را دریافت کرده و در نهایت یک خروجی باینری را تولید می‌کنند. اینکه در این میان چه اتفاقاتی رخ می‌دهد، از دید استفاده کننده مخفی است.


نمونه‌ای از این کامپایلرهای جعبه سیاه را در تصویر فوق مشاهده می‌کنید. در اینجا شاید این سؤال مطرح شود که در داخل جعبه‌ی سیاه کامپایلر سی‌شارپ، چه اتفاقاتی رخ می‌دهد؟


خلاصه‌ی مراحل رخ داده در کامپایلر سی‌شارپ را در تصویر فوق ملاحظه می‌کنید. در اینجا ابتدا کار parse اطلاعات متنی دریافتی شروع می‌شود و از روی آن syntax tree تولید می‌شود. در مرحله‌ی بعد مواردی مانند ارجاعاتی به mscorlib و امثال آن پردازش می‌شوند. در مرحله‌ی binder کار پردازش حوزه‌ی دید متغیرها، اشیاء و اتصال آن‌ها به هم انجام می‌شود. در مرحله‌ی آخر، کار تولید کدهای IL و اسمبلی باینری نهایی صورت می‌گیرد.
با معرفی Roslyn، این جعبه‌ی سیاه، به صورت یک API عمومی در دسترس برنامه نویس‌ها قرار گرفته‌است:


همانطور که مشاهده می‌کنید، هر مرحله‌ی کامپایل جعبه‌ی سیاه، به یک API عمومی Roslyn نگاشت شده‌است. برای مثال Parser به Syntax tree API نگاشت شده‌است. به علاوه این API صرفا به موارد فوق خلاصه نمی‌شود و همانطور که پیشتر نیز ذکر شد، برای اینکه بتواند جایگزین سه نوع کامپایلر موجود شود، به همراه Workspace API نیز می‌باشد:


Roslyn امکان کار با یک Solution و فایل‌های آن را دارد و شامل سرویس‌های زبان‌های مورد نیاز در ویژوال استودیو نیز می‌شود. برفراز Workspace API، یک مجموعه API دیگر به نام Diagnostics API تدارک دیده شده‌است تا برنامه نویس‌ها بتوانند امکانات Refactoring جانبی را توسعه داده و یا در جهت بهبود کیفیت کدهای نوشته شده، اخطارهایی را به برنامه نویس‌ها تحت عنوان Code fixes و آنالیز کننده‌ها، ارائه دهند.

مطالب
آزمون واحد در MVVM به کمک تزریق وابستگی
یکی از خوبی‌های استفاده از Presentation Pattern‌ها بالا بردن تست پذیری برنامه و در نتیجه نگهداری کد می‌باشد.
MVVM الگوی محبوب برنامه نویسان WPF و Silverlight می‌باشد.  به صرف استفاده از الگوی MVVM نمی‌توان اطمینان داشت که ViewModel کاملا تست پذیری داریم. به عنوان مثلا اگر در ViewModel خود مستقیما DialogBox کنیم یا ارجاعی از View دیگری داشته باشیم نوشتن آزمون‌های واحد تقریبا غیر ممکن می‌شود. قبلا درباره‌ی این مشکلات و راه حل آن مطلب در سایت منتشر شده است : 
در این مطلب قصد داریم سناریویی را بررسی کنیم که ViewModel از Background Worker جهت انجام عملیات مانند دریافت داده‌ها استفاده می‌کند.
Background Worker کمک می‌کند تا اعمال طولانی در یک Thread دیگر اجرا شود در نتیجه رابط کاربری Freeze نمی‌شود.
به این مثال ساده توجه کنید : 
    public class BackgroundWorkerViewModel : BaseViewModel
    {
        private List<string> _myData;

        public BackgroundWorkerViewModel()
        {
            LoadDataCommand = new RelayCommand(OnLoadData);
        }

        public RelayCommand LoadDataCommand { get; set; }

        public List<string> MyData
        {
            get { return _myData; }
            set
            {
                _myData = value;
                RaisePropertyChanged(() => MyData);
            }
        }

        public bool IsBusy { get; set; }

        private void OnLoadData()
        {
            var backgroundWorker = new BackgroundWorker();
            backgroundWorker.DoWork += (sender, e) =>
                             {
                                 MyData = new List<string> {"Test"};
                                 Thread.Sleep(1000);
                             };
            backgroundWorker.RunWorkerCompleted += (sender, e) => { IsBusy = false; };
            backgroundWorker.RunWorkerAsync();
        }
    }

در این ViewModel با اجرای دستور LoadDataCommand داده‌ها از یک منبع داده دریافت می‌شود. این عمل می‌تواند چند ثانیه طول بکشد ، در نتیجه برای قفل نشدن رابط کاربر این عمل را به کمک Background Worker به صورت Async در پشت صحنه انجام شده است.
آزمون واحد این ViewModel اینگونه خواهد بود : 
    [TestFixture]
    public class BackgroundWorkerViewModelTest
    {
        #region Setup/Teardown

        [SetUp]
        public void SetUp()
        {
            _backgroundWorkerViewModel = new BackgroundWorkerViewModel();
        }

        #endregion

        private BackgroundWorkerViewModel _backgroundWorkerViewModel;

        [Test]
        public void TestGetData()
        {
              
            _backgroundWorkerViewModel.LoadDataCommand.Execute(_backgroundWorkerViewModel);

            Assert.NotNull(_backgroundWorkerViewModel.MyData);
            Assert.IsNotEmpty(_backgroundWorkerViewModel.MyData);
        }
    }

با اجرای این آزمون واحد نتیجه با آن چیزی که در زمان اجرا رخ می‌دهد متفاوت است و با وجود صحیح بودن کدها آزمون واحد شکست می‌خورد.
چون Unit Test به صورت همزمان اجرا می‌شود و برای عملیات‌های پشت صحنه صبر نمی‌کند در نتیحه این آزمون واحد شکست می‌خورد.

آزمون واحد شکست خورده

یک راه حل تزریق BackgroundWorker به صورت وابستگی به ViewModel می‌باشد. همانطور که قبلا اشاره شده یکی از مزایای استفاده از تکنیک‌های تزریق وابستگی  سهولت Unit testing می‌باشد.
در نتیجه یک Interface عمومی و 2  پیاده سازی همزمان و غیر همزمان جهت استفاده در برنامه‌ی واقعی و آزمون واحد تهیه می‌کنیم : 
   public interface IWorker
    {
        void Run(DoWorkEventHandler doWork);
        void Run(DoWorkEventHandler doWork, RunWorkerCompletedEventHandler onComplete);
    }
جهت استفاده در برنامه‌ی واقعی : 
    public class AsyncWorker : IWorker
    {
        public void Run(DoWorkEventHandler doWork)
        {
            Run(doWork, null);
        }

        public void Run(DoWorkEventHandler doWork, RunWorkerCompletedEventHandler onComplete)
        {
            var backgroundWorker = new BackgroundWorker();
            backgroundWorker.DoWork += doWork;
            if (onComplete != null)
                backgroundWorker.RunWorkerCompleted += onComplete;
            backgroundWorker.RunWorkerAsync();
            

        }
    }
جهت اجرا در آزمون واحد : 
    public class SyncWorker : IWorker
    {
        #region IWorker Members

        public void Run(DoWorkEventHandler doWork)
        {
            Run(doWork, null);
        }

        public void Run(DoWorkEventHandler doWork, RunWorkerCompletedEventHandler onComplete)
        {
            Exception error = null;
            var doWorkEventArgs = new DoWorkEventArgs(null);
            try
            {
                doWork(this, doWorkEventArgs);
            }
            catch (Exception ex)
            {
                error = ex;
                throw;
            }
            finally
            {
                onComplete(this, new RunWorkerCompletedEventArgs(doWorkEventArgs.Result, error, doWorkEventArgs.Cancel));
            }
        }

        #endregion
    }
در نتیجه ViewModel اینگونه تغییر خواهد کرد :
    public class BackgroundWorkerViewModel : BaseViewModel
    {
        private readonly IWorker _worker;
        private List<string> _myData;

        public BackgroundWorkerViewModel(IWorker worker)
        {
            _worker = worker;
            LoadDataCommand = new RelayCommand(OnLoadData);
        }

        public RelayCommand LoadDataCommand { get; set; }

        public List<string> MyData
        {
            get { return _myData; }
            set
            {
                _myData = value;
                RaisePropertyChanged(() => MyData);
            }
        }

        public bool IsBusy { get; set; }

        private void OnLoadData()
        {
            IsBusy = true; // view is bound to IsBusy to show 'loading' message.

            _worker.Run(
                (sender, e) =>
                    {
                        MyData = new List<string> {"Test"};
                        Thread.Sleep(1000);
                    },
                (sender, e) => { IsBusy = false; });
        }
    }

کلاس مربوطه به آزمون واحد را مطابق با تغییرات ViewModel :
    [TestFixture]
    public class BackgroundWorkerViewModelTest
    {
        #region Setup/Teardown

        [SetUp]
        public void SetUp()
        {
            _backgroundWorkerViewModel = new BackgroundWorkerViewModel(new SyncWorker());
        }

        #endregion

        private BackgroundWorkerViewModel _backgroundWorkerViewModel;

        [Test]
        public void TestGetData()
        {
              
            _backgroundWorkerViewModel.LoadDataCommand.Execute(_backgroundWorkerViewModel);

            Assert.NotNull(_backgroundWorkerViewModel.MyData);
            Assert.IsNotEmpty(_backgroundWorkerViewModel.MyData);
        }
    }

اکنون اگر Unit Test را اجرا کنیم نتیجه اینگونه خواهد بود :




 
نظرات مطالب
الگوی استراتژی - Strategy Pattern
تفاوت مهمی نداره؛ فقط اینترفیس ورژن پذیر نیست. یعنی اگر در این بین متدی رو به تعاریف اینترفیس خودتون اضافه کردید، تمام استفاده کننده‌ها مجبور هستند اون رو پیاده سازی کنند. اما کلاس Abstract می‌تونه شامل یک پیاده سازی پیش فرض متد خاصی هم باشه و به همین جهت ورژن پذیری بهتری داره.
بنابراین کلاس Abstact یک اینترفیس است که می‌تواند پیاده سازی هم داشته باشد.
همین مساله خاص نگارش پذیری، در طراحی ASP.NET MVC به کار گرفته شده: (^ )
برای من نوعی شاید این مساله اهمیتی نداشته باشه. اگر من قرارداد اینترفیس کتابخانه خودم را تغییر دادم، بالاخره شما با یک حداقل نق زدن مجبور به به روز رسانی کار خودتان خواهید شد. اما اگر مایکروسافت چنین کاری را انجام دهد، هزاران نفر شروع خواهند کرد به بد گفتن از نحوه مدیریت پروژه تیم‌های مایکروسافت و اینکه چرا پروژه جدید آن‌ها با یک نگارش جدید MVC کامپایل نمی‌شود. بنابراین انتخاب بین این دو بستگی دارد به تعداد کاربر پروژه شما و استراتژی ورژن پذیری قرار دادهای کتابخانه‌ای که ارائه می‌دهید.
مطالب دوره‌ها
استفاده از async و await در برنامه‌های ASP.NET Web forms 4.5
سؤال: چه زمانی از متدهای async و چه زمانی از متدهای همزمان بهتر است استفاده شود؟

از متدهای همزمان متداول برای انجام امور ذیل استفاده نمائید:
- جهت پردازش اعمالی ساده و سریع
- اعمال مدنظر بیشتر قرار است بر روی CPU اجرا شوند و از مرزهای IO سیستم عبور نمی‌کنند.

و از متدهای غیرهمزمان برای پردازش موارد زیر کمک بگیرید:
- از وب سرویس‌هایی استفاده می‌کنید که متدهای نگارش async را نیز ارائه داده‌اند.
- عمل مدنظر network-bound و یا I/O-bound است بجای CPU-bound. یعنی از مرزهای IO سیستم عبور می‌کند.
- نیاز است چندین عملیات را به موازات هم اجرا کرد.
- نیاز است مکانیزمی را جهت لغو یک عملیات طولانی ارائه دهید.


مزایای استفاده از متدهای async در ASP.NET

استفاده از await در ASP.NET، ساختار ذاتی پروتکل HTTP را که اساسا یک synchronous protocol، تغییر نمی‌دهد. کلاینت، درخواستی را ارسال می‌کند و باید تا زمان آماده شدن نتیجه و بازگشت آن از طرف سرور، صبر کند. نحوه‌ی تهیه‌ی این نتیجه، خواه async باشد و یا حتی همزمان، از دید مصرف کننده کاملا مخفی است. اکنون سؤال اینجا است که چرا باید از متدهای async استفاده کرد؟
- پردازش موازی: می‌توان چند Task را مثلا توسط Task.WhenAll به صورت موازی با هم پردازش کرده و در نهایت نتیجه را سریعتر به مصرف کننده بازگشت داد. اما باید دقت داشت که این Taskها اگر I/O bound باشند، ارزش پردازش موازی را دارند و اگر compute bound باشند (اعمال محاسباتی)، صرفا یک سری ترد را ایجاد و مصرف کرده‌اید که می‌توانسته‌اند به سایر درخواست‌های رسیده پاسخ دهند.
- خالی کردن تردهای در حال انتظار: در اعمالی که disk I/O و یا network I/O دارند، پردازش موازی و اعمال async به شدت مقیاس پذیری سیستم را بالا می‌برند. به این ترتیب worker thread جاری (که تعداد آن‌ها محدود است)، سریعتر آزاد شده و به worker pool بازگشت داده می‌شود تا بتواند به یک درخواست دیگر رسیده سرویس دهد. در این حالت می‌توان با منابع کمتری، درخواست‌های بیشتری را پردازش کرد.


ایجاد Asynchronous HTTP Handlers در ASP.Net 4.5

در نگارش‌های پیش از دات نت 4.5، برای نوشتن فایل‌های ashx غیرهمزمان می‌بایستی اینترفیس IHttpAsynchHandler پیاده سازی می‌شد که نحوه‌ی کار با آن از مدل APM پیروی می‌کرد؛ نیاز به استفاده از یک سری callback داشت و این عملیات باید طی دو متد پردازش می‌شد. اما در دات نت 4.5 و با معرفی امکانات async و await، نگارش سازگاری با پیاده سازی کلاس پایه HttpTaskAsyncHandler فراهم شده است.
برای آزمایش آن، یک برنامه‌ی جدید ASP.NET Web forms نگارش 4.5 یا بالاتر را ایجاد کنید. سپس از منوی پروژه، گزینه‌ی Add new item یک Generic handler به نام LogRequestHandler.ashx را به پروژه اضافه نمائید.
زمانیکه این فایل به پروژه اضافه می‌شود، یک چنین امضایی را دارد:
 public class LogRequestHandler : IHttpHandler
IHttpHandler آن‌را اکنون به HttpTaskAsyncHandler تغییر دهید. سپس پیاده سازی ابتدایی آن به شکل زیر خواهد بود:
using System;
using System.Net;
using System.Text;
using System.Threading.Tasks;
using System.Web;

namespace Async14
{
    public class LogRequestHandler : HttpTaskAsyncHandler
    {
        public override async Task ProcessRequestAsync(HttpContext context)
        {
            string url = context.Request.QueryString["rssfeedURL"];
            if (string.IsNullOrWhiteSpace(url))
            {
                context.Response.Write("Rss feed URL is not provided");
            }

            using (var webClient = new WebClient {Encoding = Encoding.UTF8})
            {
                webClient.Headers.Add("User-Agent", "LogRequestHandler 1.0");
                var rssfeed = await webClient.DownloadStringTaskAsync(url);
                context.Response.Write(rssfeed);
            }
        }

        public override bool IsReusable
        {
            get { return true; }
        }

        public override void ProcessRequest(HttpContext context)
        {
            throw new Exception("The ProcessRequest method has no implementation.");
        }
    }
}
واژه‌ی کلیدی async را نیز جهت استفاده از await به نسخه‌ی غیرهمزمان آن اضافه کرده‌ایم.
در این مثال آدرس یک فید RSS از طریق کوئری استرینگ rssfeedURL دریافت شده و سپس محتوای آن به کمک متد DownloadStringTaskAsync دریافت و بازگشت داده می‌شود.
برای آزمایش آن، مسیر ذیل را درخواست دهید:
 http://localhost:4207/LogRequestHandler.ashx?rssfeedURL=https://www.dntips.ir/feed/latestchanges
کاربردهای فایل‌های ashx برای مثال ارائه فید‌های XML ایی یک سایت، ارائه منبع نمایش تصاویر پویا از بانک اطلاعاتی، ارائه JSON برای افزونه‌های auto complete جی‌کوئری و امثال آن است. مزیت آن‌ها سربار بسیار کم است؛ زیرا وارد چرخه‌ی طول عمر یک صفحه‌ی aspx معمولی نمی‌شوند.


صفحات async در ASP.NET 4.5

در قسمت‌های قبل مشاهده کردیم که در برنامه‌های دسکتاپ، به سادگی می‌توان امضای روال‌های رخداد گردان را به async تغییر داد و ... برنامه کار می‌کند. به علاوه از مزیت استفاده از واژه کلیدی await نیز در آن‌ها برخوردار خواهیم شد. اما ... هرچند این روش در وب فرم‌ها نیز صادق است (مثلا public void Page_Load را به  public async void Page_Load می‌توان تبدیل کرد) اما اعضای تیم ASP.NET آن‌را در مورد برنامه‌های وب فرم توصیه نمی‌کنند:
Async void event handlers تنها در مورد تعداد کمی از روال‌های رخدادگردان ASP.NET Web forms کار می‌کنند و از آن‌ها تنها برای تدارک پردازش‌های ساده می‌توان استفاده کرد. اگر کار در حال انجام اندکی پیچیدگی دارد، «باید» از PageAsyncTask استفاده نمائید. علت اینجا است که Async void یعنی fire and forget (کاری را شروع کرده و فراموشش کنید). این روش در برنامه‌های دسکتاپ کار می‌کند، زیرا این برنامه‌ها مدل طول عمر متفاوتی داشته و تا زمانیکه برنامه از طرف OS خاتمه نیابد، مشکلی نخواهند داشت. اما برنامه‌های بدون حالت وب متفاوتند. اگر عملیات async پس از خاتمه‌ی طول عمر صفحه پایان یابد، دیگر نمی‌توان اطلاعات صحیحی را به کاربر ارائه داد. بنابراین تا حد ممکن از تعاریف async void در برنامه‌های وب خودداری کنید.

تبدیل روال‌های رخدادگردان متداول وب فرم‌ها به نسخه‌ی async شامل دو مرحله است:
الف) از متد جدید RegisterAsyncTask که در کلاس پایه Page قرار دارد برای تعریف یک PageAsyncTask استفاده کنید:
using System;
using System.Net;
using System.Text;
using System.Threading.Tasks;
using System.Web.UI;

namespace Async14
{
    public partial class _default : Page
    {
        protected void Page_Load(object sender, EventArgs e)
        {
            RegisterAsyncTask(new PageAsyncTask(LoadSomeData));
        }

        public async Task LoadSomeData()
        {
            using (var webClient = new WebClient { Encoding = Encoding.UTF8 })
            {
                webClient.Headers.Add("User-Agent", "LogRequest 1.0");
                var rssfeed = await webClient.DownloadStringTaskAsync("url");

                //listcontacts.DataSource = rssfeed;
            }
        }
    }
}
با استفاده از System.Web.UI.PageAsyncTask می‌توان یک async Task را در روال‌های رخدادگردان ASP.NET مورد استفاده قرار داد.

ب) سپس در کدهای فایل aspx، نیاز است خاصیت async را نیز true نمائید:
 <%@ Page Language="C#" AutoEventWireup="true"
Async="true"
  CodeBehind="default.aspx.cs" Inherits="Async14._default" %>


تغییر تنظیمات IIS برای بهره بردن از پردازش‌های Async

اگر از ویندوزهای 7، ویستا و یا 8 استفاده می‌کنید، IIS آن‌ها به صورت پیش فرض به 10 درخواست همزمان محدود است.
بنابراین تنظیمات ذیل مرتبط است به یک ویندوز سرور و نه یک work station :
به IIS manager مراجعه کنید. سپس برگه‌ی Application Pools آن‌را باز کرده و بر روی Application pool برنامه خود کلیک راست نمائید. در اینجا گزینه‌ی Advanced Settings را انتخاب کنید. در آن Queue Length را به مثلا عدد 5000 تغییر دهید. همچنین در دات نت 4.5 عدد 5000 برای MaxConcurrentRequestsPerCPU نیز مناسب است. به علاوه عدد connectionManagement/maxconnection را نیز به 12 برابر تعداد هسته‌های موجود تغییر دهید.
مطالب دوره‌ها
ارتباطات بلادرنگ و SignalR
زمانیکه صحبت از برنامه‌های بلادرنگ می‌شود با کاربرانی سر و کار داریم که نیاز دارند تا اطلاعات مورد نیاز خود را همواره و بلافاصله در آخرین وضعیت به روز آن مشاهده کنند. در این بین، کلاینت می‌خواهد یک برنامه وب باشد یا سیلورلایت و یا یک برنامه نوشته شده با WPF. حتی برنامه‌های موبایل را نیز باید به این لیست اضافه کرد.
در اینجا کلمه بلادرنگ به معنای ارسال اطلاعات از طرف سرور به کلاینت‌ها با فاصله زمانی بسیار کوتاهی از به روز رسانی اطلاعات صورت گرفته در سمت سرور است.
نمونه‌ای از این برنامه‌ها شامل موارد ذیل هستند:
- اطلاع رسانی همزمان به گروهی از کاربران
- جستجوهای زنده و به روز رسانی‌هایی از این دست
- نمایش بلادرنگ قیمت‌ها و وضعیت تجاری محصولات و سهام‌ها
- بازی‌های تعاملی
- برنامه‌های گروهی و تعاملی (مانند برنامه‌های Chat)
- برنامه‌های شبکه‌های اجتماعی (برای مثال پیام جدیدی دارید؛ شخص خاصی آنلاین یا آفلاین شد و امثال آن)

بنابراین به صورت خلاصه قصد داریم به ارائه بازخوردها و اطلاع رسانی‌های بلادرنگ یا نسبتا سریع و به روز از سمت سرور به کلاینت‌ها برسیم.
برای مثال یک دیتاگرید را درنظر بگیرید. دو کاربر در شبکه صفحه یکسانی را گشوده‌اند و یکی از آن‌ها مشغول به ویرایش و یا حذف اطلاعات است. در ارتباطات بلادرنگ کاربر یا کاربران دیگر نیز باید (یا بهتر است) در زمانیکه گرید یکسانی را گشوده‌اند، بلافاصله آخرین تغییرات را ملاحظه کنند. یا حتی حالتی را درنظر بگیرید که شخصی SQL Server management studio را گشوده و در آنجا مشغول به تغییر اطلاعات گردیده است. در این حالت نیز بهتر است آخرین تغییرات بلافاصله به اطلاع کاربران رسانده شوند.

معرفی الگوی Push service

البته باید دقت داشت که الگوی push service یک الگوی رسمی ذکر شده در گروه‌های مرسوم الگوهای طراحی نیست، اما مفهوم آن سرویسی است که چندین کار ذیل را انجام می‌دهد:
الف) پذیرش اتصالات از چندین مصرف کننده. مصرف کننده‌ها در اینجا الزاما محدود به کلاینت‌های وب یا دسکتاپ نیستند؛ می‌توانند حتی یک سرور یا سرویس دیگر نیز باشند.
ب) قادر است اطلاعات را به مصرف کننده‌های خود ارسال کند. این سرویس می‌تواند یک برنامه ASP.NET باشد یا حتی یک سرویس متداول ویندوز.
ج) در اینجا چندین منبع خارجی مانند یک بانک اطلاعاتی یا تغییرات رخ داده توسط یک سخت افزار که می‌توانند سبب بروز رخدادهایی در push service گردند نیز می‌تواند وجود داشته باشند. هر زمان که تغییری در این منابع خارجی رخ دهد، مایل هستیم تا مصرف کننده‌ها را مطلع سازیم.


پروتکل HTTP و ارتباطات بلادرنگ

پروتکلی که در ارتباطات بلادرنگ مبتنی بر SignalR مورد استفاده قرار می‌گیرد، HTTP است و از قابلیت‌های Request و Response آن در اینجا بیشترین بهره برده می‌شود. پیاده سازی Push عموما بر مبنای یکی از روش‌های متداول زیر است:
1) Periodic polling
به این معنا که مثلا هر 10 ثانیه یکبار، کاری را انجام بده؛ مانند ارسال متناوب: آیا تغییری رخ داده؟ آیا تغییری رخ داده؟ و .... به همین ترتیب. این روش اصلا بهینه نبوده و منابع زیادی را خصوصا در سمت سرور مصرف خواهد کرد. برای مثال:
function getInfo() {
         $.ajax("url", function ( newInfo){
                  if ( newInfo != null) {
                      // do something with the data
                  }
         });
    // poll again after 20 seconds
    setTimeout(getInfo,20000);
}
// start the polling loop
getInfo();

2) Long polling
به آن HTTP Streaming یا Comet هم گفته می‌شود. این روش نسبتا هوشمند بوده و کلاینت اتصالی را به سرور برقرار خواهد کرد. سرور در این حالت تا زمانیکه اطلاعاتی را در دسترس نداشته باشد، پاسخی نخواهد داد. برای نمونه:
function getNewInfo(){
  $.ajax("url", function (newinfo) {
      // do something with the data
  // start the new request
      getNewINfo();
  });
}
// start the polling loop
getNewInfo();

این روش نسبت به حالت Periodic polling بهینه‌تر است اما نیاز به اتصالات زیادی داشته و همچنین تردهای بسیاری را در سمت سرور به خود مشغول خواهد کرد.

3) Forever frame
فقط در IE پشتیبانی می‌شود. در این روش یک Iframe مخفی توسط مرورگر تشکیل شده و از طریق آن درخواستی به سرور ارسال می‌شود. سپس سرور متناوبا با تزریق اسکریپت‌هایی به این Iframe سبب فراخوانی مجدد وضعیت خود می‌گردد. در این روش نیز به ازای هر درخواست و پاسخ، ارتباطات گشوده و بسته خواهند شد.

4) Server Sent Events یا SSE
این مورد جزو استاندارد HTML5 است. در اینجا اتصالی برقرار شده و داده‌ها از طریق اتصالات HTTP منتقل می‌شوند.
var eventSrc = new EventSource("url");
    // register event handler for the message
    eventSrc.addEventListener( "message",function (evt) {
    //process the data
});
این روش نیز بسیار شبیه به حالت long polling است. سرور تا زمانیکه اطلاعاتی را برای پاسخ دهی فراهم نداشته باشد، اتصال را باز نگه می‌دارد. به این ترتیب از لحاظ مقیاس پذیری گزینه بهتری است (نسبت به حالتیکه مدام اتصال برقرار و قطع می‌شود). اکثر مرورگرها منهای نگارش‌های قدیمی IE از این روش پشتیبانی می‌کنند.
تنها تفاوت آن با حالت long polling در این است که پس از ارائه پاسخ به کلاینت، اتصال را قطع نمی‌کند. Long polling نیز اتصال را باز نگه می‌دارد، اما این اتصال را بلافاصله پس از ارائه پاسخ، می‌بندد.

5) Web sockets
Web sockets در سکوی کاری ویندوز، تنها در ویندوز‌های 8، ویندوز سرور 2012 و دات نت 4 و نیم پشتیبانی می‌شود. هرچند این روش در حال حاضر به عنوان بهترین روش Push مطرح است اما به دلیل محدودیتی که یاد شد، مدتی طول خواهد کشید تا استفاده گسترده‌ای پیدا کند.
var socket = new WebSocket("url");
socket.onmessage = function (msg) {
var newInfo = msg.data;
// do something with the data
}
// client can also send request to server
socket.send(.... )
با این اوصاف آیا راه حل بهتر و میانه‌تری وجود دارد؟
بلی. اگر به وضعیت فعلی سکوی کاری ASP.NET نگاه کنیم:

SignalR را می‌توان مشاهده کرد که در گروه ساخت سرویس‌های آن قرار گرفته است. همانطور که ملاحظه می‌کنید، این سرویس جدید آنچنان وابستگی به سایر اجزای آن نداشته و می‌تواند خارج از ASP.NET نیز مورد استفاده قرار گیرد.

SignalR چیست؟

SignalR راه حلی است سمت سرور برای نوشتن push services. همچنین به همراه کتابخانه‌های سمت کاربری است که ارتباطات push services را در انواع و اقسام سکوهای کاری میسر می‌سازد. SignalR سورس باز بوده و برای اعمال غیرهمزمان (asynchronous) بهینه سازی شده است.
SignalR بر اساس مدل ذهنی اتصالات ماندگار (persistent connections) طراحی شده است. اتصالات ماندگار را باید به عنوان اتصالاتی سریع و غیرطولانی درنظر گرفت. در اینجا Signal یک اتصال است که اطلاعاتی به آن ارسال می‌گردد و هدف، انتقال قطعات کوچکی از اطلاعات است و هدف، ارسال حجم عظیمی از اطلاعات نیست. برای مثال اطلاع رسانی سریعی صورت گیرد که تغییراتی رخ داده است و سپس ادامه کار و دریافت اطلاعات واقعی توسط فرآیندهای متداول مثلا HTTP GET انجام شود. البته باید دقت داشت SignalR نیز نهایتا از یکی از 5 روش push بررسی شده در این قسمت استفاده می‌کند. اما بر اساس توانایی‌های کلاینت و سرور، به صورت هوشمند بهترین و بهینه‌ترین انتخاب را به کاربر ارائه می‌دهد.
اتصالات ماندگار قسمت سطح پایین SignalR را تشکیل می‌دهند. سطح بالاتر آن که این مفاهیم را به شکلی کپسوله شده ارائه می‌دهد، Hubs نام دارد که پایه اصلی دوره جاری را تشکیل خواهد داد.



همانطور که عنوان شد، SignalR سورس باز بوده و دارای مخزن کدی عمومی در GitHub است. همچنین بسته‌های تشکیل دهنده‌ی آن از طریق NuGet نیز قابل دریافت هستند. این بسته‌ها شامل هسته SignalR و کلاینت‌های آن مانند کلاینت‌های WinRT، سیلورلایت، jQuery، ویندوز فون8 و امثال آن هستند.

شروع کار با SignalR

تیم SignalR مثالی مقدماتی از نحوه کار با SignalR را به صورت یک بسته NuGet ارائه داده‌اند که از طریق آدرس و فرمان ذیل قابل دریافت است:
 PM> Install-Package Microsoft.AspNet.SignalR.Sample
قبل از اینکه این مثال را دریافت کنید نیاز است ابتدا یک برنامه ASP.NET جدید را آغاز نمائید (تفاوتی نمی‌کند که MVC باشد یا Web forms). سپس دستور فوق را فراخوانی کنید.

پس از دریافت مثال، یکبار پروژه را کامپایل کرده و سپس بر روی فایل StockTicker.html آن کلیک راست نموده و گزینه مشاهده در مرورگر را انتخاب کنید. همچنین برای اینکه این مثال را بهتر مشاهده کنید، بهتر است دو وهله از مرورگر را باز کرده و آدرس باز شده را در آن بررسی کنید تا اعمال تغییرات همزمان به کلاینت‌های متفاوت را بهتر بتوان بررسی و مشاهده کرد.

نظرات مطالب
کار با Docker بر روی ویندوز - قسمت اول - Container چیست؟
اخیراً Docker Desktop از WebAssembly پشتیبانی میکند. به این معنا که بدون نیاز به یک کانتینر خاص میتوانیم توسط یک Wasm runtime با نام WasmEdge اپلیکیشن‌های وب‌اسمبلی را اجرا کنیم. در واقع توسط این runtime رفتار یک کانتینر شبیه‌سازی شده است بدون اینکه ایمیج کانتینر حاوی OS یا runtime context باشد. با این اوصاف میتوانیم یک پروژه NET.ی را توسط Wasi.Sdk به Wasm تبدیل کنیم و آن را درون Docker به صورت مستقیم اجرا کنیم:

dotnet new console -o MyFirstWasiApp
cd MyFirstWasiApp
dotnet add package Wasi.Sdk --prerelease
dotnet build
اگر به مسیر bin/Debug/net7.0 مراجعه کنید خواهید دید که MyFirstWasiApp.wasm نیز تولید شده است؛ از دستور wasmtime برای اجرای آن نیز میتوانیم استفاده کنیم:
wasmtime bin/Debug/net7.0/MyFirstWasiApp.wasm
در ادامه میتوانیم یک Dockerfile ایجاد کرده و خروجی Wasm applicationمان را به اصطلاح containerised کنیم:
FROM scratch

COPY bin/Debug/net7.0/MyFirstWasiApp.wasm MyFirstWasiApp.wasm

ENTRYPOINT [ "MyFirstWasiApp.wasm" ]
برای بیلد کردن ایمیج فوق میتوانیم از دستور زیر استفاده کنیم:
docker buildx build . --file=Dockerfile --tag=dotnet-webassembly --platform wasi/wasm32
در اینجا با کمک فلگ platform به Docker گفته‌ایم که برای ساخت ایمیج موردنظر از معماری Wasm استفاده کند؛ به این معنا که برای کامپیوترهای مختلف نیاز نخواهد بود که ایمیج‌های جداگانه‌ایی تهیه کنیم بلکه wasm runtime اینکار را برای ما به صورت خودکار انجام خواهد داد. در نهایت بعد از ایجاد ایمیج میتوانیم از دستور docker run برای اجرای Wasm applicationمان استفاده کنیم:
docker run --runtime=io.containerd.wasmedge.v1 --platform=wasi/wasm32 dotnet-webassembly
نکته: برای اجرای Wasm application باید مطمئن شوید که فیچر containerd image store فعال باشد:


دقت داشته باشید که این فیچر هنوز در مرحله Beta قرار دارد؛ و ممکن است در حین تهیه ایمیج با edge caseهای روبرو شوید به عنوان مثال من سعی کردم یک وب‌سرور ASP.NET Core (توسط Wasi.Sdk این امکان وجود دارد) را containerised کنم که در نهایت با خطای زیر مواجه شدم:

[error] instantiation failed: incompatible import type, Code: 0x61
     Mismatched function type. Expected: FuncType {params{i32 , i32 , i32} returns{i32}} , Got: FuncType {params{i32 , i32} returns{i32}}
     When linking module: "wasi_snapshot_preview1" , function name: "sock_accept"
     At AST node: import description
     At AST node: import section
     At AST node: module


اشتراک‌ها
کتاب آموزش زبان برنامه نویسی Erlang

سخت افزارهای جدید به طور فزاینده ای همروند (parallel) شده اند، بنابراین زبان‌های برنامه نویسی باید از همزمانی پشتیبانی کنند یا محکوم به مرگ هستند. نقل قولی از استیو جابز: راهی که شرکت‌های ساخت پردازشگر در پیش گرفته اند این هست که هسته‌های بیشتر و بیشتر اضافه کنند، اما کسی نمی‌داند که چگونه برای آن‌ها برنامه بنویسید. منظورم دو، بله؛ چهار، نه واقعا؛ هشت؛ کلا فراموشش کنید.

خب استیو اشتباه می‌کرده است؛ الان ما می‌دانیم که چگونه برای پردازشگرهای چند هسته ای برنامه بنویسیم. ما برنامه هایمان را با Erlang می‌نویسیم و هرچقدر که بر تعداد هسته‌ها افزوده شود برنامه‌ی ما نیز سریع‌تر از قبل کار می‌کند.

Erlang از همان ابتدا برای برنامه نویسی سیستم‌های همزمان، توزیع پذیر، تحمل پذیر بودن خطا (fault-tolerant)، مقیاس پذیر (scalable)، نرم و بلادرنگ طراحی شده بود. سیستم‌های نرم بلادرنگ به مانند سیستم‌های ارتباطات تلفنی، سیستم‌های بانکی و ... که در آن‌ها تعدا دفعات پاسخ گویی سریع بسیار با اهمیت است. سیستم‌های مبتنی بر Erlang در مقیاس عظیمی مستقر شده اند و بخش‌های قابل توجهی از شبکه ارتباطات تلفن همراه دنیا را کنترل می‌کنند.

اگر مشکل شما همزمانی هست، اگر در حال ساخت سیستم چند کاربره هستید و یا اگر در حال ساخت سیستمی هستید که با زمان سرو کار دارد، استفاده از Erlang می‌تواند بخش زیادی از کارهای شما را کم کند، چرا که Erlang فقط برای ساخت چنین سیستم‌های طراحی شده است.  

کتاب آموزش زبان برنامه نویسی Erlang
مطالب
سیستم‌های توزیع شده در NET. - بخش پنجم - اهداف
در بخشهای قبل، دلایل بوجود آمدن سیستمهای توزیع شده بررسی شد و تاکید کردیم که نیازمندی‌ها، باعث تغییر و تکامل سیستمهای ما می‌شوند و بر همین اساس بررسی کردیم که چه نیازمندی‌هایی باعث می‌شوند که دیگر سیستم‌های متمرکز به تنهایی پاسخگوی نیازهای ما نباشند و عاملی شوند برای رفتن به سمت سیستمهای توزیع شده. گفتیم که اتخاذ تصمیمات نادرست چه عواقبی را برای سیستمهای ما بوجود می‌آورد و بر همین اساس مهمترین فاکتورها را در انتخاب سیستم‌های توزیع شده، به شما معرفی کردیم. تعاریف مختلفی از این نوع سیستم‌ها را در اختیار شما قرار دادیم؛ خصوصیات، مزایا و معایب سیستمهای توزیع شده را به شما معرفی کردیم، تا با دید باز، یک انتخاب درست را با کمترین میزان ریسک انجام دهیم.
در این بخش ما 4 هدف اصلی را که باید در سیستم‌های توزیع شده برآورده شوند، بر اساس ارزش آنها مورد بررسی قرار می‌دهیم. یک سیستم توزیع شده باید اولا منابع را به آسانی در دسترس کاربران قرار دهد. دوما شفاف باشد و تمام پیچیدگی‌های یک سیستم توزیع شده را از دید کاربر، مخفی کند. سوما باز و قابل گسترش باشد؛ بصورتیکه به آسانی و با شفافیت کامل بتوانیم اجزای جدیدی را به آن اضافه کنیم. چهارما مقیاس پذیر باشد؛ بصورتیکه بدون اینکه مشکلی برای سیستم بوجود بیاید، بتوانیم منابع موجود سیستم را افزایش دهیم. در این بخش جزئیات هر یک از این اهداف را مورد بررسی قرار می‌دهیم.


اهداف سیستم‌های توزیع شده

1- Connecting resources and users: مشخص‌ترین و اصلی‌ترین هدف سیستم‌های توزیع شده، اتصال کاربران به منابع و اشتراک منابع بصورت کنترل شده با کارآیی بالا برای کاربران است. به‌صورتیکه کاربران  به آسانی به منابع دسترسی داشته باشند. منظور از منابع، هرچیزی در سیستمهای توزیع شده می‌تواند باشد. منابعی مانند داده‌ها، سخت‌افزارها، فایلها، Componentها، زیرسیستمها و هر چیز دیگری که کاربران می‌توانند بصورت مستقیم و غیر مستقیم به آنها دسترسی داشته باشند. یکی از مهمترین دلایل دسترسی به این هدف، مسائل اقتصادی است. بطور مثال ممکن است ما سیستم خودمان را طوری طراحی کنیم که پردازش‌های بسیار مهم و پیچیده در تعدادی از سخت افزار‌های بسیار پر هزینه انجام شوند. به این صورت ما این سخت افزارها را برای سایر قسمت‌های سیستم، به اشتراک میگزاریم و از طریق دیگر قسمتهای سیستم، دسترسی آن را به کاربران می‌دهیم. در این حالت دیگر نیازی نیست هر قسمت جداگانه در سیستم، سخت افزاری بسیار قوی را برای خودش نیاز داشته باشد. یا زمانیکه ما یک زیرسیستم را یکبار پیاده سازی می‌کنیم و دسترسی آن را به سایر قسمت‌ها میدهیم، سایر سیستمها، دیگر نیازی نیست آن زیرسیستم را برای خودشان پیاده سازی کنند و تنها از زیرسیستم موجود استفاده می‌کنند. دسترسی به این هدف باعث می‌شود تا کاربران به راحتی به تمام منابع موجود در سیستم‌های توزیع شده دسترسی داشته باشند.

2- Distribution transparency: بدلیل پیچیدگی‌های بسیار زیاد در سیستم‌های توزیع شده، شفافیت، کمک بسیار بزرگی به سادگی نحوه تعامل کاربر با سیستم‌های توزیع شده می‌کند. شفافیت در سیستم‌های توزیع شده بدین معنا است که سیستم باید تمام پیچیدگی‌های خود را از دید کاربر مخفی کند و پیاده سازی سیستم بصورت توزیع شده نباید هیچ پیچیدگی را در نحوه تعامل کاربر با سیستم بوجود بیاورد.
درواقع در سیستمهای توزیع شده، درخواست دریافت شده، در بین منابع سیستم توزیع می‌شود. تمام منابع با همکاری که با یکدیگر انجام می‌دهند، درخواست مورد نظر را پردازش کرده و پاسخ لازم را به کاربر ارائه می‌دهند. در این بین ممکن است منابع موجود در سیستم، رفتارهای متفاوتی را داشته باشند؛ مثلا هر زیرسیستم در سخت افزار و سیستم عامل جداگانه‌ای اجرا شود که باعث می‌شود حتی نحوه دستیابی به فایل‌ها یا داده‌های هر زیرسیستم نیز با سایر زیرسیستمها متفاوت باشد. شفافیت در سیستمهای توزیع شده بدین معنا است که یک سیستم توزیع شده باید خود را به‌صورت یک سیستم واحد که در یک سخت افزار ارائه می‌شود، ارائه دهد تا کاربران هیچ نگرانی در نحوه تعامل با سیستم نداشته باشند. شفافیت در سیستمهای توزیع شده جنبه‌های مختلفی دارد که در این قسمت آنها را بررسی می‌کنیم.


جنبه‌های مختلف شفافیت در سیستم‌های توزیع شده

1- Access Transparency: شفافیت در دسترسی به منابع یا مخفی کردن پیچیدگی‌ها و روشهای مختلف دسترسی به منابع. زیر سیستم‌های متفاوت ممکن است در سیستم عامل‌های متفاوتی نیز اجرا شوند و همانطور که می‌دانید هر سیستم عامل ممکن است نحوه دسترسی به منابعش با سایر سیستم عامل‌ها متفاوت باشد. در اینجا ما باید زیر سیستم‌های خود را طوری طراحی کنیم تا این تفاوت‌های در نحوه دسترسی به منابع را از دید کاربر مخفی کنند و این حس را به کاربر بدهد که سیستم، یک روش واحدی را برای دسترسی به منابع دارد.

2- Location Transparency: شفافیت در مکان منابع و مخفی کردن اینکه منابع در سطح شبکه توزیع شده‌اند. این جنبه بیان می‌کند که کاربران نمی‌توانند بگویند که منابع بصورت فیزیکی در سخت افزار‌های متفاوتی توزیع شده‌اند.کاربران هیچ درکی از اینکه ممکن است منابع حتی بصورت جغرافیایی در مکان‌های بسیار دوری از یکدیگر قرار گرفته‌اند، ندارند.

3- Migration Transparency: مخفی کردن اینکه ممکن است مکان منابع تغییر یابند. در یک سیستم توزیع شده ممکن است به هر دلیلی، مکان منابع تغییر کند. بطور مثال ممکن است با افزایش داده‌ها نیاز به افزودن Node جدیدی به سیستم باشد تا قسمتی از داده‌های سیستم از این پس از طریق این Node در دسترس باشند. این جابجایی منابع نباید هیچ تاثیری در نحوه‌ی تعامل کاربر داشته باشد.

4- Relocation Transparency: مخفی کردن اینکه منابع ممکن است در زمان استفاده، تغییر مکان دهند. در این حالت دقیقا در زمانیکه شخص در حال استفاده از منابع است ممکن است منابع جابجا شوند که این جابجایی در زمان استفاده از منابع نباید هیچ تاثیری در نحوه تعامل کاربر با سیستم داشته باشد. بطور مثال زمانیکه دو کاربر از طریق تلفن همراه در حال ارسال اطلاعات برای یکدیگر هستند، جابجایی هر یک از این دو کاربر، نباید تاثیری در جریان ارتباطی آنها داشته باشد.

5- Replication Transparency: مخفی کردن اینکه منابع در چند جا کپی شده‌اند. در یک سیستم توزیع شده برای بهبود کارآیی و دسترسی ممکن است منابع در چند جای مختلف کپی شوند و شفافیت در Replication می‌گوید ما باید این واقعیت را که ممکن است منابع ما در سخت افزارهای مختلفی کپی شده باشند، از دید کاربر مخفی کنیم.

6- Concurrency Transparency: مخفی کردن اینکه ممکن است منابع، بین چند کاربر مشترک باشند. بدلیل بالا بودن تعداد کاربران در سیستمهای توزیع شده، همزمانی در دسترسی به منابع مشترک، بسیار بیشتر اتفاق می‌افتد و این مهم است که هیچ یک از کاربران ندانند که کاربر دیگری بصورت همزمان در حال استفاده از آن داده است.

7- Failure Transparency: مخفی کردن خرابی و بازیابی منابع یک سیستم توزیع شده، از کاربر. در یک سیستم توزیع شده ممکن است منابع به هر دلیلی از دسترس خارج شوند. در این صورت نباید از دسترس خارج شدن منابع و بازیابی آنها هیچ تاثیری در جریان تعامل کاربر با سیستم داشته باشد.


البته این نکته را نیز بگویم اگرچه شفافیت یکی از اهداف بسیار مهم سیستم‌های توزیع شده‌است و ما نیز باید سیستمی را طراحی کنیم که تا حد امکان به این هدف دست پیدا کند، اما بدلیل این که گاهی ممکن است شفافیت تاثیر مخربی بر روی کاربر داشته باشد، باید درجه‌هایی  را برای آن در نظر بگیریم. بطور مثال زمانیکه دو کاربر از طریق تلفن همراه خود با یکدیگر در ارتباطند، نیازی به مخفی کردن موقعیت مکانی آنها نیست. یا در سیستم‌های موقعیت یاب، اصل بر این است که موقعیت منابع مختلف مشخص باشند. یا زمانیکه قرار است یک درخواست را برای یک چاپگر ارسال کنیم بهتر است درخواست ما به نزدیکترین چاپگر به ما ارسال شود تا اینکه به یک چاپگر در جایی دیگر ارسال شود. منظور از دستیابی به این هدف این است که پیچیدگی سیستم‌های توزیع شده باید از دید کاربر مخفی بماند تا تاثیر مخربی بر روی کاربر نداشته باشد؛ در صورتیکه نیاز کاربر به عدم شفافیت برخی از قسمتهای سیستم باشد بهتر است درجه‌هایی را برای سیستم‌های توزیع شده در نظر بگیریم.



3- Openness: باز بودن یا قابل گسترش بودن سیستم‌های توزیع شده یکی دیگر از اهداف بسیار مهم این سیستمها می‌باشد. به این صورت که یک سیستم در حال اجرا باید توانایی اضافه کردن منابع جدید را داشته باشد. بطور مثال با افزوده شدن نیازمندی‌های جدید، نیاز می‌شود که یک زیر سیستم جدید یا Component جدید را پیاده سازی کنیم. قسمت جدید به راحتی و بدون تاثیر در جریان تعامل کاربر باید بتواند به سیستم اضافه شود. در اکثر موارد این هدف با استفاده از یکسری قراردادهای مشخص که تمامی زیر سیستم‌ها آنها را می‌شناسند و رعایت می‌کنند، محقق می‌شود.

4- Scalability: مقیاس پذیری سیستم‌های توزیع شده بدین معنی است که با رشد مواردی مانند تعداد پردازش و درخواست یا موقعیت جغرافیایی کاربران، سیستم قادر باشد بدون تاثیر بر جریان تعامل کاربر با سیستم، آنها را پوشش دهد. یعنی بطور مثال زمانیکه تعداد درخواست‌های کاربران سیستم افزایش می‌یابد، با Replicate قسمتهای موجود سیستم در سخت افزار‌های جدید می‌توانیم بار پردازشی را بین تعداد بیشتری از Node‌ها تقسیم کنیم. به این صورت سیستم می‌تواند بدون از دسترس خارج شدن، تعداد بیشتری از درخواستهای کاربران را پوشش دهد. یا زمانیکه قرار است موقعیت‌های جدید جغرافیایی را سیستم پوشش دهد، با اضافه کردن منابع مورد نیاز، در آن موقعیت جغرافیایی، سیستم قادر است نیاز کاربران آن مکان جغرافیایی را برآورده کند.


 تا به این قسمت از سری مقالات سیستم‌های توزیع شده، هدف من این بوده که با چرایی وجود این نوع از سیستم‌ها و نحوه‌ی انتخاب آنها و اهداف سیستم‌های توزیع شده آشنا شوید. در بخش‌های بعد، روشهای مختلف طراحی و پیاده سازی سیستم‌های توزیع شده را مورد بررسی قرار می‌دهیم و می‌بینیم که چه ابزارهایی برای پیاده سازی سیستم‌های توزیع شده در NET. وجود دارند و با توجه به نوع کارآیی هر یک از این ابزارها، آنها را بصورت جداگانه مورد استفاده قرار می‌دهیم تا با مزایا و معایب هریک آشنا شویم. البته این را نیز ذکر کنم که با توجه به تعاریف سیستم‌های توزیع شده، انواع مختلفی از سیستم‌های توزیع شده وجود دارند که ما از قبل با برخی از آنها آشنا هستیم؛ معماری‌هایی مانند Client/Server یا N-Tier  نمونه‌هایی از سیستم‌های توزیع شده هستند که در آنها وظایف، در سخت افزارهای متفاوتی تقسیم شده و ارتباط هر قسمت از طریق سرویس‌هایی که ما پیاده سازی می‌کنیم، صورت می‌پذیرد و به دلیل اینکه مطمئنا همه شما با نحوه طراحی و پیاده سازی آنها و نحوه ارتباط قسمتهای مختلف آنها آشنا هستید، در سری مقالات سیستمهای توزیع شده در NET.، دیگر نیازی به توضیحی در مورد آنها نمی‌باشد. هدف من از قسمت‌های مرتبط با پیاده سازی سیستم‌های توزیع شده، چگونگی تکامل معماری‌هایی مانند N-Tier بوسیله ابزارهایی است که با هدف دستیابی به خصوصیات و اهداف سیستم‌های توزیع شده بوجود آمده‌اند.