مطالب
WF:Windows Workflow #۶
در این قسمت به تکمیل مثالی که در قسمت قبل زده شد پرداخته می‌شود و همچنین کنترل‌های Foreach , Try Catch نیز بررسی خواهند شد.
در ابتدا دو کلاس به نام‌های ItemInfo و OutOfStockException  را به برنامه اضافه می‌کنیم. کلاس اول برای ذخیره سازی مشخصات هر سفارش و کلاس دیگر برای مدیریت خطا‌ها می‌باشد.
public class ItemInfo
    {
        public string ItemCode { get; set; } 
        public string Description { get; set; } 
        public decimal Price { get; set; }
    }

public class OutOfStockException : Exception
    {
        public OutOfStockException() 
            : base() 
        { 

        }

        public OutOfStockException(string message) 
            : base(message) 
        { 

        }
    }
در Workflow مورد نظر که به نام OrderWF.xaml می‌باشد٬ پس از کنترل Assign که برای صفر کردن مقدار متغیر TotalAmount از آن استفاده می‌شود٬ یک کنترل ForEach را به Flow جاری اضافه می‌کنیم. این کنترل دارای دو خاصیت به نام‌های Type Arguments و Values می‌باشد. اولین خاصیت که مقدار پیش فرض آن، مقدار عددی Int32 است٬ برای مشخص کردن نوع متغییر حلقه و دیگری برای مشخص کردن نوع منبع داده حلقه تعریف شده‌اند.

همانطور که در شکل بالا مشخص می‌باشد٬ Type Arguments حلقه برابر با کلاس OrderItem می‌باشد. Values هم برابر با OrderInfo.Items است. از این جهت نوع حلقه  را از جنس کلاس OrderItem مشخص کرد‌‌ه‌ایم تا کنترل بر روی مقادیر Items اجرا شود (لیستی از کلاس مورد نظر).
حال همانند شکل بالا، در قسمت Body کنترل ForEach، یک کنترل Sequence را ایجاد کرده و سپس برای اینکه کنترل LookupItem را ایجاد کنیم٬ ابتدا باید یک Code Activity را به پروژه اضافه کنیم. به همین منظور پروژه جاری را انتخاب کرده و یک Code Activity به آن اضافه و نام آن را LookupItem  می‌گذاریم. سپس کد زیر را به آن اضافه می‌کنیم:
 public sealed class LookupItem : CodeActivity
    {
        // Define an activity input argument of type string
        public InArgument<string> ItemCode { get; set; }         
        public OutArgument<ItemInfo> Item { get; set; }

        // If your activity returns a value, derive from CodeActivity<TResult>
        // and return the value from the Execute method.
        protected override void Execute(CodeActivityContext context)
        {
            // Obtain the runtime value of the Text input argument
            ItemInfo i = new ItemInfo();             
            i.ItemCode = context.GetValue<string>(ItemCode);
            switch (i.ItemCode)
            {

                case "12345": 
                    i.Description = "Widget"; 
                    i.Price = (decimal)10.0; 
                    break;
                case "12346": 
                    i.Description = "Gadget"; 
                    i.Price = (decimal)15.0; 
                    break;
                case "12347": 
                    i.Description = "Super Gadget"; 
                    i.Price = (decimal)25.0; break;
            }
     
            context.SetValue(this.Item, i);
            
        }
    }
در این کد، دو متغییر تعریف شده‌اند؛ یکی از نوع رشته بوده و از طریق آن، دستور Switch تصمیم می‌گیرد که کلاس ItemInfo را با چه مقادیری پرکند. متغییر دیگر از نوع کلاس  ItemInfo می‌باشد و برای گرفتن مقدار کلاس از دستور Switch تعریف شده است.
حال برای اینکه بتوانیم از Code Activity مورد نظر استفاده کنیم٬ ابتدا باید پروژه را یکبار Build کنیم. اکنون در قسمت Toolbox یک٬ Tab ایی به نام پروژه ایجاد شده است و در آن یک کنترل به نام  LookupItem  موجود می‌باشد. آن را گرفته و به درون Sequence انتقال می‌دهیم.
سپس برای مقدار دادن به متغیر‌های تعریف شده در Code Activity، کنترل LookupItem را انتخاب کرده و در قسمت Properties به خصوصیت ItemCode، کد زیر را اضافه می‌کنیم:
item.ItemCode

نکته
: از کلاس Code Activity برای ارسال و دریافت مقادیر به درون Workflow استفاده می‌شود.

 Try Catch 
از این کنترل برای مدیریت خطا‌ها استفاده می‌شود.
ابتدا یک کنترل Try Catch را به Workflow اضافه کرده، مانند شکل زیر:

در بدنه Try می‌توان از کنترل‌های مورد نظر استفاده کنیم و همانطور که در شکل بالا مشخص است٬ از کنترل Throw برای ایجاد خطا استفاده شده‌است. کنترل جاری را انتخاب کرده و از قسمت Properties در خاصیت Exception کد زیر را اضافه می‌کنیم:
new OutOfStockException("Item Code"+item.ItemCode)
این  دستور باعث ایجاد یک خطا از نوع کلاس OutOfStockException می‌شود. برای کنترل خطای مورد نظر در قسمت Catches مانند شکل زیر عمل می‌کنیم.

نظرات مطالب
حذف فضاهای خالی در خروجی صفحات ASP.NET MVC
با تشکر از مطلب ارسالی شما 
برای اینکه فضای خالی به درستی حذف شود و همچنین تگ Pre هم در این الگوریتم لحاظ نشود. می‌توان از اکشن فیلتر زیر استفاده کرد 
public class RemoveWhitespacesAttribute : ActionFilterAttribute
    {

        public override void OnActionExecuted(ActionExecutedContext filterContext)
        {

            var response = filterContext.HttpContext.Response;
      
            if (filterContext.HttpContext.Request.RawUrl != "/sitemap.xml")
            {

                if (response.ContentType == "text/html" && response.Filter != null)
                {
                    response.Filter = new HelperClass(response.Filter);
                }
            }
        }

        private class HelperClass : Stream
        {

            private System.IO.Stream Base;

            public HelperClass(System.IO.Stream ResponseStream)
            {

                if (ResponseStream == null)
                    throw new ArgumentNullException("ResponseStream");
                this.Base = ResponseStream;
            }

            StringBuilder s = new StringBuilder();

            public override void Write(byte[] buffer, int offset, int count)
            {

                string HTML = Encoding.UTF8.GetString(buffer, offset, count);

                Regex reg = new Regex(@"(?<=\s)\s+(?![^<>]*</pre>)");
                HTML = reg.Replace(HTML, string.Empty);

                buffer = System.Text.Encoding.UTF8.GetBytes(HTML);
                this.Base.Write(buffer, 0, buffer.Length);
            }

            #region Other Members

            public override int Read(byte[] buffer, int offset, int count)
            {

                throw new NotSupportedException();
            }

            public override bool CanRead { get { return false; } }

            public override bool CanSeek { get { return false; } }

            public override bool CanWrite { get { return true; } }

            public override long Length { get { throw new NotSupportedException(); } }

            public override long Position
            {

                get { throw new NotSupportedException(); }
                set { throw new NotSupportedException(); }
            }

            public override void Flush()
            {

                Base.Flush();
            }

            public override long Seek(long offset, SeekOrigin origin)
            {

                throw new NotSupportedException();
            }

            public override void SetLength(long value)
            {

                throw new NotSupportedException();
            }

            #endregion
        }

    }
برای اجرا هم در Global.asax آن را فراخوانی کرد.  
 protected void Application_Start()
        {
            try
            {
                GlobalFilters.Filters.Add(new App_Start.RemoveWhitespacesAttribute());
            }
            catch
            {
                HttpRuntime.UnloadAppDomain(); // سبب ری استارت برنامه و آغاز مجدد آن با درخواست بعدی می‌شود
                throw;
            }

        }
در نهایت خروجی به شکل زیر رندر می‌شود

برای Gzip هم  اکثر در این حالت که هردو مورد با هم قرار داده شده است در برخی از موارد فایل‌های جاواسکریپ را با مشکل روبرو می‌کند .به نظر من از Gzip توکار IIS استفاده شود بهتر است. البته باید ماژول آن در ISS فعال شده باشد.

برای اینکار هم داخل Web.config کد‌های زیر را داخل configuration قرار بدید.


<httpCompression directory="%SystemDrive%\inetpub\temp\IIS Temporary Compressed Files">
      <scheme name="gzip" dll="%Windir%\system32\inetsrv\gzip.dll" staticCompressionLevel="9" />
      <dynamicTypes>
        <add mimeType="text/*" enabled="true" />
        <add mimeType="message/*" enabled="true" />
        <add mimeType="application/x-javascript" enabled="true" />
        <add mimeType="application/javascript" enabled="true" />
        <add mimeType="application/json" enabled="true" />
        <add mimeType="application/json; charset=utf-8" enabled="true" />
        <add mimeType="application/atom+xml" enabled="true" />
        <add mimeType="application/xaml+xml" enabled="true" />
        <add mimeType="*/*" enabled="false" />
      </dynamicTypes>
      <staticTypes>
        <add mimeType="text/*" enabled="true" />
        <add mimeType="message/*" enabled="true" />
        <add mimeType="application/x-javascript" enabled="true" />
        <add mimeType="application/javascript" enabled="true" />
        <add mimeType="application/json" enabled="true" />
        <add mimeType="application/json; charset=utf-8" enabled="true" />
        <add mimeType="application/atom+xml" enabled="true" />
        <add mimeType="application/xaml+xml" enabled="true" />
        <add mimeType="*/*" enabled="false" />
      </staticTypes>
    </httpCompression>
    <urlCompression doStaticCompression="true" doDynamicCompression="true" />
  </system.webServer>
  <location path="Default Web Site">
    <system.webServer>
      <serverRuntime enabled="true"
         frequentHitThreshold="1"
         frequentHitTimePeriod="10:00:00" />
    </system.webServer>
  </location>


مطالب
بومی سازی منابع در پروژه‌های ASP.NET Core Web API
اگر پروژه‌ی ما فقط از یک Web API تشکیل شده و نیاز است در قسمت‌های مختلف آن، مانند کنترلرها، سرویس‌ها، اعتبارسنج‌ها و غیره از منابع بومی شده استفاده شود، می‌توان از یک راه حل ساده‌ی «SharedResource» استفاده کرد؛ با این مزایا و شرایط:
 - تمام تعاریف بومی سازی مورد نیاز برنامه در یک تک فایل SharedResource.fa.resx قرار می‌گیرند. این فایل نیز در یک اسمبلی مستقل از برنامه‌ی اصلی اضافه می‌شود.
 - با استفاده از تزریق سرویس IStringLocalizer می‌توان به کلیدهای فایل SharedResource.fa.resx در هر قسمتی از برنامه‌ی Web API دسترسی یافت.
 - در این بین اگر کلیدی یافت نشد، خطایی با ذکر دقیق جزئیات منبع جستجو شده، لاگ می‌شود.
 - کلیدهای بومی سازی data annotations نیز قابل دریافت از فایل SharedResource.fa.resx می‌باشند.
 
در ادامه روش پیاده سازی یک چنین امکاناتی را بررسی می‌کنیم.
 
 
قرار دادن فایل منبع اشتراکی در اسمبلی ExternalResources

پس از ایجاد پروژه‌ی ابتدایی Web API به نام Core3xSharedResource.WebApi، یک اسمبلی جدید را برای مثال به نام Core3xSharedResource.ExternalResources تعریف کرده و در داخل آن پوشه‌ی جدید Resources را تعریف می‌کنیم. به این پوشه، فایل منبع جدیدی را به نام SharedResource.fa.resx اضافه می‌کنیم. در کنار آن باید یک کلاس خالی به نام SharedResource.cs نیز وجود داشته باشد.

کار با ین فایل (و یا فایل‌های دیگری مانند SharedResource.en.resx) همانند تمام فایل‌های منبع استاندارد است و نکته‌ی خاصی را به همراه ندارد.


معرفی فایل منبع اشتراکی به سرویس‌های بومی سازی برنامه

پس از ایجاد و تکمیل فایل منبع اشتراکی، برای معرفی آن به برنامه، ابتدا کلاس جدید LocalizationConfig را تعریف کرده و در آن متد جدید AddCustomLocalization را به صورت زیر معرفی می‌کنیم:
    public static class LocalizationConfig
    {
        public static IMvcBuilder AddCustomLocalization(this IMvcBuilder mvcBuilder, IServiceCollection services)
        {
            mvcBuilder.AddDataAnnotationsLocalization(options =>
                    {
                        const string resourcesPath = "Resources";
                        string baseName = $"{resourcesPath}.{nameof(SharedResource)}";
                        var location = new AssemblyName(typeof(SharedResource).GetTypeInfo().Assembly.FullName).Name;

                        options.DataAnnotationLocalizerProvider = (type, factory) =>
                        {
                            // to use `SharedResource.fa.resx` file
                            return factory.Create(baseName, location);
                        };
                    });

            services.AddLocalization();
            services.AddScoped<IStringLocalizer>(provider =>
                            provider.GetRequiredService<IStringLocalizer<SharedResource>>());

            services.AddScoped<ISharedResourceService, SharedResourceService>();
            return mvcBuilder;
        }
    }
- در اینجا در ابتدا توسط متد AddDataAnnotationsLocalization، کار معرفی اسمبلی ثالثی که باید تعاریف بومی سازی را از آن دریافت کرد، صورت گرفته‌است.
- سپس با استفاده از متد AddLocalization، سرویس‌های پایه‌ی بومی سازی ASP.NET Core به برنامه اضافه می‌شوند. برای مثال پس از این تعریف اگر در هر جائی از برنامه سرویس <IStringLocalizer<SharedResource را تزریق کنید، می‌توان به مداخل فایل منبع اشتراکی، دسترسی یافت.
- در ادامه امکان تزریق سرویس غیرجنریک IStringLocalizer را نیز میسر کرده‌ایم که تعاریف خودش را از همان سرویس توکار <IStringLocalizer<SharedResource دریافت می‌کند. مزیت اینکار، فراهم شدن امکانات بومی سازی، برای مثال در کتابخانه‌هایی مانند Fluent Validation است که دقیقا از سرویس غیرجنریک IStringLocalizer برای دریافت منابع استفاده می‌کنند.
- در آخر تعریف یک سرویس سفارشی را نیز مشاهده می‌کنید که در ادامه‌ی بحث تکمیل خواهد شد.

هدف از متد AddCustomLocalization فوق، خلوت کردن فایل startup برنامه است. این متد به صورت زیر مورد استفاده قرار می‌گیرد:
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.AddHttpContextAccessor();
            services.AddControllers().AddCustomLocalization(services);
        }

پس از آن نیاز است میان‌افزار بومی سازی را نیز فعال کرد. متد UseCustomRequestLocalization زیر، اینکار را انجام می‌دهد:
    public static class LocalizationConfig
    {
        public static IApplicationBuilder UseCustomRequestLocalization(this IApplicationBuilder app)
        {
            var requestLocalizationOptions = new RequestLocalizationOptions
            {
                DefaultRequestCulture = new RequestCulture(new CultureInfo("fa-IR")),
                SupportedCultures = new[]
                {
                    new CultureInfo("en-US"),
                    new CultureInfo("fa-IR")
                },
                SupportedUICultures = new[]
                {
                    new CultureInfo("en-US"),
                    new CultureInfo("fa-IR")
                }
            };
            app.UseRequestLocalization(requestLocalizationOptions);
            return app;
        }
    }
محل قرارگیری متد UseCustomRequestLocalization فوق در فایل آغازین برنامه، باید به صورت زیر باید باشد:
    public class Startup
    {
        public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
        {
            if (env.IsDevelopment())
            {
                app.UseDeveloperExceptionPage();
            }

            app.UseHttpsRedirection();

            app.UseCustomRequestLocalization();

            app.UseRouting();

            app.UseAuthorization();

            app.UseEndpoints(endpoints =>
            {
                endpoints.MapControllers();
            });
        }
    }


تعریف مدل برنامه به همراه ویژگی‌های بومی سازی شده

در اینجا تعریف RegisterModel را مشاهده می‌کنید که ErrorMessage‌های آن هرچند به ظاهر یک رشته‌ی معمولی هستند، اما در عمل از فایل منبع اشتراکی خوانده می‌شوند:
using System.ComponentModel.DataAnnotations;

namespace Core3xSharedResource.Models.Account
{
    public class RegisterModel
    {
        [Required(ErrorMessage = "Please enter an email address")] // -->> from the shared resources
        [EmailAddress(ErrorMessage = "Please enter a valid email address")] // -->> from the shared resources
        public string Email { get; set; }
    }
}

فایل resx ما دارای یک چنین کلیدهایی است:
<?xml version="1.0" encoding="utf-8"?>
<root>
  <data name="&lt;b&gt;Hello&lt;/b&gt;&lt;i&gt; {0}&lt;/i&gt;" xml:space="preserve">
    <value>&lt;b&gt;سلام&lt;/b&gt;&lt;i&gt; {0}&lt;/i&gt;</value>
  </data>
  <data name="About Title" xml:space="preserve">
    <value>درباره</value>
  </data>
  <data name="DNT" xml:space="preserve">
    <value>.NET Tips</value>
  </data>
  <data name="SiteName" xml:space="preserve">
    <value>DNT</value>
  </data>
  <data name="Please enter an email address" xml:space="preserve">
    <value>لطفا ایمیلی را وارد کنید</value>
  </data>
  <data name="Please enter a valid email address" xml:space="preserve">
    <value>لطفا ایمیل معتبری را وارد کنید</value>
  </data>
</root>
یک نکته: در اینجا بهتر است کلیدها را به صورت جملات کامل انگلیسی وارد کرد، تا اگر منبع فارسی معادل آن‌ها یافت نشدند، دقیقا از همان کلید، به عنوان مقدار خروجی سیستم بومی سازی استفاده کند.


آزمایش برنامه

اکنون برنامه‌ی Web API، ‌برای آزمایش آماده‌است. برای مثال در کنترلر زیر، سرویس عمومی IStringLocalizer به سازنده‌ی کلاس تزریق شده‌است و سپس قصد بازگشت مقدار کلید «About Title» را دارد. همچنین خطاهای بومی شده‌ی مدل برنامه را نیز بررسی می‌کنیم:
using Core3xSharedResource.Models.Account;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Localization;

namespace Core3xSharedResource.WebApi.Controllers
{
    [ApiController]
    [Route("[controller]")]
    public class NormalIStringLocalizerController : ControllerBase
    {
        private readonly IStringLocalizer _localizer;

        public NormalIStringLocalizerController(IStringLocalizer localizer)
        {
            _localizer = localizer;
        }

        [HttpGet]
        public ActionResult<string> Get()
        {
            var localizedString = _localizer["About Title"];
            if (localizedString.ResourceNotFound)
            {
                return NotFound($"The localization resource with ID:`{localizedString.Name}` not found. SearchedLocation: `{localizedString.SearchedLocation}`.");
            }
            return localizedString.Value;
        }

        [HttpPost]
        public ActionResult<RegisterModel> Post(RegisterModel model)
        {
            return model;
        }
    }
}


حالت get را در تصویر فوق مشاهده می‌کنید. در Web API برای تنظیم زبان مورد استفاده می‌توان از هدری به نام Accept-Language استفاده کرد که برای مثال در اینجا به fa تنظیم شده‌است و نتیجه‌ی آن مراجعه به فایل SharedResource.fa.resx خواهد بود. اگر en-us وارد شود، نیاز خواهد بود تا فایل منبع اشتراکی دیگری را تعریف کنید. البته اگر این هدر تنظیم نشود، با توجه به تنظیمات متد UseCustomRequestLocalization، مقدار پیش‌فرض آن همان fa-IR خواهد بود.

حالت post را نیز در تصویر زیر می‌توان مشاهده کرد:


در اینجا چون ایمیل وارد نشده، هر دو خطای تنظیم شده‌ی در مدل برنامه را دریافت کرده‌ایم و این خطاها نیز فارسی هستند. به این معنا که بومی سازی data annotations نیز به درستی کار می‌کند.


تعریف یک سرویس عمومی برای محصور سازی قابلیت‌های بومی سازی، در برنامه‌های Web API

در ادامه تعریف سرویس SharedResourceService را مشاهده می‌کنید که ثبت آن‌را پیشتر انجام دادیم:
using System;
using System.Collections.Generic;
using Microsoft.Extensions.Localization;
using Microsoft.Extensions.Logging;
using Microsoft.AspNetCore.Http;

namespace Core3xSharedResource.Services
{
    public interface ISharedResourceService
    {
        string this[string index] { get; }

        IEnumerable<LocalizedString> GetAllStrings(bool includeParentCultures);
        string GetString(string name, params object[] arguments);
        string GetString(string name);
    }

    public class SharedResourceService : ISharedResourceService
    {
        private readonly IStringLocalizer _sharedLocalizer;
        private readonly ILogger<SharedResourceService> _logger;
        private readonly IHttpContextAccessor _httpContextAccessor;

        public SharedResourceService(
            IStringLocalizer sharedHtmlLocalizer,
            IHttpContextAccessor httpContextAccessor,
            ILogger<SharedResourceService> logger
            )
        {
            _logger = logger ?? throw new ArgumentNullException(nameof(logger));
            _sharedLocalizer = sharedHtmlLocalizer ?? throw new ArgumentNullException(nameof(sharedHtmlLocalizer));
            _httpContextAccessor = httpContextAccessor ?? throw new ArgumentNullException(nameof(httpContextAccessor));
        }

        public IEnumerable<LocalizedString> GetAllStrings(bool includeParentCultures)
        {
            return _sharedLocalizer.GetAllStrings(includeParentCultures);
        }

        public string this[string index] => GetString(index);

        public string GetString(string name, params object[] arguments)
        {
            var result = _sharedLocalizer.GetString(name, arguments);
            logError(name, result);
            return result;
        }

        private void logError(string name, LocalizedString result)
        {
            if (result.ResourceNotFound)
            {
                var acceptLanguage = _httpContextAccessor?.HttpContext?.Request?.Headers["Accept-Language"];
                _logger.LogError($"The localization resource with Accept-Language:`{acceptLanguage}` & ID:`{name}` not found. SearchedLocation: `{result.SearchedLocation}`.");
            }
        }

        public string GetString(string name)
        {
            var result = _sharedLocalizer.GetString(name);
            logError(name, result);
            return result;
        }
    }
}
این سرویس نه فقط دسترسی به IStringLocalizer را محصور می‌کند، بلکه در متد logError آن اینبار خطای بسیار مفیدی جهت دیباگ کردن سیستم بومی سازی لاگ خواهد شد. اگر کلیدی یافت نشود، فایلی یافت نشود و یا زبان ارسالی تنظیمی یافت نشود، خطای آن‌را در لاگ‌های برنامه می‌توانید مشاهده کنید که در حالت عادی کار با IStringLocalizer، لاگ نمی‌شوند و همچنین هیچ خطا و یا استثنائی را نیز سبب نمی‌شوند. به همین جهت دیباگ کردن سیستم بومی سازی بدون این لاگ‌ها، تقریبا غیرممکن است. برای مثال مقدار baseNameهایی را که در کدهای این مطلب مشاهده می‌کنید، بر اساس همین لاگ‌ها تشخیص داده شدند و بدون آن‌ها تشکیل این مقادیر غیرممکن بودند.


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: Core3xSharedResource.zip
مطالب
مقیدسازی (DataBinding) در WPF زمانی که دسترسی به DataContext وجود ندارد

در WPF و Silverlight می‌توان با استفاده از مقید سازی (DataBindingکنترل‌ها را به منبع‌های داده متصل کرد. این منابع به چند شیوه مختلف مانند استفاده مستقیم از خصوصیتSource  قابل دسترسی هستند. یکی از این روش ها، ارث بری از DataContext نزدیک‌ترین والد است.

همانطور که گفته شدDataContext  هر کنترل، توسط تمامی فرزندان آن قابل دسترسی است. اما در بعضی مواقع، زمانیکه کنترل فرزند، بخشی از visual یا logical tree نباشند، دسترسی به DataContext وجود ندارد.

برای مثال زمانی که نیاز است خصوصیت ItemsSource مربوط به یک به لیستی خارج از ItemsSource کنترل DataGrid DataGridTemplateColumn مثلا به لیستی درون ViewModel  مربوط به Window در مثال زیر مقید شود، به صورت معمول باید به این صورت عمل کرد:

ViewModel :

public List<People> ComboBoxDataSource{get; set;}

  : XAML

<Window x:Class="WpfApplication1.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        Title="MainWindow"
        x:Name="this">
    <Grid>
        <DataGrid ItemsSource="{Binding DataCollection}">
            <DataGrid.Columns>
                <DataGridComboBoxColumn ItemsSource="{Binding DataContext.ComboBoxDataSource, ElementName=this}"/>
            </DataGrid.Columns>
        </DataGrid>
    </Grid>
</Window>

با اینکه همه چیز درست به نظر می‌رسد اما در عمل هیچ اتصالی صورت نمی‌گیرد و در پنجره Output ویژوال استادیو خطای زیر مشاهده می‌شود:

System.Windows.Data Error: 2 : Cannot find governing FrameworkElement or FrameworkContentElement for target element.
BindingExpression:Path=ComboBoxDataSource; DataItem=null; 
target element is 'DataGridComboBoxColumn' (HashCode=17334644); target property is 'ItemsSource' (type 'IEnumerable')

این خطا مشخص میکند که WPF نمیتواند تشخیص بدهد که کدام FrameWorkElement قرار است از DataContext استفاده کند؛ چرا که همانطور که قبلا عنوان شد DataGridTemplateColumn بخشی از visual  یا  logical treeنیست.

برای مشکل فوق در صورتیکه خصوصیت مورد نظر، یک خصوصیت از فرزندان کنترل باشد، از طریق استایل‌ها می‌توان مشکل را حل کرد. برای مثال به جای ItemSource مربوط به DataGridComboBoxColumn می‌توان خصوصیت ItemSource کنترل ComboBox درون آن را تنظیم کرد.

  <DataGridComboBoxColumn DisplayMemberPath="FirstName">
        <DataGridComboBoxColumn.EditingElementStyle>
              <Style TargetType="ComboBox">
                     <Setter Property="ItemsSource" Value="{Binding DataContext.ComboBoxDataSource , ElementName=this}"/>
               </Style>
         </DataGridComboBoxColumn.EditingElementStyle>
   </DataGridComboBoxColumn>

اما در صورتیکه نیاز باشد یک خصوصیت از خود DataGridComboBoxColumn مانند Visibility  مقید سازی شود، روش بالا کارساز نخواهد بود. برای حل مشکل فوق میتوان از کلاس‌های Freezable استفاده کرد؛ چرا که این کلاسها می‌توانند از DataContext ارث بری کنند حتی زمانیکه بخشی از visual یاlogical tree  نباشند. برای این کار می‌توان کلاس زیر را ایجاد کرد:

 public class DataBindingHelper : Freezable
    {
        protected override Freezable CreateInstanceCore()
        {
            return new DataBindingHelper();
        }
        public object Data
        {
            get { return (object)GetValue(DataProperty); }
            set { SetValue(DataProperty, value); }
        }

        public static readonly DependencyProperty DataProperty =
            DependencyProperty.Register("Data", typeof(object), typeof(DataBindingHelper), new UIPropertyMetadata(null));
    }
و یک نمونه از آن را در Resource‌های DataGrid ساخت:

<DataGrid.Resources>
       <local:DataBindingHelper x:Key="bindingHelper"Data="{Binding}"/>
</DataGrid.Resources>

و هنگام مقید سازی خصوصیت Visibility مربوط به DataGridComboBoxColumn، از نمونه ساخته شده به عنوان  Source استفاده نمود.

<DataGridComboBoxColumn Visibility="{Binding Data.IsVisible,Converter={StaticResource visibilityConverter},Source={StaticResource bindingHelper}}"/>

مطالب
اندازه گیری کارآیی کدها توسط NBench
این روزها جهت اندازه‌گیری کارآیی قطعات کدهای دات نتی، استفاده از فریم ورک‌های مخصوصی که بسیاری از نکات ریز مرتبط با اینگونه اندازه‌گیری‌ها را مانند warmup یا گرم کردن JIT (جهت عدم اندازه گیری زمان کامپایل پویای کدها، بجای زمان واقعی اجرای آن‌ها)، اندازه‌گیری فشار بر روی Garbage collector و غیره را انجام می‌دهند، بجای استفاده‌ی از Stop Watch، متداول است. یکی از معروفترین‌های این گروه، که تقریبا حالت استانداردی را در جهت اندازه گیری کارآیی کدهای دات نتی پیدا کرده‌است، فریم ورک سورس باز NBench است.


شروع به کار با NBench

برای شروع به کار با NBench، ابتدا نیاز است دو بسته‌ی نیوگت ذیل را نصب کرد:
PM> Install-Package NBench
PM> Install-Package NBench.Runner
عملکرد این فریم ورک، شبیه به عملکرد فریم ورک‌های آزمون‌های واحد است. برای مثال فرض کنید که می‌خواهید فشار حافظه و فشار بر روی GC قطعه کدی را اندازه گیری کنید:
[PerfBenchmark(RunMode = RunMode.Iterations, TestMode = TestMode.Measurement)]
[MemoryMeasurement(MemoryMetric.TotalBytesAllocated)]
public void AddMemoryMeasurement()
{
    const int numberOfAdds = 1000000;
    var dictionary = new Dictionary<int, int>();
    for (var i = 0; i < numberOfAdds; i++)
    {
        dictionary.Add(i, i);
    }
}
 
[PerfBenchmark(RunMode = RunMode.Iterations, TestMode = TestMode.Measurement)]
[GcMeasurement(GcMetric.TotalCollections, GcGeneration.AllGc)]
public void MeasureGarbageCollections()
{
    var dataCache = new List<int[]>();
    for (var i = 0; i < 500; i++)
    {
        for (var j = 0; j < 10000; j++)
        {
            var data = new int[100];
            dataCache.Add(data.ToArray());
        }
 
        dataCache.Clear();
    }
}
همانند نوشتن متدهای آزمون‌های واحد، ابتدا یک یا چند متد public void را در اینجا اضافه می‌کنیم.
سپس هر متد تست به ویژگی PerfBenchmark مزین می‌شود. در اینجا RunMode.Iterations به این معنا است که خودمان قصد داریم در طی یک حلقه، تعداد بار انجام را مشخص کنیم.
ویژگی MemoryMeasurement برای اندازه گیری حافظه‌ی مصرفی یک قطعه کد و GcMeasurement برای اندازه گیری فشار بر روی Garbage collector بکار می‌رود.


اجرای آزمون‌های NBench

پس از تهیه‌ی دو متد فوق، به پوشه‌ی packages\NBench.Runner.0.3.4\lib\net45 مراجعه کنید. یک فایل exe در آن موجود است که کار یافتن و اجرای آزمون‌های NBench را انجام می‌دهد. به عنوان پارامتر آن تنها کافی است مسیر اسمبلی برنامه (فایل exe و یا dll) را به آن ارسال کنیم:
 D:\Prog\NBenchSample\packages\NBench.Runner.0.3.4\lib\net45\NBench.Runner.exe "D:\Prog\NBenchSample\NBenchSample\bin\Release\NBenchSample.exe"
پس از آن، کار اجرای آزمون‌های NBench شروع شده و پس از مدتی ابتدا BEGIN WARMUP و END WARMUP‌ها را می‌توان مشاهده کرد و در آخر یک چنین خروجی ارائه می‌شود:
 --------------- RESULTS: NBenchSample.Program+AddMemoryMeasurement ---------------
TotalBytesAllocated: Max: 47,842,944.00 bytes, Average: 42,002,757.60 bytes, Min: 41,353,848.00 bytes, StdDev: 2,052,032.33 bytes
TotalBytesAllocated: Max / s: 359,074,078.19 bytes, Average / s: 311,474,786.96 bytes, Min / s: 300,926,928.79 bytes, StdDev / s: 16,869,581.62 bytes

--------------- RESULTS: NBenchSample.Program+MeasureGarbageCollections ---------------
TotalCollections [Gen0]: Max: 708.00 collections, Average: 702.80 collections, Min: 697.00 collections, StdDev: 3.65 collections
TotalCollections [Gen0]: Max / s: 111.55 collections, Average / s: 109.87 collections, Min / s: 107.88 collections, StdDev / s: 1.28 collections

TotalCollections [Gen1]: Max: 338.00 collections, Average: 334.60 collections, Min: 330.00 collections, StdDev: 2.41 collections
TotalCollections [Gen1]: Max / s: 53.61 collections, Average / s: 52.31 collections, Min / s: 51.10 collections, StdDev / s: 0.70 collections

TotalCollections [Gen2]: Max: 32.00 collections, Average: 24.80 collections, Min: 18.00 collections, StdDev: 4.73 collections
TotalCollections [Gen2]: Max / s: 4.91 collections, Average / s: 3.87 collections, Min / s: 2.86 collections, StdDev / s: 0.72 collections


نکته‌ای در مورد اندازه گیری فشار حافظه

حافظه توسط سیستم عامل، به صورت صفحات تخصیص داده می‌شود. برای مثال اگر شما به 12 بایت نیاز داشته باشید، سیستم عامل ممکن است 8 کیلوبایت را جهت کاهش تعداد بار تخصیص‌های حافظه و بالا بردن سرعت کار، در اختیار برنامه قرار دهد. بنابراین جهت رسیدن به بهترین نتیجه، در اینجا بهتر است تعداد زیادی شیء را مورد آزمایش قرار داد. برای مثال در آزمایش فوق بجای افزودن یک آیتم به دیکشنری، افزودن میلیون‌ها شیء، نویز استراتژی تخصیص حافظه‌ی توسط سیستم عامل را به حداقل می‌رساند.

شبیه به همین استراتژی، در پیاده سازی Dictionary نیز بکارگرفته شده‌است:
[PerfBenchmark(RunMode = RunMode.Iterations, TestMode = TestMode.Measurement)]
[MemoryMeasurement(MemoryMetric.TotalBytesAllocated)]
public void AddMemoryMeasurement_With_initial_Size()
{
    const int numberOfAdds = 1000000;
    var dictionary = new Dictionary<int, int>(numberOfAdds);
    for (var i = 0; i < numberOfAdds; i++)
    {
        dictionary.Add(i, i);
    }
}
اگر اینبار این آزمون را انجام دهیم، به نتیجه‌ی ذیل خواهیم رسید:
 --------------- RESULTS: NBenchSample.Program+AddMemoryMeasurement_With_initial_Size ---------------
TotalBytesAllocated: Max: 23,245,912.00 bytes, Average: 23,245,912.00 bytes, Min: 23,245,912.00 bytes, StdDev: 0.00 bytes
TotalBytesAllocated: Max / s: 394,032,435.34 bytes, Average / s: 389,108,363.43 bytes, Min / s: 378,502,981.34 bytes, StdDev / s: 5,575,519.09 bytes
در اینجا زمانیکه شیء دیکشنری ایجاد شده‌است، اندازه‌ی اولیه‌ی آن نیز مشخص گردیده‌است. همین مساله سبب شده‌است تا مصرف حافظه‌ی آن از نزدیک به 41 مگابایت (متد AddMemoryMeasurement ابتدای بحث) به نزدیک 24 مگابایت (متد AddMemoryMeasurement_With_initial_Size فوق) کاهش یابد.
علت اینجا است که دیکشنری در پشت صحنه، از یک متد ReSize استفاده می‌کند که شبیه به سیستم عامل، بیشتر از مقدار مورد نیاز جهت ذخیره‌ی اشیاء، برای کاهش تعداد بار تخصیص‌های حافظه، حافظه به خود اختصاص می‌دهد. به همین جهت زمانیکه اندازه‌ی اولیه را مشخص کرد‌ه‌ایم، کار تخصیص حافظه‌ی بیش از اندازه‌ی این شیء، به شدت کاهش یافته‌است.


بررسی متد MeasureGarbageCollections

در متد MeasureGarbageCollections، مقدار زیادی شیء بر روی heap ایجاد شده و GC را وادار به عکس العمل شدید می‌کند.
حلقه‌ی داخلی ایجاد شده نیز تعداد زیادی شیء را در جهت پاکسازی GC تخصیص می‌دهد. این پاکسازی در مرحله‌ا‌ی به نام generation 0 صورت می‌گیرد.
اشیاء اضافه شده‌ی به لیست، طول عمر بیشتری دارند (تا پایان حلقه). بنابراین از garbage collection at generation 0 جان سالم به در خواهند برد و در garbage collection at generation 1  به عمر آن‌ها پایان داده خواهد شد. هرچند ممکن است تعدادی از آن‌ها پاکسازی نشده و تا پایان full garbage collection (generation 2) باقی بمانند.
در آزمایش انجام شده، با ذکر GcGeneration.AllGc، هر سه مورد Gen0 تا Gen2 اندازه گیری خواهند شد. عموما اندازه گیری Gen0 و Gen1 مهم نیستند و این‌ها خیلی زود به پایان خواهند رسید. اگر تعداد بار رخ‌دادن Gen2 زیاد بود (یا اصلا وجود داشت)، می‌تواند سبب بروز مشکلات کارآیی شدیدی گردد.
بنابراین می‌توان بجای تنظیم GcGeneration.AllGc، صرفا از GcGeneration.Gen2 استفاده کرد.


اندازه‌گیری Throughput یا تعداد بار اجرای یک متد در ثانیه

روش دیگر کار با فریم ورک NBench، ایجاد یک کلاس مخصوص و سپس افزودن متدهای Setup مزین به PerfSetup، متد Cleanup مزین به PerfCleanup و سپس تعدادی متد اندازه گیری کارآیی توسط ویژگی PerfBenchmark است. در اینجا برای اندازه‌گیری سرعت اجرای متدها، از ویژگی CounterThroughputAssertion استفاده خواهد شد که پارامتر اول آن نام یک شمارشگر است. این شمارشگر در متد Setup ایجاد می‌شود (با یک نام دلخواه).
public class DictionaryThroughputTests
{
    private readonly Dictionary<int, int> _dictionary = new Dictionary<int, int>();
 
    private const string AddCounterName = "AddCounter";
    private Counter _addCounter;
    private int _key;
 
    private const int AverageOperationsPerSecond = 20000000;
 
    [PerfSetup]
    public void Setup(BenchmarkContext context)
    {
        _addCounter = context.GetCounter(AddCounterName);
        _key = 0;
    }
 
    [PerfBenchmark(RunMode = RunMode.Throughput, TestMode = TestMode.Test)]
    [CounterThroughputAssertion(AddCounterName, MustBe.GreaterThan, AverageOperationsPerSecond)]
    public void AddThroughput_ThroughputMode(BenchmarkContext context)
    {
        _dictionary.Add(_key++, _key);
        _addCounter.Increment();
    }
 
    [PerfBenchmark(RunMode = RunMode.Iterations, TestMode = TestMode.Test)]
    [CounterThroughputAssertion(AddCounterName, MustBe.GreaterThan, AverageOperationsPerSecond)]
    public void AddThroughput_IterationsMode(BenchmarkContext context)
    {
        for (var i = 0; i < AverageOperationsPerSecond; i++)
        {
            _dictionary.Add(i, i);
            _addCounter.Increment();
        }
    }
 
    [PerfCleanup]
    public void Cleanup(BenchmarkContext context)
    {
        _dictionary.Clear();
    }
}
در این آزمایش‌ها، RunMode.Throughput به معنای اجرای متد آزمایش به تعداد AverageOperationsPerSecond توسط فریم ورک NBench است. در حالت قید RunMode.Iterations، تعداد بار اجرا، توسط حلقه‌ای که ما مشخص کرده‌ایم، تعیین می‌گردد.
 --------------- RESULTS: NBenchSample.DictionaryThroughputTests+AddThroughput_ThroughputMode ---------------
[Counter] AddCounter: Max: 575,654.00 operations, Average: 575,654.00 operations, Min: 575,654.00 operations, StdDev: 0.00 operations
[Counter] AddCounter: Max / s: 7,205,997.59 operations, Average / s: 7,163,894.30 operations, Min / s: 7,075,316.79 operations, StdDev / s: 42,518.20 operations

--------------- RESULTS: NBenchSample.DictionaryThroughputTests+AddThroughput_IterationsMode ---------------
[Counter] AddCounter: Max: 20,000,000.00 operations, Average: 20,000,000.00 operations, Min: 20,000,000.00 operations, StdDev: 0.00 operations
[Counter] AddCounter: Max / s: 7,409,380.61 operations, Average / s: 7,250,991.24 operations, Min / s: 6,880,938.73 operations, StdDev / s: 148,085.19 operations
اگر دقت کنید، کارآیی اندازه گیری شده‌ی در حالت RunMode.Iterations بیشتر است از حالت RunMode.Throughput. چون در حالت RunMode.Throughput، فریم ورک کار اجرای متد را از طریق Reflection انجام می‌دهد. بنابراین بهتر است از حالت RunMode.Iterations، جهت رسیدن به نتایج دقیق‌تری استفاده کرد.
در اینجا برای گزارش دادن، عددهای Average و  Average / s باید مورد استفاده قرار گیرند.
مطالب
حذف فضاهای خالی در خروجی صفحات ASP.NET MVC
صفحات خروجی وب سایت زمانی که رندر شده و در مرورگر نشان داده می‌شود شامل فواصل اضافی است که تاثیری در نمایش سایت نداشته و صرفا این کاراکترها فضای اضافی اشغال می‌کنند. با حذف این کاراکترهای اضافی می‌توان تا حد زیادی صفحه را کم حجم کرد. برای این کار در ASP.NET Webform کارهایی (^ ) انجام شده است.
روال کار به این صورت بوده که قبل از رندر شدن صفحه در سمت سرور خروجی نهایی بررسی شده و با استفاده از عبارات با قاعده الگوهای مورد نظر لیست شده و سپس حذف می‌شوند و در نهایت خروجی مورد نظر حاصل خواهد شد. برای راحتی کار و عدم نوشتن این روال در تمامی صفحات می‌تواند در مستر پیج این عمل را انجام داد. مثلا:
private static readonly Regex RegexBetweenTags = new Regex(@">\s+<", RegexOptions.Compiled);
        private static readonly Regex RegexLineBreaks = new Regex(@"\r\s+", RegexOptions.Compiled);

        protected override void Render(HtmlTextWriter writer)
        {
            using (var htmlwriter = new HtmlTextWriter(new System.IO.StringWriter()))
            {
                base.Render(htmlwriter);
                var html = htmlwriter.InnerWriter.ToString();

                html = RegexBetweenTags.Replace(html, "> <");
                html = RegexLineBreaks.Replace(html, string.Empty);
                html = html.Replace("//<![CDATA[", "").Replace("//]]>", "");
                html = html.Replace("// <![CDATA[", "").Replace("// ]]>", "");

                writer.Write(html.Trim());
            }
        }
در هر صفحه رویدادی به نام Render وجود دارد که خروجی نهایی را می‌توان در آن تغییر داد. همانگونه که مشاهده می‌شود عملیات یافتن و حذف فضاهای خالی در این متد انجام می‌شود.
این عمل در ASP.NET Webform به آسانی انجام شده و باعث حذف فضاهای خالی در خروجی صفحه می‌شود.
برای انجام این عمل در ASP.NET MVC روال کار به این صورت نیست و نمی‌توان مانند ASP.NET Webform عمل کرد.
چون در MVC از ViewPage استفاده می‌شود و ما مستقیما به خروجی آن دسترسی نداریم یک روش این است که می‌توانیم یک کلاس برای ViewPage تعریف کرده و رویداد Write آن را تحریف کرده و مانند مثال بالا فضای خالی را در خروجی حذف کرد. البته برای استفاده باید کلاس ایجاد شده را به عنوان فایل پایه جهت ایجاد صفحات در MVC فایل web.config معرفی کنیم. این روش در اینجا به وضوح شرح داده شده است.
اما هدف ما پیاده سازی با استفاده از اکشن فیلتر هاست. برای پیاده سازی ایتدا یک اکشن فیلتر به نام CompressAttribute تعریف می‌کنیم مانند زیر:
using System;
using System.IO;
using System.IO.Compression;
using System.Text;
using System.Text.RegularExpressions;
using System.Web;
using System.Web.Mvc;

namespace PWS.Common.ActionFilters
{
    public class CompressAttribute : ActionFilterAttribute
    {
         #region Methods (2) 

        // Public Methods (1) 

        /// <summary>
        /// Called by the ASP.NET MVC framework before the action method executes.
        /// </summary>
        /// <param name="filterContext">The filter context.</param>
        public override void OnActionExecuting(ActionExecutingContext filterContext)
        {
            var response = filterContext.HttpContext.Response;
            if (IsGZipSupported(filterContext.HttpContext.Request))
            {
                String acceptEncoding = filterContext.HttpContext.Request.Headers["Accept-Encoding"];
                if (acceptEncoding.Contains("gzip"))
                {
                    response.Filter = new GZipStream(response.Filter, CompressionMode.Compress);
                    response.AppendHeader("Content-Encoding", "gzip");
                }
                else
                {
                    response.Filter = new DeflateStream(response.Filter, CompressionMode.Compress);
                    response.AppendHeader("Content-Encoding", "deflate");
                }
            }
            // Allow proxy servers to cache encoded and unencoded versions separately
            response.AppendHeader("Vary", "Content-Encoding");
           //حذف فضاهای خالی
response.Filter = new WhitespaceFilter(response.Filter); } // Private Methods (1)  /// <summary> /// Determines whether [is G zip supported] [the specified request]. /// </summary> /// <param name="request">The request.</param> /// <returns></returns> private Boolean IsGZipSupported(HttpRequestBase request) { String acceptEncoding = request.Headers["Accept-Encoding"]; if (acceptEncoding == null) return false; return !String.IsNullOrEmpty(acceptEncoding) && acceptEncoding.Contains("gzip") || acceptEncoding.Contains("deflate"); } #endregion Methods  } /// <summary> /// Whitespace Filter /// </summary> public class WhitespaceFilter : Stream { #region Fields (3)  private readonly Stream _filter; /// <summary> /// /// </summary> private static readonly Regex RegexAll = new Regex(@"\s+|\t\s+|\n\s+|\r\s+", RegexOptions.Compiled); /// <summary> /// /// </summary> private static readonly Regex RegexTags = new Regex(@">\s+<", RegexOptions.Compiled); #endregion Fields  #region Constructors (1)  /// <summary> /// Initializes a new instance of the <see cref="WhitespaceFilter" /> class. /// </summary> /// <param name="filter">The filter.</param> public WhitespaceFilter(Stream filter) { _filter = filter; } #endregion Constructors  #region Properties (5)  //methods that need to be overridden from stream /// <summary> /// When overridden in a derived class, gets a value indicating whether the current stream supports reading. /// </summary> /// <returns>true if the stream supports reading; otherwise, false.</returns> public override bool CanRead { get { return true; } } /// <summary> /// When overridden in a derived class, gets a value indicating whether the current stream supports seeking. /// </summary> /// <returns>true if the stream supports seeking; otherwise, false.</returns> public override bool CanSeek { get { return true; } } /// <summary> /// When overridden in a derived class, gets a value indicating whether the current stream supports writing. /// </summary> /// <returns>true if the stream supports writing; otherwise, false.</returns> public override bool CanWrite { get { return true; } } /// <summary> /// When overridden in a derived class, gets the length in bytes of the stream. /// </summary> /// <returns>A long value representing the length of the stream in bytes.</returns> public override long Length { get { return 0; } } /// <summary> /// When overridden in a derived class, gets or sets the position within the current stream. /// </summary> /// <returns>The current position within the stream.</returns> public override long Position { get; set; } #endregion Properties  #region Methods (6)  // Public Methods (6)  /// <summary> /// Closes the current stream and releases any resources (such as sockets and file handles) associated with the current stream. Instead of calling this method, ensure that the stream is properly disposed. /// </summary> public override void Close() { _filter.Close(); } /// <summary> /// When overridden in a derived class, clears all buffers for this stream and causes any buffered data to be written to the underlying device. /// </summary> public override void Flush() { _filter.Flush(); } /// <summary> /// When overridden in a derived class, reads a sequence of bytes from the current stream and advances the position within the stream by the number of bytes read. /// </summary> /// <param name="buffer">An array of bytes. When this method returns, the buffer contains the specified byte array with the values between <paramref name="offset" /> and (<paramref name="offset" /> + <paramref name="count" /> - 1) replaced by the bytes read from the current source.</param> /// <param name="offset">The zero-based byte offset in <paramref name="buffer" /> at which to begin storing the data read from the current stream.</param> /// <param name="count">The maximum number of bytes to be read from the current stream.</param> /// <returns> /// The total number of bytes read into the buffer. This can be less than the number of bytes requested if that many bytes are not currently available, or zero (0) if the end of the stream has been reached. /// </returns> public override int Read(byte[] buffer, int offset, int count) { return _filter.Read(buffer, offset, count); } /// <summary> /// When overridden in a derived class, sets the position within the current stream. /// </summary> /// <param name="offset">A byte offset relative to the <paramref name="origin" /> parameter.</param> /// <param name="origin">A value of type <see cref="T:System.IO.SeekOrigin" /> indicating the reference point used to obtain the new position.</param> /// <returns> /// The new position within the current stream. /// </returns> public override long Seek(long offset, SeekOrigin origin) { return _filter.Seek(offset, origin); } /// <summary> /// When overridden in a derived class, sets the length of the current stream. /// </summary> /// <param name="value">The desired length of the current stream in bytes.</param> public override void SetLength(long value) { _filter.SetLength(value); } /// <summary> /// When overridden in a derived class, writes a sequence of bytes to the current stream and advances the current position within this stream by the number of bytes written. /// </summary> /// <param name="buffer">An array of bytes. This method copies <paramref name="count" /> bytes from <paramref name="buffer" /> to the current stream.</param> /// <param name="offset">The zero-based byte offset in <paramref name="buffer" /> at which to begin copying bytes to the current stream.</param> /// <param name="count">The number of bytes to be written to the current stream.</param> public override void Write(byte[] buffer, int offset, int count) { string html = Encoding.Default.GetString(buffer); //remove whitespace html = RegexTags.Replace(html, "> <"); html = RegexAll.Replace(html, " "); byte[] outdata = Encoding.Default.GetBytes(html); //write bytes to stream _filter.Write(outdata, 0, outdata.GetLength(0)); } #endregion Methods  } }
در این کلاس فشرده سازی (gzip و deflate نیز اعمال شده است) در متد OnActionExecuting ابتدا در خط 24 بررسی می‌شود که آیا درخواست رسیده gzip را پشتیبانی می‌کند یا خیر. در صورت پشتیبانی خروجی صفحه را با استفاده از gzip یا deflate فشرده سازی می‌کند. تا اینجای کار ممکن است مورد نیاز ما نباشد. اصل کار ما (حذف کردن فضاهای خالی) در خط 42 اعمال شده است. در واقع برای حذف فضاهای خالی باید یک کلاس که از Stream ارث بری دارد تعریف شده و خروجی کلاس مورد نظر به فیلتر درخواست ما اعمال شود.
در کلاس WhitespaceFilter با تحریف متد Write الگوهای فضای خالی موجود در درخواست یافت شده و آنها را حذف می‌کنیم. در نهایت خروجی این کلاس که از نوع استریم است به ویژگی فیلتر صفحه اعمال می‌شود.

برای معرفی فیلتر تعریف شده می‌توان در فایل Global.asax در رویداد Application_Start به صورت زیر فیلتر مورد نظر را به فیلترهای MVC اعمال کرد.
GlobalFilters.Filters.Add(new CompressAttribute());
برای آشنایی بیشتر فیلترها در ASP.NET MVC را مطالعه نمایید.
پ.ن: جهت سهولت، در این کلاس ها، صفحات فشرده سازی و همزمان فضاهای خالی آنها حذف شده است.
نظرات مطالب
معرفی List Patterns Matching در C# 11
یک نکته‌ی تکمیلی: ایجاد نوع‌های سازگار با List Patterns Matching

در انتهای این مطلب در مورد «سایر نوع‌هایی که توسط List patterns قابل بررسی هستند» توضیحات مختصری عنوان شد. کامپایلر #C در جهت یافتن نوع‌های سازگار با List Patterns Matching، به دنبال اینترفیس خاصی نمی‌گردد؛ بلکه به دنبال وجود یک سری اعضای خاص، در کلاس مدنظر است و این اعضاء به شرح زیر هستند:
الف) نوع مدنظر باید به همراه یکی از خواص Length و یا Count باشد تا تعداد اعضای مجموعه را مشخص کند. اگر هر دو خاصیت با هم حضور داشته باشند، کامپایلر خاصیت Length را انتخاب می‌کند:
public int Length { get; }
public int Count { get; }

ب) نوع مجموعه‌ای باید به همراه یک ایندکسر باشد که نوع خروجی آن مهم نیست. اگر در نوع تعریف شده، هر دو امضای زیر وجود داشته باشند، کامپایلر از نمونه‌ی this[Index index] استفاده می‌کند:
public object this[int index] => throw null;
public object this[System.Index index] => throw null;

ج) نوع مجموعه‌ای باید از slice pattern، توسط یکی از امضاهای زیر که نوع خروجی آن مهم نیست، پشتیبانی کند. اگر هر دو با هم حضور داشته باشند، کامپایلر از this[System.Range index] استفاده می‌کند:
public object this[System.Range index] => throw null;
public object Slice(int start, int length) => throw null;

برای مثال با توجه به نکات فوق، نوع جدید زیر، با List Patterns Matching سازگاری دارد:
public class MyListPatternsCompatibleCollection
{
    private readonly List<int> _items = new();

    public int Length => _items.Count;

    public int this[Index index] => _items[index];

    public ReadOnlySpan<int> this[Range range]
        => CollectionsMarshal.AsSpan(_items)[range];

    public void Add(int item) => _items.Add(item);
}
و نمونه‌ای از نحوه‌ی استفاده‌ی از آن به صورت زیر است:
 var collection = new MyListPatternsCompatibleCollection();
collection.Add(1);
collection.Add(2);
collection.Add(3);

_ = collection is [var head, .. var tail];
مطالب
پیدا کردن آیتم‌های تکراری در یک لیست به کمک LINQ

گاهی از اوقات نیاز می‌شود تا در یک لیست، آیتم‌های تکراری موجود را مشخص کرد. به صورت پیش فرض متد Distinct برای حذف مقادیر تکراری در یک لیست با استفاده از LINQ موجود است که البته آن‌هم اما و اگرهایی دارد که در ادامه به آن پرداخته خواهد شد، اما باز هم این مورد پاسخ سؤال اصلی نیست (نمی‌خواهیم موارد تکراری را حذف کنیم).

برای حذف آیتم‌های تکراری از یک لیست جنریک می‌توان متد زیر را نوشت:
public static List<T> RemoveDuplicates<T>(List<T> items)
{
return (from s in items select s).Distinct().ToList();
}
برای مثال:
public static void TestRemoveDuplicates()
{
List<string> sampleList =
new List<string>() { "A1", "A2", "A3", "A1", "A2", "A3" };
sampleList = RemoveDuplicates(sampleList);
foreach (var item in sampleList)
Console.WriteLine(item);
}
این متد بر روی لیست‌هایی با نوع‌های اولیه مانند string‌ و int و امثال آن درست کار می‌کند. اما اکنون مثال زیر را در نظر بگیرید:
public class Employee
{
public int ID { get; set; }
public string FName { get; set; }
public int Age { get; set; }
}

public static void TestRemoveDuplicates()
{
List<Employee> lstEmp = new List<Employee>()
{
new Employee(){ ID=1, Age=20, FName="F1"},
new Employee(){ ID=2, Age=21, FName="F2"},
new Employee(){ ID=1, Age=20, FName="F1"},
};

lstEmp = RemoveDuplicates<Employee>(lstEmp);

foreach (var item in lstEmp)
Console.WriteLine(item.FName);
}
اگر متد TestRemoveDuplicates را اجرا نمائید، رکورد تکراری این لیست جنریک حذف نخواهد شد؛ زیرا متد distinct بکارگرفته شده نمی‌داند اشیایی از نوع کلاس سفارشی Employee را چگونه باید با هم مقایسه نماید تا بتواند موارد تکراری آن‌ها را حذف کند.
برای رفع این مشکل باید از آرگومان دوم متد distinct جهت معرفی وهله‌ای از کلاسی که اینترفیس IEqualityComparer را پیاده سازی می‌کند، کمک گرفت.
public static IEnumerable<TSource> Distinct<TSource>(this IEnumerable<TSource> source, IEqualityComparer<TSource> comparer);
که نمونه‌ای از پیاده سازی آن به شرح زیر می‌تواند باشد:

public class EmployeeComparer : IEqualityComparer<Employee>
{
public bool Equals(Employee x, Employee y)
{
//آیا دقیقا یک وهله هستند؟
if (Object.ReferenceEquals(x, y)) return true;

//آیا یکی از وهله‌ها نال است؟
if (Object.ReferenceEquals(x, null) ||
Object.ReferenceEquals(y, null))
return false;

return x.Age == y.Age && x.FName == y.FName && x.ID == y.ID;
}

public int GetHashCode(Employee obj)
{
if (Object.ReferenceEquals(obj, null)) return 0;
int hashTextual = obj.FName == null ? 0 : obj.FName.GetHashCode();
int hashDigital = obj.Age.GetHashCode();
return hashTextual ^ hashDigital;
}
}
اکنون اگر یک overload برای متد RemoveDuplicates با درنظر گرفتن IEqualityComparerتهیه کنیم، به شکل زیر خواهد بود:
public static List<T> RemoveDuplicates<T>(List<T> items, IEqualityComparer<T> comparer)
{
return (from s in items select s).Distinct(comparer).ToList();
}
به این صورت متد آزمایشی ما به شکل زیر (که وهله‌ای از کلاس EmployeeComparer‌ به آن ارسال شده) تغییر خواهد کرد:
public static void TestRemoveDuplicates()
{
List<Employee> lstEmp = new List<Employee>()
{
new Employee(){ ID=1, Age=20, FName="F1"},
new Employee(){ ID=2, Age=21, FName="F2"},
new Employee(){ ID=1, Age=20, FName="F1"},
};

lstEmp = RemoveDuplicates(lstEmp, new EmployeeComparer());

foreach (var item in lstEmp)
Console.WriteLine(item.FName);
}
پس از این تغییر، حاصل این متد تنها دو رکورد غیرتکراری می‌باشد.

سؤال: برای یافتن آیتم‌های تکراری یک لیست چه باید کرد؟
احتمالا مقاله "روش‌هایی برای حذف رکوردهای تکراری" را به خاطر دارید. اینجا هم می‌توان کوئری LINQ ایی را نوشت که رکوردها را بر اساس سن، گروه بندی کرده و سپس گروه‌هایی را که بیش از یک رکورد دارند، انتخاب نماید.
public static void FindDuplicates()
{
List<Employee> lstEmp = new List<Employee>()
{
new Employee(){ ID=1, Age=20, FName="F1"},
new Employee(){ ID=2, Age=21, FName="F2"},
new Employee(){ ID=1, Age=20, FName="F1"},
};

var query = from c in lstEmp
group c by c.Age into g
where g.Count() > 1
select new { Age = g.Key, Count = g.Count() };

foreach (var item in query)
{
Console.WriteLine("Age {0} has {1} records", item.Age, item.Count);
}
}


Vote on iDevCenter
مطالب
نوشتن Middleware سفارشی در ASP.NET Core
در مطلب «ارتقاء به ASP.NET Core 1.0 - قسمت 3 - Middleware چیست؟» با اصول مقدماتی Middlewareها آشنا شدیم. همچنین در مطلب «آشنایی با OWIN و بررسی نقش آن در ASP.NET Core» یک مثال سفارشی از آن‌ها، بررسی شد. در اینجا می‌خواهیم نکات بیشتری را در مورد تهیه‌ی Middlewareهای سفارشی بررسی کنیم.


تفاوت بین متدهای app.Use  و  app.Run در چیست؟

Middlewareها به همان ترتیبی که در متد Configure کلاس آغازین برنامه معرفی می‌شوند، اجرا خواهند شد؛ اما نکته‌ی مهم اینجا است که middleware ایی که توسط متد app.Use تعریف می‌شود، می‌تواند middleware بعدی ثبت شده‌را، فراخوانی کند؛ اما app.Run خیر. برای درک بهتر این مفهوم، به مثال زیر دقت کنید:
using Microsoft.AspNetCore.Http;

public class Startup
{
    public void Configure(IApplicationBuilder app)
    {
        app.Use(async (context, next) =>
        {
            await context.Response.WriteAsync("<div>from middleware-1, inside app.Use, before next()</div>");
 
            await next();
 
            await context.Response.WriteAsync("<div>from middleware-1, inside app.Use, after next()</div>");
        });
 
        app.Run(async context =>
        {
            await context.Response.WriteAsync("<div>Inside middleware-2 defined using app.Run</div>");
        });
 
        app.Use(async (context, next) =>
        {
            await context.Response.WriteAsync("<div>from middleware-3, inside app.Use, before next()</div>");
 
            await next();
 
            await context.Response.WriteAsync("<div>from middleware-3, inside app.Use, after next()</div>");
        });
اگر در این حالت برنامه را اجرا کنیم، چنین خروجی را مشاهده خواهیم کرد:


همانطور که در تصویر نیز مشخص است، ابتدا کدهای پیش از فراخوانی دلیگیت next میان‌افزار اول اجرا شده‌است. سپس باتوجه به فراخوانی دلیگیت next، کدهای دومین میان‌افزار ثبت شده، فراخوانی گردیده‌است و سپس کدهای پس از فراخوانی دلیگیت next میان‌افزار اول، اجرا شده‌اند.
این دلیگیت در اصل یک چنین امضایی را دارد:
 public delegate Task RequestDelegate(HttpContext context);
در اینجا چون میان‌افزار دوم از نوع app.Run است و قابلیت فراخوانی دلیگیت next را ندارد، از نوع terminal یا خاتمه دهنده به‌شمار آمده و دیگر میان افزار بعدی ثبت شده، یعنی میان‌افزار سوم، اجرا نخواهد شد و کار پردازش برنامه در همین مرحله به پایان می‌رسد.

باید دقت داشت که فراخوانی دلیگیت next در میان‌افزارهای از نوع app.Use الزامی نبوده و اگر اینکار انجام نشود، بین app.Run و app.Use تفاوتی نخواهد بود و هر دو terminal به حساب می‌آیند.


تفاوت بین متدهایapp.Map  و  app.MapWhen در چیست؟

متد app.Map در صورت برآورده شدن شرطی، سبب اجرای میان‌افزاری مشخص می‌شود (امکان اجرای غیر خطی میان‌افزارها).
فرض کنید قطعه کد زیر را پس از اولین app.Use مثال فوق قرار داده‌ایم:
app.Map("/dnt", appBuilder =>
{
    appBuilder.Run(async context =>
    {
        await context.Response.WriteAsync(@"<div>Inside Map(/dnt) --> Run</div>");
    });
});
در این حالت اگر برنامه را اجرا کنیم، خروجی جدیدی را مشاهده نخواهیم کرد و خروجی حاصل دقیقا مانند تصویر مثال فوق است. اما اگر آدرس ویژه‌ی dnt/ درخواست شود (الگوی تطابق اولین پارامتر متد Map)، آنگاه میان افزار ثبت شده‌ی app.Run ویژه‌ی این حالت خاص، اجرا می‌شود:


در اینجا چون app.Run داخلی فراخوانی شده، از نوع terminal است، دیگر میان افزارهای پس از آن اجرا نشده‌اند. بدیهی است در اینجا نیز می‌توان به هر تعدادی که نیاز است میان افزارهای جدیدی را به appBuilder متد app.Map اضافه کرد.

پارامتر اول متد Map برای تطابق با الگوهایی خاص و مشخص، مناسب است. اما در اگر در اینجا نیاز به اطلاعات بیشتری از HttpContext جاری داشته باشیم، می‌توانیم از متد app.MapWhen استفاده کنیم که اولین پارامتر آن یک دلیگیت است که HttpContext را در اختیار استفاده کننده قرار می‌دهد و اگر در نهایت true را دریافت کند، سبب اجرای میان افزارهای قسمت appBuilder آن خواهد شد:
app.MapWhen(context =>
{
    return context.Request.Query.ContainsKey("dnt");
},
appBuilder =>
{
    appBuilder.Run(async context =>
    {
        await context.Response.WriteAsync(@"<div>Inside MapWhen(?dnt) --> Run</div>");
    });
});
در این مثال، شرط ارائه شده‌ی در پارامتر اول، اندکی پیچید‌ه‌تر است از حالت app.Map. در اینجا مشخص شده‌است که اگر آدرس دریافتی از کاربر، دارای کوئری استرینگی به نام dnt بود، آنگاه میان افزار(های) ارائه شده‌ی در قسمت appBuilder، اجرا شود. برای نمونه درخواست آدرس ذیل، سبب فراخوانی appBuilder.Run ذکر شده می‌شود:
 http://localhost:7742/?dnt=true



نظم بخشیدن به تعاریف میان‌افزارها

متدهای app.Run و app.Use و امثال آن‌ها برای تعریف سریع میان افزارها مناسب هستند. اما اگر بخواهیم کدهای کلاس آغازین برنامه را اندکی خلوت کرده و به تعاریف میان‌افزارها نظم ببخشیم، می‌توان کدهای آن‌ها را به کلاس‌هایی با امضایی خاص منتقل کرد:
using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;
 
namespace Core1RtmEmptyTest.StartupCustomizations
{
    public class MyMiddleware1
    {
        private readonly RequestDelegate _next;
 
        public MyMiddleware1(RequestDelegate next)
        {
            _next = next;
        }
 
        public async Task Invoke(HttpContext context)
        {
                    context.Response.ContentType = "text/html";
                    context.Response.StatusCode = 200;
            await context.Response.WriteAsync("<div>Hello from MyMiddleware1.</div>");
            await _next.Invoke(context);
            await context.Response.WriteAsync("<div>End of action.</div>");
        }
    } 
}
در اینجا نحوه‌ی تعریف یک کلاس میان‌افزار سفارشی را مشاهده می‌کنید. دو پارامتر context و next ایی را که در متد app.Use مشاهده کردید، دراینجا به نحو واضح‌تری مشخص شده‌اند. دلیگیت next اشاره کننده‌ی به اجرای میان افزار بعدی، در سازنده‌ی کلاس این میان افزار تزریق شده‌است. همچنین در اینجا می‌توان سرویس‌هایی را که به IoC Container توکار ASP.NET Core معرفی کرده‌ایم نیز تزریق کنیم و از این لحاظ محدودیتی ندارد (و همچنین امضای آن می‌تواند کاملا متغیر باشد). قسمت اصلی اجرایی این میان افزار، متد Invoke آن است که اطلاعات HttpContext جاری را در اختیار مصرف کننده قرار می‌دهد.
در اینجا نیز اگر دلیگیت next_ فراخوانی نشود، این میان‌افزار سبب خاتمه‌ی اجرای پردازش درخواست جاری می‌گردد.

 مرحله‌ی بعد، روش معرفی این میان‌افزار تعریف شده، به لیست میان‌افزارهای موجود است. برای این منظور می‌توان متد app.UseMiddleware را به صورت مستقیم در کلاس آغازین برنامه فراخوانی کرد و یا مرسوم است اگر کتابخانه‌ای را طراحی کرده‌اید، به نحو ذیل متد الحاقی خاصی را برای آن تدارک دید:
using Microsoft.AspNetCore.Builder;

public static class MyMiddlewareExtensions
{
    public static IApplicationBuilder UseMyMiddleware(this IApplicationBuilder app)
    {
        app.UseMiddleware<MyMiddleware1>();
        return app;
    }
}
سپس مصرف کننده تنها باید این متد را در کلاس آغازین برنامه فراخوانی کند:
public void Configure(IApplicationBuilder app)
{
    app.UseMyMiddleware();
مطالب
تزریق وابستگی‌ها در ASP.NET Core - بخش 5 - آشنایی با کلاس ServiceDescriptor
در بخش پنجم از سری نوشتار «تزریق وابستگی‌ها در ASP.NET Core»، می‌خواهیم به شرح کلاس ServiceDescriptor بپردازیم. اگر تعریف اینترفیس IServiceCollection را مشاهده کنیم، می‌بینیم که IServicecollection در واقع لیستی از اشیائی از نوع ServiceDescriptor را نگهداری می‌کند:
namespace Microsoft.Extensions.DependencyInjection
{
    public interface IServiceCollection : 
       ICollection<ServiceDescriptor>, IEnumerable<ServiceDescriptor>,
       IEnumerable, IList<ServiceDescriptor>
    {
    }
}

ServiceProvider و مؤلفه‌های درونی آن، از یک مجموعه از ServiceDescriptor‌ها برای برنامه‌ی شما بر اساس سرویس‌های ثبت شده‌ی توسط IServiceCollection استفاده می‌کنند. ServiceDescriptor حاوی اطلاعاتی در مورد سرویس‌های ثبت شده‌است. اگر به کد منبع این کلاس برویم، می‌بینیم پنج Property اصلی دارد که با استفاده از آن‌ها اطلاعات یک سرویس ثبت و نگهداری می‌شوند. با استفاده از این  اطلاعات در هنگام اجرا ، DI Container به واکشی و ساخت نمونه‌هایی از سرویس درخواستی اقدام می‌کند:

public Type ImplementationType { get; }
public object ImplementationInstance { get; }
public Func<IServiceProvider, object> ImplementationFactory { get; }
public ServiceLifetime Lifetime { get; }
public Type ServiceType { get; }

هر کدام از این Property ‌ها کاربرد خاص خود را دارند:

  • · ServiceType : نوع سرویسی را که می‌خواهیم ثبت شود، مشخص می‌کنیم ( مثلا اینترفیس IMessageService ) .  
  • · ImplementionType : نوع پیاده سازی سرویس مورد نظرمان را مشخص می‌کند ( مثلا کلاس MessageService ).  
  • · LifeTime : طول حیات سرویس را مشخص می‌کند. DI Container بر اساس این ویژگی، اقدام به ساخت و از بین بردن نمونه‌هایی از سرویس می‌کند.  
  • · ImplementionInstance : نمونه‌ی ساخته شده‌ی از سرویس است.  
  • · ImplementionFactory : یک Delegate است که چگونگی ساخته شدن یک نمونه از پیاده سازی سرویس را در خود نگه می‌دارد. این Delegate یک IServiceProvider را به عنوان ورودی دریافت می‌کند و یک object را بازگشت می‌دهد.

به صورت عادی، در سناریوهای معمول ثبت سرویس‌ها درون IServiceCollection، نیازی به استفاده از ServiceDescriptor نیست؛ ولی اگر بخواهیم سرویس‌ها را به روش‌های پیشرفته‌تری ثبت کنیم، مجبوریم که به صورت مستقیم با این کلاس کار کنیم.

 

می توانیم یک ServiceDesciriptor را به روش‌های زیر تعریف کنیم:

var serviceDescriptor1 = new ServiceDescriptor(
   typeof(IMessageServiceB),
   typeof(MessageServiceBB),
   ServiceLifetime.Scoped);

var serviceDescriptor2 = ServiceDescriptor.Describe(
   typeof(IMessageServiceB),
   typeof(MessageServiceBB),
   ServiceLifetime.Scoped);

var serviceDescriptor3 = ServiceDescriptor.Singleton(typeof(IMessageServiceB), typeof(MessageServiceBB));

var serviceDescriptor4 = ServiceDescriptor.Singleton<IMessageServiceB, MessageServiceBB>();
در بالا روش‌های تعریف یک ServiceDescriptor را می‌بینید. اولین متد و تعریف پارامترها در سازنده‌ها، روش پایه است؛ ولی برای راحتی کار، توسعه دهندگان تعدادی متد static نیز تعریف کرده‌اند که خروجی آنها یک نمونه از ServiceDescriptor است.

همانطور که دیدیم، IServiceCollection در واقع لیست و مجموعه‌ای از اشیاء است که از نمونه‌های جنریک IServiceCollection ، IList ، IEnumerable و Ienumberabl ارث بری می‌کند؛ بنابراین می‌توان از متدهای تعریف شده‌ی در این اینترفیس‌ها برای IServiceCollection نیز استفاده کرد. حالا ما برای اضافه کردن این سرویس‌های جدید، بدین طریق عمل می‌کنیم:

Services.Add(serviceDescriptor1);

استفاده از متدهای TryAdd() 

به کد زیر نگاه کنید :

services.AddScoped<IMessageServiceB, MessageServiceBA>();
services.AddScoped<IMessageServiceB, MessageServiceBB>();
همانطور که می‌بینید، در اینجا یک اینترفیس را دوبار ثبت کردیم. در این حالت موقع واکشی سرویس، DI Container آخرین نمونه‌ی ثبت شده‌ی برای اینترفیس را واکشی کرده و نمونه سازی می‌کند و به کلاس‌ها تزریق می‌کند. این یکی از مواردی است که ترتیب ثبت کردن سرویس‌های مهم است.

برای جلوگیری از این خطا می‌توانیم از متدهای TryAddSingleton() ، TryAddScoped() و TryAddTransient() استفاده کنیم. این متدها درون فضای نام Microsoft.Extionsion.DependencyInjection.Extension قرار دارند.

عملکرد کلی این متدها درست مثل متد‌های Add() است؛ با این تفاوت که این متد ابتدا IServiceCollection را جستجو می‌کند و اگر برای type مورد نظر سرویسی ثبت نشده بود، آن را ثبت می‌کند:

services.TryAddScoped<IMessageServiceB, MessageServiceBA>();
services.TryAddScoped<IMessageServiceB, MessageServiceBB>();

جایگذاری یک سرویس با نمونه‌ای دیگر

گاهی اوقات می‌خواهیم یک پیاده سازی دیگر را بجای پیاده سازی فعلی، در DI Container ثبت کنیم. در این حالت از متد Replace() بر روی IServiceCollection برای این کار استفاده می‌کنیم. این متد فقط یک ServiceDescriptor را به عنوان پارامتر ورودی می‌گیرد:

services.Replace(serviceDescriptor3);
ناگفته نماند که متد Replace() فقط اولین سرویس را با نمونه‌ی مورد نظر ما جایگذاری می‌کند. اگر می‌خواهید تمام نمونه سرویس‌های ثبت شده را برای یک نوع حذف کنید، می‌توانید از متد RemoveAll() استفاده کنید:
services.RemoveAll<IMessageServiceB>();

معمولا در پروژه‌های معمول خودمان نیازی به استفاده از Replace() و RemoveAll() نداریم؛ مگر اینکه بخواهیم پیاده سازی اختصاصی خودمان را برای سرویس‌های درونی فریم ورک یا کتابخانه‌های شخص ثالث، بجای پیاده سازی پیش فرض، ثبت و استفاده کنیم.  

 

AddEnumerable()

فرض کنید دارید برنامه‌ی نوبت دهی یک کلینیک را می‌نویسید و به صورت پیش فرض از شما خواسته‌اند که هنگام صدور نوبت، این قوانین را بررسی کنید:

  •   هر شخص در هفته نتواند بیش از 2 نوبت برای یک تخصص بگیرد.
  •   اگر شخص در ماه بیش از 3 نوبت رزرو شده داشته باشد ولی مراجعه نکرده باشد، تا پایان ماه، امکان رزرو نوبت را نداشته باشد .
  •   تعداد نوبت‌های ثبت شده‌ی برای پزشک در آن روز نباید بیش از تعدادی باشد که پزشک پذیرش می‌کند.
  •   و ...

یک روش معمول برای پیاده سازی این قابلیت، ساخت سرویسی برای ثبت نوبت است که درون آن متدی برای بررسی کردن قوانین ثبت نام وجود دارد. خب، ما این کار را انجام می‌دهیم. تست‌های واحد و تست‌های جامع را هم می‌نویسیم و بعد برنامه را انتشار می‌دهیم و همه چیز خوب است؛ تا اینکه مالک محصول یک نیازمندی جدید را می‌خواهد که در آن ما باید قانون زیر را در هنگام ثبت نوبت بررسی کنیم:

  •   نوبت‌های ثبت شده برای یک شخص نباید دارای تداخل باشند.

در این حالت ما باید دوباره سرویس Register را باز کنیم و به متد بررسی کردن قوانین برویم و دوباره کدهایی را برای بررسی کردن قانون جدید بنویسیم و احتمالا کد ما به این صورت خواهد شد:

public class RegisterAppointmentService : RegisterAppointmentService
{
  public Task<Result> RegisterAsync(
    PatientInfoDTO patientIfno , DateTimeOffset requestedDateTime ,
    PhysicianId phusicianId )
  {
      CheckRegisterantionRule(patientInfo);
      // code here
  }

  private Task CheckRegisterationRule(PatientInfoDTO patientInfo)
  {
       CheckRule1(patientInfo);
       CheckRule2(patientInfo);
       CheckRule3(patientInfo);
  }
}  

در این حالت باید به ازای هر قانون جدید، به متد CheckRegisterationRule برویم و به ازای هر قانون، یک متد private جدید را بسازیم. مشکل این روش این است که در این حالت ما مجبوریم با هر کم و زیاد شدن قانون، این کلاس را باز کنیم و آن را تغییر دهیم و با هر تغییر دوباره، تست‌های واحد آن را دوباره نویسی کنیم. در یک کلام در کد بالا اصول Separation of Concern و  Open/Closed Principle را رعایت نمی‌شود.

یک راهکار این است که یک سرویس جداگانه را برای بررسی کردن قوانین بنویسیم و آن را به سرویس ثبت نوبت تزریق کنیم:

public class ICheckRegisterationRuleForAppointmentService : ICheckRegisterationRuleForAppointmentService
{
     public Task CheckRegisterantionRule(PatientInfoDTO patientInfo)
     {
                CheckRule1(patientInfo);
                CheckRule2(patientInfo);
                CheckRule3(patientInfo);
      }
}

public class RegisterAppointmentService : IRegisterAppointmentService
{
  private ICheckRegisterationRuleForAppointmentService  _ruleChecker;
 
  public RegisterAppointmentService (RegisterAppointmentService  ruleChecker)
  {
          _ruleChecker = ruleChecker;  
  }

  public Task<Result> RegisterAsync(
     PatientInfoDTO patientIfno , 
     DateTimeOffset requestedDateTime , 
     PhysicianId phusicianId )
  {
             _ruleChecker.CheckRegisterantionRule(patientInfo);
                // code here
  }
}

با این کار وظیفه‌ی چک کردن قوانین و وظیفه‌ی ثبت و ذخیره سازی قوانین را از یکدیگر جدا کردیم؛ ولی همچنان در سرویس بررسی کردن قوانین، اصل Open/Closed رعایت نشده‌است. خب راه حل چیست !؟

یکی از راه حل‌های موجود، استفاده از الگوی قوانین یا Rule Pattern است. برای اجرای این الگو، می‌توانیم با تعریف یک اینترفیس کلی برای بررسی کردن قانون، به ازای هر قانون یک پیاده سازی اختصاصی را داشته باشیم:


interface IAppointmentRegisterationRule
{
  Task CheckRule(PatientInfo patientIfno);
}

public class AppointmentRegisterationRule1 : IAppointmentRegisterationRule
{
      public Task CheckRule(PatientInfo patientIfno)
      {
          Console.WriteLine("Rule 1 is checked");
          return Task.CompletedTask;
      }
}

public class AppointmentRegisterationRule2 : IAppointmentRegisterationRule
{
     public Task CheckRule(PatientInfo patientIfno)
     {
Console.WriteLine("Rule 2 is checked"); return Task.CompletedTask; } } public class AppointmentRegisterationRule3 : IAppointmentRegisterationRule { public Task CheckRule(PatientInfo patientIfno) { Console.WriteLine("Rule 3 is checked"); return Task.CompletedTask; } } public class AppointmentRegisterationRule4 : IAppointmentRegisterationRule { public Task CheckRule(PatientInfo patientIfno) { Console.WriteLine("Rule 4 is checked"); return Task.CompletedTask; } }
حالا که ما قوانین خودمان را تعریف کردیم، به روش زیر می‌توانیم آن‌ها را درون سازنده ثبت کنیم:
services.AddScoped<IAppointmentRegisterationRule, AppointmentRegisterationRule1>();
services.AddScoped<IAppointmentRegisterationRule, AppointmentRegisterationRule2>();
services.AddScoped<IAppointmentRegisterationRule, AppointmentRegisterationRule3>();
services.AddScoped<IAppointmentRegisterationRule, AppointmentRegisterationRule4>();
حالا می‌توانیم درون سازنده‌ی سرویس مورد نظرمان، لیستی از سرویس‌های ثبت شده‌ی برای یک نوع خاص را به با استفاده از اینترفیس جنریک IEnumerable<T> دریافت کنیم که در اینجا T، برابر نوع سرویس مورد نظرمان است:
public class CheckRegisterationRuleForAppointmentService : ICheckRegisterationRuleForAppointmentService
{
       private IEnumerable<IAppointmentRegisterationRule> _rules ;

       public CheckRegisterationRuleForAppointmentService(IEnumerable<IAppointmentRegisterationRule> rules)
       {
           _rules = rules;
       }

      public Task CheckRegisterantionRule(PatientInfoDTO patientInfo)
      {
          foreach(var rule in rules)
          {
                rule.CheckRule(patientInfo);
          }
      }
}
با این تغییرات، هر زمانیکه خواستیم می‌توانیم با استفاده از DI Container، قوانین جدیدی را اضافه یا کم کنیم و با این کار، اصل Open/Closed را نیز رعایت کرده‌ایم.

 کد بالا به نظر کامل می‌آید ولی مشکلی دارد! اگر در DI Container برای IAppointmentRegisterationRule یک قانون را دو یا چند بار ثبت کنیم، در هر بار بررسی کردن قوانین، آن را به همان تعداد بررسی می‌کند و اگر این فرآیند منابع زیادی را به کار می‌گیرد، می‌تواند عملکرد برنامه‌ی ما را به هم بریزد.  برای جلوگیری از این مشکل، از متد TryAddEnumerabl() استفاده می‌کنیم که لیستی از ServiceDescriptor ‌ها را می‌گیرد و هر serviceDescriptor را فقط یکبار ثبت می‌کند:

services.TryAddEnumerable(new[] {
  ServiceDescriptor.Scoped(typeof(IAppointmentRegisterationRule), typeof(AppointmentRegisterationRule1)),
  ServiceDescriptor.Scoped(typeof(IAppointmentRegisterationRule), typeof(AppointmentRegisterationRule2)),
  ServiceDescriptor.Scoped(typeof(IAppointmentRegisterationRule), typeof(AppointmentRegisterationRule3)),
  ServiceDescriptor.Scoped(typeof(IAppointmentRegisterationRule), typeof(AppointmentRegisterationRule4)),
});