مطالب
آشنایی با ویژگی DebuggerTypeProxy در VS.Net
در مطالب قبلی، ویژگی DebuggerDisplay معرفی شده بود. ویژگی دیگری شبیه به این ویژگی وجود دارد به نام DebuggerTypeProxy که در ادامه به معرفی آن می‌پردازیم.

کلاس زیر را در نظر بگیرید:
public class Data
{
    public string Name { get; set; }
    public string ValueInHex { get; set; }
}  
پس از اجرای برنامه ، مقادیر کلاس ایجاد شده به این صورت خواهند بود :


در اینجا مقدار Hex برایمان قابل فهم نیست. سناریویی را در نظر بگیرید که مقادیر باید داخل دیتابیس به صورت Hex نگهداری شوند، اما می‌خواهیم هنگام دیباگ، مقدار پراپرتی HexValue به صورت قابل درک و decimal آن نمایش داده شود.

برای انجام اینکار میتوانیم از DebuggerTypeProxy استفاده کنیم. ابتدا کلاسی ایجاد میکنیم که بعنوان proxy، مقادیر را به شکلی که نیاز داریم نمایش دهد. این کلاس object اصلی را در Constructor دریافت کرده و مقادیر مورد نظرمان، از طریق property هایی که در آن تعریف می‌کنیم قابل دسترسی هستند:

public class DataDebugView
{
    private readonly Data _data;

    public DataDebugView(Data data)
    {
        _data = data;
    }

    public string DecimalValue
    {
        get
        {
            bool isValidHex = int.TryParse(_data.HexValue, System.Globalization.NumberStyles.HexNumber, null, out var value);
            return isValidHex ? value.ToString() : "INVALID HEX STRING";
        }
    }
}

در نهایت برای اعمال کردن این کلاس proxy، از ویژگی DebuggerTypeProxy بر روی کلاس اصلی استفاده می‌کنیم:

[DebuggerTypeProxy(typeof(DataDebugView))]
public class Data
{
    public string Name { get; set; }

    public string HexValue { get; set; }
}

بعد از اعمال تغییرات و اجرای دوباره برنامه، نحوه نمایش مقادیر کلاس به این صورت تغییر خواهند یافت:

مطالب
Globalization در ASP.NET MVC - قسمت هفتم
در قسمت قبل مطالب تکمیلی تولید پرووایدر سفارشی منابع دیتابیسی ارائه شد. در این قسمت نحوه بروزرسانی ورودی‌های منابع در زمان اجرا بحث می‌شود.

.

تولید یک پرووایدر منابع دیتابیسی - بخش سوم

برای پیاده‌سازی ویژگی به‌روزرسانی ورودی‌های منابع در زمان اجرا راه‌حل‌های مخنلفی ممکن است به ذهن برنامه‌نویس خطور کند که هر کدام معایب و مزایای خودش را دارد. اما درنهایت بسته به شرایط موجود انتخاب روش مناسب برعهده خود برنامه‌نویس است.

مثلا برای پرووایدر سفارشی دیتابیسی تهیه‌شده در مطالب قبلی، تنها کافی است ابزاری تهیه شود تا به کاربران اجازه به‌روزرسانی مقادیر موردنظرشان در دیتابیس را بدهد که کاری بسیار ساده است. بدین ترتیب به‌روزرسانی این مقادیر در زمان اجرا کاری بسیار ابتدایی به نظر می‌رسد. اما در قسمت قبل نشان داده شد که برای بالا بردن بازدهی بهتر است که مقادیر موجود در دیتابیس در حافظه سرور کش شوند. استراتژی اولیه و ساده‌ای نیز برای نحوه پیاده‌سازی این فرایند کشینگ ارائه شد. بنابراین باید امکاناتی فراهم شود تا درصورت تغییر مقادیر کش‌شده در سمت دیتابیس، برنامه از این تغییرات آگاه شده و نسبت به به‌روزرسانی این مقادیر در متغیر کشینگ اقدامات لازم را انجام دهد.

اما همان‌طور که در قسمت قبل نیز اشاره شد، نکته‌ای که باید درنظر داشت این است که مدیریت تمامی نمونه‌های تولیدشده از کلاس‌های موردبحث کاملا برعهده ASP.NET است، بنابراین دسترسی مستقیمی به این نمونه‌ها در بیرون و در زمان اجرا وجود ندارد تا این ویژگی را بتوان در مورد آن‌ها پیاده کرد.

یکی از روش‌های موجود برای حل این مشکل این است که مکانیزمی پیاده شود تا بتوان به تمامی نمونه‌های تولیدی از کلاس DbResourceManager در بیرون از محیط سیستم مدیریت منابع ASP.NET دسترسی داشت. مثلا یک کلاس حاول متغیری استاتیک جهت ذخیره نمونه‌های تولیدی از کلاس DbResourceManager، به کتابخانه خود اضافه کرد تا با استفاده از یکسری امکانات بتوان این نمونه‌های تولیدی را از تغییرات رخداده در سمت دیتابیس آگاه کرد. در این قسمت پیاده‌سازی این راه‌حل شرح داده می‌شود.


نکته: قبل از هرچیز برای مناسب شدن طراحی کتابخانه تولیدی و افزایش امنیت آن بهتر است تا سطح دسترسی تمامی کلاس‌های پیاده‌سازی شده تا این مرحله به internal تغییر کند. ازآنجاکه سیستم مدیریت منابع ASP.NET از ریفلکشن برای تولید نمونه‌های موردنیاز خود استفاده می‌کند، بنابراین این تغییر تاثیری بر روند کاری آن نخواهد گذاشت.


نکته: با توجه به شرایط خاص موجود، ممکن است نام‌های استفاده شده برای کلاس‌های این کتابخانه کمی گیج‌کننده باشد. پس با دقت بیشتری به مطلب توجه کنید.


پیاده‌سازی امکان پاک‌سازی مقادیر کش‌شده

برای این‌کار باید تغییراتی در کلاس DbResourceManager داده شود تا بتوان این کلاس را از تغییرات بوجود آمده آگاه ساخت. روشی که من برای این کار درنظر گرفتم استفاده از یک اینترفیس حاوی اعضای موردنیاز برای پیاده‌سازی این امکان است تا مدیریت این ویژگی در ادامه راحت‌تر شود.


اینترفیس IDbCachedResourceManager

این اینترفیس به صورت زیر تعریف شده است:

namespace DbResourceProvider
{
  internal interface IDbCachedResourceManager
  {
    string ResourceName { get; }

    void ClearAll();
    void Clear(string culture);
    void Clear(string culture, string resourceKey);
  }
}

در پراپرتی فقط خواندنی ResourceName نام منبع کش شده ذخیره خواهد شد.

متد ClearAll برای پاک‌سازی تمامی ورودی‌های کش‌شده استفاده می‌شود.

متدهای Clear برای پاک‌سازی ورودی‌های کش‌شده یک کالچر به خصوص و یا یک ورودی خاص استفاده می‌شود.

با استفاده از این اینترفیس، پیاده‌سازی کلاس DbResourceManager به صورت زیر تغییر می‌کند:

using System.Collections.Generic;
using System.Globalization;
using DbResourceProvider.Data;
namespace DbResourceProvider
{
  internal class DbResourceManager : IDbCachedResourceManager
  {
    private readonly string _resourceName;
    private readonly Dictionary<string, Dictionary<string, object>> _resourceCacheByCulture;
    public DbResourceManager(string resourceName)
    {
      _resourceName = resourceName;
      _resourceCacheByCulture = new Dictionary<string, Dictionary<string, object>>();
    }
    public object GetObject(string resourceKey, CultureInfo culture) { ... }
    private object GetCachedObject(string resourceKey, string cultureName) { ... }

    #region Implementation of IDbCachedResourceManager
    public string ResourceName
    {
      get { return _resourceName; }
    }
    public void ClearAll()
    {
      lock (this)
      {
        _resourceCacheByCulture.Clear(); 
      }
    }
    public void Clear(string culture)
    {
      lock (this)
      {
        if (!_resourceCacheByCulture.ContainsKey(culture)) return;
        _resourceCacheByCulture[culture].Clear(); 
      }
    }
    public void Clear(string culture, string resourceKey)
    {
      lock (this)
      {
        if (!_resourceCacheByCulture.ContainsKey(culture)) return;
        _resourceCacheByCulture[culture].Remove(resourceKey); 
      }
    }
    #endregion
  }
}

اعضای اینترفیس IDbCachedResourceManager به صورت مناسبی در کد بالا پیاده‌سازی شدند. در تمام این پیاده‌سازی‌ها مقادیر مربوطه از درون متغیر کشینگ پاک می‌شوند تا پس از اولین درخواست، بلافاصله از دیتابیس خوانده شوند. برای جلوگیری از دسترسی هم‌زمان نیز از بلاک lock استفاده شده است.

برای استفاده از این امکانات جدید همان‌طور که در بالا نیز اشاره شد باید بتوان نمونه‌های تولیدی از کلاس DbResourceManager توسط ASP.NET درون متغیری استاتیک ذخیره شوند. برای اینکار از کلاس جدیدی با عنوان DbResourceCacheManager استفاده می‌شود که برخلاف تمام کلاس‌های تعریف‌شده تا اینجا با سطح دسترسی public تعریف می‌شود.


کلاس DbResourceCacheManager

مدیریت نمونه‌های تولیدی از کلاس DbResourceManager در این کلاس انجام می‌شود. این کلاس پیاده‌سازی ساده‌ای به‌صورت زیر دارد:

using System.Collections.Generic;
using System.Linq;
namespace DbResourceProvider
{
  public static class DbResourceCacheManager
  {
    internal static List<IDbCachedResourceManager> ResourceManagers { get; private set; }
    static DbResourceCacheManager()
    {
      ResourceManagers = new List<IDbCachedResourceManager>();
    }
    public static void ClearAll()
    {
      ResourceManagers.ForEach(r => r.ClearAll());
    }
    public static void Clear(string resourceName)
    {
      GetResouceManagers(resourceName).ForEach(r => r.ClearAll());
    }
    public static void Clear(string resourceName, string culture)
    {
      GetResouceManagers(resourceName).ForEach(r => r.Clear(culture));
    }
    public static void Clear(string resourceName, string culture, string resourceKey)
    {
      GetResouceManagers(resourceName).ForEach(r => r.Clear(culture, resourceKey));
    }

    private static List<IDbCachedResourceManager> GetResouceManagers(string resourceName)
    {
      return ResourceManagers.Where(r => r.ResourceName.ToLower() == resourceName.ToLower()).ToList();
    }
  }
}

ازآنجاکه نیازی به تولید نمونه ای از این کلاس وجود ندارد، این کلاس به صورت استاتیک تعریف شده است. بنابراین تمام اعضای درون آن نیز استاتیک هستند.

از پراپرتی ResourceManagers برای نگهداری لیستی از نمونه‌های تولیدی از کلاس DbResourceManager استفاده می‌شود. این پراپرتی از نوع <List<IDbCachedResourceManager تعریف شده است و برای جلوگیری از دسترسی بیرونی، سطح دسترسی آن internal درنظر گرفته شده است.

در کانستراکتور استاتیک این کلاس (اطلاعات بیشتر درباره static constructor در اینجا) این پراپرتی با مقداردهی به یک نمونه تازه از لیست، اصطلاحا initialize می‌شود.

سایر متدها نیز برای فراخوانی متدهای موجود در اینترفیس IDbCachedResourceManager پیاده‌سازی شده‌اند. تمامی این متدها دارای سطح دسترسی public هستند. همان‌طور که می‌بینید از خاصیت ResourceName برای مشخص‌کردن نمونه موردنظر استفاده شده است که دلیل آن در قسمت قبل شرح داده شده است.

دقت کنید که برای اطمینان از انتخاب درست همه موارد موجود در شرط انتخاب نمونه موردنظر در متد GetResouceManagers از متد ToLower برای هر دو سمت شرط استفاده شده است.


نکته مهم: درباره علت برگشت یک لیست از متد انتخاب نمونه موردنظر از کلاس DbResourceManager در کد بالا (یعنی متد GetResouceManagers) باید نکته‌ای اشاره شود. در قسمت قبل عنوان شد که سیستم مدیریت منابع ASP.NET نمونه‌های تولیدی از پرووایدرهای منابع را به ازای هر منبع کش می‌کند. اما یک نکته بسیار مهم که باید به آن توجه کرد این است که این کش برای «عبارات بومی‌سازی ضمنی» و نیز «متد مربوط به منابع محلی» موجود در کلاس HttpContext و یا نمونه مشابه آن در کلاس TemplateControl (همان متد GetLocalResourceObject که درباره این متدها در قسمت سوم این سری شرح داده شده است) از یکدیگر جدا هستند و استفاده از هریک از این دو روش موجب تولید یک نمونه مجزا از پرووایدر مربوطه می‌شود که متاسفانه کنترل آن از دست برنامه نویس خارج است. دقت کنید که این اتفاق برای منابع کلی رخ نمی‌دهد.

بنابراین برای پاک کردن مناسب ورودی‌های کش‌شده در کلاس فوق به جای استفاده از متد Single در انتخاب نمونه موردنظر از کلاس DbResourceManager (در متد GetResouceManagers) از متد Where استفاده شده و یک لیست برگشت داده می‌شود. چون با توجه به توضیح بالا امکان وجود دو نمونه DbResourceManager از یک منبع درخواستی محلی در لیست نمونه‌های نگهداری شده در این کلاس وجود دارد.

.

افزودن نمونه‌ها به کلاس DbResourceCacheManager

برای نگهداری نمونه‌های تولید شده از DbResourceManager، باید در یک قسمت مناسب این نمونه‌ها را به لیست مربوطه در کلاس DbResourceCacheManager اضافه کرد. بهترین مکان برای انجام این عمل در کلاس پایه BaseDbResourceProvider است که درخواست تولید نمونه را در متد EnsureResourceManager درصورت نال بودن آن می‌دهد. بنابراین این متد را به صورت زیر تغییر می‌دهیم:

private void EnsureResourceManager()
{
  if (_resourceManager != null) return;
  {
    _resourceManager = CreateResourceManager();
    DbResourceCacheManager.ResourceManagers.Add(_resourceManager);
  }
}

تا اینجا کار پیاده‌سازی امکان مدیریت مقادیر کش‌شده در کتابخانه تولیدی به پایان رسیده است.

استفاده از کلاس DbResourceCacheManager

پس از پیاده‌سازی تمامی موارد لازم، حالتی را درنظر بگیرید که مقادیر ورودی‌های تعریف شده در منبع "dir1/page1.aspx" تغییر کرده است. بنابراین برای بروزرسانی مقادیر کش‌شده کافی است تا از کدی مثل کد زیر استفاده شود:

DbResourceCacheManager.Clear("dir1/page1.aspx");

کد بالا کل ورودی‌های کش‌شده برای منبع "dir1/page1.aspx" را پاک می‌کند. برای پاک کردن کالچر یا یک ورودی خاص نیز می‌توان از کدهایی مشابه زیر استفاده کرد:

DbResourceCacheManager.Clear("Default.aspx", "en-US");
DbResourceCacheManager.Clear("GlobalTexts", "en-US", "Yes");

.

دریافت کد پروژه

کد کامل پروژه DbResourceProvider به همراه مثال و اسکریپت‌های دیتابیسی مربوطه از لینک زیر قابل دریافت است:

DbResourceProvider.rar

برای استفاده از این مثال ابتدا باید کتابخانه Entity Framework (با نام EntityFramework.dll) را مثلا از طریق نوگت دریافت کنید. نسخه‌ای که من در این مثال استفاده کردم نسخه 4.4 با حجم حدود 1 مگابایت است.

نکته: در این کد یک بهبود جزئی اما مهم در کلاس ResourceData اعمال شده است. در قسمت سوم این سری، اشاره شد که نام ورودی‌های منابع Case Sensitive نیست. بنابراین برای پیاده‌سازی این ویژگی، متدهای این کلاس باید به صورت زیر تغییر کنند:

public Resource GetResource(string resourceKey, string culture)
{
  using (var data = new TestContext())
  {
    return data.Resources.SingleOrDefault(r => r.Name.ToLower() == _resourceName.ToLower() && r.Key.ToLower() == resourceKey.ToLower() && r.Culture == culture);
  }
}

public List<Resource> GetResources(string culture)
{
  using (var data = new TestContext())
  {
    return data.Resources.Where(r => r.Name.ToLower() == _resourceName.ToLower() && r.Culture == culture).ToList();
  }
}
تغییرات اعمال شده همان استفاده از متد ToLower در دو طرف شرط مربوط به نام منابع و کلید ورودی‌هاست.


در آینده...

در ادامه مطالب، بحث تهیه پرووایدر سفارشی فایلهای resx. برای پیاده‌سازی امکان به‌روزرسانی در زمان اجرا ارائه خواهد شد. بعد از پایان تهیه این پرووایدر سفارشی، این سری مطالب با ارائه نکات استفاده از این پرووایدرها در ASP.NET MVC پایان خواهد یافت.


منابع

http://msdn.microsoft.com/en-us/library/aa905797.aspx

http://www.west-wind.com/presentations/wwdbresourceprovider

مطالب
تبدیل شدن زبان C# 9.0 به یک زبان اسکریپتی با معرفی ویژگی Top Level Programs
اگر به قالب ابتدایی یک برنامه‌ی کنسول #C دقت کنیم، همواره به ساختار استاندارد زیر می‌رسیم:
using System;

namespace CS9Features
{
    class Program
    {
        static void Main(string[] args)
        {
            Console.WriteLine("Hello World!");
        }
    }
}
در اینجا یک سری import، به همراه تعریف فضای نام، تعریف کلاس و تعریف متد Main وجود دارند ... تا بتوان یک سطر Hello World را در کنسول نمایش داد. در این حالت اگر تازه شروع به یادگیری زبان #C کرده باشید، مفاهیم زیادی را باید در جهت درک آن فرا بگیرید؛ برای مثال static چیست؟ args چیست؟ کاربرد فضای نام چیست و غیره. کاری که در C# 9.0 انجام شده، امکان حذف تمام این عوامل در جهت نمایش تک سطر Hello World است که به آن top level programs و یا top level statements گفته می‌شود.


تبدیل قالب پیش‌فرض برنامه‌های کنسول به یک Top level program

در C# 9.0 می‌توان تمام سطرهای فوق را به دو سطر زیر تقلیل داد و خلاصه کرد:
using System;

Console.WriteLine("Hello World!");
این قطعه کد بدون هیچگونه مشکلی در C# 9.0 کامپایل می‌شود و به این ترتیب زبان #C را تبدیل و یا شبیه به یک «زبان اسکریپتی» ساده می‌کند.


روش استفاده از متدهای async در Top level programs

زمانیکه نقطه‌ی آغازین برنامه را تبدیل به یک top level program کردیم، دیگر دسترسی مستقیمی را به متد Main نداریم تا آن‌را async Task دار معرفی کنیم و پس از آن بتوانیم به سادگی با متدهای async کار کنیم. برای رفع این مشکل، کامپایلر فقط کافی است یک await را در قطعه کد شما پیدا کند. خودش به صورت خودکار متد Main غیرهمزمانی را جهت اجرای کدها، تشکیل می‌دهد. به همین جهت برای کار با کدهای async در اینجا، نیاز به تنظیم خاصی نیست و قطعه کد زیر که در آن متد MyMethodAsync را اجرا می‌کند، بدون مشکل کامپایل و اجرا خواهد شد:
using System;
using System.Threading.Tasks;

await MyMethodAsync();
Console.WriteLine("Hello World!");

static async Task MyMethodAsync()
{
   await Task.Yield();
}


روش دسترسی به args در Top level programs

همانطور که در قطعه کد ابتدایی این مطلب مشخص است، متد Main به همراه پارامتر string[] args نیز هست. اما اکنون در Top level programs که فاقد متد Main هستند، چگونه می‌توان به این آرگومان‌های ارسالی توسط کاربر دسترسی یافت؟
پاسخ: پارامتر args نیز هنوز در اینجا قابل دسترسی است؛ فقط به ظاهر مخفی است:
using System;

Console.WriteLine(args[0]);


ارائه‌ی return codes به فراخون در Top level programs

بعضی از برنامه‌های کنسول در انتهای متد Main خود برای مثال return 0 و یا return 1 را دارند؛ که اولی به معنای موفقیت عملیات و دومی به معنای شکست عملیات است. در top level programs نیز می‌توان این return‌ها را در انتهای کار قید کرد:
using System;
Console.WriteLine($"Hello world!");
return 1;
که یک چنین خروجی نهایی را توسط کامپایلر تولید می‌کند:
// <Program>$
using System;
using System.Runtime.CompilerServices;

[CompilerGenerated]
internal static class <Program>$
{
   private static int <Main>$(string[] args)
   {
     Console.WriteLine("Hello world!");
     return 1;
   }
}


امکان تعریف کلاس‌ها و متدها در Top level programs

در تک فایل program.cs برنامه، در حین کار با Top level programs محدودیتی از لحاظ تعریف متدها، کلاس‌ها و غیره نیست؛ یک مثال:
using System;

var greeter = new Greeter();

var helloTeacher = greeter.Greet("teacher");
var helloStudents = SayHello("students");

Console.WriteLine(helloTeacher);
Console.WriteLine(helloStudents);

static string SayHello(string name)
{
    return "Hello, " + name;
}

public class Greeter
{
    public string Greet(string name)
    {
        return "Hello, " + name;
    }
}
همانطور که مشاهده می‌کنید، در حالت کار اسکریپتی با زبان #C، امکان استفاده‌ی از کلاس‌ها و یا متدها نیز وجود دارد؛ اما با یک شرط: این تعاریف باید پس از Top-level statements قرار گیرند. یعنی اگر متد و کلاس تعریف شده را به بالای فایل انتقال دهید، به خطای کامپایلر زیر خواهید رسید:
Top-level statements must precede namespace and type declarations. [CS9Features]csharp(CS8803)


سطوح دسترسی به کلاس‌ها و متدهای تعریف شده‌ی در Top level programs

اگر قطعه کد مثال قبل را کامپایل کنیم، نمونه‌ی دی‌کامپایل شده‌ی آن به صورت زیر است:
using System;
using System.Runtime.CompilerServices;

[CompilerGenerated]
internal static class <Program>$
{
  private static void <Main>$(string[] args)
  {
   Greeter greeter = new Greeter();
   string helloTeacher = greeter.Greet("teacher");
   string helloStudents = SayHello("students");
   Console.WriteLine(helloTeacher);
   Console.WriteLine(helloStudents);

   static string SayHello(string name)
   {
    return "Hello, " + name;
   }
  }
}
همانطور که مشاهده می‌کنید، کامپایلر نه فقط نام متدها را تغییر داده‌است، بلکه سطوح دسترسی به آن‌ها را یا private و یا internal تعریف کرده‌است. به این معنا که کلاس‌ها و متدهای تعریف شده‌ی در Top level programs در سایر کتابخانه‌ها و یا برنامه‌ها، قابل استفاده و دسترسی نیستند. البته کلاس public class Greeter به همان صورت public باقی می‌ماند و سطح دسترسی آن تغییری نمی‌کند.


نوع متدهای تعریف شده‌ی در Top level programs

مثال زیر را که یک top level program است، درنظر بگیرید:
using System;

Foo();

var x = 3;

int result = AddToX(4);
Console.WriteLine(result);

static void Foo()
{
    Console.WriteLine("Foo");
}

int AddToX(int y)
{
    return x + y;
}
متد AddToX که static نیست، امکان دسترسی به متغیر x را یافته‌است. با توجه به اینکه متد Main هم static است، چطور چنین چیزی ممکن شده‌است؟
پاسخ: متدهایی که در top level programs تعریف می‌شوند در حقیقت از نوع local functions هستند که در ابتدا در C# 7.0 معرفی شدند و سپس در C# 8.0 امکان تعریف نمونه‌های static آن‌ها نیز میسر شد.
قطعه کد فوق در اصل به صورت زیر کامپایل می‌شود که متدهای AddToX و Foo در آن داخل متد Main تشکیل شده، به صورت local function تعریف شده‌اند:
// <Program>$
using System;
using System.Runtime.CompilerServices;

[CompilerGenerated]
internal static class <Program>$
{
   private static void <Main>$(string[] args)
   {
     Foo();
     int x = 3;
     int result = AddToX(4);
     Console.WriteLine(result);

     int AddToX(int y)
     {
       return x + y;
     }

     static void Foo()
     {
       Console.WriteLine("Foo");
     }
   }
}
فقط یک local function از نوع static، دسترسی به متغیرهای تعریف شده‌ی در متد Main را ندارد.
مطالب
آموزش WAF (مشاهده تغییرات خواص ViewModel در Controller)
قصد داریم در مثال پست قبلی برای Command مورد نظر، عملیات اعتبارسنجی را فعال کنیم. اگر با الگوی MVVM آشنایی داشته باشید می‌دانید که می‌توان برای Command‌ها اکشنی به عنوان CanExecute تعریف کرد و در آن عملیات اعتبارسنجی را انجام داد. اما از آن جا که پیاده سازی این روش زمانی مسیر است که تغییرات خواص ViewModel در دسترس باشد در نتیجه در WAF مکانیزمی جهت ردیابی تغییرات خواص ViewModel در کنترلر فراهم شده است. در نسخه‌های قبلی WAF (قبل از نسخه 3) هر کنترلر از کلاس پایه ای به نام Controller ارث می‌برد که متد هایی جهت ردیابی تغییرات در آن در نظر گرفته شده بود به صورت زیر:
public class MyController : Controller
    {
        [ImportingConstructor]
        public MyController(MyViewModel viewModel)
        {
            ViewModelCore = viewModel;
        }

        public MyViewModel ViewModelCore 
        {
            get; 
            private set; 
        }

        public void Run()
        {
            AddWeakEventListener(ViewModelCore , ViewModelCoreChanged)
        }

        private void ViewModelCoreChanged(object sender , PropertyChangedEventArgs e)
        {
            if(e.PropertyName=="CurrentItem")
            {
                
            }
        }
    }
همان طور که مشاهده می‌کنید با استفاده از متد AddWeakEventListener توانستیم تمامی تغییرات خواص ViewModel مورد نظر را از طریق متد ViewModelCoreChanged ردیابی کنیم. این متد بر مبنای الگوی WeakEvent پیاده سازی شده است. البته این تغییرات فقط زمانی قابل ردیابی هستند که  در ViewModel متد RaisePropertyChanged برای متد set خاصیت فراخوانی شده باشد.
از آنجا که در دات نت 4.5 یک پیاده سازی خاص از الگوی WeakEvent در کلاس PropertyChangedEventManager موجود در اسمبلی WindowsBase و فضای نام System.ComponentModel انجام شده است در نتیجه توسعه دهندگان این کتابخانه نیز تصمیم به استفاده از این روش گرفتند که نتیجه آن  Obsolete شدن کلاس پایه کنترلر در نسخه‌های 3 به بعد آن است. در روش جدید کافیست به صورت زیر عمل نمایید:
 [Export]
    public class BookController
    {
        [ImportingConstructor]
        public BookController(BookViewModel viewModel)
        {
            ViewModelCore = viewModel;
        }
        
        public BookViewModel ViewModelCore
        {
            get;
            private set;
        }

        public DelegateCommand RemoveItemCommand 
        { 
            get; 
            private set;
        }

        private void ExecuteRemoveItemCommand()
        {
            ViewModelCore.Books.Remove(ViewModelCore.CurrentItem);
        }

        private bool CanExecuteRemoveItemCommand()
        {
            return ViewModelCore.CurrentItem != null;
        }
        private void Initialize()
        {
            RemoveItemCommand = new DelegateCommand(ExecuteRemoveItemCommand , CanExecuteRemoveItemCommand);
            ViewModelCore.RemoveItemCommand = RemoveItemCommand;
        }

        public void Run()
        {
            var result = new List<Book>();
            result.Add(new Book { Code = 1, Title = "Book1" });
            result.Add(new Book { Code = 2, Title = "Book2" });
            result.Add(new Book { Code = 3, Title = "Book3" });

            Initialize();
            ViewModelCore.Books = new ObservableCollection<Models.Book>(result);

            PropertyChangedEventManager.AddHandler(ViewModelCore, ViewModelChanged, "CurrentItem");
            
            (ViewModelCore.View as IBookView).Show();
        }

        private void ViewModelChanged(object sender,PropertyChangedEventArgs e)
        {
            if(e.PropertyName == "CurrentItem")
            {
                RemoveItemCommand.RaiseCanExecuteChanged();
            }
        }
    }
تغییرات:
»ابتدا متدی به نام CanExecuteRemoveItemCommand ایجاد کردیم و کد‌های اعتبارسنجی را در آن قرار دادیم؛
»هنگام تعریف Command مربوطه متد بالا را به DelegateCommand رجیستر کردیم:
  RemoveItemCommand = new DelegateCommand(ExecuteRemoveItemCommand , CanExecuteRemoveItemCommand);
در این حالت بعد از اجرای برنامه همواره دکمه RemoveItem غیر فعال خواهد بود. دلیل آن این است که بعد از انتخاب آیتم مورد نظر از لیست باید کنترلر را متوجه تغییر در مقدار خاصیت CurrentItem نماییم. بدین منظور کد زیر را به متد Run اضافه کردم:
     PropertyChangedEventManager.AddHandler(ViewModelCore, ViewModelChanged, "CurrentItem");
دستور بالا دقیقا معادل دستور AddWeakEventListener موجود در نسخه‌های قدیمی WAF است. سپس در صورتی که نام خاصیت مورد نظر CurrentItem بود با استفاده از دستور RaiseCanExecuteChanged در کلاس DelegateCommand کنترلر را ملزم به اجرای دوباره متد CanExecuteRemoveItemCommand می‌کنیم.
اجرای برنامه:
ابتدا دکمه RemoveItem غیر فعال است:

بعد از انتخاب یکی از گزینه و فراخوانی مجدد متد CanExecuteRemoveItemCommand دکمه مورد نظر فعال می‌شود:

و در نهایت دکمه RemoveItem فعال خواهد شد:


دانلود سورس پروژه
مطالب
لیست کردن ایمیل‌های موجود در Global address list

Global Address List یا به اختصار GAL و یا همان Microsoft Exchange Global Address Book ، حاوی اطلاعات تمامی کاربران تعریف شده در Exchange server مایکروسافت است و زمانیکه outlook در شبکه به exchange server متصل می‌شود، کاربران می‌توانند با کمک آن لیست اعضاء را مشاهده کرده ، یک یا چند نفر را انتخاب نموده و به آن‌ها ایمیل ارسال کنند (شکل زیر):


نیاز بود تا این لیست تعریف شده در مایکروسافت اکسچنج، با اطلاعات یک دیتابیس مقایسه شوند که آیا این اطلاعات مطابق رکوردهای موجود تعریف شده یا خیر.
بنابراین اولین قدم، استخراج email های موجود در GAL بود (دسترسی به همین برگه‌ی email address که در شکل فوق ملاحظه می‌کنید از طریق برنامه نویسی) که خلاصه آن تابع زیر است:
جهت استفاده از آن ابتدا باید یک ارجاع به کتابخانه COM ایی به نام Microsoft Outlook Object Library اضافه شود.

using System.Collections.Generic;
using System.Reflection;
using Microsoft.Office.Interop.Outlook;

namespace GAL
{
//add a reference to Microsoft Outlook 12.0 Object Library
class COutLook
{
public struct User
{
public string Name;
public string Email;
}

public static List<User> ExchangeServerEmailAddresses(string userName)
{
List<User> res = new List<User>();
//Create Outlook application
Application outlookApp = new Application();
//Get Mapi NameSpace and Logon
NameSpace ns = outlookApp.GetNamespace("MAPI");
ns.Logon(userName, Missing.Value, false, true);

//Get Global Address List
AddressLists addressLists = ns.AddressLists;
AddressList globalAddressList = addressLists["Global Address List"];
AddressEntries entries = globalAddressList.AddressEntries;
foreach (AddressEntry entry in entries)
{
ExchangeUser user = entry.GetExchangeUser();
if (user != null && user.PrimarySmtpAddress != null && entry.Name != null)
res.Add(new User
{
Name = entry.Name,
Email = user.PrimarySmtpAddress
});
}

ns.Logoff();

// Clean up.
outlookApp = null;
ns = null;
addressLists = null;
globalAddressList = null;
entries = null;

return res;
}
}
}
و نحوه استفاده از آن هم به صورت زیر می‌تواند باشد:

List<COutLook.User> data = COutLook.ExchangeServerEmailAddresses("nasiri");
foreach (var list in data)
{
//....
}
در اینجا Nasiri نام کاربری شخص در دومین است (کاربر جاری لاگین کرده در سیستم).
تنها نکته‌ی مهم این کد، مهیا نبودن فیلد ایمیل در شیء AdderssEntry است که باید از طریق متد GetExchangeUser آن اقدام شود.


مطالب
چقدر سی‌شارپ را می‌شناسیم؟!
هر چند که #C به عنوان یک زبان ساده برای درک و یادگیری شناخته میشود، گاهی رفتاری غیرمنتظره را حتی برای توسعه دهنده‌های با تجربه خواهد داشت. در این نوشته مروری بر بعضی از این رفتارها و توضیح دلایل پشت آن خواهیم کرد.

Value 

اگر مقدار null مدیریت نشود، میتواند باعث ایجاد نتایج نامطلوب، یا باعث از کار افتادن برنامه شود. شئ null به خودی خود مخرب نیست؛ اما اگر بخواهیم به یکی از متدها یا خاصیت‌های آن دسترسی داشته باشیم، با استثنای معروف NullReferenceException روبرو می‌شویم. برای در امان ماندن، باید همیشه اطمینان داشته باشیم که پیش از استفاده از امکانات شئ، ارجاع آن null نباشد. در قطعه کد زیر برخی از رفتارهای null value آورده شده:
// Behavior 1 
object obj = null;
bool objValueEqual = obj.Equals(null);

// Behavior 2 
object obj = null;
Type objType = obj.GetType();

// Behavior 3
string str = (string)null;
bool strType = str is string;

// Behavior 4
int num = 5;
Nullable<int> nullableNum = 5;
bool typeEqual = num.GetType() == nullableNum.GetType();

// Behavior 5
Type inType = typeof(int);
Type nullableIntType = typeof(Nullable<int>);
bool typeEqual = inType == nullableIntType;
  • در رفتار اول هرچند که متد Equals از شی null در دسترس است و با مقدار null مقایسه شده اما در زمان اجرا پیغام خطای NullReferenceException را خواهیم داشت. 
  • در رفتار دوم هم پیغام خطا را خواهیم داشت. شئ با مقدار null، در زمان اجرا هیچ نوعی را برنمیگرداند. 
  • در رفتار سوم هر چند که مقدار null صریحا به رشته تبدیل شده و برای چاپ متغیر str پیام خطایی را نخواهیم داشت، اما متغیر strType در خروجی، false خواهد بود. همانطور که در رفتار دوم گفته شد، شیء با مقدار null هیچ نوعی را برنمیگرداند. 
  • خروجی رفتار چهارم true خواهد بود. به این صورت که هر دو از نوع System.int32 خواهند بود.
  • در رفتار پنجم اگر از نوع‌ها، خروجی جداگانه بگیریم، خواهیم دیدکه نوع int از System.int32 و <Nullable<int از نوع System.Nullable`1[System.Int32] میباشند، در نتیجه خروجی false است. اشیای nullable بعد از اینکه مقداری مشخص را دریافت کردند، به صورت یک شیء غیر nullable رفتار خواهند کرد.

مدیریت مقادیر null در سربارگذاری متدها   

        static void Main(string[] args)
        {
            Console.WriteLine(Method(null));
            Console.ReadLine();
        }
        private static string Method(object obj)
        {
            return "Object parameter";
        }
        private static string Method(string str)
        {
            return "String parameter";
        }
در قطعه کد بالا، فراخوانی متد سربارگذاری شده با مقدار ورودی null، باعث اجرای متدی میشود که پارامتر ورودی آن از نوع رشته است. تا زمانیکه یکی از پارامترها بتواند به دیگری تبدیل شود، برنامه بدون خطا کامپایل خواهد شد. اما اگر هیچ تبدیل نوعی بین پارامترها وجود نداشته باشد، کد کامپایل نخواهد شد. بین متدهای سربارگذاری شده، متدی که نوع پارامتر آن مشخص‌تر است، فراخوانی میشود. برای اینکه متد خاصی را مجبور به اجرا کنیم، باید مقدار null را پیش از ارسال، به نوع پارامتر آن متد تبدیل کنید.(object)null

رفتارهای ()Math.Round

var rounded = Math.Round(1.5); // 2
var rounded = Math.Round(2.5); // 2

var rounded = Math.Round(2.5, MidpointRounding.ToEven); // 2
var rounded = Math.Round(2.5, MidpointRounding.AwayFromZero); // 3

var value = 1.4f;
var rounded = Math.Round(value + 0.1f); // 1
متد Round از کلاس Math، ورودی را که عددی اعشاری است، گرد میکند. اگر مقدار اعشار کمتر از ۰.۵ باشد، به سمت پایین و اگر بیشتر از ۰.۵ باشد، به سمت بالا گرد میشود. اما اگر ورودی دقیقا مقدار اعشاری ۰.۵ را داشته باشد چطور؟ متد Round به صورت پیش‌فرض ورودی  را به نزدیکترین عدد زوج گرد میکند، به این دلیل خط‌های ۱ و ۲ از قطعه کد بالا، خروجی یکسان ۲ را خواهند داشت. این متد آرگومان دومی هم دارد که دو حالت MidpointRounding.ToEven و MidpointRounding.AwayFromZero را می‌توان برای آن مشخص کرد. ToEven همان رفتار پیش‌فرض متد است که ورودی را به نزدیکترین عدد زوج گرد میکند و از حالت AwayFromZero میشود برای گرد کردن ورودی به عدد بزرگتر استفاده کرد (خط ۵). 
در خط ۸ یک حالت خاص دیگر نیز داریم. انتظار میرود که خروجی، به نزدیکترین عدد زوج گرد شود و نتیجه ۲ باشد؛ مثل خط ۱، اما خروجی ۱ خواهد بود. وقتی ورودی‌ها را از نوع float در نظر بگیریم، مقدار 0.1f کمی کمتر از ۰.۱ خواهد بود و نتیجه محاسبه کمی کمتر از ۱.۵. برای پرهیز از این مسئله بهتر است ورودی متد Round را از نوع decimal در نظر بگیریم.
 

مقدار دهی اولیه کلاسها 

پیشنهاد میشود برای جلوگیری از وقوع استثناءها از مقدار دهی اولیه کلاسها در سازنده کلاس، بخصوص اگر سازنده استاتیک داشته باشیم، پرهیز کنیم. ترتیب مقدار دهی اولیه زمانیکه از یک کلاس یه وهله ساخته میشود، به قرار زیر است:
  • فیلدهای استاتیک (زمانیکه کلاس برای اولین بار در دسترس قرار میگیرد)
  • سازنده استاتیک (زمانیکه کلاس برای اولین بار در دسترس قرار میگیرد)
  • فیلدهایی از کلاس که در نمونه ساخته شده در دسترس قرار میگیرند.
  • سازنده کلاس که در زمان ایجاد یک نمونه از کلاس در دسترس قرار میگیرد.
در قطعه کد زیر اگر نمونه‌ای از کلاس FailingClass ساخته شود، انتظار میرود که خطای InvalidOperationException صادر شود؛ اما برنامه با خطای TypeInitializationException متوقف میشود. در واقع در زمان اجرا به صورت خودکار خطای TypeInitializationException، خطای InvalidOperationException را پوشش میدهد. اگر بجای  InvalidOperationException یک دستور ساده WriteLine داشته باشیم، سازنده کلاس FailingClass مجال کامل شدن را خواهد داشت. اما با خطایی که داخل سازنده صادر کرده‌ایم، سازنده کلاس بدون اینکه به طور کامل به پایان برسد، متوقف خواهد شد. 
    public static class Config
    {
        public static bool ThrowException { get; set; } = true;
    }

    public class FailingClass
    {
        static FailingClass()
        {
            if (Config.ThrowException)
            {
                throw new InvalidOperationException();
            }
        }
    }
حال که میدانیم خطای اصلی که در این مواقع صادر میشود چیست، شاید بخواهیم به روش زیر آن را مدیریت کنیم.
try
{
   var failedInstance = new FailingClass();
}
catch (TypeInitializationException) { }

Config.ThrowException = false;
var instance = new FailingClass();
اگر قطعه کد بالا را بدون بخش try  اجرا کنیم، برنامه ابتدا صدور خطا را false میکند و بدون مشکل از کلاس نمونه‌ای ساخته میشود. اما اگر بخش try را داشته باشیم، هر چند که خطا در بخش try گرفته میشود و تنظیم صدور خطا false است، باز هم در خط آخر و در زمان ایجاد یک نمونه از کلاس، پیام خطای TypeInitializationException خواهیم داشت. علت آن است که سازنده استاتیک کلاس فقط یک بار فراخوانی میشود و اگر در این فراخوانی خطایی رخ دهد، این خطا در اثر ایجاد سایر نمونه‌ها و یا استفاده مستقیم از کلاس، مجددا صادر خواهد شد. در نتیجه این کلاس تا زمانیکه پردازش آن در جریان است، غیرقابل استفاده خواهد بود. یک مثال دیگر از ترتیب فراخوانی‌ها را بررسی میکنیم.
public class BaseClass
{
    {
        public BaseClass()
        {
            VirtualMethod(1);
        }
        public virtual int VirtualMethod(int dividend)
        {
            return dividend / 1;
        }
    }

    public class DerivedClass : BaseClass
    {
        int divisor;
        public DerivedClass()
        {
            divisor = 1;
        }
        public override int VirtualMethod(int dividend)
        {
            return base.VirtualMethod(dividend / divisor);
        }
    }
در قطعه کد بالا هر چند که همه چیز درست به نظر میرسد، اما اگر از کلاس DerivedClass نمونه‌ای ساخته شود، با پیام خطای DivideByZeroException مواجه میشویم. علت این مشکل ترتیب مقدار دهی اولیه در کلاسهای فرزند است. ابتدا فیلدهای کلاس فرزند مقدار دهی میشوند و بعد فیلدهای کلاس پایه، بعد سازنده کلاس پایه فراخوانی میشود و پس از آن سازنده کلاس فرزند. ترتیب فراخوانی‌ها به همین جا محدود نمیشود. 
در مثال بالا متد VirtualMethod که در سازنده کلاس پایه فراخوانی شده، پیش از این که کد داخل خود را اجرا کند، متد VirtualMethod را در کلاس فرزند، فراخوانی میکند و کلاس فرزند مجالی را برای مقدار دهی متغیر divisor، در سازنده خود نخواهد داشت. در نتیجه مقدار این متغیر در متد VirtualMethod صفر خواهد ماند و باعث صدور استثناء میشود. برای پرهیز از چنین مشکلاتی بهتر است فیلدهای یک کلاس به صورت مستقیم مقدار دهی اولیه بشوند. مقدار دهی اولیه و یا فراخوانی متدهای virtual در سازنده کلاس‌ها میتواند باعث بروز رفتارهای پیش بینی نشده‌ای شوند.

چند ریختی 

 چند ریختی قابلیتی است برای کلاسهای متفاوت تا بتوانند یک اینترفیس مشابه را به صورت‌های مختلفی پیاده‌سازی کنند. اما قطعه کد زیر قاعده چند ریختی را نقض میکند. 
 class Program
    {
        static void Main(string[] args)
        {
            var instance = new DerivedClass();
            var result = instance.Method();
            result = ((BaseClass)instance).Method();
            Console.WriteLine(instance + " -> " + result); // Derived Class ...  -> Method in BaseClass
            Console.ReadLine();

        }
    }

    public class BaseClass
    {
        public virtual string Method()
        {
            return "Method in BaseClass";
        }
    }

    public class DerivedClass : BaseClass
    {
        public override string ToString()
        {
            return "Derived Class ... ";
        }

        public new string Method()
        {
            return "Method in DerivedClass";
        }
    }
در خروجی کنسول هرچند که Instance همچنان وهله‌ای از DerivedClass است اما به دلیل تبدیل در خط ۷، Method کلاس DerivedClass به وسیله کلاس پایه پنهان شده و Method کلاس پایه فراخوانی میشود. در قطعه کد زیر حالت مشابه‌ای را که در بالا داشتیم، برای interface‌ها دیده میشود.
class Program
    {
        static void Main(string[] args)
        {
            var instance = new DerivedClass();
            var result = instance.Method(); // -> Method in DerivedClass
            result = ((IInterface)instance).Method(); // -> Method belonging to IInterface
            Console.WriteLine(result);
            Console.ReadLine();
        }
    }

    public interface IInterface
    {
        string Method();
    }

    public class DerivedClass : IInterface
    {
        public string Method()
        {
            return "Method in DerivedClass";
        }
        string IInterface.Method()
        {
            return "Method belonging to IInterface";
        }
}
هرچند که به نظر میرسد دلیلی برای استفاده از روشهای گفته شده وجود ندارد، اما اگر بخواهیم بیش از یک پیاده‌سازی را برای یک متد در یک کلاس داشته باشیم، میتواند مورد توجه قرار گیرد. بخصوص اگر نیاز باشد که پیاده‌سازی دوم خودش به طور مستقلی در کلاسی دیگر استفاده شود.

Iterators 

Iterator‌ها (تکرار شونده‌ها) ساختارهایی هستند که برای حرکت در عناصر یک collection استفاده میشوند. عموما از دستور foreach استفاده و نوع جنریک <IEnumerable<T را نمایندگی میکنند. هر چند که استفاده از آنها ساده است، اما اگر کارکرد داخلی iteratorها را درک نکنیم ممکن است به دام استفاده نادرست از آنها گرفتار شویم. در قطعه کد زیر کلاس Test صدا زده میشود و مقادیر یک تا پنج به صورت یک IEnumerable از داخل بلوک using بازگشت داده میشود. 
private IEnumerable<int> GetEnumerable(StringBuilder log)
{
     using (var test = new Test(log))
      {
          return Enumerable.Range(1, 5);
      }
}

فرض کنیم کلاس Test اینترفیس IDisposable را پیاده‌سازی کرده و در سازنده و متد Dispose خود پیامهایی را به log اضافه کند. در مثالهای واقعی، کلاس Testمیتواند اتصالی به پایگاه داده باشد و رکوردهای خوانده شده، بازگشت داده شوند. توسط حلقه زیر مقدار خروجی تابع را چاپ میکنیم.
var log = new StringBuilder();
            
foreach (var number in GetEnumerable(log))
{
     log.AppendLine($"{number}");
}
انتظار میرود که خروجی به این صورت باشد که ابتدا رشته Created (از سازنده کلاس Test) چاپ شود بعد اعداد یک تا پنج و در نهایت رشته Disposed (از متد Dispose کلاس Test). به عبارتی در ابتدای کار، بلوک using، سازنده کلاس را فراخوانی کند و بعد از اینکه بلوک به پایان کارش رسید متد Dispose کلاس فراخوانی شود. اما در واقع خروجی به صورت زیر خواهد بود. 
Created
Disposed
1
2
3
4
5
این تفاوت در دنیای واقعی مهم است؛ به اینصورت که مثلا اتصال به پایگاه داده قبل از اینکه داده‌ها خوانده شوند، بسته میشود و قطعه کد به درستی عمل نخواهد کرد. تنها راه حل، پیمایش در collection داخل using و بازگشت هر مقدار به صورت مجزا است، که در زیر آمده است.
 using (var test = new Test(log))
 {
     foreach (var i in Enumerable.Range(1,5))
     {
         yield return i;
     }
 }
فقط در این صورت است که کلاس Test بعد از اتمام کار حلقه و در زمان درست به پایان میرسد. توسط کلمه کلیدی yield و برای متدی که خروجی قابل پیمایش داشته باشد میتوان چندین مقدار را بازگشت داد. ترتیب اجرای دستورات در قطعه کد بالا به این صورت است که ابتدا نمونه‌ای از کلاس Test ایجاد میشود و سازنده کلاس فراخوانی میشود، سپس حلقه foreach به تعداد مشخص شده در Range مقادیر بازگشتی را در خروجی تابع قرار میدهد. وقتی که کار حلقه تمام شد، بلوک using دستورات را ادامه خواهد داد که برابر با خاتمه دادن به تمام نمونه‌ها و منابع استفاده شده در بلوک است؛ یعنی فراخوانی متد Dispose. با استفاده از این روش خروجی به شکل زیر خواهد بود. 
Created
1
2
3
4
5
Disposed

مطالب
تصادفی کردن آیتمهای لیست با استفاده از Extension Method
شاید برای شما هم پیش آمده باشد که بخواهید در هر بار واکشی لیستی از اطلاعات، مثلا از دیتابیس، آیتمهای آن را بصورت تصادفی مرتب کنید.
 من در پروژه اخیرم برای نمایش یک سری سوال مجبور بودم که در هر بار نمایش سوالات، لیست را به صورت رندوم مرتب کنم و به کاربر نمایش بدم. برای حصول این مهم، یک extension method به شکل زیر نوشتم:
    public static class RandomExtentions
    {
        public static void Shuffle<T>(this IList<T> list)
        {
            Random rng = new Random();
            Thread.Sleep(100);
            int n = list.Count;
            while (n > 1)
            {
                n--;
                int k = rng.Next(n + 1);
                T value = list[k];
                list[k] = list[n];
                list[n] = value;
            }
        }
    }
در این تابع که اسمش را Shuffle گذاشتم، با دریافت یک لیست از نوع T، آیتم‌های درون لیست را به صورت تصادفی مرتب می‌کند.

مثال :
var x =new  List<int>();
x.Add(1);
x.Add(2);
x.Add(3);
x.Add(4);
x.Add(5);
x.Shuffle();
در این مثال لیست x که از نوع int میباشد پس از فراخوانی Shuffle به یک لیست نامرتب تبدیل میشود که نحوه چیدمان در هر بار فراخوانی، تصادفی خواهد بود.
مطالب
آشنایی با Refactoring - قسمت 11

قسمت یازدهم آشنایی با Refactoring به توصیه‌هایی جهت بالا بردن خوانایی تعاریف مرتبط با اعمال شرطی می‌پردازد.

الف) شرط‌های ترکیبی را کپسوله کنید

عموما حین تعریف شرط‌های ترکیبی، هدف اصلی از تعریف آن‌ها پشت انبوهی از && و || گم می‌شود و برای بیان مقصود، نیاز به نوشتن کامنت خواهند داشت. مانند:

using System;

namespace Refactoring.Day11.EncapsulateConditional.Before
{
public class Element
{
private string[] Data { get; set; }
private string Name { get; set; }
private int CreatedYear { get; set; }

public string FindElement()
{
if (Data.Length > 1 && Name == "E1" && CreatedYear > DateTime.Now.Year - 1)
return "Element1";

if (Data.Length > 2 && Name == "RCA" && CreatedYear > DateTime.Now.Year - 2)
return "Element2";

return string.Empty;
}
}
}

برای بالا بردن خوانایی این نوع کدها که برنامه نویس در همین لحظه‌ی تعریف آن‌ها دقیقا می‌داند که چه چیزی مقصود اوست، بهتر است هر یک از شرط‌ها را تبدیل به یک خاصیت با معنا کرده و جایگزین کنیم. برای مثال مانند:

using System;

namespace Refactoring.Day11.EncapsulateConditional.After
{
public class Element
{
private string[] Data { get; set; }
private string Name { get; set; }
private int CreatedYear { get; set; }

public string FindElement()
{
if (hasOneYearOldElement)
return "Element1";

if (hasTwoYearsOldElement)
return "Element2";

return string.Empty;
}

private bool hasTwoYearsOldElement
{
get { return Data.Length > 2 && Name == "RCA" && CreatedYear > DateTime.Now.Year - 2; }
}

private bool hasOneYearOldElement
{
get { return Data.Length > 1 && Name == "E1" && CreatedYear > DateTime.Now.Year - 1; }
}
}
}


همانطور که ملاحظه می‌کنید پس از این جایگزینی، خوانایی متد FindElement بهبود یافته است و برنامه نویس اگر 6 ماه بعد به این کدها مراجعه کند نخواهد گفت: «من این کدها رو نوشتم؟!»؛ چه برسد به سایرینی که احتمالا قرار است با این کدها کار کرده و یا آن‌ها را نگهداری کنند.


ب) از تعریف خواص Boolean با نام‌های منفی پرهیز کنید

یکی از مواردی که عموما علت اصلی بروز بسیاری از خطاها در برنامه است، استفاده از نام‌های منفی جهت تعریف خواص است. برای مثال در کلاس مشتری زیر ابتدا باید فکر کنیم که مشتری‌های علامتگذاری شده کدام‌ها هستند که حالا علامتگذاری نشده‌ها به این ترتیب تعریف شده‌اند.

namespace Refactoring.Day11.RemoveDoubleNegative.Before
{
public class Customer
{
public decimal Balance { get; set; }

public bool IsNotFlagged
{
get { return Balance > 30m; }
}
}
}

همچنین از تعریف این نوع خواص در فایل‌های کانفیگ برنامه‌ها نیز جدا پرهیز کنید؛ چون عموما کاربران برنامه‌ها با این نوع نامگذاری‌های منفی، مشکل مفهومی دارند.
Refactoring قطعه کد فوق بسیار ساده است و تنها با معکوس کردن شرط و نحوه‌ی نامگذاری خاصیت IsNotFlagged پایان می‌یابد:

namespace Refactoring.Day11.RemoveDoubleNegative.After
{
public class Customer
{
public decimal Balance { get; set; }

public bool IsFlagged
{
get { return Balance <= 30m; }
}
}
}

نظرات مطالب
کوئری نویسی در EF Core - قسمت ششم - کار با تاریخ و زمان
اگر جستجوی مدنظر چنین شکلی را داشته باشد:

مدلسازی نمونه‌ی آن به صورت زیر است:

    public class UIModel
    {
        public int PersianYear { set; get; }

        public int[] SelectedPersianMonths { set; get; }
    }
برای مثال اگر اطلاعات دریافتی از کاربر به صورت زیر باشد:
var model = new UIModel
{
    PersianYear = 1391,
    SelectedPersianMonths = new[] { 4, 5 }
};
کوئری گرفتن بر اساس ماه‌های انتخابی را (new DateTime را می‌توانید با پارامتر PersianCalendar تعریف کنید و ... کار می‌کند) باید بر اساس OR نوشت (حالت پیش‌فرض زنجیروار نوشتن Whereها And است):
var itemsQuery = context.Members.AsQueryable();

// Linq chaining where clauses as an `Or` instead of `And`
var predicate = PredicateBuilder.False<Member>();

foreach (var month in model.SelectedPersianMonths)
{
    var start = new DateTime(model.PersianYear, month, 1, new PersianCalendar());
    var end = new DateTime(model.PersianYear, month, month <= 6 ? 31 : 30, new PersianCalendar());

    // We can chain `IQueryable`s.
    // itemsQuery = itemsQuery.Where(x => x.JoinDate.Date >= start && x.JoinDate.Date <= end);
    // But it will be translated as an `AND`, not `OR`

    predicate = predicate.Or(x => x.JoinDate.Date >= start && x.JoinDate.Date <= end);
}

itemsQuery = itemsQuery.Where(predicate);

var items = itemsQuery.Select(x => new { x.FirstName, x.Surname }).ToList();
که یک چنین خروجی SQL ای را تولید می‌کند:
SELECT [m].[FirstName],
       [m].[Surname]
FROM   [Members] AS [m]
WHERE  ((CONVERT (DATE, [m].[JoinDate]) >= '2012-06-21T00:00:00')
        AND (CONVERT (DATE, [m].[JoinDate]) <= '2012-07-21T00:00:00'))
       OR ((CONVERT (DATE, [m].[JoinDate]) >= '2012-07-22T00:00:00')
           AND (CONVERT (DATE, [m].[JoinDate]) <= '2012-08-21T00:00:00'));
مثال کامل آن
مطالب
بررسی ساختار جدول MigrationHistory در Entity Framework 6.x
EF اطلاعات تمام migrations اجرا شده‌ی بر روی بانک اطلاعاتی را در جدولی به نام MigrationHistory__ ذخیره می‌کند:


اگر به تصویر دقت کنید، در ستون Model آن، اطلاعات باینری ذخیره شده‌اند. شاید در وهله‌ی اول اینطور به نظر برسد که این ستون حاوی هش نقل و انتقالات صورت گرفته‌است؛ اما ... خیر. اطلاعات این ستون، GZip شده‌ی یک رشته‌ی XML ایی یا همان EDMX معادل مدل‌ها و نگاشت‌های برنامه است.
در کدهای ذیل، نمونه مثالی را از نحوه‌ی خواندن این اطلاعات، مشاهده می‌کنید:
using System;
using System.Collections.Generic;
using System.Data.SqlClient;
using System.IO;
using System.IO.Compression;
using System.Xml.Linq;
 
namespace EF_General
{
    public static class InsideMigrations
    {
        public static void PrintFirstMigrationModel()
        {
            const string connectionString = "Data Source=(local);Initial Catalog=TestDbIdentity;Integrated Security = true";
            const string sqlToExecute = "select top 1 model from __MigrationHistory";
 
            using (var connection = new SqlConnection(connectionString))
            {
                connection.Open();
 
                using (var command = new SqlCommand(sqlToExecute, connection))
                {
                    using (var reader = command.ExecuteReader())
                    {
                        if (!reader.HasRows)
                        {
                            throw new KeyNotFoundException("Nothing to display.");
                        }
 
                        while (reader.Read())
                        {
                            var model = (byte[]) reader["model"];
                            var decompressed = decompressMigrationModel(model);
                            Console.WriteLine(decompressed);
                        }
                    }
                }
            }
        }
 
        private static XDocument decompressMigrationModel(byte[] bytes)
        {
            using (var memoryStream = new MemoryStream(bytes))
            {
                using (var gzipStream = new GZipStream(memoryStream, CompressionMode.Decompress))
                {
                    return XDocument.Load(gzipStream);
                }
            }
        }
    }
}
در اینجا، اولین مدل ثبت شده‌ی در جدول migrations واکشی شده‌است. سپس به متد decompressMigrationModel برای رمزگشایی نهایی ارسال گردیده‌است.
بر اساس این اطلاعات، EF کاری به ساختار فعلی بانک اطلاعاتی شما ندارد. زمانیکه Add-Migration را اجرا می‌کنید، به جدول migrations مراجعه کرده، آخرین رکورد آن‌را یافته و سپس اطلاعات آن‌را از حالت فشرده خارج و XML نهایی آن‌را استخراج می‌کند. در ادامه اطلاعات این فایل XML را با معادل مدل‌های فعلی برنامه مقایسه می‌کند. اگر این دو یکی نبودند، اسکریپت اعمال تغییرات را تولید خواهد کرد.
مورد دیگری که در این جدول حائز اهمیت است، ستون ContextKey آن است: «رفع مشکل Migration با تغییر NameSpace در EF»