اشتراک‌ها
مجموعه‌ای از بانک‌های اطلاعاتی نمونه
Collection of Sample Databases

In this post, I've compiled a comprehensive collection of sample databases, conveniently categorized by provider, to make it easier for you to find the right dataset for your needs. Whether you're looking for structured data for prototyping, experimenting with new metrics, or evaluating product performance, this collection offers a variety of real-world examples.
مجموعه‌ای از بانک‌های اطلاعاتی نمونه
مطالب
برنامه نویسی پیشرفته JavaScript - قسمت 6 - تغییر صفات Property ها

برنامه نویسی شیء گرا

در این بخش میخواهیم به بررسی یکسری از ویژگی‌ها و نکات ریز برنامه نویسی شیء گرا در جاوا اسکریپت بپردازیم که یک برنامه نویس حرفه‌ای جاوا اسکریپت حتما باید بر آن‌ها واقف باشد تا بتواند کتابخانه‌ها و Framework ‌های موثرتر و بهینه‌تری را ایجاد کند. لازم به ذکر است که در این مجموعه مقالات، پیاده‌سازی اشیاء و شیوه‌ی کد نویسی، بر اساس استاندارد ECMAScript 5 یا ES5 انجام خواهد شد. بنابراین از قابلیتهای جدیدی که در ES6 اضافه شده‌است، صحبت نخواهیم کرد. پس از پایان این مجموعه مقالات و پس از آگاهی کامل از قابلیتهای جاوا اسکریپت، در مجموعه مقالاتی به بررسی قابلیتهای جدید ES6 خواهیم پرداخت که مرتبط به مقالات جاری است.

همانطور که قبلا اشاره شد، در زبان‌های برنامه نویسی شیء گرا، مفهومی به نام کلاس وجود دارد که ساختاری را جهت ایجاد اشیاء معرفی می‌کند و میتوانیم اشیاء مختلفی را از این کلاس‌ها ایجاد نماییم. اما در جاوا اسکریپت مفهوم کلاس وجود ندارد و فقط می‌توانیم از اشیاء استفاده کنیم که نسبت به زبان‌های مبتنی بر کلاس متفاوت می‌باشد.

بر اساس تعریفی که از اشیاء در استاندارد ECMAScript صورت گرفته است، هرشیء، شامل مجموعه‌ای از ویژگی‌هاست، که هر یک از آنها می‌تواند حاوی یک مقدار پایه، شیء و یا تابع باشد. به عبارت دیگر هر شیء شامل آرایه‌ای از مقادیر است. هر ویژگی ( Property ) یا تابع (که در برنامه نویسی شیء گرا متد نیز نامیده می‌شود) توسط نام خود شناسایی می‌شوند که به یک مقدار داده‌ای نگاشت یا Map شده‌اند. به همین دلیل میتوان هر شیء را به عنوان یک Hash Table تصور کرد که داده‌ها را به صورت یک زوج کلید مقدار یا key-value pairs نگهداری می‌نماید. در اینصورت نام ویژگی‌ها و متدها به عنوان key و مقدار آنها به عنوان value در نظر گرفته می‌شوند.


مفهوم شیء

همانطور که قبلا اشاره شد، جهت تعریف اشیاء می‌توان از دو روش استفاده نمود. در روش اول، ایجاد شیء با استفاده از شیء Object و در روش دوم، با استفاده از Object Literal Notation انجام خواهد شد. روش دوم جدیدتر و بین برنامه نویسان جاوا اسکریپت محبوب‌تر است. مثال دیگری را جهت یادآوری در این مورد ذکر می‌کنم:

var person = new Object();
person.firstName = "Meysam";
person.birth = new Date(1982, 11, 8);
person.getAge = function () {
    var now = new Date();
    return now.getFullYear() - this.birth.getFullYear();
}

alert(person.firstName + ": " + person.getAge());    // Meysam: 34
در مثال فوق، شیء person شامل دو ویژگی firstName و birth و همچنین تابع getAge() می‌باشد. در تابع getAge() از روی ویژگی birth یا تاریخ تولد، سن شخص محاسبه شده‌است. همانطور که مشاهده می‌کنید، در داخل این تابع، جهت دسترسی به ویژگی birth، از شیء this استفاده نمودیم. this به شیء ای اشاره می‌کند که تابع getAge() به آن تعلق دارد و در اینجا به شیء person اشاره می‌نماید. اگر از this استفاده نکنید، برنامه خطا می‌دهد؛ زیرا قادر به شناسایی birth نمی‌باشد. مثال فوق را میتوان با استفاده از Object Literal Notation به صورت زیر نوشت:
var person = {
    firstName: "Meysam",
    birth: new Date(1982, 11, 8),
    getAge: function () {
        var now = new Date();
        return now.getFullYear() - this.birth.getFullYear();
    }
};

alert(person.firstName + ": " + person.getAge());    // Meysam: 34

انواع Property ها

در ECMAScript 5 ، صفاتی برای Property ‌ها معرفی شده است که از طریق Attribute ‌های داخلی به Property ‌ها اختصاص می‌یابد. این Attribute ‌ها توسط موتور جاوا اسکریپت بر روی Property ‌ها پیاده سازی می‌شوند و به صورت مستقیم قابل دسترسی نمی‌باشند. در طی فرآیند آموزش این مطالب، Attribute ‌های داخلی را در [[]] قرار می‌دهیم، مثل [[Enumarable]] ، تا از سایر دستورات تفکیک شوند. به صورت کلی دو نوع ویژگی داریم که شامل Data Properties و Accessor Properties می‌باشند که به شرح آنها می‌پردازیم.


Data Properties

Data Property ‌ها، 4 صفت یا Attribute را توصیف می‌کنند که عبارتند از:

[[Configurable]]

مشخص می‌کند یک Property اجازه حذف، تعریف مجدد و یا تغییر نوع را دارد یا خیر. بصورت پیش فرض، زمانی که یک شیء بصورت مستقیم ساخته می‌شود، مقدار این ویژگی True می‌باشد.

[[Enumarable]]

مشخص می‌کند که آیا امکان پیمایش یک Property توسط حلقه for-in وجود دارد یا خیر. بصورت پیش فرض، زمانیکه یک شیء بصورت مستقیم ساخته می‌شود، مقدار این ویژگی True می‌باشد.

[[Writable]]

مشخص می‌کند که آیا مقدار یک Property قابل تغییر می‌باشد یا خیر. بصورت پیش فرض، زمانیکه یک شیء بصورت مستقیم ساخته می‌شود، مقدار این ویژگی True می‌باشد.

[[Value]]

شامل مقدار واقعی یک Property و محل مقداردهی یا برگرداندن مقدار Property ‌ها می‌باشد. مقدار پیش فرض آن نیز undefined می‌باشد.


زمانیکه یک Property به صورت عادی به یک شیء اضافه می‌شود، مانند مثال‌های قبلی، سه Attribute اول به true تنظیم می‌شوند و [[Value]]  با مقدار اولیه Property تنظیم میگردد. در این حالت آن Property ، قابل بروزرسانی و پیمایش می‌باشد. جهت تغییر ساختار یک Property و تنظیم Attribute ‌های آن، باید آن Property را با استفاده از متد defineProperty() تعریف نماییم . شکل کلی تعریف Property با استفاده از این متد به صورت زیر می‌باشد:

Object.defineProperty(obj, prop, descriptor)
آرگومان obj ، شیء ای است که Property مورد نظر باید به آن اضافه شود. آرگومان prop نام Property را مشخص می‌کند که Attribute ‌های آن باید تنظیم شوند. آرگومان descriptor  یک شیء می‌باشد که  Attribute ‌های مورد نیاز را برای Property تنظیم می‌نماید. شیء descriptor شامل ویژگی‌های configurable ، enumerable ، writable و value می‌باشد که می‌توانند برای Property تنظیم شوند. خروجی این متد شیء ای است که به عنوان آرگومان اول ارسال شده‌است. به مثال‌های زیر توجه کنید:
var person = {};
Object.defineProperty(person, "name", {
    writable: false,
    value:"Meysam"
});

alert(person.name);   // Meysam
person.name = "Arash";
alert(person.name);   // Meysam
همانطور که در مثال فوق مشاهده می‌کنید، یک Property به نام name به شیء person اضافه شده‌است که صفت writable آن به false تنظیم گردیده‌است. بنابراین امکان تغییر مقدار ویژگی name وجود ندارد و با اینکه در دستور person.name = "Arash" ، ویژگی name را تغییر داده‌ایم، دستور alert نهایی، مجددا خروجی Meysam را نمایش داده‌است.
var person = {};
Object.defineProperty(person, "name", {
    configurable: false,
    value: "Meysam"
});

alert(person.name);  // Meysam
delete person.name;
alert(person.name);  // Meysam
در مثال فوق، صفت configurable را به false تنظیم نموده‌ایم و همانطور که مشاهده میکنید امکان حذف ویژگی name توسط عملگر delete وجود ندارد و دستور alert نهایی مجددا خروجی Meysam را نمایش داده‌است. توجه داشته باشید که اگر شما بخواهید در خطوط بعدی کد، مجددا صفت configurable را به مقدار true تغییر دهید، امکان پذیر نمی‌باشد. زیرا در تعریف فوق، صفت configurable را به false تنظیم نموده‌اید و امکان بروزرسانی Attribute ‌های ویژگی name را از آن گرفته‌اید. در این حالت تنها Attribute ی را که میتوانید تنظیم کنید، صفت writable می‌باشد.

لازم به ذکر است که می‌توانید متد defineProperty() را چندین بار برای یک Property فراخوانی نموده و در هر مرحله صفات متفاوتی را تنظیم و یا صفات قبلی را تغییر دهید.

علاوه بر متد فوق، متد دیگری به نام defineProperties() وجود دارد که می‌توان چند Property را بصورت همزمان تعریف و صفات آن را تنظیم نمود. شکل کلی این متد به صورت زیر است:

Object.defineProperties(obj, props)

آرگومان props یک شیء می‌باشد که ویژگی‌های آن، نام همان Property هایی هستند که باید به obj اضافه شوند. همچنین هر ویژگی خود یک شیء می‌باشد که میتوان صفات آن ویژگی را تنظیم نمود. به مثال زیر توجه کنید:

var person = {};
Object.defineProperties(person, {
    "name": {
        configurable: false,
        value: "Meysam"
    },
    "age": {
        writable:false,
        value:34
    }
});
در مثال فوق، برای آرگومان props ، دو ویژگی name و age را تعریف نمودیم که این دو ویژگی به شیء person اضافه خواهند شد. همچنین ویژگی‌های name و age خود یک شیء می‌باشند که صفات مربوط به آنها تنظیم شده است.

Accessor Properties

این صفات شامل توابع getter و setter می‌باشند که یک یا هر دوی آنها می‌توانند برای یک Property تنظیم شوند. زمانی که مقداری را از یک Property می‌خوانید، تابع getter فراخوانی می‌شود و مقدار Property مربوطه را بر میگرداند. این تابع می‌تواند قبل از برگرداندن مقدار، پردازش هایی را بر روی آن Property انجام داده و یک نتیجه‌ی معتبر را برگرداند. زمانیکه Property را مقداردهی می‌نمایید، تابع setter فراخوانی میشود و Property را با مقدار جدید تنظیم می‌نماید. این تابع می‌تواند قبل از مقداردهی به Property ، داده‌ی مورد نظر را اعتبارسنجی نماید تا از ورود مقادیر نامعتبر جلوگیری کند. Accessor Properties شامل 2 صفت زیر می‌باشد:

[[Get]]

یک تابع می‌باشد و زمانی فراخوانی می‌گردد که مقدار یک Property را بخوانیم و مقدار پیش فرض آن undefined می‌باشد.

[[Set]]

یک تابع می‌باشد و زمانی فراخوانی می‌گردد که یک Property را مقداردهی نماییم و مقدار پیش فرض آن undefined می‌باشد. این تابع شامل یک آرگومان ورودی است که حاوی مقدار ارسالی به Property است.

مثال زیر یک پیاده سازی ساده از شیء تاریخ شمسی می‌باشد که هنوز از لحاظ طراحی دارای نواقصی هست و در ادامه کارآیی و کد آن را بهبود می‌بخشیم.

var date = {
    _year: 1,
    _month: 1,
    _day: 1,
    isLeap: function () {
        switch (this.year % 33) {
            case 1: case 5: case 9: case 13:
            case 17: case 22: case 26: case 30:
                return true;
            default:
                return false;
        }
    }
};

Object.defineProperties(date, {
    "year": {
        "get": function () { return this._year; },
        "set": function (newValue) {
            if (newValue < 1 || newValue > 9999)
                throw new Error("Year must be between 1 and 9999");
            this._year = newValue;
        }
    },
    "month": {
        "get": function () { return this._month; },
        "set": function (newValue) {
            if (newValue < 1 || newValue > 12)
                throw new Error("Month must be between 1 and 12");
            this._month = newValue;
        }
    },
    "day": {
        "get": function () { return this._day; },
        "set": function (newValue) {
            if (newValue < 1 || newValue > 31)
                throw new Error("Day must be between 1 and 31");
            if (this.month === 12 && !this.isLeap() && newValue > 29)
                throw new Error("Day must be between 1 and 29");
            if (this.month > 6 && newValue > 30)
                throw new Error("Day must be between 1 and 30");
            this._day = newValue;
        }
    }
});
در مثال فوق، 3 ویژگی با نامهای _year ، _month و _day تعریف شده‌اند. پیشوند _ مشخص می‌کند که نباید به این ویژگی در خارج از شیء دسترسی داشته باشیم. البته دسترسی را محدود نمی‌کند و برنامه نویس به راحتی می‌تواند به آن دسترسی داشته باشد. در مباحث بعدی شیوه‌ی صحیح پیاده سازی اینگونه Property ‌ها را آموزش می‌دهیم. تابعی به نام isLeap() نیز تعریف شده است که تشخیص می‌دهد سال موجود کبیسه هست یا خیر. با استفاده از تابع defineProperties() ، 3 ویژگی دیگر نیز به شیء date ، با نامهای year ، month و day اضافه نموده‌ایم که دارای Accessor ‌های get و set می‌باشند. در بخش set ورودی‌های کاربران را بررسی و اعتبار سنجی نمودیم. در صورتی که ورودی نامعتبر باشد، با استفاده از throw خطایی را به صورت دستی ایجاد می‌نماییم که در console مربوط به Browser قابل مشاهده و یا با استفاده از try…catch قابل دسترسی و مدیریت می‌باشد.

دقت داشته باشید که لازم نیست حتما accessor ‌های getter و setter با هم برای یک Property تنظیم شوند و شما می‌توانید فقط یکی از آنها را برای Property به کار ببرید. اگر فقط تابع getter به یک Property اختصاص یابد، آن Property فقط خواندنی می‌شود و امکان تغییر مقدار آن وجود ندارد. در این صورت هر دستوری که اقدام به تغییر Property نماید، بی‌تاثیر خواهد بود. همچنین اگر فقط تابع setter به یک Property اختصاص یابد، آن Property فقط نوشتنی می‌شود و امکان خواندن مقدار آن وجود ندارد. در این صورت هر دستوری که اقدام به خواندن Property نماید، مقدار undefined برای آن برگردانده می‌شود.

نکته‌ی دیگری که باید به آن توجه کنید این است که اگر یک Property با استفاده از متد defineProperty() تعریف گردد، Attribute هایی که مقداردهی نشده‌اند، مثل [[Configurable]] ، [[Enumarable]] و [[Writable]] با false مقداردهی می‌گردند و [[Value]] ، [[Get]] و [[Set]] مقدار undefined را بر می‌گردانند. در مبحث بعدی، در مورد این نکته مثالی ارائه شده است.


خواندن Attribute ‌های مربوط به یک Property

با استفاده از متد getOwnPropertyDescriptor() می‌توان، Attribute ‌های اختصاص داده شده به Property ‌ها را خواند و از مقدار آنها مطلع شد. این متد شامل 2 آرگومان می‌باشد، که آرگومان اول، شیء ای است که میخواهیم Attribute آن را بخوانیم و آرگومان دوم، نام Attribute می‌باشد. خروجی متد getOwnPropertyDescriptor() یک شیء از نوع PropertyDescriptor می‌باشد که ویژگی‌های آن، همان Attribute هایی هستند که برای یک Property تنظیم شده‌اند. به مثال زیر جهت خواندن Attribute ‌های شیء تاریخ شمسی توجه کنید:

var descriptor = Object.getOwnPropertyDescriptor(date, "_year");
alert(descriptor.value);   // 1
alert(descriptor.configurable); // true
alert(typeof descriptor.get); // undefined

descriptor = Object.getOwnPropertyDescriptor(date, "year");
alert(descriptor.value);   // undefined
alert(descriptor.configurable); // false
alert(typeof descriptor.get); // function
ویژگی _year به صورت عادی تعریف شده است. بنابراین با توجه به نکاتی که قبلا ذکر شد، مقدار اختصاص داده شده به این ویژگی، به صفت [[Value]] تعلق گرفته است. همچنین سایر صفات این ویژگی به مانند [[Configurable]] ، با مقدار true تنظیم شده‌اند. Accessor ‌های getter و setter نیز، که برای این ویژگی تنظیم نشده بودند، مقدار undefined بر می‌گردانند. ویژگی year با استفاده از متد defineProperties() تعریف شده است و چون Accessor ‌های getter و setter به آن اختصاص یافته‌اند، صفت [[Value]]، مقدار undefined را بر می‌گرداند و سایر Attribute ‌ها به مانند [[Configurable]] که تنظیم نشده‌اند، مقدار false را بر می‌گردانند. همچنین برای getter و setter نوع function برگردانده شده‌است. 
اشتراک‌ها
سرویس جدیدی جهت تولید لینک (Link Generator)

We’re introducing a new singleton service that will support generating a URL. This new service can be used from middleware, and does not require an HttpContext. For right now the set of things you can link to is limited to MVC actions, but this will expand in 3.0. 

سرویس جدیدی جهت تولید لینک (Link Generator)
نظرات مطالب
صفحه بندی و مرتب سازی خودکار اطلاعات به کمک jqGrid در ASP.NET MVC
مجوز عمومی فایل‌های اسکریپت اصلی آن MIT است و در هر نوع پروژه‌ای قابل استفاده‌است. مجوز تجاری هم دارد برای حالتیکه بخواهید کامپوننت‌های ASP.NET آن‌را بخرید که ... نیازی نیست (^).
 3. Can be used in proprietary works
The license policy allow you to use this piece of code even inside commercial (not open source)
projects. So you can use this software without giving away your own (precious?) source code.
اشتراک‌ها
کش کردن حاصل عملیات در EF Core

Entity Framework (EF) Core is the rearchitected and rewritten version of the Entity Framework object relational mapping engine for .NET Core applications. It is very light-weight, extensible, and cross platform.

However, high transaction .NET Core applications using EF Core face performance and scalability bottlenecks in the database-tier under peak loads. This is because, although you can linearly scale the application tier by adding more application servers, you cannot add more database servers to scale it.

But, if you use a distributed cache like NCache in your .NET Core applications, you can quickly remove these performance and scalability bottlenecks and handle extreme transaction loads. 

کش کردن حاصل عملیات در EF Core
مطالب
روش استفاده‌ی صحیح از HttpClient در برنامه‌های دات نت
اگر در کدهای خود قطعه کد ذیل را دارید:
using(var client = new HttpClient())
{
   // do something with http client
}
استفاده‌ی از using در اینجا، نه‌تنها غیرضروری و اشتباه است، بلکه سبب از کار افتادن زود هنگام برنامه‌ی شما با صدور استثنای ذیل خواهد شد:
 Unable to connect to the remote server
System.Net.Sockets.SocketException: Only one usage of each socket address (protocol/network address/port) is normally permitted.


HttpClient خود را Dispose نکنید

کلاس HttpClient اینترفیس IDisposable را پیاده سازی می‌کند. بنابراین روش استفاده‌ی اصولی آن باید به صورت ذیل و با پیاده سازی خودکار رهاسازی منابع مرتبط با آن باشد:
using (var client = new HttpClient())
{
       var result = await client.GetAsync("http://example.com/");
}
اما در این حال فرض کنید به همین روش تعدادی درخواست را ارسال کرده‌اید:
for (int i = 0; i < 10; i++)
{
      using (var client = new HttpClient())
      {
            var result = await client.GetAsync("http://example.com/");
            Console.WriteLine(result.StatusCode);
      }
}
مشکل این روش، در ایجاد سوکت‌های متعددی است که حتی پس از بسته شدن برنامه نیز باز، باقی خواهند ماند:
  TCP    192.168.1.6:13996      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:13997      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:13998      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:13999      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:14000      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:14001      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:14002      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:14003      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:14004      93.184.216.34:http     TIME_WAIT
  TCP    192.168.1.6:14005      93.184.216.34:http     TIME_WAIT
این یک نمونه‌ی خروجی برنامه‌ی فوق، توسط دستور netstat «پس از بسته شدن کامل برنامه» است.

بنابراین اگر برنامه‌ی شما تعداد زیادی کاربر دارد و یا تعداد زیادی درخواست را به روش فوق ارسال می‌کند، سیستم عامل به حد اشباع ایجاد سوکت‌های جدید خواهد رسید.
این مشکل نیز ارتباطی به طراحی این کلاس و یا زبان #C و حتی استفاده‌ی از using نیز ندارد. این رفتار، رفتار معمول سیستم عامل، با سوکت‌های ایجاد شده‌است. TIME_WAIT ایی را که در اینجا ملاحظه می‌کنید، به معنای بسته شدن اتصال از طرف برنامه‌ی ما است؛ اما سیستم عامل هنوز منتظر نتیجه‌ی نهایی، از طرف دیگر اتصال است که آیا قرار است بسته‌ی TCP ایی را دریافت کند یا خیر و یا شاید در بین راه تاخیری وجود داشته‌است. برای نمونه ویندوز به مدت 240 ثانیه یک اتصال را در این حالت حفظ خواهد کرد، که مقدار آن نیز در اینجا تنظیم می‌شود:
 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay]

بنابراین روش توصیه شده‌ی کار با HttpClient، داشتن یک وهله‌ی سراسری از آن در برنامه و عدم Dispose آن است. HttpClient نیز thread-safe طراحی شده‌است و دسترسی به یک شیء سراسری آن در برنامه‌های چند ریسمانی مشکلی را ایجاد نمی‌کند. همچنین Dispose آن نیز غیرضروری است و پس از پایان برنامه به صورت خودکار توسط سیستم عامل انجام خواهد شد.


تمام اجزای HttpClient به صورت Thread-safe طراحی نشده‌اند

تا اینجا به این نتیجه رسیدیم که روش صحیح کار کردن با HttpClient، نیاز به داشتن یک وهله‌ی Singleton از آن‌را در سراسر برنامه دارد و Dispose صریح آن، بجز اشباع سوکت‌های سیستم عامل و ناپایدار کردن تمام برنامه‌هایی که از آن سرویس می‌گیرند، حاصلی را به همراه نخواهد داشت. در این بین مطابق مستندات HttpClient، استفاده‌ی از متدهای ذیل این کلاس thread-safe هستند:
CancelPendingRequests
DeleteAsync
GetAsync
GetByteArrayAsync
GetStreamAsync
GetStringAsync
PostAsync
PutAsync
SendAsync
اما تغییر این خواص در کلاس HttpClient به هیچ عنوان thread-safe نبوده و در برنامه‌های چند ریسمانی و چند کاربری، مشکل ساز می‌شوند:
BaseAddress
DefaultRequestHeaders
MaxResponseContentBufferSize
Timeout
بنابراین در طراحی کلاس مدیریت کننده‌ی HttpClient برنامه‌ی خود نیاز است به ازای هر BaseAddress‌، یک HttpClient خاص آن‌را ایجاد کرد و HttpClientهای سراسری نمی‌توانند BaseAddress‌های خود را نیز به اشتراک گذاشته و تغییری را در آن ایجاد کنند.


استفاده‌ی سراسری و مجدد از HttpClient، تغییرات DNS را متوجه نمی‌شود

با طراحی یک کلاس مدیریت کننده‌ی سراسری HttpClient با طول عمر Singelton، به یک مشکل دیگر نیز برخواهیم خورد: چون در اینجا از اتصالات، استفاده‌ی مجدد می‌شوند، دیگر تغییرات DNS را لحاظ نخواهند کرد.
برای حل این مشکل، در زمان ایجاد یک HttpClient سراسری، به ازای یک BaseAddress مشخص، باید از ServicePointManager کوئری گرفته و زمان اجاره‌ی اتصال آن‌را دقیقا مشخص کنیم:
var sp = ServicePointManager.FindServicePoint(new Uri("http://thisisasample.com"));
sp.ConnectionLeaseTimeout = 60*1000; //In milliseconds
با این‌کار هرچند هنوز هم از اتصالات استفاده‌ی مجدد می‌شود، اما این استفاده‌ی مجدد، نامحدود نبوده و مدت معینی را پیدا می‌کند.


طراحی یک کلاس، برای مدیریت سراسری وهله‌های HttpClient‌

تا اینجا به صورت خلاصه به نکات ذیل رسیدیم:
- HttpClient باید به صورت یک وهله‌ی سراسری Singleton مورد استفاده قرار گیرد. هر وهله سازی مجدد آن 35ms زمان می‌برد.
- Dispose یک HttpClient غیرضروری است.
- HttpClient تقریبا thread safe طراحی شده‌است؛ اما تعدادی از خواص آن مانند BaseAddress‌  اینگونه نیستند.
- برای رفع مشکل اتصالات چسبنده (اتصالاتی که هیچگاه پایان نمی‌یابند)، نیاز است timeout آن‌را تنظیم کرد.

بنابراین بهتر است این نکات را در یک کلاس به صورت ذیل کپسوله کنیم:
using System;
using System.Collections.Generic;
using System.Net.Http;

namespace HttpClientTips
{
    public interface IHttpClientFactory : IDisposable
    {
        HttpClient GetOrCreate(
            Uri baseAddress,
            IDictionary<string, string> defaultRequestHeaders = null,
            TimeSpan? timeout = null,
            long? maxResponseContentBufferSize = null,
            HttpMessageHandler handler = null);
    }
}

using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Net;
using System.Net.Http;
using System.Threading;

namespace HttpClientTips
{
    /// <summary>
    /// Lifetime of this class should be set to `Singleton`.
    /// </summary>
    public class HttpClientFactory : IHttpClientFactory
    {
        // 'GetOrAdd' call on the dictionary is not thread safe and we might end up creating the HttpClient more than
        // once. To prevent this Lazy<> is used. In the worst case multiple Lazy<> objects are created for multiple
        // threads but only one of the objects succeeds in creating the HttpClient.
        private readonly ConcurrentDictionary<Uri, Lazy<HttpClient>> _httpClients =
                         new ConcurrentDictionary<Uri, Lazy<HttpClient>>();
        private const int ConnectionLeaseTimeout = 60 * 1000; // 1 minute

        public HttpClientFactory()
        {
            // Default is 2 minutes: https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager.dnsrefreshtimeout(v=vs.110).aspx
            ServicePointManager.DnsRefreshTimeout = (int)TimeSpan.FromMinutes(1).TotalMilliseconds;
            // Increases the concurrent outbound connections
            ServicePointManager.DefaultConnectionLimit = 1024;
        }

        public HttpClient GetOrCreate(
           Uri baseAddress,
           IDictionary<string, string> defaultRequestHeaders = null,
           TimeSpan? timeout = null,
           long? maxResponseContentBufferSize = null,
           HttpMessageHandler handler = null)
        {
            return _httpClients.GetOrAdd(baseAddress,
                             uri => new Lazy<HttpClient>(() =>
                             {
                                 // Reusing a single HttpClient instance across a multi-threaded application means
                                 // you can't change the values of the stateful properties (which are not thread safe),
                                 // like BaseAddress, DefaultRequestHeaders, MaxResponseContentBufferSize and Timeout.
                                 // So you can only use them if they are constant across your application and need their own instance if being varied.
                                 var client = handler == null ? new HttpClient { BaseAddress = baseAddress } :
                                               new HttpClient(handler, disposeHandler: false) { BaseAddress = baseAddress };
                                 setRequestTimeout(timeout, client);
                                 setMaxResponseBufferSize(maxResponseContentBufferSize, client);
                                 setDefaultHeaders(defaultRequestHeaders, client);
                                 setConnectionLeaseTimeout(baseAddress, client);
                                 return client;
                             },
                             LazyThreadSafetyMode.ExecutionAndPublication)).Value;
        }

        public void Dispose()
        {
            foreach (var httpClient in _httpClients.Values)
            {
                httpClient.Value.Dispose();
            }
        }

        private static void setConnectionLeaseTimeout(Uri baseAddress, HttpClient client)
        {
            // This ensures connections are used efficiently but not indefinitely.
            client.DefaultRequestHeaders.ConnectionClose = false; // keeps the connection open -> more efficient use of the client
            ServicePointManager.FindServicePoint(baseAddress).ConnectionLeaseTimeout = ConnectionLeaseTimeout; // ensures connections are not used indefinitely.
        }

        private static void setDefaultHeaders(IDictionary<string, string> defaultRequestHeaders, HttpClient client)
        {
            if (defaultRequestHeaders == null)
            {
                return;
            }
            foreach (var item in defaultRequestHeaders)
            {
                client.DefaultRequestHeaders.Add(item.Key, item.Value);
            }
        }

        private static void setMaxResponseBufferSize(long? maxResponseContentBufferSize, HttpClient client)
        {
            if (maxResponseContentBufferSize.HasValue)
            {
                client.MaxResponseContentBufferSize = maxResponseContentBufferSize.Value;
            }
        }

        private static void setRequestTimeout(TimeSpan? timeout, HttpClient client)
        {
            if (timeout.HasValue)
            {
                client.Timeout = timeout.Value;
            }
        }
    }
}
در اینجا به ازای هر baseAddress جدید، یک HttpClient خاص آن ایجاد می‌شود تا در کل برنامه مورد استفاده‌ی مجدد قرار گیرد. برای مدیریت thread-safe ایجاد HttpClientها نیز از نکته‌ی مطلب «الگویی برای مدیریت دسترسی همزمان به ConcurrentDictionary» استفاده شده‌است. همچنین نکات تنظیم ConnectionLeaseTimeout و سایر خواص غیر thread-safe کلاس HttpClient نیز در اینجا لحاظ شده‌اند.

پس از تدارک این کلاس، نحوه‌ی معرفی آن به سیستم باید به صورت Singleton باشد. برای مثال اگر از ASP.NET Core استفاده می‌کنید، آن‌را به صورت ذیل ثبت کنید:
namespace HttpClientTips.Web
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
            services.AddSingleton<IHttpClientFactory, HttpClientFactory>();
            services.AddMvc();
        }

اکنون، یک نمونه، نحوه‌ی استفاده‌ی از اینترفیس IHttpClientFactory تزریقی به صورت ذیل می‌باشد:
namespace HttpClientTips.Web.Controllers
{
    public class HomeController : Controller
    {
        private readonly IHttpClientFactory _httpClientFactory;
        public HomeController(IHttpClientFactory httpClientFactory)
        {
            _httpClientFactory = httpClientFactory;
        }

        public async Task<IActionResult> Index()
        {
            var host = new Uri("http://localhost:5000");
            var httpClient = _httpClientFactory.GetOrCreate(host);
            var responseMessage = await httpClient.GetAsync("home/about").ConfigureAwait(false);
            var responseContent = await responseMessage.Content.ReadAsStringAsync().ConfigureAwait(false);
            return Content(responseContent);
        }
سرویس IHttpClientFactory یک HttpClient را به ازای host درخواستی ایجاد کرده و در طول عمر برنامه از آن استفاده‌ی مجدد می‌کند. به همین جهت دیگر مشکل اشباع سوکت‌ها در این سیستم رخ نخواهند داد.


برای مطالعه‌ی بیشتر

You're using HttpClient wrong and it is destabilizing your software
Disposable, Finalizers, and HttpClient
Using HttpClient as it was intended (because you’re not)
Singleton HttpClient? Beware of this serious behaviour and how to fix it
Beware of the .NET HttpClient
Effectively Using HttpClient