مطالب دوره‌ها
تزریق وابستگی‌ها
خوب! بالاخره بعد از دو قسمت قبل، به بحث اصلی تزریق وابستگی‌ها رسیدیم. بحثی که بسیاری از برنامه نویس‌های تصور می‌کنند همان IoC است که پیشتر در مورد آن بحث شد.

تزریق وابستگی‌ها یا DI چیست؟

تزریق وابستگی‌ها یکی از انواع IoC بوده که در آن ایجاد و انقیاد (binding) یک وابستگی، در خارج از کلاسی که به آن نیاز دارد صورت می‌گیرد. روش‌های متفاوتی برای ارائه این وابستگی وهله سازی شده در خارج از کلاس به آن وجود دارد که در ادامه مورد بررسی قرار خواهند گرفت.
یک مثال: بسته غذایی را که با خود به سر کار می‌برید درنظر بگیرید. تمام اجزای مورد نیاز تشکیل دهنده یک بسته غذا عموما داخل آن قرار گرفته و حمل می‌شوند. حالت عکس آن زمانی است که در محل کار به شما غذا می‌دهند. این دقیقا همان حالتی است که تزریق وابستگی‌ها کار می‌کند؛ یک سری سرویس‌های خارجی، نیازهای کلاس جاری را برآورده می‌سازند.


در تصویر فوق یک طراحی مبتنی بر معکوس سازی کنترل‌ها را مشاهده می‌کنید. وابستگی‌های یک کلاس توسط اینترفیسی مشخص شده و سپس کلاسی وجود دارد که این وابستگی را پیاده سازی کرده است.
همچنین در این تصویر یک خط منقطع از کلاس MyClass به کلاس Dependency رسم شده است. این خط، مربوط به حالتی است که خود کلاس، مستقیما کار وهله سازی وابستگی مورد نیاز خود را انجام دهد؛ هر چند اینترفیسی نیز در این بین تعریف شده باشد. بنابراین اگر در بین کدهای این کلاس، چنین کدی مشاهده شد:
 IDependency dependency= new Dependency();
تعریف dependency از نوع IDependency به معنای معکوس سازی کنترل نبوده و عملا همان معماری سابق و متداول بکارگرفته شده است. برای بهبود این وضعیت، از تزریق وابستگی‌ها کمک خواهیم گرفت:


در اینجا یک کلاس دیگر به نام Injector اضافه شده است که قابلیت تزریق وابستگی‌ها را به کلاس نیازمند آن به روش‌های مختلفی دارا است. کار کلاس Injector، وهله سازی MyClass و همچنین وابستگی‌های آن می‌باشد؛ سپس وابستگی را دراختیار MyClass قرار می‌دهد.


تزریق وابستگی‌ها در سازنده کلاس

یکی از انواع روش‌های تزریق وابستگی‌ها، Constructor Injection و یا تزریق وابستگی‌ها در سازنده کلاس می‌باشد که متداول‌ترین نوع آن‌ها نیز به‌شمار می‌رود. در این حالت، وابستگی پس از وهله سازی، از طریق پارامترهای سازنده یک کلاس، در اختیار آن قرار می‌گیرند.
یک مثال:
public class Shopper
{
   private readonly ICreditCard _creditCard;
   public Shopper(ICreditCard creditCard)
   {
      _creditCard = creditCard;
   }
}
در اینجا شما یک کلاس خریدار را مشاهده می‌کنید که وابستگی مورد نیاز خود را به شکل یک اینترفیس از طریق سازنده کلاس دریافت می‌کند.
 ICreditCard creditCard = new MasterCard();
Shopper shopper = new Shopper(creditCard);
برای نمونه، وهله‌ای از مستر کارتی که  ICreditCard را پیاده سازی کرده باشد، می‌توان به سازنده این کلاس ارسال کرد. کار وهله سازی وابستگی و واژه کلیدی new به خارج از کلاس استفاده کننده از وابستگی منتقل شده است. بنابراین همانطور که ملاحظه می‌کنید، این مفاهیم آنچنان پیچیده نبوده و به همین سادگی قابل تعریف و اعمال هستند.


تزریق در خواص عمومی کلاس

Setter Injection و یا تزریق در خواص عمومی یک کلاس، یکی دیگر از روش‌های تزریق وابستگی‌ها است (setter در اینجا منظور همان get و set یک خاصیت می‌باشد).
در حالت تزریق وابستگی‌ها در سازنده کلاس، امکان وهله سازی آن کلاس بدون ارسال وابستگی‌ها به سازنده آن ممکن نیست؛ اما در اینجا خیر و امکان وهله سازی و استفاده از یک کلاس، پیش از اعمال وابستگی‌ها نیز وجود دارد. بنابراین امکان تغییر و تعویض وابستگی‌ها پس از وهله سازی کلاس نیز میسر است.
public class Shopper
{
   public ICreditCard CreditCard { get; set; }
}

ICreditCard creditCard = new MasterCard();
Shopper shopper = new Shopper();
shopper.CreditCard = creditCard;
نمونه‌ای از این روش را در مثال فوق مشاهده می‌کنید. در این کلاس، وابستگی مورد نیاز از طریق یک خاصیت عمومی دریافت شده است.


تزریق اینترفیس‌ها

تزریق اینترفیس‌ها نیز یکی دیگر از روش‌های تزریق وابستگی‌ها است؛ اما آنچنان استفاده گسترده‌ای برخلاف دو روش قبل نیافته است.
در این روش نه از سازنده کلاس استفاده می‌شود و نه از یک خاصیت عمومی. ابتدا یک اینترفیس که بیانگر ساختار کلاسی که قرار است تزریق شود ایجاد می‌گردد. سپس این اینترفیس را در کلاس وابستگی مورد نظر پیاده سازی خواهیم کرد. در این اینترفیس نیاز است متد خاصی تعریف شود تا کار تزریق وابستگی را انجام دهد.
یک مثال:
public interface IDependOnCreditCard
{
   void Inject(ICreditCard creditCard);
}

public class Shopper : IDependOnCreditCard
{
  private ICreditCard creditCard;
  public void Inject(ICreditCard creditCard)
  {
     this.creditCard = creditCard;
  }
}  

ICreditCard creditCard = new MasterCard();
Shopper shopper = new Shopper();
((IDependOnCreditCard)shopper).Inject(creditCard);
در اینجا یک اینترفیس به نام IDependOnCreditCard  تعریف گردیده و متد خاصی را به نام Inject تدارک دیده است که نوعی از کردیت کارد را دریافت می‌کند.
در ادامه کلاس خریدار، اینترفیس IDependOnCreditCard را پیاده سازی کرده است. به این ترتیب کلاس Injector تنها کافی است بداند تا این متد خاص را باید جهت تنظیم و تزریق وابستگی‌ها فراخوانی نماید. این روش نسبتا شبیه به روش Setter injection است.
این روش بیشتر می‌تواند جهت فریم ورک‌هایی که قابلیت یافتن کلیه کلاس‌های مشتق شده از IDependOnCreditCard  را داشته و سپس می‌دانند که باید متد Inject آن‌ها را فراخوانی کنند، مناسب است.


نکاتی که باید حین کار با تزریق وابستگی‌ها درنظر داشت

الف) حین استفاده از تزریق وابستگی‌ها، وهله سازی به تاخیر افتاده وابستگی‌ها میسر نیست. برای مثال زمانیکه یک وابستگی قرار است در سازنده کلاسی تزریق شود، وهله سازی آن باید پیش از نیاز واقعی به آن صورت گیرد. البته امکان استفاده از اشیاء Lazy دات نت 4 برای مدیریت این مساله وجود دارد اما در حالت کلی، دیگر همانند قبل و روش‌های متداول، وهله سازی تنها زمانیکه نیاز به آن وابستگی خاص باشد، میسر نیست. به همین جهت باید به تعداد وابستگی‌هایی که قرار است در یک کلاس استفاده شوند نیز جهت کاهش مصرف حافظه دقت داشت.
ب) یکی از مزایای دیگر تزریق وابستگی‌ها، ساده‌تر شدن نوشتن آزمون‌های واحد است. زیرا تهیه Mocks در این حالت کار با اینترفیس‌ها بسیار ساده‌تر است. اما باید دقت داشت، کلاسی که در سازنده آن حداقل 10 اینترفیس را به عنوان وابستگی دریافت می‌کند، احتمالا دچار مشکلاتی در طراحی و همچنین مصرف حافظه می‌باشد.
 
مطالب
مقدمه‌ای بر بازسازی کد (Refactoring)
بازسازی کد یا  Refactoring، یکی از روال‌های بسیار مهم در حفظ کیفیت نرم افزار است. انجام به موقع و مداوم این روال در یک پروژه نرم افزاری، اثرات بلند مدت بسیار مثبتی را برای آن خواهد داشت. این نوشتار مقدمه کوتاهی بر مفاهیم ابتدایی و سوالاتی مهم در این زمینه است. 

تعریف بازسازی کد

از نظر لغوی Refactoring به معنی «بازسازی» است و در منابع مهندسی نرم افزار، بازسازی کد به صورت زیر تعریف شده است: 
بازسازی ساختار درونی یک نرم افزار که باعث سهولت در درک آن و سادگی نگهداری آن می‌شود، بدون تغییر رفتار بیرونی آن  
چند نکته در تعریف بالا قابل توجه است: 
  • Refactoring بازسازی است، نه بازنویسی
  • بازسازی مربوط به ساختار درونی یک نرم افزار است؛ نه رفتاری که مشتریان از یک نرم افزار یا کامپوننت انتظار دارند
  • حاصل بازسازی باید سهولت درک کد و سادگی نگهداری آن باشد 


چرا کد را بازسازی کنیم؟ 

ریفکتورینگ راه‌حل تمامی مشکلات موجود در توسعه نرم افزار نیست؛ ولی می‌تواند ابزار قوی‌ای برای حل بخشی از مشکلات ناشی از طراحی و کد نویسی بد باشد. بارزترین کمک‌هایی که بازسازی کد به توسعه نرم افزار می‌کند به صورت زیر هستند: 

1-  طراحی نرم افزار را بهبود می‌بخشد 

زمانیکه کد به طور منظم بازسازی نشود، طراحی کلی آن رو به زوال خواهد رفت. هنگام ایجاد تغییر در بخشی از کد، ممکن است تنها هدف کوتاه مدت درست کار کردن آن بخش، مد نظر برنامه نویس باشد و به دلایل مختلفی مانند کمبود زمان، به نتایج بلند مدت آن تغییر توجه نشود. یکی از مزایای بازسازی کد، ایجاد تعادل بین تاثیرات کوتاه مدت و تاثیرات بلند مدت اعمال تغییرات بر روی کد است؛ به طوری که طراحی و تفکر کلی کد نویسی یک سیستم نرم افزاری، رو به بهبود برود. بهبود طراحی نرم افزار به درک کدهای آن، ایجاد آسان‌تر تغییرات و افزودن امکانات جدید، کمک بسیاری خواهد کرد. 

2-  درک کد را آسان‌تر می‌کند 

یکی از مزیت‌های کد خوب، درک آسان آن توسط سایر افراد است. هنگام بازسازی کد، با کدی مواجه هستیم که کار می‌کند، ولی نظم و طراحی درستی ندارد. درک آسان کد، یکی از کلیدی‌ترین نکات جهت سهولت نگهداری یک نرم افزار است.

 3- به یافتن خطاها کمک می‌کند 

یافتن تمامی باگ‌ها در زمان نوشتن یک کد، به نظر می‌رسد غیر ممکن باشد. اما اقدام به بازسازی کد می‌تواند قدمی باشد برای بازنگری و بهبود ساختار آن. زمانیکه ساختار کد خواناتر و منظم‌تر شد، یافتن برخی باگ‌ها نیز آسان‌تر خواهند شد. 

4-  سرعت توسعه را بالا می‌برد 

زمانیکه طراحی کد درست نباشد، ممکن است برای مدت کوتاهی قادر به افزودن امکانات محدودی باشیم. ولی هر چه بیشتر پیش برویم و طراحی کد را بازسازی نکنیم، سرعت عمل در اعمال تغییرات، رفع خطاها و افزودن امکانات کاهش خواهد یافت و قطعا به زمانی خواهیم رسید که با کدی غیر قابل نگهداری مواجه خواهیم بود. 

چه زمانی کد را بازسازی کنیم؟ 

روش‌های مختلفی برای زمان بندی انجام بازسازی کد مطرح است. یکی از پرکاربردترین زمان بندی‌ها برای انجام بازسازی کد به صورت زیر می‌باشد: 
  • زمانیکه امکان جدیدی اضافه می شود 
  • زمانیکه باگ یا اشکالی، رفع می شود 
  • زمان بازبینی کد یا Code review 
مطالب
Test Driven Development
نوشتن  تست برای نرم افزار امری ضروریست، چه پس از تولید نرم افزار چه در حین تولید، در کل به وسیله تست می‌توان از به وجود آمدن باگ‌ها در هنگام گسترش دادن برنامه تا حد قابل توجهی جلوگیری کرد.
از معروف ترین روش‌های تست می‌توان عناوین زیر را نام برد:
  • Unit test
  • Integration test
  • Smoke test
  • Regression test
  • Acceptance test

 Test Driven Development  یک پروسه تولید نرم افزار است که برای اولین بار توسط Kent_Beck معرفی شد.
TDD شامل 4 مرحله کلی است:
  1. نوشتن تست قبل از نوشتن کد.
  2. کامپایل کردن کد و اطمینان از Fail شدن کامپایل.
  3. پیاده سازی کد به طوری که تست ما پاس شود.
  4. Refactoring 
مراحل 4 گانه تست باید به صورت متناوب اجرا شوند.
البته بسیاری این 4 مورد را با عبارت  red/green/refactor نیز می‌شناسند.

همانطور که گفته شد در کل نوشتن تست باعث می‌شود که با اضافه شدن کدهای جدید در برنامه از به وجود آمدن باگ تا حدی جلوگیری شود.
اما مزایای TDD:
  • TDD باعث کاهش زمان تولید نرم افزار می‌شود.البته این حرف کمی عجیب است.(در ادامه بیشتر توضیح می‌دهم)
  • اعتماد شما نسبت به کد بالا می‌رود.
  • باگ کمتری تولید می‌شود بتابراین اعتماد مصرف کنندگان نیز نسبت به برنامه شما بالا می‌رود.
  • باعث نظم در کد می‌شود.
  • باعث انعطاف پذیری بیشتر در نرم افزار می‌شود.
  • ریسک تولید نرم افزار به علت باگ کمتر به حداقل می‌سد.
  • ...

البته باید به این نکته نیز اشاره داشت که مایکروسافت تحقیقی انجام داده که بر طبق آن نوشتن کد به روش TDD می‌تواند 15 تا 30 در صد روند تولید نرم افزار را افزایش دهد ولی در عوض بین 40 تا 90 در صد می‌تواند از به وجود آمدن باگ جدید جلوگیری کند.
در بسیاری از محیط‌های برنامه نویسی، نه تنها به این موضوع اهمیت داده نمی‌شود بلکه به طور کلی به اشتباه گرفته شده و حتی در پروژه هایی که تست نوشته می‌شود مفاهیم آن( که در بالا نام برده شده )جابجا شده و به اشتباه نام برده می‌شود.
هدف از نوشتن تست،تست کردن قطعات کوچک کد است,به عنوان مثال نباید تست به گونه ای باشد که یک متد با 300 خط کد را تحت پوشش قرار دهد.ابتدا باید کد به قطعات کوچک شکسته و بعد تست شود.
یک نمونه از متد تست:
        [Test]
        public void TestFullName()
        {
            
            Person person = new Person ();
            person.lname = "Doe";
            person.mname = "Roe";
            person.fname = "John";

            string actual = person.GetFullName();
            string expected = "John Roe Doe";
            Assert.AreEqual(expected, actual, ”The GetFullName returned a different Value”);
        }
هدف از نوشتن این پست مقدمه ای بر شروع سری پست‌های TDD باستفاده از MVC.Net و فریم ورک قدرت مند تست Nunit است. 
مطالب
ساختار داده‌های خطی Linear Data Structure قسمت اول
بعضی از داده‌ها ساختارهای ساده‌ای دارند و به صورت یک صف یا یک نوار ضبط به ترتیب پشت سر هم قرار می‌گیرند؛ مثل ساختاری که صفحات یک کتاب را نگهداری می‌کند. یکی از نمونه‌های این ساختارها، List، صف، پشته و مشتقات آن‌ها می‌باشند.

ساختار داده‌ها چیست؟
در اغلب اوقات، موقعی‌که ما برنامه‌ای را می‌نویسیم با اشیاء یا داده‌های زیادی سر و کار داریم که گاهی اوقات اجزایی را به آن‌ها اضافه یا حذف می‌کنیم و در بعضی اوقات هم آن‌ها را مرتب سازی کرده یا اینکه پردازش دیگری را روی آن‌ها انجام میدهیم. به همین دلیل بر اساس کاری که قرار است انجام دهیم، باید داده‌ها را به روش‌های مختلفی ذخیره و نگه داری کنیم و در اکثر این روش‌ها داده‌ها به صورت منظم و پشت سر هم در یک ساختار قرار می‌گیرند.
ما در این مقاله، مجموعه‌ای از داده‌ها را در قالب ساختارهای متفاوتی بر اساس منطق و قوانین ریاضیات مدیریت می‌کنیم و بدیهی است که انتخاب یک ساختار مناسب برای هرکاری موجب افزایش کارآیی و کارآمدی برنامه خواهد گشت. می‌توانیم در مقدار حافظه‌ی مصرفی و زمان، صرفه جویی کنیم و حتی گاهی تعداد خطوط کدنویسی را کاهش دهیم.

نوع داده انتزاعی Abstraction Data Type -ADT
به زبان خیلی ساده لایه انتزاعی به ما تنها یک تعریف از ساختار مشخص شده‌ای را می‌دهد و هیچگونه پیاده سازی در آن وجود ندارد. برای مثال در لایه انتزاعی، تنها خصوصیت و عملگر‌ها و ... مشخص می‌شوند. ولی کد آن‌ها را پیاده سازی نمی‌کنیم و این باعث می‌شود که از روی این لایه بتوانیم پیاده سازی‌های متفاوت و کارآیی‌های مختلفی را ایجاد کنیم.
ساختار داده‌های مختلف در برنامه نویسی:
  • خطی یا Linear: شامل ساختارهایی چون لیست و صف و پشته است: List ,Queue,Stack
  • درختی یا Tree-Like: درخت باینری ، درخت متوازن و B-Trees
  • Dictionary : شامل یک جفت کلید و مقدار است در جدول هش
  • بقیه: گراف‌ها، صف الویت، bags, Multi bags, multi sets
در این مقاله تنها ساختارهای خطی را دنبال می‌کنیم و در آینده ساختارهای پیچیده‌تری را نیز بررسی خواهیم کرد و نیاز است بررسی کنیم کی و چگونه باید از آن‌ها استفاده کنیم.
ساختارهای لیستی از محبوبترین و پراستفاده‌ترین ساختارها هستند که با اشیاء زیادی در دنیای واقعی سازگاری دارند. مثال زیر را در نظر بگیرید:
قرار است که ما از فروشگاهی خرید کنیم و هر کدام از اجناس (المان‌ها) فروشگاه را که در سبد قرار دهیم، نام آن‌ها در یک لیست ثبت خواهد شد و اگر دیگر المان یا جنسی را از سبد بیرون بگذاریم، از لیست خط خواهد خورد.
همان که گفتیم یک ADT میتواند ساختارهای متفاوتی را پیاده سازی کند. یکی از این ساختارها اینترفیس system.collection.IList است که پیاده سازی آن منجر به ایجاد یک کلاس جدید در سیستم دات نت خواهد شد. پیاده سازی اینترفیس‌ها در سی شارپ، قوانین و قرادادهای خاص خودش را دارد و این قوانین شامل مجموعه‌ای از متد‌ها و خصوصیت‌هاست. برای پیاده سازی هر کلاسی از این اینترفیس‌ها باید این متدها و خصوصیت‌ها را هم در آن پیاده کرد.
با ارث بری از اینترفیس system.collection.IList باید رابط‌های زیر در آن پیاده سازی گردد:
(void Add(object    افزودن المان به آخر لیست 
(void Remove(object   حذف یک المان خاص از لیست  
 ()void Clear    حذف کلیه المان‌ها
( bool Contains(object   شامل این داده میشود یا خیر؟
( void RemoveAt(int  حذف یک المان بر اساس  جایگاه یا اندیسش 
(void Insert(int, object
 افزودن یک المان در جایگاهی (اندیس) خاص بر اساس مقدار position 
(int IndexOf(object اندیس یا جایگاه یک عنصر را بر می‌گرداند
 [this[int ایندکسر ، برای دستریس به عنصر در اندیس مورد نظر

لیست‌های ایستا static Lists
آرایه‌ها می‌توانند بسیاری از خصوصیات ADT را پیاده کنند ولی تفاوت بسیار مهم و بزرگی با آن‌ها دارند و آن این است که لیست به شما اجازه می‌دهد به هر تعدادی که خواستید، المان‌های جدیدی را به آن اضافه کنید؛ ولی یک آرایه دارای اندازه‌ی ثابت Fix است. البته این نکته قابل تامل است که پیاده سازی لیست با آرایه‌ها نیز ممکن است و باید به طور خودکار طول آرایه را افزایش دهید. دقیقا همان اتفاقی که برای stringbuilder در این مقاله توضیح دادیم رخ می‌دهد. به این نوع لیست‌ها، لیست‌های ایستایی که به صورت آرایه ای توسعه پذیر پیاده سازی میشوند می‌گویند. کد زیر پیاده سازی چنین لیستی است:
public class CustomArrayList<T>
{
    private T[] arr;
    private int count;
 
    public int Count
    {
        get
        {
            return this.count;
        }
    }
 
    private const int INITIAL_CAPACITY = 4;
 
    public CustomArrayList(int capacity = INITIAL_CAPACITY)
    {
        this.arr = new T[capacity];
        this.count = 0;
    }
در کد بالا یک آرایه با طول متغیر INITIAL_CAPACITY که پیش فرض آن را 4 گذاشته ایم می‌سازیم و از متغیر count برای حفظ تعداد عناصر آرایه استفاده می‌کنیم و اگر حین افزودن المان جدید باشیم و count بزرگتر از INITIAL_CAPACITY رسیده باشد، باید طول آرایه افزایش پیدا کند که کد زیر نحوه‌ی افزودن المان جدید را نشان می‌دهد. استفاده از حرف T بزرگ مربوط به مباحث Generic هست. به این معنی که المان ورودی می‌تواند هر نوع داده‌ای باشد و در آرایه ذخیره شود.
public void Add(T item)
{
    GrowIfArrIsFull();
    this.arr[this.count] = item;
    this.count++;
} 

public void Insert(int index, T item)
{
    if (index > this.count || index < 0)
    {
        throw new IndexOutOfRangeException(
            "Invalid index: " + index);
    }
    GrowIfArrIsFull();
    Array.Copy(this.arr, index,
        this.arr, index + 1, this.count - index);
    this.arr[index] = item;
    this.count++;
} 

private void GrowIfArrIsFull()
{
    if (this.count + 1 > this.arr.Length)
    {
        T[] extendedArr = new T[this.arr.Length * 2];
        Array.Copy(this.arr, extendedArr, this.count);
        this.arr = extendedArr;
    }
}
 
public void Clear()
{
    this.arr = new T[INITIAL_CAPACITY];
    this.count = 0;
}
در متد Add خط اول با تابع GrowIfArrIsFull بررسی می‌کند آیا خانه‌های آرایه کم آمده است یا خیر؟ اگر جواب مثبت باشد، طول آرایه را دو برابر طول فعلی‌اش افزایش می‌دهد و خط دوم المان جدیدی را در اولین خانه‌ی جدید اضافه شده قرار می‌دهد. همانطور که می‌دانید مقدار count همیشه یکی بیشتر از آخرین اندیس است. پس به این ترتیب مقدار count همیشه به  خانه‌ی بعدی اشاره می‌کند و سپس مقدار count به روز میشود. متد دیگری که در کد بالا وجود دارد insert است که المان جدیدی را در اندیس داده شده قرار می‌دهد. جهت این کار از سومین سازنده‌ی array.copy استفاده می‌کنیم. برای این کار آرایه مبدا و مقصد را یکی در نظر می‌گیریم و از اندیس داده شده به بعد در آرایه فعلی، یک کپی تهیه کرده و در خانه‌ی بعد اندیس داده شده به بعد قرار می‌دهیم. با این کار آرایه ما یک واحد از اندیس داده شده یک خانه، به سمت جلو حرکت می‌کند و الان خانه index و index+1 دارای یک مقدار هستند که در خط بعدی مقدار جدید را داخل آن قرار می‌دهیم و متغیر count را به روز می‌کنیم. باقی موارد را چون پردازش‌های جست و جو، پیدا کردن اندیس یک المان و گزینه‌های حذف، به خودتان واگذار می‌کنم.

لیست‌های پیوندی Linked List - پیاده سازی پویا
همانطور که دیدید لیست‌های ایستا دارای مشکل بزرگی هستند و آن هم این است که با انجام هر عملی بر روی آرایه‌ها مانند افزودن، درج در مکانی خاص و همچنین حذف (خانه ای در آرایه خالی خواهد شد و خانه‌های جلوترش باید یک گام به عقب برگردند) نیاز است که خانه‌های آرایه دوباره مرتب شوند که هر چقدر میزان داده‌ها بیشتر باشد این مشکل بزرگتر شده و ناکارآمدی برنامه را افزایش خواهد داد.
این مشکل با لیست‌های پیوندی حل می‌گردد. در این ساختار هر المان حاوی اطلاعاتی از المان بعدی است و در لیست‌های پیوندی دوطرفه حاوی المان قبلی است. شکل زیر نمایش یک لیست پیوندی در حافظه است:

برای پیاده سازی آن به دو کلاس نیاز داریم. کلاس ListNode برای نگهداری هر المان و اطلاعات المان بعدی به کار می‌رود که از این به بعد به آن Node یا گره می‌گوییم و دیگری کلاس <DynamicList<T برای نگهداری دنباله ای از گره‌ها و متدهای پردازشی آن.

public class DynamicList<T>
{
    private class ListNode
    {
        public T Element { get; set; }
        public ListNode NextNode { get; set; }
 
        public ListNode(T element)
        {
            this.Element = element;
            NextNode = null;
        }
 
        public ListNode(T element, ListNode prevNode)
        {
            this.Element = element;
            prevNode.NextNode = this;
        }
    }
 
    private ListNode head;
    private ListNode tail;
    private int count;
 
    // …
}

از آن جا که نیازی نیست کاربر با کلاس ListNode آشنایی داشته باشد و با آن سر و کله بزند، آن را داخل همان کلاس اصلی به صورت خصوصی استفاده می‌کنیم. این کلاس دو خاصیت دارد؛ یکی برای المان اصلی و دیگر گره بعدی. این کلاس دارای دو سازنده است که اولی تنها برای عنصر اول به کار می‌رود. چون اولین بار است که یک گره ایجاد می‌شود، پس باید خاصیت NextNode یعنی گره بعدی در آن Null باشد و سازنده‌ی دوم برای گره‌های شماره 2 به بعد به کار می‌رود که همراه المان داده شده، گره قبلی را هم ارسال می‌کنیم تا خاصیت NextNode آن را به گره جدیدی که می‌سازیم مرتبط سازد. سه خاصیت کلاس اصلی به نام‌های Count,Tail,Head به ترتیب برای اشاره به اولین گره، آخرین گره و تعداد گره‌ها، به کار می‌روند که در ادامه کد آن‌را در زیر می‌بینیم:

public DynamicList()
{
    this.head = null;
    this.tail = null;
    this.count = 0;
}

public void Add(T item)
{
    if (this.head == null)
    {
        this.head = new ListNode(item);
        this.tail = this.head;
    }
    else
    {
        ListNode newNode = new ListNode(item, this.tail);
        this.tail = newNode;
    }
    this.count++;
}

سازنده مقدار دهی پیش فرض را انجام می‌دهد. در متد Add المان جدیدی باید افزوده شود؛ پس چک می‌کند این المان ارسالی قرار است اولین گره باشد یا خیر؟ اگر head که به اولین گره اشاره دارد Null باشد، به این معنی است که این اولین گره است. پس اولین سازنده‌ی کلاس ListNode را صدا می‌زنیم و آن را در متغیر Head قرار می‌دهیم و چون فقط همین گره را داریم، پس آخرین گره هم شناخته می‌شود که در tail نیز قرار می‌گیرد. حال اگر فرض کنیم المان بعدی را به آن بدهیم، اینبار دیگر Head برابر Null نخواهد بود. پس دومین سازنده‌ی ListNode صدا زده می‌شود که به غیر از المان جدید، باید آخرین گره قبلی هم با آن ارسال شود و گره جدیدی که ایجاد می‌شود در خاصیت NextNode آن نیز قرار بگیرد و در نهایت گره ایجاد شده به عنوان آخرین گره لیست در متغیر Tail نیز قرار می‌گیرد. در خط پایانی هم به هر مدلی که المان جدید به لیست اضافه شده باشد متغیر Count به روز می‌شود.

public T RemoveAt(int index)
{
    if (index >= count || index < 0)
    {
        throw new ArgumentOutOfRangeException(
            "Invalid index: " + index);
    }
 
    int currentIndex = 0;
    ListNode currentNode = this.head;
    ListNode prevNode = null;
    while (currentIndex < index)
    {
        prevNode = currentNode;
        currentNode = currentNode.NextNode;
        currentIndex++;
    }
 

    RemoveListNode(currentNode, prevNode);
 
    return currentNode.Element;
}

private void RemoveListNode(ListNode node, ListNode prevNode)
{
    count--;
    if (count == 0)
    {
        this.head = null;
        this.tail = null;
    }
    else if (prevNode == null)
    {
        this.head = node.NextNode;
    }
    else
    {
        prevNode.NextNode = node.NextNode;
    }

    if (object.ReferenceEquals(this.tail, node))
    {
        this.tail = prevNode;
    }
}

برای حذف یک گره شماره اندیس آن گره را دریافت می‌کنیم و از Head، گره را بیرون کشیده و با خاصیت nextNode آنقدر به سمت جلو حرکت می‌کنیم تا متغیر currentIndex یا اندیس داده شده برابر شود و سپس گره دریافتی و گره قبلی آن را به سمت تابع RemoveListNode ارسال می‌کنیم. کاری که این تابع انجام می‌دهد این است که مقدار NextNode گره فعلی که قصد حذفش را داریم به خاصیت Next Node گره قبلی انتساب می‌دهد. پس به این ترتیب پیوند این گره از لیست از دست می‌رود و گره قبلی به جای اشاره به این گره، به گره بعد از آن اشاره می‌کند. مابقی کد از قبیل جست و برگردان اندیس یک عنصر و ... را به خودتان وگذار می‌کنم.

در روش‌های بالا ما خودمان 2 عدد ADT را پیاده سازی کردیم و متوجه شدیم برای دخیره داده‌ها در حافظه روش‌های متفاوتی وجود دارند که بیشتر تفاوت آن در مورد استفاده از حافظه و کارآیی این روش هاست.


لیست‌های پیوندی دو طرفه Doubly Linked_List

لیست‌های پیوندی بالا یک طرفه بودند و اگر ما یک گره را داشتیم و می‌خواستیم به گره قبلی آن رجوع کنیم، اینکار ممکن نبود و مجبور بودیم برای رسیدن به آن از ابتدای گره حرکت را آغاز کنیم تا به آن برسیم. به همین منظور مبحث لیست‌های پیوندی دو طرفه آغاز شد. به این ترتیب هر گره به جز حفظ ارتباط با گره بعدی از طریق خاصیت NextNode، ارتباطش را با گره قبلی از طریق خاصیت PrevNode نیز حفظ می‌کند.

این مبحث را در اینجا می‌بندیم و در قسمت بعدی آن را ادامه می‌دهیم.

مطالب
تعریف انبار داده Data Warehouse
در این مقاله در ادامه‌ی مطلبی که تحت عنوان «آموزش مفاهیم Data Warehouse» توسط آقای شاه قلی منتشر شده بود، به بررسی بیشتر مفهوم انبار داده ( Data Warehouse ) پرداخته می‌شود.

مقدمه
در سازمان ها، داده‌ها و اطلاعات معمولاً به دو شکل در سیستم‌ها پیاده سازی می‌گردد:
• سیستم‌های عملیاتی  OLTP:
این سیستم‌ها باعث می‌گردند تا چرخ کسب و کار بگردد. وجود این سیستم‌ها سبب می‌شود تا داده‌های مربوط به کسب و کار، به بانک اطلاعاتی وارد شوند. این سیستم‌ها عموماً:
o به دلیل کوتاهی عملیات دارای سرعت قابل توجهی می‌باشند.
o محیطی جهت ورود داده‌ها می‌باشند.
o معمولاً اپراتورها، استفاده کننده‌های آن هستند.
• سیستم‌های اطلاعاتی OLAP ، DW/BI، DSS :
این سیستم‌ها باعث می‌گردند تا چرخش کسب و کار را بنگرید. فلسفه بکارگیری این سیستم‌ها در سازمان این است که اطلاعات مورد نیاز مدیران، از درون داده‌های سیستم‌های عملیاتی موجود، استخراج گردد. این سیستم‌ها عموماً:
o به دلیل آنالیز حجم انبوهی از داده ها، معمولاً کندتر از سیستم‌های عملیاتی می‌باشند.
o محیطی جهت تولید گزارشات تحلیلی و آماری می‌باشند.
o معمولاً مدیران و تصمیم گیرندگان سازمان ها، استفاده کنندگان آن می‌باشند.
سیستم‌های عملیاتی در جامعه ما سابقه بیشتری داشته و متخصصین فناوری اطلاعات عموماً با طراحی و تولید چنین سیستم هایی آشنایی کافی دارند. متاسفانه جایگاه سیستم‌های اطلاعاتی در جامعه ما کمتر شناخته شده و متخصصین فناوری اطلاعات بندرت با مفاهیم و نحوه پیاده سازی آن آشنایی دارند.
این نکته حائز اهمیت است که سیستم‌های اطلاعاتی یک سیستم یا محصول نیستند که بتوان آنها را خریداری کرد. بلکه یک راهبرد (Solution, Approach) هستند و در حقیقت هر راهبردی مربوط به یک نوع کسب و کار (Business) و یا سازمان می‌باشد و نمی‌توان فرمول واحدی را برای حتی سازمان‌های مشابه، ارائه نمود.

گارتنر در ابتدای سال 2011 گزارشی را منتشر کرده که نشان میدهد بازار BI با 9.7 % رشد، ارزشی بالغ بر 10.8 بیلیون دلار داشته، ولی متاسفانه پروژه‌های آن به طور متوسط با 75% شکست مواجه شده است. در حالیکه 4 سال پیش، این رقم حدود 50% بود. این موسسه BI را پنجمین اولویت مدیران IT ذکر کرده است.

مفاهیم و مباحث مربوط به Data Warehouse به اواسط دهه 1980 برمی گردد، به زمانی که IBM تحقیقاتی را در این زمینه شروع کرد و نتیجه آنرا «Information Warehouse» نامید و هنوز هم در برخی منابع از این واژه بجای Data Warehouse استفاده می‌شود. از این پس برای راحتی از اختصار DW بجای Data Warehouse استفاده می‌شود. انبارهای داده جهت رفع نیاز رو به رشد مدیریت داده‌ها و اطلاعات سازمانی که توسط پایگاه‌های داده سیستم‌های عملیاتی غیر ممکن بود، ساخته شدند.

انبار داده به مجموعه ای از داده‌ها گفته می‌شود که از منابع مختلف اطلاعاتی سازمان جمع آوری، دسته بندی و ذخیره می‌شود. در واقع یک انبار داده مخزن اصلی کلیه داده‌های حال و گذشته یک سازمان می‌باشد که برای همیشه جهت انجام عملیات گزارش گیری و آنالیز در دسترس مدیران می‌باشد. انباره‌های داده حاوی داده هایی هستند که به مرور زمان از سیستم‌های عملیاتی آنلاین سازمان، استخراج می‌شوند. بنابراین سوابق کلیه اطلاعات و یا بخش عظیمی از آنها را می‌توان در انباره داده‌ها مشاهده نمود.
از آنجائیکه انجام عملیات آماری و گزارشات پیچیده دارای بار کاری بسیار سنگینی برای سرورهای پایگاه داده می‌باشند، وجود انبار داده سبب می‌گردد که این گونه عملیات تاثیری بر فعالیت برنامه‌های کاربردی سازمان نداشته باشد.
همانگونه که پایگاه داده سیستم‌های عملیاتی سازمان (برنامه‌های کاربردی) به گونه ای طراحی می‌شوند که انجام تغییر، حذف و اضافه داده به سرعت صورت پذیرد، در مقابل انبار داده‌ها دارای معماری ویژه ای می‌باشند که موجب تسریع انجام عملیات آماری و گزارش گیری می‌شود. در حقیقت می‌توان اینگونه بیان نمود که انباره داده یک مخزن فعال و هوشمند از اطلاعات است که قادر است اطلاعات را از محیط‌های گوناگون جمع آوری و مدیریت کرده و نهایتا پخش نماید و در صورت لزوم نیز سیاست‌های تجاری را روی آنها اجرا نماید.

Bill Inmon:
او را پدر DW می‌نامند، از دیدگاه او DW هسته مرکزی چیزی است که او آنرا CIF اختصار (Corporate Information Factory) می‌نامد، که پایه و اساس BI بر مبنای آن قرار دارد. وی از طرفداران Top-Down Design می‌باشد که معتقد است در زمان طراحی باید با دیدی سازمانی، CIF را مدل سازی، ولی بصورت دپارتمانی پیاده سازی کرد (Think Globally, Implement Locally). در این نوع طراحی از DW به Data Mart خواهیم رسید.

Ralph Kimball Ph.D:
به نظر وی DW چیزی نیست جز یک کپی از داده‌های عملیاتی که به طرز خاصی برای گزارشات و تحلیل‌های آماری، آماده و ساختمند شده است. به بیان دیگر DW سیستمی است جهت استخراج، پالایش، تطبیق و تحویل اطلاعات منابع داده ای به یک بانک اطلاعاتی Dimensional و اجرای Query و گزارشات آماری و تحلیلی برای اهداف تصمیم گیری و استراتژیک سازمان.
وی معرفی کننده یکی از اساسی‌ترین مفاهیم طراحی یعنی Dimensional Modeling است؛ ماحصل چنین ایده ای، اساس شکل گیری مدلی است که امروزه کارشناسان آنرا به نام Cube می‌شناسند. وی از طرفداران Bottom-Up Design است که در این نگرش از Data Mart به DW می‌رسیم. این روش به نظر عملی‌تر از روشی می‌باشد که به یکباره DW جامع و کامل برای اهداف سازمانی طراحی و پیاده سازی گردد.

تعریف انبار داده:
W.H.Inmon پدر DW آنرا چنین تعریف می‌کند:
The Data Warehouse is a collection of Integrated, Subject-Oriented databases designed to support the DSS function, where each unit of data is Non-Volatile and relevant to some moment in Time
از تعریف فوق دو مورد دیگر نیز به طور ضمنی استنباط می‌شود:
o انبار داده به طور فیزیکی، کاملاً جدا از سایر سیستم‌های عملیاتی است.
o داده‌های DW مجموعه ای Aggregated و Atomic از داده‌های تراکنش‌های سیستم‌های عملیاتی است که سوای کاربرد آنها در سیستم‌های عملیاتی، برای مقاصد مدیریتی نیز استفاده خواهد شد.

به بیان دیگر DW راهبردی است که دسترسی آسان به اطلاعات درست (Right Information)، در زمانی درست (Right Time) ، به کاربران درست (Right Users)، را فراهم می‌آورد تا «تصمیم گیری سازمانی» قابل انجام باشد. DW صرفاً یک محصول نرم افزاری و یا سخت افزاری نیست که بتوان آنرا خریداری نمود بلکه فراتر از آن و در حقیقت یک محیط پردازشی می‌باشد که کاربران می‌توانند از درون آن اطلاعات مورد نیاز خود را بیابند.
DW اطلاعات خود را از سایر بانک‌های اطلاعاتی از نوع OLTP و یا سایر DW‌های لایه پایین‌تر و به صورت دسته ای (Batch) و یا انبوه (Bulk Loading) جمع آوری می‌کند. یک DW به صورت سنتی باید شامل داده‌های Historic سازمان باشد و می‌توان اینگونه بیان نمود که در DW هرچه داده‌های قدیمی‌تری موجود باشد، اعتبار تحلیل‌های آماری سیستم افزایش خواهد یافت.

داده‌های سیستم عملیاتی را نمی‌توان بلافاصله درون بانک اطلاعاتی DW لود نمود، چنین داده هایی باید آماده سازی، پالایش و همگون گردند تا شرایط لود در DW را داشته باشند. حداقل کاری که انتظار داریم یک DW در مورد داده‌ها برای ما برآورده سازد شامل موارد زیر است:
o استخراج داده‌ها از منابع مختلف (مبدإ)
o تبدیل داده‌ها به فرمتی یکسان
o لود داده‌ها به جداول مربوطه (مقصد)
با هر با اجرای پروسه فوق یکی از سه مورد زیر، بسته به نیاز طراحی و محدودیت‌های تکنولوژی رخ خواهد داد:
o تمام داده‌ها در DW با داده‌های جدید جایگزین خواهند گردید(Full Load, Initial Load, Full Refresh).
o داده‌های جدید به داده‌های موجود اضافه خواهند گردید (Incremental Load (Inserted data.
o نسخه جدیدی از داده‌های کنونی به سیستم اضافه خواهند گردید (Incremental Load (Updated data.


ویژگی‌های داده‌های درون DW
داده‌های DW از نگاه Inmon دارای 4 ویژگی اصلی زیر هستند:
o فقط خواندنی (Non-Volatile):
هیچ رکوردی و یا داده ای Update نخواهد شد و صرفاً رکوردهایی که محتوای مقادیر جدید داده‌ها هستند، به سیستم اضافه خواهند شد.
o موضوع گرا (Subject-Oriented):
منظور از «موضوع» پایه‌های اساسی یک کسب و کار هستند، به شکلی که با حذف یکی از این پایه ها، شاید ماهیت آن کسب و کار از ریشه دگرگون شود. برای مثال موضوعاتی چون «مشتری» و یا «بیمه نامه» برای شرکت‌های بیمه.
o جامع (Integrated):
باید تمامی کدهایی که در سیستم‌های عملیاتی وجود دارند و معانی یکسانی دارند، برای مثال کد جنسیت، در DW به یک روش ذخیره و نمایش داده شوند.
o زمانگرا (Time Variant):
هر رکورد باید حاوی فیلد و یا کلیدی باشد که نمایانگر این باشد که این رکورد در چه زمانی ایجاد، استخراج و ذخیره شده است. از آنجا که داده‌های درون سیستم‌های عملیاتی آخرین و به روز‌ترین داده هر سیستم میباشد، نیازی به وجود چنین عنصری در سیستم‌های OLTP احساس نمی‌گردد، ولی چون در DW تمام داده‌های نسخ قدیمی داده‌های سیستم‌های عملیاتی موجود می‌باشد، باید حتماً مشخص گردد که هر داده ای در سیستم‌های عملیاتی در چه زمانی، چه مقادیری داشته است. این عنصر زمانی کمک می‌کند تا بتوانیم:
o گذشته را آنالیز کنیم.
o اطلاعات مربوط به حال حاضر را بدست آوریم.
o آینده را پیش بینی کنیم.

منبع: کتاب آقای خشایار جام سحر با عنوان بانک داده تجمیعی
Comparison  Kimball vs. Inmon

Inmon
Continuous & Discrete Dimension Management
Define data management via dates in your data
Continuous time  
  When is a record active
Start and end dates
Discrete time  
 A point in time
  Snapshot
 
Kimball
Slowly Changing Dimension Management
Define data management via versioning
Type I  
  Change record as required
  No History
Type II  
  Manage all changes
 History is recorded
Type III  
  Some history is parallel
  Limit to defined history


Kimball 
Inmon 
Business-Process-Oriented
Stresses Dimensional Model, Not E-R
Subject-Oriented
Integrated
Non-Volatile
Time-Variant
Bottom-Up and Evolutionary 
Top-Down 
Integration Achieved via Conformed Dimensions 
Integration Achieved via an Assumed Enterprise Data Model 
Star Schemas Enforce Query Semantics 
Characterizes Data marts as Aggregates 
Kimball
Inmon

Bottom-up
Top-down
Overall approach
Data marts model a business process;enterprise is achieved with conformed dims
Enterprise-wide DW feeds departmental DBs
Architectural structure
Fairly simple
Quite complex
Complexity of method
Process oriented
Subject or data driven
Data orientation
Dimensional modeling; departs from traditional relational modeling
Traditional  ERDs and DIS
Tools
High
Low
End user accessibility
Slowly Changing
Continuous & Discrete
Timeframe
Dimension keys
Timestamps
Methods
مطالب
Accord.NET #2
در مطلب قبل با ساختار کلی کتابخانه Accord.NET آشنا شدیم. در این قسمت پس از فراگیری نحوه‌ی فراخوانی کتابخانه، به اجرای اولین برنامه‌ی کاربردی به کمک آکورد دات نت می‌پردازیم.

برای استفاده از Accord.NET می‌توان به یکی از دو صورت زیر اقدام کرد :
  • دریافت آخرین نسخه‌ی متن باز و یا dll‌های پروژه‌ی Accord.NET از طریق گیت هاب
  •  نصب از طریق NuGet (با توجه به این که در چارچوب Accord.NET کتابخانه‌های متنوعی وجود دارند و در هر پروژه نیاز به نصب همگی آنها نیست، فضای نام‌های مختلف در بسته‌های مختلف نیوگت قرار گرفته‌اند و برای نصب هر کدام می‌توانیم یکی از فرمان‌های زیر را استفاده کنیم)

PM> Install-Package Accord.MachineLearning
PM> Install-Package Accord.Imaging  
PM> Install-Package Accord.Neuro
در اولین برنامه‌ی کاربردی خود می‌خواهیم الگوریتم ماشین بردار پشتیبان یا support vector machine را که یکی از روش‌های یادگیری بانظارت است برای طبقه‌بندی مورد استفاده قرار دهیم.
  نکته : روش‌های یادگیری به دو دسته کلی با نظارت (Supervised learning) و بدون نظارت (Unsupervised learning)  تقسیم بندی می‌شوند. در روش با نظارت، داده‌ها دارای برچسب یا label هستند و عملا نوع کلاس‌ها مشخص هستند و اصطلاحا برای طبقه بندی (Classification) استفاده می‌شوند. در روش بدون نظارت، داده‌هایمان بدون برچسب هستند و فقط تعداد کلاس ها و نیز یک معیار تفکیک پذیری مشخص است و برای خوشه بندی (Clustering) استفاده می‌شوند.

عملکرد SVM یا ماشین بردار پشتیبان به صورت خلاصه به این صورت است که با در نظر گرفتن یک خط یا ابرصفحه جدا کننده فرضی، ماشین یا دسته بندی را ایجاد می‌کند که از نقاط ابتدایی کلاس‌های مختلف که بردار پشتیبان یا SV نام دارند، بیشترین فاصله را دارند و در نهایت دادها را به دو کلاس مجزا تقسیم می‌کند.

در تصویر بالا مقداری خطا مشاهده می‌شود که با توجه با خطی بودن جداساز مجبور به پذیرش این خطا هستیم.

در نسخه‌های جدیدتر این الگوریتم یک Kernel ( از نوع خطی Linear ، چند جمله‌ای Polynomial، گوسین Gaussian و یا ...) برای آن در نظر گرفته شد که عملا نگاشتی را بین خط (نه صرفا فقط خطی) را با آن ابرصفحه جداکننده برقرار کند. در نتیجه دسته بندی با خطای کمتری را خواهیم داشت. (اطلاعات بیشتر در + و همچنین مطالب دکتر سعید شیری درباره SVM در +

یک مثال مفهومی : هدف اصلی در این مثال شبیه سازی تابع XNOR به Kernel SVM می‌باشد.

برای شروع کار از فضای نام MachineLearning استفاده می‌کنیم و بسته‌ی نیوگت مربوطه را فرخوانی می‌کنیم. پس از اجرا، مشاهده می‌کنیم که فضای نام‌های Accord.Math و Accord.Statistics نیز به پروژه اضافه می‌شود.

در ابتدا مقادیر ورودی و برچسب‌ها را تعریف می‌کنیم

            // ورودی
            double[][] inputs =
            {
                new double[] { 0, 0 }, // 0 xnor 0: 1 (label +1)
                new double[] { 0, 1 }, // 0 xnor 1: 0 (label -1)
                new double[] { 1, 0 }, // 1 xnor 0: 0 (label -1)
                new double[] { 1, 1 }  // 1 xnor 1: 1 (label +1)
            };

            // خروجی دسته بند ماشین بردار پشتیبان باید -1 یا +1 باشد
            int[] labels =
            {
                // 1,  0,  0, 1
                   1, -1, -1, 1
            };
پس از انتخاب نوع کرنل یا هسته، دسته‌بندمان را تعریف می‌کنیم :

            // ساخت کرنل
            IKernel kernel = createKernel();

            // ساخت دسته بند به کمک کرنل انتخابی و تنظیم تعداد ویژگی‌ها ورودی‌ها به مقدار 2
            KernelSupportVectorMachine machine = new KernelSupportVectorMachine(kernel, 2);
تابع ساخت کرنل :
        private static IKernel createKernel()
        {
            //var numPolyConstant = 1;
            //return new Linear(numPolyConstant);            

            //var numDegree = 2;
            //var numPolyConstant = 1;
            //return new Polynomial(numDegree, numPolyConstant);

            //var numLaplacianSigma = 1000;
            //return new Laplacian(numLaplacianSigma);

            //var numSigAlpha = 7;
            //var numSigB = 6;
            //return new Sigmoid(numSigAlpha, numSigB);

            var numSigma = 0.1;
            return new Gaussian(numSigma);
        }
و سپس بایستی این Classifier را به یک الگوریتم یادگیری معرفی کنیم. الگوریتم بهینه سازی حداقلی ترتیبی (Sequential Minimal Optimization) یکی از از روش‌های یادگیری است که برای حل مسائل بزرگ درجه دوم بکار می‌رود و معمولا برای آموزش دسته بندی SVM از همین آموزنده استفاده می‌شود :
            // معرفی دسته بندمان به الگوریتم یادگیری SMO
            SequentialMinimalOptimization teacher_smo = new SequentialMinimalOptimization(machine_svm, inputs, labels);

            // اجرای الگوریتم یادگیری
            double error = teacher_smo.Run();
            Console.WriteLine(string.Format("error rate : {0}", error));
در نهایت می‌توانیم به عنوان نمونه برای آزمایش یکی از مقادیر ورودی را مورد بررسی قرار دهیم و خروجی کلاس را مشاهده کنیم.
            // بررسی یکی از ورودی‌ها 
            var sample = inputs[0];
            int decision = System.Math.Sign(machine_svm.Compute(sample));
            Console.WriteLine(string.Format("result for sample '0 xnor 0' is : {0}", decision));

از این ساختار می‌توانیم برای طبقه بندی‌های با دو کلاس استفاده کنیم؛ مانند تشخیص جنسیت (مرد و زن) از طریق تصویر، تشخیص جنسیت (مرد و زن) از طریق صدا، تشخیص داشتن یا نداشتن یک بیماری خاص و ... . برای ایجاد هر کدام از این برنامه‌ها نیاز به یک مجموعه داده، استخراج ویژگی از آن و سپس نسبت دادن آن به الگوریتم داریم. در جلسات آینده با مفاهیم استخراج ویژگی و SVM چند کلاسه آشنا خواهیم شد.

دریافت کد

مطالب
Performance در AngularJS قدم اول
به احتمال زیاد برنامه نویسانی که از AngularJS در پروژه‌های خود استفاده می‌کنند، در برخی موارد کند شدن در Rendering و Binding صفحات را تجربه کرده اند. این مقاله مطالب خیلی ساده و راحتی در خصوص استفاده درست و بهینه از Binding می‌باشد.

قدم اول و مهم بحث on time binding هست:
در برخی موارد ما اطلاعاتی که فقط یکبار Bind می‌شوند و در طول اجرا هیچ تغییری نمی‌کنند را درست Bind نمی‌کنیم. برای مثال فرض کنید می‌خواهیم عنوان صفحه را در یک تگ h1 نمایش دهیم. به صورت معمول همه‌ی ما از روش زیر استفاده می‌کنیم.
<h1>{{title}}</h1>

اما این روش درست نیست! چرا؟

AngularJS برای Rendering طرف View از Watcher‌ها استفاده می‌کند که در هر لحظه Binding‌ها را رصد می‌کنند و در صورت تغییر قسمت مورد نظر از View، دوباره Render می‌شود. بحث اصلی خود Watcher‌ها هستند که حتی Binding‌هایی که هیچ وقت مقادیر آنها تغییر نمی‌کنند نیز رصد می‌شود و این باعث کندی عمل Watching در AngularJS می‌شود. در AngularJS نسخه‌ی 1.3 به بعد امکانی فراهم شده‌است که شما بتوانید Binding‌هایی را که یک بار بیشتر تغییر نمی‌کنند، مشخص کنید. به کد زیر دقت کنید:
<h1>{{::title}}</h1>
بله دقیقا به همین راحتی! شما با اضافه کردن :: در ابتدای هر Binding مشخص می‌کنید که این قسمت از View فقط یک بار Render شود. این عمل باعث می‌شود Watcher AngularJS کار کمتری انجام دهد.

به زودی مقاله‌های بیشتری در خصوص Performance در AngularJS خواهم نوشت. امیدوارم لذت برده باشید.

مطالب
کار با Docker بر روی ویندوز - قسمت اول - Container چیست؟
نصب بسیاری از نرم افزارها، کاری مشکل است

فرض کنید می‌خواهید یک فایل ویدیویی با قالب m4v را بر روی تلویزیون خود نمایش دهید؛ اما تلویزیون شما تنها از فایل‌های mp4، پشتیبانی می‌کند. برای رفع این مشکل نیاز به یک نرم افزار تبدیل کننده‌ی فرمت‌های ویدیویی را داریم و یکی از قوی‌ترین‌های آن‌ها، FFmpeg است. اگر به سایت آن مراجعه کنید، لینک دانلود آن به یک فایل tar.bz2 ختم می‌شود که حاوی سورس آن است! هرچند در قسمتی از آن، فایل‌های نهایی کامپایل شده‌ی مخصوص سیستم عامل‌های مختلف را نیز می‌توانید پیدا کنید، اما باز هم با انبوهی از لینک‌ها مواجه خواهید شد که دقیقا مشخص نیست کدام را باید دریافت کرد و آیا نگارش دریافت شده، با سیستم عامل فعلی سازگار است یا خیر.
همانطور که مشاهده می‌کنید، هنوز هم شروع به کار با نرم افزارهای مختلف برای بسیاری از کاربران، کاری مشکل و طاقت‌فرسا است. در اینجا شاید این سؤال مطرح شود که این موضوع چه ربطی به Docker (Docker) و کانتینرها (Containers) دارد؟ تمام هیاهویی که پیرامون Docker ایجاد شده‌است، در اصل جهت ساده سازی نصب، راه اندازی و تعامل با نرم افزارهای مختلف است.


چالش‌های پیش روی یافتن نرم افزارهای مناسب


این روزها بیشتر نرم افزارهای مورد نیاز خود را از اینترنت تهیه می‌کنیم. اولین مرحله‌ی آن و اولین چالشی که در اینجا وجود دارد، یافتن نرم افزاری با مشخصات مدنظر است. برای نمونه حتی اگر با FFmpeg آشنا نیز باشید، به سادگی مشخص نیست که برای سیستم عامل و معماری خاص پردازنده‌ی آن، دقیقا کدام نگارش آن‌را از چه آدرسی می‌توان دریافت کرد. پس از یافتن نرم افزار و نگارش مدنظر، مرحله‌ی بعد، استخراج محتویات آن از یک فایل zip و یا اجرای برنامه‌ی نصاب آن است و مرحله‌ی آخر، اجرای این برنامه می‌باشد.
بنابراین اولین چالش، یافتن محلی برای دریافت نرم افزار است:
-  این روزها برای بعضی از سکوهای کاری، App Storeهایی وجود دارند که می‌توان از آنجا شروع کرد؛ اما چنین قابلیتی برای تمام سکوهای کاری پیش بینی نشده‌است.
- در لینوکس قابلیت دیگری به نام Package manager وجود دارد که کار یافتن و نصب نرم افزارها را ساده می‌کند؛ اما گاهی از اوقات اطلاعات آن، آنچنان به روز نیست. همچنین اگر بسته‌ای برای توزیع خاصی از لینوکس وجود داشته باشد، الزاما به این معنا نیست که این بسته، قابلیت استفاده‌ی در سایر توزیع‌های لینوکس را نیز به همراه دارد. در ویندوز نیز وضعیت مشخص است! فاقد یک Package manager توکار و استاندارد است. هرچند یک App Store برای آن از طرف مایکروسافت ارائه شده‌است، اما آنچنان محبوبیتی پیدا نکرده‌است.
- و روش متداول دیگری که وجود دارد، مراجعه‌ی مستقیم به سایت اصلی سازنده‌ی نرم افزار است.

- علاوه بر این‌ها داشتن یک سری متادیتا و آمار نیز در مورد نرم افزارها بسیار مفید هستند تا بتوانند در مورد تصمیم به استفاده‌، یا عدم استفاده‌ی از نرم افزار، راهنمای کاربران باشند؛ مانند میزان محبوبیت، تعداد بار دریافت، تعداد مشکلاتی که کاربران با آن داشته‌اند و آخرین باری که نرم افزار به روز شده‌است. اما با توجه به پراکندگی روش‌های دریافت نرم افزار که ذکر شدند، عموما یک چنین آمارهایی را مشاهده نمی‌کنیم.
- چالش دیگر، مشکل سخت اطمینان کردن به روش‌های مختلف توزیع نرم افزارها است. آیا سایتی که این نرم افزار را ارائه می‌دهد، واقعا مرتبط با نویسنده‌ی اصلی آن است؟ همچنین آیا خود نرم افزار مشکلات امنیتی را به همراه ندارد؟ چه کاری را انجام می‌دهد؟
- مشکل بعدی، در دسترس بودن سایت توزیع کننده‌ی نرم افزار است. آیا زمانیکه به برنامه‌ای نیاز داریم، پهنای باند سایت توزیع کننده‌ی آن تمام نشده‌است و می‌توان به آن دسترسی داشت؟
- چالش دیگر، چگونگی پرداخت مبلغی برای دسترسی به نرم افزار است. به نظر تا به اینجا تنها App Storeها موفق شده‌اند روشی یک دست را برای خرید برنامه‌ها و همچنین ارائه‌ی مجوزی برای استفاده‌ی از آن‌ها، ارائه دهند.


چالش‌های پیش روی نصب نرم افزارها

زمانیکه به مرحله‌ی نصب نرم افزار می‌رسیم، هر نرم افزار، روش نصب و تنظیمات آغازین خاص خودش را دارد.
- اولین چالش پس از دریافت نرم افزار، بررسی سازگاری آن با سیستم عامل و پردازنده‌ی فعلی است. شاید این مسایل برای توسعه دهندگان نرم افزارها پیش‌پا افتاده به نظر برسند، اما برای عموم کاربران، چالشی جدی به شما می‌روند.
- پس از مشخص شدن سازگاری یک نرم افزار با سیستم فعلی، قالب ارائه‌ی آن نرم افزار نیز می‌توان مشکل‌زا باشد. بعضی از برنامه‌ها صرفا از طریق سورس کد منتشر می‌شوند. بعضی از آن‌ها توسط یک فایل exe متکی به خود ارائه می‌شوند و بعضی دیگر به همراه یک فایل exe و تعدادی dll به همراه آن‌ها. گاهی از اوقات این برنامه‌ها نیاز به نصب جداگانه‌ی NET Runtime. و یا Java Runtime را برای اجرا دارند و یا وابستگی آن‌ها صرفا به نگارش خاصی از این کتابخانه‌ها و فریم ورک‌های ثالث است. هرچند اگر برنامه‌ای به همراه بسته‌ی نصاب آن باشد، به احتمال زیاد این وابستگی‌ها را نیز نصب می‌کند؛ اما تمام برنامه‌ها اینگونه ارائه نمی‌شوند. به علاوه خیلی‌ها علاقه‌ای به کار با برنامه‌های نصاب ندارند و از ایجاد تغییرات بسیاری که آن‌ها در سیستم ایجاد می‌کنند، خشنود نیستند.
- پس از نصب نرم افزار، مشکل بعدی، نحوه‌ی به روز رسانی آن‌ها است. چگونه باید اینکار انجام شود؟ (تمام مراحل و چالش‌هایی را که تاکنون بررسی کردیم، یکبار دیگر از ابتدا مرور کنید!)

بنابراین همانطور که مشاهده می‌کنید، نصب، راه اندازی و به روز رسانی نرم افزارها این روزها بسیار پیچیده شده‌اند و بسیاری از کاربران به سادگی از عهده‌ی آن‌ها بر نمی‌آیند.


چالش‌های پیش روی کار با نرم افزارها

مرحله‌ی بعد، نیاز به مستندات کافی برای کار با برنامه است. این مستندات را از کجا می‌توان تهیه کرد؟ آخرین باری که به روز شده، چه زمانی بوده‌است؟ بسیاری از اوقات بین مستندات تهیه شده و آخرین نگارش نرم افزار، ناسازگاری وجود دارد و به سختی قابل استفاده‌است. آیا نیاز است برنامه را به PATH اضافه کرد؟ آیا نیاز است به صورت سرویس نصب شود؟ اگر بله، چگونه باید این مراحل را انجام داد؟ مجوز کار کردن با آن‌ها چگونه است؟
مشکل مهم دیگری که حین کار با نرم افزارها، در حالت متداول آن‌ها وجود دارد، دسترسی کامل آن‌ها به تمام اجزای سیستم و شبکه است و درون یک sandbox (قرنطینه) امنیتی اجرا نمی‌شوند.
مشکل بعدی، به روز رسانی اجزای ثالث سیستم و یا حتی خود سیستم عامل، مانند به روز رسانی OpenSSL نصب شده و پس از آن، از کار افتادن برنامه‌ای خاص است که وابستگی به نگارشی خاص از این کتابخانه را دارد.


کانتینرها در مورد برنامه‌ها هستند و نه مجازی سازی

خوب، تا اینجا دریافتیم که مدیریت توزیع، نصب و استفاده‌ی از برنامه‌ها، کار ساده‌ای نیست. اما این‌ها چه ارتباطی با Docker دارند؟ در بسیاری از اوقات، زمانیکه صحبت از Docker می‌شود، تصور بسیاری از آن، ارائه‌ی جایگزینی برای ماشین‌های مجازی است. اما ... اینگونه نیست. کانتینرها در مورد نرم افزارها هستند. برای مثال در آینده در مورد ایمیج‌های (Images) کانتینرها بیشتر بحث خواهیم کرد. این ایمیج‌ها در اصل یک بسته‌ی حاوی برنامه‌ها هستند. بنابراین بیشتر شبیه به فایل zip ای است که از یک وب سایت دریافت می‌کنیم (در قسمت یافتن نرم افزار).


یک کانتینر (Container) چیست؟

برای درک بهتر مواردی که تاکنون بحث شدند و همچنین بررسی مفهوم Containers، ابتدا MonogoDB را به صورت معمول نصب می‌کنیم. سپس نحوه‌ی نصب آن‌را درون یک Container بررسی خواهیم کرد. البته هدف اصلی در اینجا، بررسی مفهومی این مراحل و مقایسه‌ی آن‌ها با هم هستند و در قسمت‌های بعدی کار نصب و استفاده‌ی از Docker را قدم به قدم بررسی خواهیم کرد.
 
مراحل نصب محلی MongoDB به صورت متداول:
- ابتدا برای مثال به سایت گوگل مراجعه کرده و mongodb را جستجو می‌کنیم تا بتوانیم به سایت اصلی و محل دریافت بسته‌ی آن، هدایت شویم.
- پس از ورود به سایت mongodb، در بالای صفحه اصلی آن، لینک به صفحه‌ی دریافت بسته‌ی mongodb را می‌توان مشاهده کرد.
- با انتخاب آن، به صفحه‌ی دریافت بسته‌ی mongodb بر اساس سیستم عامل‌های مختلفی هدایت می‌شویم. برای مثال در ویندوز، بسته‌ی msi آن‌را دریافت می‌کنیم.
- به نظر می‌رسد که بسته‌ی نصاب msi آن تمام کارهای لازم برای راه اندازی اولیه‌ی mongodb را انجام می‌دهد. به همین جهت آن‌را اجرا کرده و پس از چندبار انتخاب گزینه‌ی next، نصب آن به پایان می‌رسد.
- پس از پایان نصب، ابتدا به کنسول service.msc ویندوز مراجعه می‌کنیم تا مطمئن شویم که سرویس آن، توسط نصاب msi نصب شده‌است یا خیر؟ و ... خیر! این نصاب، سرویس آن‌را نصب نکرده‌است.
- به همین جهت به مستندات نصب آن در سایت mongodb مراجعه می‌کنیم (لینک Installation instructions در همان صفحه‌ی دریافت بسته‌ی msi وجود دارد). پس از پایان مراحل نصب، عنوان کرده‌است که باید دستور md \data\db را اجرا کنید تا مسیر پیش فرض اطلاعات آن به صورت دستی ایجاد شود. اما ... این مسیر دقیقا به کجا اشاره می‌کند؟ چون شبیه به مسیرهای ویندوزی نیست.
- در ادامه برای آزمایش، به پوشه‌ی program files ویندوز رفته، monogodb نصب شده را یافته و سپس فایل mongod.exe را از طریق خط فرمان اجرا می‌کنیم (برنامه‌ی سرور). اگر این کار را انجام دهیم، این پروسه با نمایش خطای یافت نشدن مسیر c:\data\db، بلافاصله خاتمه پیدا می‌کند. به همین جهت در همین مسیری که در خط فرمان قرار داریم (جائیکه فایل mongod.exe قرار دارد)، دستور md \data\db را اجرا می‌کنیم. اجرای این دستور در این حالت، همان پوشه‌ی c:\data\db را ایجاد می‌کند. نکته‌ای که شاید خیلی‌ها با آن آشنایی نداشته باشند.
- اکنون اگر مجددا فایل mongod.exe را اجرا کنیم، اجرای آن موفقیت آمیز خواهد بود و پیام منتظر دریافت اتصالات بودن از طریق پورت 27017 را نمایش می‌دهد.
- مرحله‌ی بعد، اجرای فایل mongo.exe است تا به این دیتابیس سرور در حال اجرا متصل شویم (برنامه‌ی کلاینت). در اینجا برای مثال می‌توان دستور show dbs را اجرا کرد تا لیست بانک‌های اطلاعاتی آن‌را نمایش دهد.
 

مراحل نصب MongoDB به صورت Container توسط Docker:
- ابتدا برای مثال به سایت گوگل مراجعه کرده و اینبار mongodb docker را جستجو می‌کنیم تا بتوانیم به محل دریافت image آن هدایت شویم. با ورود به آن، در بالای صفحه عنوان شده‌است که official repository است که سبب اطمینان از بسته‌ی ارائه شده‌ی توسط آن می‌شود. بنابراین در اینجا بجای مراجعه به سایت متکی به خود mongodb، به docker hub برای دریافت آن مراجعه کرده‌ایم. در اینجا با جستجوی یک برنامه، متادیتا و اطلاعات آماری بسیاری را نیز می‌توان در مورد برنامه‌های مختلف، مشاهده کرد که در سایت متکی به خود نرم افزارهای مختلف، در دسترس نیستند. همچنین در اینجا اگر بر روی برگه‌ی Tags یک مخزن کلیک کنید، مشاهده می‌کنید که تمام فایل‌های موجود در آن توسط docker hub از لحاظ مشکلات امنیتی پیشتر اسکن شده‌اند و گزارش آن‌ها قابل مشاهده‌است. علاوه بر این‌ها docker hub به همراه یک docker store برای برنامه‌های غیر رایگان نیز هست و این مورد فرآیند کار با نرم افزارهای تجاری را یک دست می‌کند.
- مرحله‌ی بعد، دریافت یک کپی از mongodb از docker hub است. اینبار بجای دریافت مستقیم یک فایل zip یا msi، از دستور docker pull mongo استفاده می‌شود که یک image را در نهایت دریافت می‌کند. این image، حاوی برنامه‌ی مدنظر و تمام وابستگی‌های آن است.
- پس از دریافت image، مرحله‌ی بعد، اجرای mongodb به همراه آن است. در حالت متداول، ابتدا نرم افزار داخل فایل zip یا msi استخراج شده و سپس بر روی سیستم اجرا می‌شوند، اما در اینجا مفهوم معادل نصب نرم افزار دریافت شده‌ی از بسته‌ی zip همراه آن، یک container است. یک container دقیقا مانند یک نرم افزار از پیش نصب شده، عمل می‌کند و معادل اجرای فایل exe مانگو دی بی در اینجا، اجرای container آن است. بنابراین docker، از image دریافت شده، یک container را ایجاد می‌کند که دقیقا معادل یک نرم افزار از پیش نصب شده، رفتار خواهد کرد.
- پس از دریافت image، جهت اجرای آن به عنوان یک container، برای استفاده از نرم افزاری که دریافت کرده‌ایم، تنها یک دستور است که باید با آن آشنا باشیم: docker run mongo. این دستور را در همان صفحه‌ی docker hub مربوطه نیز می‌توانید مشاهده کنید. پس از اجرای این دستور، دقیقا همان خروجی و پیام منتظر دریافت اتصالات بودن از طریق پورت 27017 را مشاهده خواهیم کرد. برای اجرای کلاینت آن نیز دستور docker exec -it 27 mongo را می‌توان اجرا کرد. docker exec کار اجرای چندباره‌ی یک نرم افزار نصب شده را انجام می‌دهد.
این فرآیند در مورد تمام containerها یکی است و به این ترتیب به ازای هر نرم افزار مختلف، شاهد روش نصب متفاوتی نخواهیم بود.
- اجرای دستور docker stop نیز سبب خاتمه‌ی تمام این‌ها می‌شود.


در این تصویر مقایسه‌ای را بین مراحل متداول یافتن، دریافت، نصب و اجرای برنامه‌ها را در دو حالت متداول و همچنین استفاده‌ی از docker، مشاهده می‌کنید.

همچنین نکته‌ی جالبی که در مورد docker وجود دارد این است که اگر به task manager ویندوز مراجعه کنیم:


تمام پروسه‌هایی که با job id مساوی 172 در اینجا اجرا شده‌اند، متعلق به docker بوده و آن‌ها دقیقا مانند یک پروسه‌ی معمولی سیستم عامل جاری، در کنار سایر پروسه‌های موجود، اجرا می‌شوند. بنابراین برنامه‌ای که از طریق docker اجرا می‌شود، هیچ تفاوتی با اجرای متداول آن بر روی سیستم عامل، از طریق روش مراجعه‌ی مستقیم به فایل exe مرتبط و اجرای مستقیم آن ندارد. همانطور که پیش‌تر نیز عنوان شد، containerها در مورد نرم افزارها هستند و نه مجازی سازی و یک container در حال اجرا، حاوی تعدادی برنامه‌ی در حال اجرای بر روی سیستم عامل جاری، در کنار سایر برنامه‌های آن می‌باشد.
البته containers به همراه ایزوله سازی‌های بسیاری اجرا می‌شوند. برای مثال به روز رسانی یک کتابخانه‌ی ثالث بر روی سیستم عامل، سبب از کار افتادن برنامه‌ی اجرای شده‌ی توسط یک container نمی‌شود.


در قسمت بعد، نحوه‌ی نصب Docker را بر روی ویندوز، بررسی می‌کنیم.
مطالب
ارتباط بین کامپوننت‌ها در Vue.js - قسمت سوم استفاده از تزریق وابستگی‌ها
در قسمت‌های قبلی( ^ و ^) نحوه‌ی ارتباط بین کامپوننت‌ها در Vue.js بررسی و مزایا و معایب آنها بیان شد. روش دیگری هم برای ارسال اطلاعات از کامپوننتِ Parent به فرزندانش وجود دارد که با استفاده از Dependency Injection یا به اختصار DI مقدور می‌باشد و در ورژن +2.2 معرفی شد که نحوه‌ی ارتباط بین کامپوننتِ Parent و فرزندانش را آسان نمود. پیش‌تر برای ارتباط از Parent به Child، از Props استفاده میکردیم، ولی اگر قرار بود در چند سطح این ارتباط عمیق باشد، باز هم مدیریت کردن Props مشکل و سخت بود. اکنون با استفاده از provide و inject قادر خواهیم بود تا آبجکت، فانکشن و یا دیتایِ یک کامپوننتِ Parent را در فرزندانش فراخوانی و استفاده کنیم. اگر در حالت عادی نیاز بود تا در دو سطح، یا بیشتر (مانند تصویر زیر) دیتایِ کامپوننت پدر را به فرزند، نوه و ... انتقال دهیم، می‌بایست اطلاعات را بصورت Props به هر Level انتقال دهیم.



روش جاری شباهت زیادی به استفاده از Context در React دارد:

Context provides a way to pass data through the component tree without having to pass props down manually at every level


جهت به اشتراک گذاری دیتا یا تابعی در کامپوننت Parent با Children، به شکل زیر عمل میکنیم. در اینجا با استفاده از provide، دیتای foo به اشتراک گذاشته شده‌است:
// parent component providing 'foo'
var Provider = {
  provide: {
    foo: 'bar'
  },
  // ...
}
و در کامپوننت‌های فرزند به شکل زیر میتوانیم مقدار foo را دریافت کنیم:
// child component injecting 'foo'
var Child = {
  inject: ['foo'],
  created () {
    console.log(this.foo) // => "bar"
  }
  // ...
}

میتوانیم مقدار پیش فرض دیتایِ ارسالی از کامپوننت Parent را در قسمت data و props در کامپوننت Child دریافت نماییم:
Using an injected value as the default for a prop
//دریافت میکنیم props در قسمت  child را در کامپوننت  foo مقدار
const Child = {
  inject: ['foo'],
  props: {
    bar: {
      default () {
        return this.foo
      }
    }
  }
}

Using an injected value as data entry
//دریافت میکنیم data در قسمت  child را در کامپوننت  foo مقدار
const Child = {
  inject: ['foo'],
  data () {
    return {
      bar: this.foo
    }
  }
}

نکته: در این روش در صورتیکه دیتایِ به اشتراک گذاشته شده در کامپوننتِ Parent تغییر کند، مقدار آن در کامپوننت Child تغییری نخواهد کرد و مانند روش‌های قبلی (^ و ^) نیست و نیاز به نوشتن کدی برای تعامل داشتن و به‌روز رسانی مقادیر، در کامپوننت Child می‌باشد.
کد زیر  را در نظر بگیرید؛ با زدن دکمه‌ی Increment counter  مقدار counter در کامپوننتِParent تغییر میکند، ولی در کامپوننت Child، مقدار counter_in_child  تغییری حاصل نمی‌کند.
<!DOCTYPE html>
<html>
<head>
  <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  <script src="https://cdn.jsdelivr.net/npm/vue"></script>
  <title>Dependency injection</title>
</head>

<body>
  <div id="app">
    <button @click="counter++">Increment counter</button>
    <h2>Parent</h2>
    <p>{{counter}}</p>
    <div>
      <h3>Child</h3>
      <child></child>
    </div>
  </div>
  
<script>
const Child = {
  inject: ['counter_in_child'],
  template: `<div>Counter Child is:{{ counter_in_child }}</div>`
};

new Vue ({
  el: "#app",
  components: { Child },
  provide() {
    return {
      counter_in_child: this.counter
    };
  },
  data() {
    return {
      counter: 0
    };
  }
});
</script>

</body>
</html>
       
برای اینکه بتوان تغییرات ایجاد شده‌ی بر روی دیتا را در کامپوننتِChild، مشاهده کرد، نیاز داریم کد زیر را در قسمت provide به ازای آن دیتا اضافه کنیم: 
<!DOCTYPE html>
<html>
<head>
  <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  <script src="https://cdn.jsdelivr.net/npm/vue"></script>
  <title>Dependency injection</title>
</head>

<body>
  <div id="app">
    <button @click="counter++">Increment counter</button>
    <h2>Parent</h2>
    <p>{{counter}}</p>
    <div>
      <h3>Child</h3>
      <child></child>
    </div>
  </div>
  
<script>
const Child = {
  inject: ['counter_in_child'],
  template: `<div>Counter Child is:{{ counter_in_child.counter }}</div>`
};

new Vue ({
  el: "#app",
  components: { Child },
  provide() {
    const counter_in_child={};
Object.defineProperty(counter_in_child,'counter',{
enumerable:true,
get:()=>this.counter
})
    return {
      counter_in_child
    };
  },
  data() {
    return {
      counter: 0
    };
  }
});
</script>

</body>
</html>

مثالی از نحوه به اشتراک گذاری متد بین Parent و Child.

نتیجه گیری:
A) استفاده از این روش مرسوم نیست و بیشتر برای ساخت پلاگین در Vuejs مورد استفاده قرار میگیرد:
provide  and  inject  are primarily provided for advanced plugin / component library use cases. It is NOT recommended to use them in generic application code
B) برای استفاده از این روش کتابخانه‌هایی جهت ساده‌تر کردن بکارگیری ایجاد شده‌است.
C) این روش برای ارتباط  Sibling Component مناسب نیست.
مطالب
تشخیص تعداد تخصیص‌های حافظه‌ی یک برنامه
یکی از مواردی که فشاری بر روی garbage collector را بالا می‌برد، تخصیص‌های حافظه‌ی مخفی یا Hidden allocations هستند که سبب تخصیص‌های حافظه‌ی کوچک و عموما پر تعدادی بر روی heap می‌شوند. برای نمونه به مثال ذیل دقت کنید و سعی کنید تعداد تخصیص‌های حافظه‌ی آن را حدس بزنید:
public static void PrintSum(int a, int b)
{
    Console.WriteLine("Sum of a {0} b {1} is {2}", a, b, a + b);
}
در این مثال ... سه تخصیص حافظه‌ی کوچک رخ می‌دهد. از این جهت که متد Console.WriteLine ایی که در اینجا استفاده می‌شود، در نهایت به یک چنین کدی کامپایل خواهد شد:
 Console::WriteLine(string, object, object, object)
در این مثال بر روی تمام پارامترهای int دریافتی، عملیات boxing (تبدیل یا cast) به object صورت می‌گیرد و عملیات boxing، یک نوع allocation است که نتیجه‌ی آن بر روی heap ذخیره می‌گردد.


روشی برای نمایان ساختن تخصیص‌های حافظه‌ی نهان در ویژوال استودیو

اگر از ReSharper استفاده می‌کنید، افزونه‌ی «Heap Allocations Viewer» آن و یا اگر از VS 2015 و Roslyn استفاده کنید، افزونه‌ی «Roslyn Clr Heap Allocation Analyzer» آن، سبب نمایان شدن allocation‌های مخفی می‌شوند. برای مثال قطعه کد فوق یک چنین نمایشی را پیدا می‌کند:


در اینجا در ذیل هر سه موردی که عملیات boxing allocation رخ داده، یک خط قرمز کشیده است. یکی از روش‌هایی که می‌تواند boxing allocation فوق را حذف کند، بکار گیری متد ToString بر روی مقادیر int است:


همانطور که مشاهده می‌کنید، اینبار دیگر خبری از خطوط قرمز، ذیل پارامترهای متد Console.WriteLine نیست. باید دقت داشت که ToString نیز سبب تخصیص حافظه می‌شود، اما اینبار دیگر int32 آن بر روی heap ذخیره نمی‌گردد. به عبارتی هر دو حالت سبب تخصیص حافظه‌ی یک رشته‌ی جدید می‌شوند؛ اما در حالت اول علاوه بر این شیء جدید، شیء int32 نیز بر روی heap ذخیره می‌گردد.


تشخیص تخصیص اشیاء مخفی با افزونه‌های Heap Allocations Viewer

نمونه‌ی دیگر پر کاربرد این نوع بهینه سازی‌ها را در مثال ذیل می‌توان مشاهده کرد:
public static void PrintA(int a)
{
   Console.WriteLine("a is " + a);
}
این مثال، یک چنین نمایش بصری دارد:


اینبار یک خط زرد رنگ ظاهر شده به همراه یک خط قرمز رنگ. خط قرمز رنگ را پیشتر بررسی کردیم و علت وجودی آن Boxing allocation ایی است که رخ می‌دهد. خط زرد رنگ در ذیل + ظاهر شده‌است و عنوان می‌کند که عملیات جمع زدن رشته‌ها، سبب تخصیص حافظه‌ی یک شیء جدید می‌شود. رشته‌ها در دات نت immutable هستند. به همین جهت هر تغییری در آن‌ها، سبب تخصیص یک شیء جدید می‌شود. بنابراین در همین مثال ساده، دو تخصیص حافظه‌ی مخفی وجود دارند. مورد جمع زدن را با بکارگیری string.Format و مشکل boxing را با ToString می‌توان برطرف کرد:
public static void PrintA(int a)
{
   Console.WriteLine("a is {0}", a.ToString());
}



منابع دیگری که سبب تخصیص‌های حافظه‌ی مخفی می‌شوند

تا  اینجا دو مورد از منابع متداول تخصیص‌های حافظه‌ی مخفی را بررسی کردیم. اما این لیست شامل موارد ذیل نیز می‌شود:
1) فراخوانی متدهایی با پارامترهایی از نوع param همیشه سبب تخصیص حافظه‌‌ای جهت تشکیل یک آرایه‌ی در برگیرنده‌ی پارامترهای ارسالی می‌شود.
2) متدهایی که پارامتر از نوع IEnumerable دارند:
        public static int Sum(IEnumerable<int> list)
        {
            var sum = 0;
            foreach (var number in list)
            {
                sum += number;
            }
            return sum;
        }
در این مثال هربار که متد Sum فراخوانی شود، یکبار دیگر IEnumerable آن تخصیص خواهد یافت که در تصویر ذیل با enumerator allocation مشخص شده‌است:


برای حل این مشکل فقط کافی است IEnumerable را با List تعویض کنید.
3)  کار با LINQ نیز سبب تخصیص‌های حافظه‌ی قابل توجهی است. برای مثال در کد پایه‌ی Roslyn، برای رسیدن به حداکثر کارآیی، بسیاری از الگوریتم‌ها را با روش‌های غیر LINQ پیاده سازی کرده‌اند. البته برای تیمی مانند Roslyn رسیدن به یک چنین کارآیی جهت رقابت با سایر محصولات مشابه ضروری بوده‌است و گرنه در بسیاری از کارهای متداول، استفاده از LINQ به خوانایی هر چه بیشتر کدها کمک شایانی می‌کند.


برای مطالعه‌ی بیشتر

Roslyn code base – performance lessons - part 2
Unusual Ways of Boosting Up App Performance. Boxing and Collections
On performance in .NET