مطالب
بررسی Bad code smell ها: زنجیره پیام یا Message chain
این کد بد بو در دسته «جلوگیری کنندگان از تغییر» قرار می‌گیرد. معمولا زمانیکه فراخوانی‌هایی مانند تکه کد زیر را در بخشی از کد مشاهده کردید، با چنین کد بد بویی مواجه هستید.  
MethodA().MethodB().MethodC();
فراخوانی هر یک از این متدها در خطی مجزا از کد نیز تشکیل دهنده‌ی این الگوی بد است. استفاده کننده‌ی از این زنجیره پیام، برای استفاده‌ی درست از آن، باید در جریان هریک از حلقه‌های زنجیره و ترتیب فراخوانی آنها باشد. در صورتیکه هر یک از حلقه‌های زنجیره تغییری داشتند، استفاده کننده  نیز باید تغییر کنند. 
به طور مثال:
public class RepresentativeEmployeeQuery 
{ 
    public dynamic GetById(int id) 
    { 
        throw new NotImplementedException(); 
    } 
} 
public class RepresentativeQuery 
{ 
    public dynamic GetById(int id) 
    { 
        throw new NotImplementedException(); 
    } 
} 
public class CustomerQuery 
{ 
    public dynamic GetById(int id) 
    { 
        throw new NotImplementedException(); 
    } 
}
public static class Programm 
{ 
    static void Main(string[] args) 
    { 
        var customer = new CustomerQuery().GetById(1); 
        var representativeId = customer.RepresentativeId; 
        var representative = new RepresentativeQuery().GetById(representativeId); 
        var managerId = representative.ManagerId; 
        var manager  = new RepresentativeEmployeeQuery().GetById(managerId); 
        var managerName = manager.FullName; 
    } 
}
  • کلاس CustomerQuery پرس و جوهای مربوط به مشتری را مدیریت می‌کند.
  • کلاس RepresentativeQuery پرس و جوهای مربوط به نمایندگی را مدیریت می‌کند .
  • کلاس RepresentativeEmployeeQuery پرس و جوهای مربوط به کارمندان نمایندگی را مدیریت می‌کند.
در مثال ذکر شده می‌خواهیم نام مدیریت نمایندگی ای را که یک مشتری از آن خرید کرده است، بدانیم. صرفا جهت نمایش مثال، این کار را در متد main انجام داده‌ایم.  
مشاهده می‌کنید که زنجیره‌ای از پیام‌ها از CustomerQuery تا پایین‌ترین قسمت یعنی RepresentativeEmployeeQuery ارسال شده است. هر یک از مراحل زنجیره بخشی از منطق دریافت نام را مدیریت می‌کنند. مانند دریافت مشتری، دریافت نمایندگی آن و دریافت مدیریت نمایندگی. 

مشکلات این کد بد بو 

مشکلاتی که با وجود چنین طراحی ای در کد بوجود می‌آیند می‌توانند گاهی اوقات پیچیده باشند. چند مورد از مشکلاتی که این نوع کد بوجود می‌آورد به صورت زیر هستند:
  • افزایش کدهای تکراری 
  • افزایش احتمال بروز اشکال در زنجیره فراخوانی‌ها با تغییر هر مرحله از آن 
  • نیاز به دانش درباره مراحل داخلی زنجیره، توسط تمامی استفاده کنندگان از آن (به طور مثال هر استفاده کننده‌ای که نام مدیر نمایندگی یک مشتری را نیاز دارد) 
  • افزایش احتمال بروز اشکال در پیاده سازی هر یک از استفاده کنندگان  


روش‌ها اصلاح این کد بد بو 

روش‌های اصلاح این کد بد بو حول مخفی کردن زنجیره فراخوانی‌ها هستند. اما در مواردی مانند مثال ذکر شده در این مطلب امکان ادغام یک یا چند متد نیز وجود دارد. به شرطی که این کار ناقض اصل Single responsibility یا دیگر اصول شیء گرایی نباشد. دو نمونه از روش‌های اصلاح این کد بد بو به صورت زیر هستند: 
  • مخفی کردن زنجیره فراخوانی و مستقل سازی استفاده کننده از زنجیره فرخوانی (Hide delegate)  
  • ادغام بخشی از متدها در زنجیره فراخوانی و از بین بردن زنجیره فراخوانی 


چه کدهایی Message Chain نیستند؟ 

معمولا کدهایی که از الگوی domain specific language پیروی می‌کنند، ممکن است شباهت بسیاری به مثال مطرح شده داشته باشند. اما از نظر مفهومی با الگوی مطرح شده متفاوت هستند؛ به این صورت که در کد بد بوی زنجیره پیام‌ها، استفاده کننده از متد نیاز به دانستن تمامی حلقه‌ها و ترتیب آنها را دارد، ولی در domain specific language‌ها معمولا نحوه استفاده از متدها به صورت شبه زبانی گویا هدایت شده و معمولا ترتیب به صورت مخفی مدیریت می‌شود.
مطالب
بررسی Bad code smell ها: تعداد زیاد پارامترهای ورودی
برای مشاهده طبقه بندی Bad code smell‌ها می‌توانید به  اینجا  مراجعه کنید. 
زمانیکه متدی بیش از سه یا چهار پارامتر ورودی داشته باشد، به چنین مشکلی برخورده‌ایم. این بوی بد کد از دسته «کدهای متورم» است. کدهای متورم معمولا به مرور زمان ایجاد و کار را برای نگهداری کد سخت می‌کنند. 
 توجه به این نکته که کدهای متورم به مرور زمان به این وضعیت دچار می‌شوند امری ضروری در درک بهتر و جلوگیری از این حالت بد کد است.  
این نوع کد بد بو معمولا در شرایط زیر ایجاد می‌شود:
  • زمانیکه کارهای زیادی به مرور زمان به یک متد محول و پارامترهایی برای کنترل رفتار متد در شرایط مختلف ایجاد می‌شود. 
  • این الگوی بد می‌تواند محصول جانبی مستقل کردن کلاس‌ها و متدها باشد. فرض کنید در بدنه متدی، شیء‌ای نیاز است و مکانیزم ساخته شدن این شیء نیز در بدنه همان متد پیاده سازی شده‌است. برای جداسازی منطق ایجاد شیء مربوطه، ممکن است تصمیم به انتقال آن به کلاس استفاده کننده از متد باشد. به این صورت که در آن کلاس، شیء مورد نیاز این متد ایجاد شود و به صورت پارامتر به این متد ارسال شود. زمانیکه تعداد این پارامترها زیاد شدند باید دقت بیشتری به کد داشت.
طراحی کلاس‌ها و متدها باید به گونه‌ای باشد که تا حد امکان متدها از داده‌های موجود در شیء خود استفاده کنند و در صورتیکه به هیچ طریقی داده مربوطه از طریق شیء آنها قابل دسترسی نبود، آن داده به صورت پارامتر به متد ارسال شود.

روش‌های اصلاح این نوع کد بد بو 

1) اگر در پارامترهای متد نوعی (type) وجود دارد که خود در زمان صدا زدن متد توسط روالی ایجاد می‌شود، می‌توان در شرایط مناسب روال ایجاد پارامتر را در بدنه خود متد صدا زد (Replace parameter with method call). 
به طور مثال به تکه کد زیر توجه کنید. 
...   
var basePrice = _quantity * _itemPrice;    
var discountLevel = getDiscountLevel();   
var finalPrice = discountedPrice (..., ..., ..., basePrice, discountLevel);
...
همان طور که ملاحظه می‌کنید شیء مربوط به discountLevel توسط متد getDiscountLevel ساخته شده و به متد ارسال شده است. پیاده سازی بهتر این موضوع می‌تواند به صورت زیر باشد:
...    
var basePrice = _quantity * _itemPrice;
var finalPrice = discountedPrice (..., ..., ..., basePrice);
...
همان طور که مشخص است متد ساختن discountLevel در بدنه discountedPrice صدا زده شده است. این بهبود معمولا در شرایطی انجام می‌شود که متد discountedPrice در همان کلاسی تعریف شده باشد که متد جاری وجود دارد. زیرا در غیر این صورت این بهبود عملا منجر به انتقال مسئولیت غیر مربوط، به کلاس دیگری می‌شود.  

2) اگر تعدادی پارامتر از یک شیء استخراج شده و به متد ارسال می‌شود، می‌توان خود آن شیء را به صورت کامل به متد ارسال کرد (Preserve whole object). 
... 
var dueDate = invoice.DueDate; 
var amount = invoice.Amount; 
var discount = invoice.Discount; 
var code = invoice.Code; 
var id = invoice.Id; 
IssuePayment(paymentType, id,dueDate,amount,discount,code); 
...
در مثال بالا ملاحظه می‌کنید که مقادیر اطلاعاتی مورد نیاز برای صادر کردن یک پرداخت مانند نوع پرداخت و اطلاعات مبلغ و تاریخ پرداخت آن از invoice و مبداهای متفاوتی بدست آمده‌است. بخشی از اطلاعات را که از invoice بدست می‌آید، می‌توان بجای دستیابی جداگانه و ارسال جداگانه آن، توسط کل شیء invoice انجام داد. به طوریکه کل شیء invoice به متد صدور پرداخت ارسال شود. مانند تکه کد زیر:    
...
IssuePayment(paymentType, invoice); 
...
یکی از مزایای استفاده از چنین روشی کاسته شدن کدهای تکراری مورد نیاز برای فراخوانی متد است. همچنین خوانایی و قابلیت گسترش این مکانیزم نیز بالا خواهد رفت. 

3) اگر تعداد پارامترهای زیادی وجود دارند، می‌توان یک کلاس پارامتر ساخت و پارامترها را در آن کلاس تعریف، مقداردهی و به متد ارسال کرد (Parameter object). 

جمع بندی

موارد مطرح شده برای رفع این بوی بد، در واقع روش‌های مختلف Refactoring هستند که برای این شرایط پیشنهاد شده‌اند. در مباحث مربوط به Refactoring این راه حل‌ها به صورت مفصل‌تری بررسی شده‌اند.  
زمانیکه این بوی بد برطرف شد، معمولا شاهد کدی خواناتر و قابل توسعه‌تر خواهیم بود. همچنین احتمال اینکه کدهای تکراری حذف شوند و جلوی ایجاد کدهای تکراری جدید نیز گرفته شود، بسیار زیاد است.
مطالب
توسعه سرویس‌های Angular به روش OOP
یک نکته‌ای که در توسعه سیستم‌ها و نرم افزار‌ها تاکید فراوانی به آن می‌شود استفاده مجدد از کد‌های نوشته شده قبلی است. یعنی تا جای ممکن باید ساختار پروژه به گونه‌ای نوشته شود که از تکرار کد‌ها در جای جای پروژه جلوگیری شود. این مورد به خوبی در زبان‌های شیء‌گرا نظیر #C رعایت می‌شود اما در پروژه‌هایی که مبتنی بر Javascript هستند نظیر angular، باید با استفاده از خاصیت prototype جاوا اسکریپ این مورد را رعایت نمود. در  مقاله  Dr. Axel Rauschmayer،  قدم به قدم و به خوبی روش‌های وراثت در Javascript توضیح داده شده است.
در این پست با روش‌های وراثت در کنترلر‌های انگولاری آشنا شدید. این وراثت محدود به ارث بری scope‌ها می‌شود. اما یکی از بخش‌های بسیار مهم پروژه‌های انگولار نوشتن سرویس‌هایی با قابلیت توسعه مجدد در سایر بخش‌های پروژه می‌باشد. معادل آن، مفهوم Overriding در OOP است. با ذکر مثالی این مورد را با هم بررسی خواهیم کرد.
ابتدا یک سرویس به نام BaseService ایجاد کنید:
angular.module('myApp').service('BaseService', function() {

    var BaseService = function(title) {
        this.title = title;
    };

    BaseService.prototype.getMessage = function() {
        var self = this;
        return 'Hello ' + self.title;
    };

    return BaseService;
});
سرویس بالا دارای سازنده‌ای است که مقدار title باید در اختیار آن قرار گیرد. با استفاده از خاصیت prototype تابعی تعریف می‌کنیم که این تابع خروجی مورد نظر را برای ما تامین خواهد نمود.
حال اگر ماژول و کنترلری جهت نمایش خروجی به صورت زیر ایجاد کنیم:
var app= angular.module('myApp', []);


app.controller('myCtrl', function ($scope,BaseService) {

    var instance = new BaseService('Masoud');
    $scope.title = instance.getMessage();

});
با کدهای Html زیر:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" ng-app="myApp">
<head>
    <title></title>
</head>
    <body ng-controller="myCtrl">

        <div>
            {{title}}
        </div>

    </body>
<script src="Scripts/jquery-2.1.1.min.js"></script>
<script src="Scripts/angular.js"></script>
<script src="App/app.js"></script>
</html>
در نهایت خروجی به صورت زیر قابل مشاهده است:

تا اینجای کار روال معمول تعاریف سرویس در انگولار بوده است. اما قصد داریم سرویس جدیدی را ایجاد نمایم تا خروجی سرویس قبلی را اندکی تغییر دهد. به جای اینکه سرویس قبلی را تغییر دهیم یا بدتر از آن سرویس جدیدی بسازیم و کدهای قبلی را در آن کپی کنیم کافیست به صورت زیر عمل نماییم:

app.service('ExtService', function(BaseService) {

    var ExtService = function() {
        BaseService.apply(this, arguments);
    };

    ExtService.prototype = new BaseService();
    
    ExtService.prototype.getMessage = function() {
        var self = this;
        return BaseService.prototype.getMessage.apply(this, arguments) + ' From Ext Service';
        
    };

    return ExtService;
});
حال می‌توان کنترلر را به صورت زیر بازنویسی کرد.
app.controller('myCtrl', function ($scope,BaseService , ExtService) {

    var baseInstance = new BaseService('Masoud');
    var extInstance = new ExtService('Dotnettips');
    $scope.title = baseInstance.getMessage() + ' and ' + extInstance.getMessage();

});
در کنترلر بالا هر دو سرویس تزریق شده‌اند. خروجی سرویس دوم متن From Ext Service را نیز به همراه خواهد داشت. پس از اجرای برنامه خروجی زیر قابل مشاهده است:

مطالب
تجزیه یک رشته به کلمات تشکیل دهنده آن توسط Recursive CTE
برای پردازش یک عبارت در بسیاری از موارد نیاز هست که عبارت به کلمات تشکیل دهنده اش تجزیه شود. روش‌های متنوعی برای انجام این عمل وجود دارد که یکی از شناخته شده‌ترین آنها استفاده از جدول اعداد می‌باشد (البته از بین روش‌های مجموعه گرا/set -based).
روشهایی که قرار هست در ادامه توضیح داده شوند بر اساس کوئری بازگشتی می‌باشند. الگوریتم‌های متنوعی بر اساس recursive CTE برای حل این مساله خلق شده اند. که من تنها به دو روش آن اکتفا می‌کنم.

Recursive CTE در نسخه‌ی 2005 به SQL Server اضافه شده است. توسط این تکنیک مسائل پیچیده و گوناگونی را میتوان بسادگی حل نمود. مخصوصا مسائلی که ماهیت بازگشتی دارند مثل پیمایش یک درخت یا پیمایش یک گراف وزن دار.

روش اول:

یک کوئری بازگشتی دارای دو بخش هست به نام‌های Anchor و recursive. در بخش دوم کوئری باز خودش را فراخوانی می‌کند تا به داده هایی که در مرحله قبل تولید شده اند دسترسی پیدا کند در اولین فراخوانی توسط عضو recursive، داده‌های تولید شده در قسمت Anchor قابل دسترسی هستند. در قسمت دوم، کوئری آنقدر خود را فراخوانی می‌کند تا دیگر سطری از مرحله قبل وجود نداشته باشد که به آن مراجعه کند.

توضیح تکنیک:
در گام اول اندیس شروع و پایان کلمه اول را بدست می‌آوریم.
سپس در گام بعدی از اندیس پایان کلمه قبلی به عنوان اندیس شروع کلمه جدید استفاده می‌کنیم.
و اندیس پایان کلمه توسط تابع charindex بدست می‌آید.
کوئری تا زمانی ادامه پیدا میکند که کلمه برای تجزیه کردن در رشته باقی مانده باشد. فقط فراموش نکنید که حتما باید آخر عبارت یک کارکتر space داشته باشید.
DECLARE @S VARCHAR(50)='I am a student I go to school ';
WITH CTE AS 
(
     SELECT 1 rnk,
            1 start,
            CHARINDEX(' ', @s) - 1 ed

     UNION ALL
 
     SELECT rnk + 1,
            ed + 2,
            CHARINDEX(' ', @s, ed + 2) - 1
       FROM CTE
      WHERE CHARINDEX(' ', @s, ed + 2) > 0
)
SELECT rnk, SUBSTRING(@s, start, ed - start + 1) AS word
FROM CTE
  
/* Result
rnk         word
----------- -------
1           I
2           am
3           a
4           student
5           I
6           go
7           to
8           school
*/



روش دوم:
در این روش در همان CTE عبارت تجزیه می‌شود و عمل تفکیک به مرحله بعدی واگذار نمی‌شود،
در گام اول، اولین کلمه انتخاب می‌شود. و سپس آن کلمه از رشته حذف می‌شود. با این روش همیشه اندیس شروع کلمه برابر با 1 خواهد بود و اندیس پایان کلمه توسط تابع charindex بدست خواهد آمد.
در گام بعدی اولین کلمه موجود در رشته ای که قبلا اولین کلمه از آن جدا شده است بدست می‌آید و باز مثل قبلی کلمه انتخاب شده از رشته جدا شده و رشته برش یافته به مرحله بعد منتقل می‌شود.
در این روش مثل روش قبلی آخر عبارتی که قرار هست تجزیه شود باید یک کارکتر خالی وجود داشته باشد.
DECLARE @a VARCHAR(50)='I am a student I go to school ';
 
WITH MyWords(ranking, word, string) AS(
 
    SELECT 1,
           CAST(SUBSTRING(@a, 1, CHARINDEX(' ', @a) - 1) AS VARCHAR(25)),
           STUFF(@a, 1, CHARINDEX(' ', @a), '')
  
    UNION ALL
  
    SELECT ranking + 1,
           CAST(SUBSTRING(string, 1, CHARINDEX(' ', string) - 1) AS VARCHAR(25)),
           STUFF(string, 1, CHARINDEX(' ', string), '')
      FROM MyWords
     WHERE CHARINDEX(' ', string) > 0
)
SELECT ranking, word FROM MyWords;
و خروجی:
ranking     word
----------- -------------------------
1           I
2           am
3           a
4           student
5           I
6           go
7           to
8           school

مطالب
خواندن فید گزارش آب و هوای یاهو با استفاده از روش Xml serialization

در مطلب قبلی (در مورد کتابخانه anti-xss مایکروسافت) از روش xml serialization برای خواندن فایل xml حملات استفاده کردیم.
ایجاد این کلاس و نگاشت اشیاء با توجه به ساختار ساده آن به صورت دستی و به‌سادگی انجام شد. اکنون به مثال زیر دقت بفرمائید:
سرویس آب و هوای یاهو برای شهرهای مختلف ایران از طریق لینک زیر قابل استفاده است:
http://weather.yahoo.com/regional/IRXX.html
اگر به صفحات شهرهای مختلف مراجعه نمائید، یک فید rss هم مشاهده خواهید کرد، برای مثال در مورد تهران داریم:
http://weather.yahooapis.com/forecastrss?p=IRXX0018&u=c
ساختار این فایل xml تا حدودی با یک rss استاندارد تطابق دارد. اما اگر به سورس xml آن دقت کنیم تگ‌های دیگری را نیز مشاهده خواهیم کرد که برای مثال دما ، تاریخ و شرایط جوی را به صورت دقیقی و با استفاده از اصول xml ارائه می‌دهند.

<yweather:condition text="Partly Cloudy" code="29" temp="10" date="Tue, 11 Nov 2008 5:30 pm IRT" />

خوب، برای دریافت این اطلاعات چه باید کرد؟ یکی از روش‌های متداول برای کار با این نوع داده‌ها، استفاده از کلاس DataSet در دات نت و فراخوانی متد ReadXml آن است (یک آدرس اینترنتی را هم می‌تواند دریافت کند). سپس مطابق روش‌های معمول ADO.Net می‌توان به تگ‌ها ومقادیر آنها دسترسی داشت.
روش‌ بالا هر چند مشکلی ندارد اما به زیبایی کار با خواص یک کلاس متناظر با آن فایل xml نیست. اما در اینجا برای استفاده از روش xml serialization یک مشکل وجود دارد! ایجاد دستی این کلاس که بیانگر عملکرد آن فایل xml است کار ساده‌ای نیست.
خوشبختانه به همراه SDK‌ دات نت فریم ورک 2، برنامه‌ای به نام xsd.exe نیز همراه است که کار ایجاد یک کلاس cs یا vb را از یک فایل xml جهت این منظور انجام می‌دهد (این برنامه برای مثال در مسیر C:\Program Files\Microsoft.NET\SDK\v2.0\Bin قرار دارد).

برای ایجاد فایل کلاس به صورت خودکار از روی یک فایل xml موجود باید به ترتیب زیر عمل کرد:
الف) ایجاد فایل xsd متناظر (XML Schema Definition)
برای اینکار در خط فرمان تایپ کنید:
xsd.exe file.xml

نکته 1:
روش دیگر انجام این کار : فایل xml را در VS.net باز کنید، از منوی بالای صفحه گزینه xml را انتخاب نموده و بر روی دکمه Create Schema کلیک کنید.

ب) ایجاد فایل cs یا vb از روی فایل(های) xsd ایجاد شده
در اینجا برای فید آب و هوای یاهو سه فایل xsd تولید خواهد شد. برای تبدیل آنها به کلاس cs باید دستور زیر را در خط فرمان اجرا کرد:

Xsd.exe file_1.xsd file_2.xsd file_3.xsd /c

این مورد نکته مهمی است و تنها اگر یکی از فایل‌ها اینجا ذکر شوند، کلاس ناقصی تشکیل خواهد شد. (برای نمونه فایل xssAttacks.xml مطلب قبلی، ساختار ساده‌ای داشته و تنها به یک فایل xsd ختم خواهد شد)

نکته 2:
برای انتخاب زبان VB (با توجه به این‌که پیش فرض آن CS است) می‌توان به صورت زیر عمل کرد:
xsd.exe file.xsd /c  /l:vb

نکته 3:
برای تولید فایل xsd ، از برنامه Infer.exe نیز می‌توان استفاده کرد (خروجی نهایی دقیق‌تری را ارائه می‌دهد). این برنامه را از اینجا دریافت کنید.

تصاویر زیر مقایسه دو فایل کلاس نهایی تولید شده از xsd های این دو برنامه است:






پس از طی این مراحل فایل کلاس ما برای xml serialization آماده خواهد شد. مرحله بعد دریافت اطلاعات و نگاشت آن به این کلاس تولید شده است:

public static rss DeserializeFromXML()
{
XmlSerializer deserializer =
new XmlSerializer(typeof(rss));
using (XmlReader reader = XmlReader.Create("http://weather.yahooapis.com/forecastrss?p=IRXX0018&u=c"))
{
return (rss)deserializer.Deserialize(reader);
}
}

کلاس rss از فید xml و فایل‌های xsd آن که تولید کردیم به صورت خودکار ایجاد شده است.
اکنون برای مثال خواندن وضعیت فعلی جوی از فید دریافتی به سادگی زیر است:

rss data = DeserializeFromXML();
MessageBox.Show(data.channel.item.condition.text);


مطالب دوره‌ها
فرآیند داده کاوی در Microsoft SQL Server (بخش یک)

مقدمه

بطور کلی داده کاوی به دو قسمت زیر تقسیم می‌شود:

1- اهداف توصیفی (Descriptive Goal): بدنبال یافتن الگوها و روابط بین داده‌ها هستیم، بدین ترتیب مدلی برای توصیف بهتر داده‌ها بدست خواهد آمد.

2- اهداف پیش بینانه (Predictive Goal): بدنبال انجام پیش بینی با استفاده از الگو‌ها و مدل‌های فوق هستیم.

همچنین مراحل اجرای یک پروژه داده کاوی شامل مراحل زیر است:
1- تحلیل: مهمترین فعالیت در این فاز، فهم عمیق مسئله و شناخت درست مسئله و شناسائی مفاهیم کلیدی (Key Concept) در مسئله است.
2- طراحی: مهمترین فعالیت این فاز، فرموله کردن مسئله با استفاده از مفاهیم کلیدی است.
3- پیاده سازی/ نگهداری و بهبود

مراحل کاری داده‏ کاوی بر اساس استاندارد CRISP-DM

محصول مشترک شرکت‌های SPSS, Teradata, NCR و دایملر- کرایسلر است و یک فرآیند استاندارد Cross-Industry برای داده کاوی است که به طور گسترده ای استفاده می‌شود. مراحل کاری در این مدل به شش فاز اصلی به شرح زیر تقسیم می‌شوند:

1. درک پروژه و فهم حوزه کاربرد (Business Understanding):
به طور صریح و آشکار اهداف و نیازمندی‌ها مشخص می‌شود. ترجمه اهداف و محدودیت آن در قاعده‏ سازی، تعریف مسئله داده‏ کاوی و مهیا کردن استراتژی اولیه برای نائل شدن به اهداف در این مرحله تعریف می‏ شود.

2. انتخاب داده‌ها (Data Understanding):
این مرحله شامل جمع آوری داده‌ها برای استفاده از تحلیل اکتشافی و مشخص کردن اطلاعات اولیه برای ارزیابی داده‏‌های با کیفیت و انتخاب داده‌های مفید و مورد نیاز می‌باشد.

3. آماده سازی داده‏‌ها (Data Preparation):
آماده کردن داده‏‌های اولیه خام به داده‏‌های نهایی، این دادها در کلیه مراحل بعدی استفاده می‌شود و از این نظر این مرحله تحلیل و تلاش بیشتری را می‌طلبد. انتخاب عناصر و شناسه‏‌های تحلیل شده را برای کاوش داده‏‌ها اختصاص می‌دهیم و با تمیز کردن داده‌های خام آن را برای ابزارهای مدل سازی آماده می‏ کنیم.

4. مدل سازی (Modeling):
با انتخاب و به ‏کار بستن تکنیک‌های مدل سازی مناسب و روش داده‏ کاوی معین نتایج مدل سازی را بهینه می‏ کنیم، که در صورت نیاز می‌توانیم با برگشت به عقب تحلیل مدل سازی را بهینه‌تر نماییم.

5. ارزیابی (Evaluation):
مشخص کردن اینکه آیا مدل انتخابی، ما را به اهدافمان که در اولین مرحله تعیین کردیم، می‏ رساند. اتخاذ تصمیم راجع به استفاده از نتایج داده‏ کاوی برای اعتبارسنجی نیز در این مرحله انجام می‏ شود.

6. استقرار (Deployment):
استفاده کردن از مدل ایجاد شده، برای مثال می‌تواند تولید یک گزارش ساده از خروجی‌ها را نام برد، و برای یک مثال پیچیده تکمیل کردن پردازش داده‏ کاوی موازی در سایر حوزه‏‌ها می‌باشد، که این الگو‏ها به یک دانش مفید و قابل استفاده تبدیل می‌شوند و پس از بهبود آنها، الگوهایی که کارا محسوب می‏ شوند در یک سیستم اجرایی به کار گرفته خواهند شد.

مراحل کاری داده کاوی در بستر تکنولوژی Microsoft

داده­ کاوی غالباً به عنوان فرآیند استخراج اطلاعات، الگوها و روندهای موجود در مجموعه­ ی عظیمی از داده­‌ها یاد می­ شود. این الگوها و روندها را می­ توان به عنوان یک مدل کاوشی تعریف نمود. به بیانی دیگر ایجاد یک مدل کاوشی بخشی از فرآیند بزرگتری است که در برگیرنده­ ی همه مراحل؛ از تعریف مسئله که مدل حل خواهد نمود تا اجرای مدل در محیط­‌‌های کاری است. می­ توان این فرآیند را با استفاده از 6 مرحله اساسی زیر تعریف نمود:

باید در نظر داشت که تهیه یک مدل داده کاوی، فرآیندی چرخشی، پویا و تکرار پذیر می­ باشد و ممکن است هر یک از این مراحل آن قدر تکرار شود، تا مدل مناسبی تهیه گردد. 

  • تعریف مسئله (Defining the Problem):

تعریف روشنی از مشکل و مسئله کسب و کار است. این مرحله شامل تجزیه و تحلیل نیازمندی­‌‌های کسب و­کار، تعریف دامنه مشکل، تعریف معیارهایی که با آن مدل­‌ها ارزیابی خواهد شد و تعریف هدف نهایی پروژه­ ی داده­ کاوی است.

  • آماده­ سازی داده­‌ها (Preparing Data):

یکپارچه ­سازی و پالایش داده­ هایی است که در مرحله­ ی تعریف مسئله فرآیند معین شده است. SSIS حاوی تمامی ابزارهای ملزوم برای تکمیل این مرحله می‌­باشد.

  • بررسی داده­‌ها (Exploring Data):

به منظور تصمیم­ گیری­‌های مناسب در هنگام تهیه مدل، می­ بایست داده­‌ها را درک نمود و پس از آن می­ توان تصمیم گیری در مورد وجود داده­‌های مخدوش در مجموعه داده و در نهایت استراتژی مناسب برای رفع این مشکلات اتخاذ نمود. Data Source view Designer موجود در BIDS حاوی ابزارهای جامعی برای بررسی و شناخت داده‌ها شامل محاسبه ارقام حداقل و حداکثر، محاسبه میانگین و انحراف معیار و بررسی توزیع داده­‌ها می­ باشد.

  • تهیه مدل ­ها (Building Models):

پیش از تهیه مدل باید، داده­‌ها را به دو دسته­ ی داده­‌های آموزشی و اعتبارسنجی (آزمایشی) تقسیم نمود. از داده­‌های آموزشی برای تهیه مدل و از داده­‌های اعتبار­سنجی برای آزمایش صحت مدل با ایجاد سوالاتی در مورد صحت پیش­ بینی­‌ها استفاده نمود. پس از تعریف ساختار کاوشی، می­ بایست به پردازش مدل پرداخته شود و ساختارهای خالی با الگوهایی که مدل را توصیف می­ نمایند، پُر شوند. این مرحله با عنوان آموزش مدل شناخته می­ شود.

  • بررسی و ارزیابی مدل­‌ها (Exploring and Validating Models):

این مرحله شامل بررسی مدل­‌های ایجاد شده به منظور آزمودن کارایی آنهاست. می­ توان مدل­‌ها را با ابزار­های موجود در Designer از جمله نمودار صعود و یا ماتریس دسته­ بندی بررسی نمود.

  • اجرا و بروزرسانی مدل­‌ها (Deploying and Updating Models):

این مرحله شامل اجرای مدل­ هایی است که بهترین کارائی را در یک محیط عملیاتی داشته­ اند. پس از استقرار مدل­‌های کاوشی در یک محیط عملیاتی می­ توان از این مدل­ها برای پیش­ بینی­ هایی بهره گرفت.


مراحل سه گانه موجود در ساخت یک مدل کاوش   

  • ایجاد ساختار کاوشی (Mining Structures): تعریف یک ساختار کاوشی شامل، تعیین تعداد ستون­‌های ورودی، تعداد ستون­‌های قابل پیش ­بینی و الگوریتم وابسته به آن می‌­باشد. ساختار کاوشی یک ساختار داده­ ای است که محدوده­ ی داده­ هایی را که از روی آنها مدل­‌های کاوش ساخته می­ شود را تعریف می­ نماید. 
  • آموزش مدل (Model Training): یک مدل کاوشی، الگوریتم­‌های کاوش را به داده­ هایی که ساختار کاوش ارائه می­ نماید، اعمال می­ کند. به بیان دیگر استفاده و کاربرد هر ستون و الگوریتمی که برای ساخت مدل استفاده می­ شود را تعریف می­ کند، پس شامل داده منبع اصلی نیست، بلکه شامل اطلاعاتی است که توسط الگوریتم کشف می­ شود. به آموزش مدل، پردازش مدل نیز گفته می‌شود و زمانی که یک مدل پردازش می­ شود داده­ هایی که توسط ساختار کاوش تعریف شده­ اند، از طریق الگوریتم­‌های داده­ کاوی انتخابی منتقل می­ شوند، الگوریتم؛ الگوها و روندها را جستجو می­ کند و در ادامه این اطلاعات در مدل ذخیره می­ شوند. از این رو پس از یادگیری و آموزش مدل، الگوهای بدست آمده در مدل کاوش ذخیره می­ شوند.

  • پیش بینی مدل (Prediction): غالباً مهمترین مرحله و هدف نهایی در پروژه­‌های داده­ کاوی است. پیش­ بینی به کشف اطلاعات ناشناخته با استفاده از الگوهای یافته شده از سوابق داده­‌ها اشاره دارد. در پیش­ بینی به یک مدل کاوشی آموزش دیده و یک مجموعه داده­ ی جدید نیاز است. و در طول پیش­ بینی موتور داده­ کاوی، قواعد بدست آمده در مرحله یادگیری را در مورد مجموعه داده­ ی جدید بکار می­ برد و نتایج پیش­ بینی را به هر Case ورودی تخصیص می­ دهد.  
مطالب
یک سرویس (میکروسرویس) چیست؟ و چگونه آن را مستند کنیم؟ (قسمت اول)
معماری میکروسرویس (یا به اختصار: میکروسرویس) یک سبک معماری نرم افزار می‌باشد که در آن یک نرم افزار، به مجموعه‌ای از سرویس‌ها خرد می‌شود؛ به نحوی که هر سرویس مسئولیت انجام بخشی از منطق کسب و کار را به عهده داشته باشد.
این تقسیم بندی مزایای متعددی را به همراه دارد که نهایتا پیاده سازی و توسعه راحت‌تر نرم افزار‌های بزرگ و پیچیده را ممکن می‌نماید. از جمله مزایای این معماری می‌توان به راحت‌تر شدن مباحث continuous delivery/deployment، مقیاس پذیری بهتر، تحمل خطا، مهاجرت به (و یا استفاده از) تکنولوژی‌های جدید در بخش‌های مختلف نرم افزار و ... اشاره نمود.

مهم‌ترین بخش و تصمیمات شما به عنوان یک معمار نرم افزار، هنگام طراحی با استفاده از این معماری، شناسایی بخش‌های مختلف کسب و کار، جدا سازی و مرزبندی نمودن آنها و نهایتا طراحی سرویس‌ها و تعیین نحوه همکاری آنها با یکدیگر می‌باشد. لذا در هنگام استفاده از معماری میکروسرویس، مرکز توجهات باید کسب و کار باشد و نه مسائل تکنیکال و موضوعاتی مانند Docker, Kubernetes , Serverless و ... . (DDD می‌تواند به شما جهت مرزبندی بخش‌های مختلف کسب و کار و شناسایی سرویس‌ها کمک نماید)

تا اینجا متوجه شدیم که میکروسرویس در واقع یک سبک معماری نرم افزار محسوب می‌گردد و در واقع میکروسرویس (در اینجا و ادامه مقاله، منظور از میکروسرویس، معماری میکروسرویس می‌باشد) از چندین سرویس مجزا و مستقل تشکیل شده‌است که هر سرویس معمولا مسئولیت بخشی از منطق کسب و کار را بر عهده خواهد داشت.

مشخصات یک سرویس
هر سرویس در معماری میکروسرویس دارای چندین ویژگی اصلی به شرح زیر می‌باشد:
- Loosely coupled with other services - باید به طور مستقل از سایر سرویس‌ها عمل کند. به این معنا که تغییر و توسعه سایر سرویس‌ها موجب اختلالی در عملکرد این سرویس نگردد و برعکس، تغییر و توسعه این سرویس نباید عملکرد سایر سرویس‌ها را مختل نماید.
- Independently deployable - تیم توسعه دهنده سرویس قادر باشد تا بدون نیاز به هماهنگی با سایر تیم‌ها، خدمات خود (شامل ویژگی‌های جدید و تغییرات) را مستقر (Deploy) نماید.
- Capable of being developed by a small team – سرویس، امکان توسعه توسط یک تیم کوچک را داشته باشد. این مورد به جهت جلوگیری از سربار زیاد ناشی از هماهنگی در تیم‌های بزرگ، ضرورت دارد.
- Highly maintainable and testable – سرویس بسیار قابل نگهداری و قابل آزمایش باشد؛ امکان توسعه، تست و استقرار سریع را داشته باشد.

ساختار یک سرویس
حال که با ویژگی‌ها و مشخصات اصلی یک سرویس آشنا شدیم، در دیاگرام زیر، ساختار درونی یک سرویس را که از معماری هگزاگون (hexagonal architecture) استفاده می‌نماید، بررسی میکنیم. در این معماری، هسته سرویس، منطق کسب کار (Business logic) می‌باشد که توسط چندین آداپتور (جهت ارتباط با سایر سرویس‌ها) احاطه شده است.

بیایید با دقت به هر یک از بخش‌های یک سرویس (با توجه به دیاگرام فوق) نگاه کنیم

هر سرویس  احتمالا دارای یک یا چندین API می‌باشد
از دید مصرف کنندگان یک سرویس (Consumers)، تنها مورد با اهمیت یک سرویس، APIهای آن سرویس می‌باشد. APIهای یک سرویس نیز (با توجه به تصویر فوق) شامل عملیات یا Operations و وقایع منتشر شده یا Published events می‌باشند. که در ادامه این انواع را بررسی میکنیم.

- عملیات (Operations)
به صورت کلی و همانطور که در دیاگرام فوق قابل مشاهده می‌باشد، عملیات به دو نوع دستورات (Commands) و جستارها (Queries) تقسیم می‌شوند. دستورات نوعی از عملیات می‌باشند که موجب تغییر داده‌ها می‌شود؛ اما در مقابل جستارها، عملیاتی در جهت واکشی داده‌ها می‌باشند. برای مثال یک سرویس  ثبت سفارش (OrderService) را در نظر بگیرید. عملیاتی مانند ثبت سفارش ()CreateOrder، انصراف از سفارش ثبت شده  ()CancelOrder و ... عملیاتی از نوع دستورات هستند و عملیاتی مانند یافتن یک سفارش خاص ()FindOrder که هیچ دیتایی را تغییر نمیدهد، از نوع جستارها می‌باشند.
عملیات ارائه شده توسط یک سرویس میتواند از ترکیبی از پروتکل‌های همزمان (Synchronous protocols) مانند REST یا gRPC و پروتکل‌های غیر همزمان (Asynchronous protocols) مانند messaging باشند.
پروتکل‌های همزمان، به ویژه REST، بیشتر در مواردی که قصد ارائه API به کلاینت‌های خارجی (External clients) را داریم، مانند موبایل اپلیکیشن‌ها و یا نرم افزارهای تک صفحه‌ای (SPA) کاربرد دارند.
از پروتکل‌های غیر همزمان مانند messaging نیز بیشتر در مواردی که میخواهیم الگوی ساگا (SAGA) را پیاده سازی نماییم و به روز نگه داشتن داده‌ها را بین سرویس‌های مختلف حفظ کنیم، نیاز به استفاده داریم. برای مثال در همان سیستم ثبت سفارش، عملیات ()CreateOrder به صورت Rest و با متد Post در Endpoint ای مانند /Order پیاده سازی می‌شود و پس از فراخوانی، یک عملیات غیرهمزمان مانند CreateOrderSaga را نیز به صورت messaging آغاز میکند.

- وقایع (Events)
سرویس‌ها، اغلب وقایعی (Event) را نیز منتشر میکنند. منظور از وقایع یا events معمولا همان مفهوم domain event درDDD می‌باشد که در همان ادبیات DDD وقایع توسط aggregate‌ها در زمان هایی مانند ایجاد، ویرایش، حذف و یا سایر مفاهیم موجود در منطق کسب و کار منتشر می‌شوند. سرویس نیز معمولا این وقایع را روی یک کانال ارتباطی (message channel) که توسط یک message broker (مانند RabbitMQ, Apache Kafka, ActiveMQ و ...) پیاده سازی شده است، منتشر میکند. و علاقمندان به دریافت این وقایع می‌توانند وقایع را پس از انتشار، بر روی کانال ارتباطی دریافت نمایند.


منطق کسب و کار (Business Logic)
منطق کسب و کار، قلب هر سرویس و دلیل وجود آن سرویس می‌باشد که API هایی را در قالب عملیات (Opertaions) پیاده سازی و همچنین مواردی را در قالب وقایع (Events) منتشر می‌نماید. همچنین منطق کسب و کار می‌تواند بنا بر نیاز خود، عملیات مربوط به سایر سرویس‌ها را فراخوانی و یا در کانال‌های ارتباطی (channels) مربوط به وقایع آنها، مشترک (Subscribes) شود و نهایتا داده‌ها را در دیتابیس خود نگهداری نماید.

نحوه همکاری سرویس‌ها با یکدیگر (Services Collaborations)
با توجه به مفاهیم فوق، زمانی که صحبت از همکاری (collaborate) بین سرویس‌ها می‌شود، معمولا منظور، ارتباط آنها از طریق APIهای یکدیگر (شامل عملیات و وقایع که پیش‌تر توضیح داده شد) می‌باشد (به جای خواندن و نوشتن مستقیم در دیتابیس‌های مربوط به یکدیگر می‌باشد).
برای مثال یک سرویس ممکن است عملیات مربوط به ایجاد سفارش ()CreateOrder را از سرویس ثبت سفارش (OrderService) فراخوانی نماید و یا برعکس خود سرویس ثبت سفارش (OrderService) ممکن است بر حسب نیاز منطق کسب و کار خود، عملیات ارائه شده توسط سرویس انبار را فراخوانی نماید.
همچنین یک سرویس جهت همکاری با دیگر سرویس‌ها میتواند در وقایع منتشر شده (Published events) توسط آنها مشترک (Subscribes) شود. برای مثال سرویس ثبت سفارش احتمالا در وقایع منتشر شده از سوی سرویس رستوران مشترک می‌شود.

دیتابیس اختصاصی
معمولا هر سرویس دارای یک یا چند دیتابیس می‌باشد که دیتای اختصاصی مربوط به منطق کسب و کار خود و در مواردی بخشی از دیتای مربوط به سایر سرویس‌ها را در آن‌(ها) نگهداری میکند. برای مثال اطلاعات سفارش‌ها را هم سرویس ثبت سفارش و هم سرویس رستوران، هر دو نگهداری میکنند و عملا این دیتا ابتدا در سرویس رستوران و سپس در سرویس ثبت سفارش، مجددا نگهداری می‌شود و به نوعی دیتای فوق Replicate شده و تکراری می‌باشد. اما به جهت اطمینان از کاهش وابستگی (loose coupling) این تکرار داده‌ها انجام می‌شود. در مجموع استفاده از یک دیتابیس مشترک (منظور table مشترک می‌باشد) بین سرویس‌ها ایده‌ی بدی می‌باشد و سرویس‌ها باید از طریق API‌های یکدیگر باهم همکاری نمایند.

نتیجه
در این مقاله عنوان شد که میکروسرویس یک سبک معماری می‌باشد و در این معماری، نرم افزار و منطق کسب و کار، به چندین سرویس مختلف  تقسیم می‌شود. مشخصات کلیدی که هر سرویس باید در این سبک معماری (microservice architecture) داشته باشد و همچنین ساختار درونی هر سرویس بررسی شد.
در قسمت بعدی این مقاله، در مورد نحوه مستند سازی این سرویس‌ها صحبت می‌شود. چرا که با زیاد شدن تعداد سرویس‌ها، در صورت عدم وجود یک مستندات مناسب (documents)، ارتباط و هماهنگی تیم‌ها با یکدیگر خود موجب سربار خواهد شد.

منابع
برگرفته شده از مقاله آقای ریچاردسون (whats-a-service
مطالب
بررسی مفاهیم Covariant و Contravariant در زبان سی‌شارپ
یکی از مفاهیمی که بنظر پیچیده می‌آمد و هر دفعه موقع مطالعه از آن فرار می‌کردم، همین بحث COVARIANCE و CONTRAVARIANCE بود. در اینجا قصد دارم به زبان ساده این مفاهیم را شرح دهم.

Covariance 
A را در نظر بگیرید که قابل تبدیل به B باشد. در اینصورت X، دارای پارامتر کواریانس است اگر <X<A قابل تبدیل به <X<B باشد. بدون ذکر مثال شاید این تعریف خیلی ملموس نباشد. پس بهتر است با ذکر مثال به تشریح مفاهیم بپردازیم.
نکته: در اینجا منظور از قابل تبدیل بودن، قابل تبدیل بودن به صورت ضمنی (implicit) می‌باشد. برای مثال A از B ارث بری داشته باشد و یا A، تایپ B را پیاده سازی کند (در صورتی که B یک اینترفیس باشد). تبدیلات عددی، Boxing و تبدیلات کاستوم مجاز نیستند.
برای نمونه نوع <IFoo<T پارامتر کوواریانس T دارد، اگر کد زیر معتبر باشد:
IFoo<string> s = ...;
IFoo<object> b = s;
از C# 4.0، اینترفیسها و delegateها مجاز به استفاده از پارامتر کوواریانس T هستند؛ اما در مورد کلاس‌ها اینطور نیست. آرایه‌ها نیز مجاز هستند که در ادامه تشریح خواهند شد (اگر A قابل تبدیل به B باشد در اینصورت []A قابل تبدیل به []B خواهد بود. هر چند ممکن است به run-time exception منجر گردد که ظاهرا این پشتیبانی آرایه‌ها از پارامترهای کوواریانس دلایل تاریخی دارد!).

Variance is not automatic
برای حصول اطمینان از static type safety، پارامترها به صورت پیش فرض variant نمی‌باشند:
class Animal {}
class Bear : Animal {}
class Camel : Animal {}
public class Stack<T>
{
   int position;
   T[] data = new T[100];
   public void Push (T obj) => data[position++] = obj;
   public T Pop() => data[--position];
}
کد زیر کامپایل نخواهد شد:
Stack<Bear> bears = new Stack<Bear>();
Stack<Animal> animals = bears; // Compile-time error 
دلیل اینکه کد فوق کامپایل نمی‌شود، در کد زیر آورده شده است:
animals.Push (new Camel()); // Trying to add Camel to bears
اگر کامپایل انجام می‌شد، کد بالا در زمان اجرا خطا صادر می‌کرد؛ چرا که نوع واقعی animals، در واقع <Stack<Bear بوده و نمی‌توان به آن، شیء ای از جنس Camel اضافه کرد. عدم پشتیبانی از کوواریانس، به هرحال مانع از امکان استفاده مجدد (re-usability) خواهد شد. برای مثال فرض کنید می‌خواهیم متدی بنویسیم که وظیفه آن صادر کردن دستور شستن حیوانات موجود در پشته باشد:
public class ZooCleaner
{
  public static void Wash (Stack<Animal> animals) {...}
}
فراخوانی متد Wash با پارامتری از جنس <Stack<Bear در زمان کامپایل خطا خواهد داد (اعمال این محدودیت منطقی است. برای مثال ممکن است مثلا در بدنه متد Wash با استفاده از متد Pop کلاس Stack یک Animal برداشته شده و به Camel کست گردد که با توجه به نوع اصلی آن (Bear) خطای run-time صادر خواهد شد. اما به هرحال محدودیت ایجاد شده، جلوی خطاهایی که ممکن است در run-time اتفاق بیافتد را می‌گیرد). 
یک راه حل برای این موضوع، تعریف متد Wash به صورت جنریک و با constraint است:
class ZooCleaner
{
  public static void Wash<T> (Stack<T> animals) where T : Animal { ... }
}
با کد فوق می‌توان متد Wash را به صورت زیر فراخوانی نمود:
Stack<Bear> bears = new Stack<Bear>();
ZooCleaner.Wash(bears);
کامپایلر، ورژن جنریک متد Wash را کامپایل میکند. در این حالت میتوان با چک کردن نوع واقعی T و کست کردن به آن نوع، عملیات را بدون خطا انجام داد.
نکته: اگر reusable بودن مد نظر نبود، باید برای هر sub-type از Animal یک متد جداگانه Wash مینوشتیم (یکی برای Bear، یکی برای Camel،...).

راه حل دیگر این است که کلاس <Stack<T یک اینترفیس با پارامتر covariant پیاده سازی نماید که در ادامه به این مورد بازخواهیم گشت.

Arrays 
آرایه‌ها از covariance پشتیبانی می‌کنند. برای مثال:
Bear[] bears = new Bear[3];
Animal[] animals = bears; // OK
این مورد باعث ایجاد قابلیت استفاده مجدد می‌شود؛ به قیمت اینکه ممکن است چنین خطاهایی ایجاد شوند:
animals[0] = new Camel(); // Runtime error

Declaring a covariant type parameter  
از C# 4.0 و بالاتر، پارامترهای اینترفیسها و delegateها می‌توانند با استفاده از کلمه کلیدی out از covariance پشتیبانی کنند؛ یا به زبان ساده‌تر covariant گردند. در این صورت برخلاف آرایه‌ها از type safety اطمینان کامل خواهیم داشت.
برای نشان دادن این مورد، در کلاس <Stack<T اینترفیس زیر را پیاده سازی می‌کنیم:
public interface IPoppable<out T> { T Pop(); }
کلمه کلیدی out نشان می‌دهد که T فقط در موقعیت خروجی مورد استفاده واقع می‌گردد (برای مثال نوع برگشتی یک متد). این مورد سبب می‌شود تا پارامتر covariant باشد و کد زیر کامپایل گردد:
var bears = new Stack<Bear>();
bears.Push (new Bear());
// Bears implements IPoppable<Bear>. We can convert to IPoppable<Animal>:
IPoppable<Animal> animals = bears; // Legal
Animal a = animals.Pop();
در اینجا کامپایلر اجازه تبدیل bears را به animals می‌دهد. چرا که موردی که کامپایلر از آن جلوگیری می‌کرد (Push کردن Camel به Stack با اعضایی از جنس Bear) در اینجا نمی‌تواند رخ دهد. چرا که در اینجا پارامتر T فقط می‌تواند به عنوان خروجی استفاده گردد و امکان Push کردن وجود ندارد.

نکته: پارامترهای متدی که مزین به کلمه کلیدی out شده‌اند، واجد شرایط covariant بودن نمی‌باشند (به دلیل وجود محدودیتی در CLR).

با استفاده از کد زیر قابلیت استفاده مجددی که در ابتدا بحث کردیم فراهم می‌شود:
public class ZooCleaner
{
 public static void Wash (IPoppable<Animal> animals) { ... } //cast covariantly to solve the reusability problem 
}

نکته: Covariance (و contravariance) فقط در موارد تبدیل ارجاعی کار می‌کنند (نه تبدیل boxing). بنابراین اگر متدی داشته باشیم که دارای پارامتری از جنس IPoppa
<ble<object باشد، امکان فراخوانی آن متد با ورودی از جنس <IPoppable<string وجود دارد؛ اما پاس دادن متغیر از جنس <IPoppable<int امکانپذیر نمی‌باشد.

Contravariance   
در تعریف covaraince داشتیم:  A را در نظر بگیرید که قابل تبدیل به B باشد. در اینصورت X، دارای پارامتر کواریانس است اگر <X<A قابل تبدیل به <X<B باشد.  Contravariance 
زمانی است که تبدیل در جهت عکس صورت گیرد (تبدیل از <X<B به <X<A). این مورد فقط برای پارامترهای ورودی صحیح است و با کلمه کلیدی in تعیین می‌گردد. با استفاده از پیاده سازی اینترفیس:
public interface IPushable<in T> { void Push (T obj); }
می‌توانیم کد زیر را بنویسیم:
IPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals; // Legal
bears.Push (new Bear());
هیچ عضوی از اینترفیس IPushable خروجی T را بر نمی‌گرداند و لذا با casting اشتباه، مواجه نخواهیم شد (برای نمونه از طریق این اینترفیس راهی برای Pop کردن نداریم).
توجه: کلاس <Stack<T هر دو اینترفیس <IPushable<T و <IPoppable<T را پیاده سازی کرده است (با وجود اینکه T هم out است و هم in). اما این مورد مشکلی ایجاد نمی‌کند. زیرا قبل از تبدیل، ارجاعی فقط به یکی از اینترفیسها صورت می‌گیرد (نه همزمان به هردو!). این مورد نشان می‌دهد که چرا class‌ها از پارامترهای variant پشتیبانی نمی‌کنند. 

برای مثال اینترفیس زیر را در نظر بگیرید:
public interface IComparer<in T>
{
// Returns a value indicating the relative ordering of a and b
  int Compare (T a, T b);
}
از آنجاییکه T در اینجا contravariant است می‌توان از <IComparer<object برای مقایسه دو string استفاده نمود:
var objectComparer = Comparer<object>.Default;
// objectComparer implements IComparer<object>
IComparer<string> stringComparer = objectComparer;
int result = stringComparer.Compare ("Hashem", "hashem");


برای مطالعه‌ی بیشتر
Covariant and Contravariant  
مطالب
ساخت دیتابیس sqlite با EF6 Code First
تا نسخه EF6 و minor‌های آن به دلیل عدم پشتیبانی داریور sqlite از migration، ساخت دیتابیس با code first ممکن نیست برای همین مجبور هستند از پیاده سازی‌های خودشان و موجود بودن دیتابیس از قبل با استفاده از EF با آن کار کنند که یکی از مثال‌های آن در این آدرس قرار دارد و سعی دارد کلاسی مشابه sqlitehelper در اندروید که کار ساخت دیتابیس و مدیریت نسخه را دارد بسازد و از آن استفاده کند. البته در EF7 این مشکل حل شده است و تیم دات نت تمهیداتی را برای آن اندیشیده‌اند. در این نوشتار قصد داریم با استفاده از یک کتابخانه که توسط آقای مارک سالین نوشته شده است کار ساخت دیتابیس را آسانتر کنیم. این کتابخانه که با دات نت 4 به بعد کار میکند خیلی راحت می‌تواند دیتابیس شما را به روش Code First ایجاد کند.

در حال حاضر این کتابخانه از مفاهیم زیر پشتیبانی می‌کند:

  • تبدیل کلاس به جدول با پشتیبانی از خصوصیت Table
  • تبدیل پراپرتی‌ها به ستون با پشتیبانی از خصوصیت هایی چون Column,Key,MaxLength,Required,Notmapped,DatabaseGenerated,Index
  • پشتیبانی از primarykey و کلید‌های ترکیبی
  • کلید خارجی و روابط یک  به چند و پشتیبانی از cascade on delete
  • فیلد غیر نال


برای شروع ابتدا کتابخانه مورد نظر را از Nuget با دستور زیر دریافت کنید:
Install-Package SQLite.CodeFirst
خود این دستور باعث می‌شود که وابستگی‌هایش از قبیل sqlite provider‌ها نیز دریافت گردند.
solution من شامل سه پروژه است یکی برای مدل‌ها که شامل کلاس‌های زیر برای تهیه یک دفترچه تلفن ساده است:

Person
 public class Person
    {
        public int Id { get; set; }
        public string FirstName { get; set; }
        public string LastName { get; set; }

        public virtual ICollection<PhoneBook> Numbers { get; set; }

    }

PhoneBook
  public class PhoneBook
    {
        public int Id { get; set; }

        public string Field{ get; set; }

        public string Number { get; set; }

        public virtual Person Person { get; set; }
    }

پروژه بعدی به نام سرویس که جهت پیاده سازی کلاس‌های EF است و دیگری هم یک پروژه‌ی WPF جهت تست برنامه.
در پروژه‌ی سرویس ما یک کلاس به نام Context داریم که مفاهیم مربوط به پیاده سازی Context در آن انجام شده است:
public class Context:DbContext
    {
        public Context():base("constr")
        {
        }

        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();
            var initializer = new InitialDb(modelBuilder);
            Database.SetInitializer(initializer);        
        }

        public DbSet<PhoneBook> PhoneBook { get; set; }
        public DbSet<Person> Persons { get; set; }
    }
تا به الان چیز جدیدی نداشتیم و همه چیز طبق روال صورت گرفته است؛ ولی دو نکته‌ی مهم در این کد نهفته است:

 اول اینکه در سطر اول متد بازنویسی شده onModelCreating، قرارداد مربوط به نامگذاری جداول را حذف می‌کنیم چرا که در صورت نبودن این خط، اسامی که کلاس sqllite برای آن در نظر خواهد گرفت با اسامی که برای انجام عملیات CURD استفاده می‌شوند متفاوت خواهد بود. برای مثال برای Person جدولی به اسم People خواهد ساخت ولی برای درج، آن را در جدول Person انجام می‌دهد که به خاطر نبودن جدول با خطای چنین جدولی موجود نیست روبرو می‌شویم.

نکته‌ی دوم اینکه در همین کلاس Context ما یک پیاده سازی جدید بر روی کلاس InitialDb داشته ایم که در زیر نمونه کد آن را می‌بینید:
 public class InitialDb:SQLite.CodeFirst.SqliteCreateDatabaseIfNotExists<Context>
    {
        public InitialDb(DbModelBuilder modelBuilder) : base(modelBuilder)
        {
        }

        protected override void Seed(Context context)
        {
            var person = new Person()
            {
                FirstName = "ali",
                LastName = "yeganeh",
                Numbers = new List<PhoneBook>()
                {
                    new PhoneBook()
                    {
                        Field = "Work",
                        Number = "031551234"
                    },
                    new PhoneBook()
                    {
                        Field = "Mobile",
                        Number = "09123456789"
                    },
                    new PhoneBook()
                    {
                        Field = "Home",
                        Number = "031554321"
                    }
                }
            };

            context.Persons.Add(person);
            base.Seed(context);
        }
    }
در این کد کلاس InitialDb از کلاس SqliteCreateDatabaseIfNotExists ارث بری کرده‌است و متد seed آن را هم بازنویسی کرده‌ایم. کلاس SqliteCreateDatabaseIfNotExists برای زمانی کاربر دارد که اگر دیتابیس موجود نیست آن را ایجاد کند، در غیر اینصورت خیر. به غیر از آن، کلاس دیگری به نام SqliteDropCreateDatabaseAlways هم وجود دارد که با هر بار اجرا، جداول قبلی را حذف و مجددا آن‌ها را ایجاد میکند.
سپس در پروژه‌ی اصلی WPF در فایل AppConfig رشته اتصالی مورد نظر را وارد نمایید:
  <connectionStrings>
    <add name="constr" connectionString="data source=.\phonebook.sqlite;foreign keys=true" providerName="System.Data.SQLite" />
  </connectionStrings>
نکته‌ی مهم اینکه با افزودن کتابخانه از طریق nuget فایل app.config به روز می‌شود؛ ولی به نظر می‌رسد که تنظیمات به درستی انجام نمی‌شوند. در صورتیکه به مشکل زیر برخوردید و نتوانستید برنامه را اجرا کنید، کد زیر را که قسمتی از فایل app.config است، مطالعه فرمایید و موارد مربوط به آن را اصلاح کنید:

خطا:
The ADO.NET provider with invariant name 'System.Data.SQLite' is either not registered in the machine or application config file, or could not be loaded

قسمتی از فایل app.config:
<entityFramework>
    <defaultConnectionFactory type="System.Data.Entity.Infrastructure.LocalDbConnectionFactory, EntityFramework">
      <parameters>
        <parameter value="mssqllocaldb" />
      </parameters>
    </defaultConnectionFactory>
    <providers>
          <provider invariantName="System.Data.SqlClient" type="System.Data.Entity.SqlServer.SqlProviderServices, EntityFramework.SqlServer" />
      <provider invariantName="System.Data.SQLite" type="System.Data.SQLite.EF6.SQLiteProviderServices, System.Data.SQLite.EF6" />

    </providers>
  </entityFramework>
  <system.data>
    <DbProviderFactories>
      <remove invariant="System.Data.SQLite.EF6" />
      <remove invariant="System.Data.SQLite" />
       <add name="SQLite Data Provider" invariant="System.Data.SQLite" description=".Net Framework Data Provider for SQLite" type="System.Data.SQLite.SQLiteFactory, System.Data.SQLite" />
    </DbProviderFactories>
  </system.data>

کد Load پروژه WPF:
 public MainWindow()
        {
            InitializeComponent();
           var context=new Context();

            var list= context.Persons.ToList();

            var s = "";

            foreach (var person in list)
            {
                s += person.FirstName + " " + person.LastName +
            " has these numbers:" + Environment.NewLine;

                foreach (var number in person.Numbers)
                {
                    s += number.Field + " : " + number.Number + Environment.NewLine;
                }

                s += Environment.NewLine;
            }
           MessageBox.Show(s);


        }



دانلود مثال
 
مطالب
آموزش BrightStarDb (قسمت اول)
در طی این پست ها با مفاهیم NoSql آشنا شدید. همچنین در این دوره مفاهیم و مبانی RavenDb (یکی از بی نقص‌ترین دیتابیس‌های NoSql) بررسی شد. اما قرار است در طی چند پست با یکی دیگر از انواع دیتابیس‌های NoSql  طراحی شده برای دات نت به نام  BrightStarDb یا به اختصار  B*Db آشنا شویم.

*در دنیای NoSql پیاده سازی‌های متفاوتی از دیتابیس‌ها انجام شده است و هر دیتابیس، ویژگی‌ها و مزایا و معایب خاص خودش را دارد. باید قبول کرد که همیشه و همه جا نمی‌توان از یک پایگاه داده NoSql مشخص استفاده نماییم (دلایلی نظیر محدودیت‌های License، هزینه پیاده سازی و...). در نتیجه بررسی یک دیتابیس دیگر با شرایط و توانمندی‌های خاص آن خالی از سود نیست.
از ویژگی مهم این دیتابیس می‌توان به عناوین زیر اشاره کرد.
» این دیتاییس در گروه Graph databases‌ها قرار دارد و از  زبان SPARQL (بخوانید Sparkle) برای  کوئری گرفتن و کار با داده‌ها بهره می‌برد؛
» متن باز و رایگان است
» پشتیبانی از دات نت چهار به بعد؛
» قابل استفاده در Mobile Application - Windows phone 7 , 8؛
» بدون شما (Schema Less) و با قابیلت ذخیره سازی triple و به فرمت RDF
» پشتیبانی از Linq و  OData؛
» پشتیبانی از تراکنش‌ها ؛
» پیاده سازی مدل برنامه به صورت Code First؛
» سرعت بالا جهت ذخیره سازی و لود اطلاعات؛
» نیاز به پیکربندی‌های خاص جهت پیاده سازی ندارد؛
» ارائه افزونه رایگان Polaris جهت کوئری گفتن و نمایش Visual داده ها.
و غیره که در ادامه با آن‌ها آشنا خواهید شد.

در B*Db دو روش برای ذخیره سازی اطلاعات وجود دارد:
» Append Only : در این روش تمامی تغییرات (عملیات نوشتن) در انتهای فایل index اضافه خواهد شد. این روش مزایای زیر را به دنبال خواهد داشت:
  • عملیات نوشتن هیچگاه عملیات خواندن اطلاعات را block نمی‌کند. در نتیجه هر تعداد عملیات خواندن فایل (منظور اجرای کوئری‌های SPQRL است) می‌تواند به صورت موازی بر روی Store‌ها اجرا شود.
  • به دلیل اینکه عمل ویرایش واقعی هیچ گاه انجام نمی‌شود (داده‌ها فقط اضافه خواهند شد) همیشه می‌توانید وضعیت Store را به حالت‌های قبلی بازگردانید.
  • عملیات نوشتن اطلاعات بسیار سریع خواهد بود.
از معایب این روش این است که حجم Store‌ها فقط با افزایش داده‌ها زیاد نمی‌شود، بلکه با هر عملیات ویرایش نیز حجم فایل‌های Store افزایش پیاده خواهد کرد. در نتیجه از این روش فقط زمانی که از نظر فضای هارد دیسک محدودیت ندارید استفاده کنید(روش پیش فرض در B*Db نیز همین حالت است)

» Rewritable : در این روش در هنگام اجرای عملیات نوشتن، ابتدا یک کپی از اطلاعات گرفته میشود. سپس داده‌های مورد نظر به کپی گرفته شده اعمال می‌شوند. تا زمانیکه عملیات نوشتن اطلاعات به پایان نرسد، هر گونه دسترسی به اطلاعات جهت عملیات Read بر روی داده اصلی اجرا می‌شود. با استفاده از این روش عملیات Read و Write هیچ گونه تداخلی با هم نخواهند داشت. (چیزی شبیه به ^)

نکته ای که باید به آن دقت داشت این است که فقط در هنگام ساخت Store‌ها می‌توانید نوع ذخیره سازی آن را تعیین نمایید، بعد از ساخت Store امکان سوئیچ بین حالات امکان پذیر نیست.

همان طور که پیشتر گفته شد B*Db  برای ذخیره سازی اطلاعات از سند RDF بهره می‌برد. البته با RDF Syntax‌های متفاوت :

هم چنین در B*Db چهار روش برای دست یابی با داده‌ها (پیاده سازی عملیات CRUD) وجود دارد از قبیل:
» B*Db EntityFramewok
» Data Object Layer
» RDF Client Api
» Dynamic API
که هر کدام در طی پست‌های متفاوت بررسی خواهد شد.

بررسی یک مثال با روش B*Db EntityFramework

برای شروع ابتدا یک پروژه جدید از نوع Console Application ایجاد کنید. سپس از طریق Nuget اقدام به نصب Package  زیر نمایید:
pm> install-Package BirghtStarDb
پکیج بالا تمام کتابخانه‌های لازم جهت کار با B*Db را شامل می‌شود. اگر قصد ندارید از افزونه‌های مربوط به EntityFramework و Code First استفاده نمایید می‌توانید Package زیر را نصب نمایید:
PM> Install-Package BirghtStarDbLibs
این پکیج فقط شامل کتابخانه‌های لازم جهت کار با استفاده از SPRQL است.
بعد از نصب پکیج‌های بالا یک فایل Text Template با نام MyEntityContext.tt  نیز به پروژه افزوده خواهد شد. این فایل جهت تولید خودکار مدل‌های برنامه استفاده می‌شود. اما برای این کار لازم است به ازای هر مدل ابتدا یک اینترفیس ایجاد نمایید. برای مثال:
 [Entity]
    public interface IBook
    {
        public int Code { get; set; }
        public string Title { get; set; }
    }
نکته:
» نیاز به ایجاد یک خاصیت به عنوان Id وجود ندارد. به صورت پیش فرض خاصیت Id با نوع string برای هر مدل پیاده سازی می‌شود. اما اگر قصد دارید این نام خاصیت را تغییر دهید می‌توانید به صورت زیر عمل کنید:
[Entity]
    public interface IBook
    {
        [Identifier]
        public string MyId { get;  }
        public int Code { get; set; }   
        public string Title { get; set; }
    }
در مثال بالا خاصیت MyId به جای خاصیت Id در نظر گرفته می‌شود. مزین شدن با Identifier  و همچنین نداشتن متد set را فراموش نکنید. بعد از ایجاد اینترفیس مورد نظر و اجرای Run Custom Tool بر روی فایل Text Template.tt کلاسی به نام Book به صورت زیر ساخته می‌شود:

استفاده از اینترفیس برای ساخت مدل انعطاف پذیری بالایی را در اختیار ما قرار می‌دهد که بعدا مفصل بحث خواهد شد. برای عملیات درج داده می‌توان به صورت زیر عمل کنید:

 MyEntityContext context = new MyEntityContext("type=embedded;storesdirectory=c:\brightstar;storename=test");
            var book = context.Books.Create();
            book.Code = 1;
            book.Title = "Test";

            context.Books.Add(book);

            context.SaveChanges();
با یک نگاه می‌توان به شباهت مدل پیاده سازی شده بالا به EntityFramework پی برد. اما نکته مهم در مثال بالا ConnectionString پاس داده شده به Context پروژه است. در B*Db چهار روش برای دستیابی به اطلاعات ذخیره شده وجود دارد:
»embedded : در این حالت از طریق آدرس فیزیکی فایل مورد نظر می‌توان یک Connection ایجاد کرد.
»rest : یا استفاده از HTTP یا HTTPS می‌توان به سرویس B*Db دسترسی داشت.
»dotNetRdf : برای ارتباط با یک Store دیگر با استفاده از اتصال دهنده‌های DotNetRDf.
»sparql : اتصال به منبع داده ای دیگر با استفاده از پروتکل SPARQL
در هنگام ایجاد اتصال باید نوع مورد نظر را از حتما تعیین نمایید. با استفاده از storedirctory مکان فیزیکی فایل تعیین خواهد شد.