مطالب
Static Reflection

قابلیت Dynamic reflection یا به اختصار همان reflection متداول، از اولین نگارش‌های دات نت فریم در دسترس است و امکان دسترسی به اطلاعات مرتبط با کلاس‌ها، متدها، خواص و غیره را در زمان اجرا مهیا می‌سازد. تابحال به کمک این قابلیت، امکان تهیه‌ی ابزارهای پیشرفته‌ی زیر مهیا شده است:
انواع و اقسام
- فریم ورک‌های آزمون واحد
- code generators
- ORMs
- ابزارهای آنالیز کد
و ...


برای مثال فرض کنید که می‌خواهید برای یک کلاس به صورت خودکار، متدهای آزمون واحد تهیه کنید (تهیه یک code generator ساده). اولین نیاز این برنامه، دسترسی به امضای متدها به همراه نام آرگومان‌ها و نوع آن‌ها است. برای حل این مساله باید برای مثال یک parser زبان سی شارپ یا اگر بخواهید کامل‌تر کار کنید، به ازای تمام زبان‌های قابل استفاده در دات نت فریم ورک باید parser تهیه کنید که ... کار ساده‌ای نیست. اما با وجود reflection به سادگی می‌توان به این نوع اطلاعات دسترسی پیدا کرد و نکته‌ی مهم آن هم این است که مستقل است از نوع زبان مورد استفاده. به همین جهت است که این نوع ابزارها را در فریم ورک‌هایی که فاقد امکانات reflection هستند، کمتر می‌توان یافت. برای مثال کیفیت کتابخانه‌های آزمون واحد CPP در مقایسه با آنچه که در دات نت مهیا هستند، اصلا قابل مقایسه نیستند. برای نمونه به یکی از معظم‌ترین فریم ورک‌های آزمون واحد CPP که توسط گوگل تهیه شده مراجعه کنید : (+)
قابلیت Reflection ، مطلب جدیدی نیست و برای مثال زبان جاوا هم سال‌ها است که از آن‌ پشتیبانی می‌کند. اما نگارش سوم دات نت فریم ورک با معرفی lambda expressions ، LINQ و Expressions در یک سطح بالاتر از این Dynamic reflection متداول قرار گرفت.

تعریف Static Reflection :
استفاده از امکانات Reflection API بدون بکارگیری رشته‌ها، به کمک قابلیت اجرای به تعویق افتاده‌ی LINQ، جهت دسترسی به متادیتای المان‌های کد، مانند خواص، متدها و غیره.
برای مثال کد زیر را در نظر بگیرید:
//dynamic reflection
PropertyInfo property = typeof (MyClass).GetProperty("Name");
MethodInfo method = typeof (MyClass).GetMethod("SomeMethod");
این کد، یک نمونه از دسترسی به متادیتای خواص یا متدها را به کمک Reflection متداول نمایش می‌دهد. مهم‌ترین ایراد آن استفاده از رشته‌ها است که تحت نظر کامپایلر نیستند و تنها زمان اجرا است که مشخص می‌شود آیا MyClass واقعا خاصیتی به نام Name داشته است یا خیر.
چقدر خوب می‌شد اگر این قابلیت بجای dynamic بودن (مشخص شدن در زمان اجرا)، استاتیک می‌بود و در زمان کامپایل قابل بررسی می‌شد. این امکان به کمک lambda expressions و expression trees دات نت سه بعد، میسر شده است. کلیدهای اصلی Static Reflection کلاس‌های Func و Expression هستند. با استفاده از کلاس Func می‌توان lambda expression ایی را تعریف کرد که مقداری را بر می‌گرداند و توسط کلاس Expression می‌توان به محتوای یک delegate دسترسی یافت. ترکیب این دو، قدرت دستیابی به اطلاعاتی مانند PropertyInfo را در زمان طراحی کلاس‌ها، می‌دهد؛ با توجه به اینکه:
- کاملا توسط intellisense موجود در VS.NET پشتیبانی می‌شود.
- با استفاده از ابزارهای refactoring قابل کنترل است.
- از همه مهم‌تر، دیگری خبری از رشته‌ها نبوده و همه چیز تحت کنترل کامپایلر قرار می‌گیرد.

و شاید هیچ قابلیتی به اندازه‌ی Static Reflection در این چندسال اخیر بر روی اکوسیستم دات نت فریم ورک تاثیرگذار نبوده باشد. این روزها کمتر کتابخانه یا فریم ورکی را می‌توانید پیدا کنید که از Static Reflection استفاده نکند. سرآغاز استفاده گسترده از آن به Fluent NHibernate بر می‌گردد؛ سپس در انواع و اقسام mocking frameworks‌ ، ORMs و غیره استفاده شد و مدتی است که در ASP.NET MVC نیز مورد استفاده قرار می‌گیرد (برای مثال TextBoxFor معروف آن):
public string TextBoxFor<T>(Expression<Func<T,object>> expression);
به این ترتیب حین استفاده از آن دیگری نیازی نخواهد بود تا نام خاصیت مدل مورد نظر را به صورت رشته وارد کرد:
<%= this.TextBoxFor(model => model.FirstName); %>

یک مثال ساده از تعریف و بکارگیری Static Reflection :
public PropertyInfo GetProperty<T>(Expression<Func<T, object>> expression)
{
var memberExpression = expression.Body as MemberExpression;

if (memberExpression == null)
throw new InvalidOperationException("Not a member access.");

return memberExpression.Member as PropertyInfo;
}
همانطور که عنوان شد کلیدهای اصلی بهر‌ه‌گیری از امکانات Static reflection ، استفاده از کلاس‌های Expression و Func هستند که در آرگومان متد فوق بکارگرفته شده‌اند و در حقیقت یک expression of a delegate است که به آن Lambdas as Data نیز گفته می‌شود. این delegate پارامتری از نوع T را دریافت کرده و سپس مقداری از نوع object را بر می‌گرداند. اما زمانیکه از کلاس Expression در اینجا استفاده می‌شود، این Func دیگر اجرا نخواهد شد، بلکه از آن به عنوان قطعه‌ کدی که اطلاعاتش قرار است استخراج شود (Lambdas as Data) استفاده می‌شود.
برای نمونه Fluent NHibernate‌ در پشت صحنه متد Map ، به کمک متدی شبیه به GetProperty فوق، a => a.Address1 را به رشته متناظر خاصیت Address1 تبدیل کرده و جهت تعریف نگاشت‌ها مورد استفاده قرار می‌دهد:
public class AddressMap : DomainMap<Address>
{
public AddressMap()
{
Map(a => a.Address1);
}
}

جهت اطلاع؛ قابلیت استفاده از «کد به عنوان اطلاعات» هم مفهوم جدیدی نیست و برای مثال زبان Lisp چند دهه است که آن‌را ارائه داده است!

برای مطالعه بیشتر:

مطالب
کاربردهای Static reflection - قسمت اول

در مورد static reflection مقدمه‌ای پیشتر در این سایت قابل مطالعه است (^) و پیشنیاز بحث جاری است. در ادامه قصد داریم یک سری از کاربردهای متداول آن‌را که این روزها در گوشه و کنار وب یافت می‌شود، به زبان ساده بررسی کنیم.

بهبود کدهای موجود

از static reflection در دو حالت کلی می‌توان استفاده کرد. یا قرار است کتابخانه‌ای را از صفر طراحی کنیم یا اینکه خیر؛ کتابخانه‌ای موجود است و می‌خواهیم کیفیت آن‌را بهبود ببخشیم. هدف اصلی هم «حذف رشته‌ها» و «استفاده از کد بجای رشته‌ها» است.
برای مثال قطعه کد زیر یک مثال متداول مرتبط با WPF و یا Silverlight است. در آن با پیاده سازی اینترفیس INotifyPropertyChanged و استفاده از متد raisePropertyChanged ، به رابط کاربری برنامه اعلام خواهیم کرد که لطفا خودت را بر اساس اطلاعات جدید تنظیم شده در قسمت set خاصیت Name ، به روز کن:
using System.ComponentModel;


namespace StaticReflection
{
public class User : INotifyPropertyChanged
{
string _name;
public string Name
{
get { return _name; }
set
{
if (_name == value) return;
_name = value;
raisePropertyChanged("Name");
}
}

public event PropertyChangedEventHandler PropertyChanged;
void raisePropertyChanged(string propertyName)
{
var handler = PropertyChanged;
if (handler == null) return;
handler(this, new PropertyChangedEventArgs(propertyName));
}
}
}

تعاریف قسمت PropertyChangedEventArgs این پیاده سازی، خارج از کنترل ما است و در دات نت فریم ورک تعریف شده است. حتما هم نیاز به رشته دارد؛ آن هم نام خاصیتی که تغییر کرده است. چقدر خوب می‌شد اگر می‌توانستیم این رشته را حذف کنیم تا کامپایلر بتواند صحت بکارگیری اطلاعات وارد شده را دقیقا پیش از اجرای برنامه بررسی کند. الان فقط در زمان اجرا است که متوجه خواهیم شد، مثلا آیا به روز رسانی مورد نظر صورت گرفته‌است یا خیر؛ اگر نه، یعنی احتمالا یک اشتباه تایپی جایی وجود دارد.
برای بهبود این کد همانطور که در قسمت قبل نیز گفته شد، از ترکیب کلاس‌های Expression و Func استفاده خواهیم کرد. در اینجا Func قرار نیست چیزی را اجرا کند، بلکه از آن به عنوان قطعه‌ کدی که اطلاعاتش قرار است استخراج شود (Lambdas as Data) استفاده می‌شود. این استخراج اطلاعات هم توسط کلاس Expression انجام می‌شود. بنابراین قسمت اول بهبود کد به صورت زیر شروع می‌شود:
void raisePropertyChanged(Expression<Func<object>> expression)


الان اگر متد raisePropertyChanged بکارگرفته شده در خاصیت Name را بخواهیم اصلاح کنیم، حداقل با دو واقعه‌ی مطلوب زیر مواجه خواهیم شد:
Intellisense به صورت خودکار کار می‌کند:


حتی بدوی‌ترین ابزارهای Refactoring موجود (منظور همان ابزار توکار VS.NET است!) هم امکان Refactoring را در اینجا فراهم خواهند ساخت:



در پایان کد تکمیل شده فوق به شرح زیر خواهد بود که در آن از کلاس Expression جهت استخراج Member.Name استفاده شده است:
using System;

using System.ComponentModel;
using System.Linq.Expressions;

namespace StaticReflection
{
public class User : INotifyPropertyChanged
{
string _name;
public string Name
{
get { return _name; }
set
{
if (_name == value) return;
_name = value;
raisePropertyChanged(() => Name);
}
}

public event PropertyChangedEventHandler PropertyChanged;
void raisePropertyChanged(Expression<Func<object>> expression)
{
var memberExpression = expression.Body as MemberExpression;
if (memberExpression == null)
throw new InvalidOperationException("Not a member access.");

var handler = PropertyChanged;
if (handler == null) return;
handler(this, new PropertyChangedEventArgs(memberExpression.Member.Name));
}
}
}

در اینجا باز هم نهایتا به همان PropertyChangedEventArgs استاندارد و موجود، برمی‌گردیم؛ اما آرگومان رشته‌ای آن‌را به کمک ترکیب کلاس‌های Expression و Func تامین خواهیم کرد.

مطالب
ساده سازی و بالا بردن سرعت عملیات Reflection با استفاده از Dynamic Proxy
فرض کنید یک چنین کلاسی طراحی شده‌است:
public class NestedClass
{
    private int _field2;
    public NestedClass()
    {
        _field2 = 12;
    }
}
 
public class MyClass
{
    private int _field1;
    private NestedClass _nestedClass;
 
    public MyClass()
    {
        _field1 = 1;
        _nestedClass = new NestedClass();
    }
 
    private string GetData()
    {
        return "Test";
    }
}
می‌خواهیم از طریق Reflection مقادیر فیلدها و متدهای مخفی آن‌را بخوانیم.
حالت متداول دسترسی به فیلد خصوصی آن از طریق Reflection، یک چنین شکلی را دارد:
var myClass = new MyClass();
 
var field1Obj = myClass.GetType().GetField("_field1", BindingFlags.NonPublic | BindingFlags.Instance);
if (field1Obj != null)
{
    Console.WriteLine(Convert.ToInt32(field1Obj.GetValue(myClass)));
}
و یا دسترسی به مقدار خروجی متد خصوصی آن، به نحو زیر است:
var getDataMethod = myClass.GetType().GetMethod("GetData", BindingFlags.NonPublic | BindingFlags.Instance);
if (getDataMethod != null)
{
    Console.WriteLine(getDataMethod.Invoke(myClass, null));
}
در اینجا دسترسی به مقدار فیلد مخفی NestedClass، شامل مراحل زیر است:
var nestedClassObj = myClass.GetType().GetField("_nestedClass", BindingFlags.NonPublic | BindingFlags.Instance);
if (nestedClassObj != null)
{
    var nestedClassFieldValue = nestedClassObj.GetValue(myClass);
    var field2Obj = nestedClassFieldValue.GetType()
        .GetField("_field2", BindingFlags.NonPublic | BindingFlags.Instance);
    if (field2Obj != null)
    {
        Console.WriteLine(Convert.ToInt32(field2Obj.GetValue(nestedClassFieldValue)));
    }
}
البته این مقدار کد فقط برای دسترسی به دو سطح تو در تو بود.

چقدر خوب بود اگر می‌شد بجای این همه کد، نوشت:
myClass._field1
myClass._nestedClass._field2
myClass.GetData()
نه؟!
برای این مشکل راه حلی معرفی شده‌است به نام Dynamic Proxy که در ادامه به معرفی آن خواهیم پرداخت.


معرفی Dynamic Proxy

Dynamic Proxy یکی از مفاهیم AOP است. به این معنا که توسط آن یک محصور کننده‌ی نامرئی، اطراف یک شیء تشکیل خواهد شد. از این غشای نامرئی عموما جهت مباحث ردیابی اطلاعات، مانند پروکسی‌های Entity framework، همانجایی که تشخیص می‌دهد کدام خاصیت به روز شده‌است یا خیر، استفاده می‌شود و یا این غشای نامرئی کمک می‌کند که در حین دسترسی به خاصیت یا متدی، بتوان منطق خاصی را در این بین تزریق کرد. برای مثال فرآیند تکراری logging سیستم را به این غشای نامرئی منتقل کرد و به این ترتیب می‌توان به کدهای تمیزتری رسید.
یکی دیگر از کاربردهای این محصور کننده یا غشای نامرئی، ساده سازی مباحث Reflection است که نمونه‌ای از آن در پروژه‌ی EntityFramework.Extended بکار رفته‌است.
در اینجا، کار با محصور سازی نمونه‌ای از کلاس مورد نظر با Dynamic Proxy شروع می‌شود. سپس کل عملیات Reflection فوق در همین چند سطر ذیل به نحوی کاملا عادی و طبیعی قابل انجام است:
 // Accessing a private field
dynamic myClassProxy = new DynamicProxy(myClass);
dynamic field1 = myClassProxy._field1;
Console.WriteLine((int)field1);
 
// Accessing a nested private field
dynamic field2 = myClassProxy._nestedClass._field2;
Console.WriteLine((int)field2);
 
// Accessing a private method
dynamic data = myClassProxy.GetData();
Console.WriteLine((string)data);
خروجی Dynamic Proxy از نوع dynamic دات نت 4 است. پس از آن می‌توان در اینجا هر نوع خاصیت یا متد دلخواهی را به شکل dynamic تعریف کرد و سپس به مقادیر آن‌ها دسترسی داشت.

بنابراین با استفاده از Dynamic Proxy فوق می‌توان به دو مهم دست یافت:
 1) ساده سازی و زیبا سازی کدهای کار با Reflection
 2) استفاده‌ی ضمنی از مباحث Fast Reflection. در کتابخانه‌ی Dynamic Proxy معرفی شده، دسترسی به خواص و متدها، توسط کدهای IL بهینه سازی شده‌است و در دفعات آتی کار با آن‌ها، دیگر شاهد سربار بالای Reflection نخواهیم بود.


کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید:
DynamicProxyTests.zip
مطالب
انتخاب پویای فیلد ها در LINQ

LINQ یک DLS  بر مبنای .NET  می باشد که برای پرس و جو در منابع داده ای مانند پایگاه‌های داده ، فایل‌های XML و یا لیستی از اشیاء درون حافظه کاربرد دارد.

یکی از بزرگترین مزیت‌های آن Syntax  آسان و خوانا آن می‌باشد.

LINQ  از 2 نوع نمادگذاری پشتیبانی می‌کند:

  • Inline LINQ یا query expressions : 
var result = 
    from product in dbContext.Products
    where product.Category.Name == "Toys"
    where product.Price >= 2.50
    select product.Name;
  • Fluent Syntax : 
var result = dbContext.Products
    .Where(p => p.Category.Name == "Toys" && p.Price >= 250)
    .Select(p => p.Name);

در پرس و چو‌های بالا فیلد‌های مورد نیاز در قسمت Select در زمان Compile شناخته شده هستند . اما گاهی ممکن است فیلد‌های مورد نیاز در زمان اجرا مشخص شوند.

به عنوان مثال یک گزارش ساز پویا که کاربر مشخص می‌کند چه ستون هایی در خروجی نمایش داده شوند یا یک جستجوی پیشرفته که ستون‌های خروجی به اختیار کاربر در زمان اجرا مشخص می‌شوند. 

این مدل را در نظر داشته باشید :

    public class Student
    {
        public int Id { get; set; }
        public string Name { get; set; }
        public string Field1 { get; set; }
        public string Field2 { get; set; }
        public string Field3 { get; set; }


        public static IEnumerable<Student> GetStudentSource()
        {
            for (int i = 0; i < 10; i++)
            {
                yield return new Student
                                 {
                                     Id = i,
                                     Name = "Name " + i,
                                     Field1 = "Field1 " + i,
                                     Field2 = "Field2 " + i,
                                     Field3 = "Field3 " + i
                                 };
            }
        }
    }

ستون‌های کلاس Student  را در رابط کاربری برنامه جهت انتخاب به کاربر نمایش می‌دهیم. سپس کاربر یک یا چند ستون را انتخاب می‌کند که قسمت Select  کوئری برنامه باید  بر اساس فیلد‌های مورد نظر کاربر مشخص شود.

یکی از روش هایی که می‌توان از آن بهره برد استفاده از کتاب خانه Dynamic LINQ معرفی شده در اینجا می باشد.

این کتابخانه جهت سهولت در نصب به کمک NuGet در این آدرس قرار دارد.

فرض بر این است که فیلد‌های انتخاب شده توسط کاربر با "," از یکدیگر جدا شده اند. 

    public class Program
    {
        private static void Main(string[] args)
        {
            System.Console.WriteLine("Specify the desired fields : ");
            string fields = System.Console.ReadLine();
            IEnumerable<Student> students = Student.GetStudentSource();
            IQueryable output = students.AsQueryable().Select(string.Format("new({0})", fields));
            foreach (object item in output)
            {
                System.Console.WriteLine(item);
            }
          
            System.Console.ReadKey();
        }
  
    }

همانطور که در عکس ذیل مشاهده می‌کنید پس از اجرای برنامه ، فیلد‌های انتخاب شده توسط کاربر از منبع داده‌ی دریافت شده و در خروجی نمایش داده شده اند.

این روش مزایا و معایب خودش را دارد ، به عنوان مثال خروجی یک لیست از شیء Student  نیست یا این Select  فقط برای روی یک شیء IQueryable  قابل انجام است.

روش دیگری که می‌توان از آن بهره جست استفاده از یک متد کمکی جهت تولید پویای عبارت Lambda  ورودی Select  می باشد :  

    public  class SelectBuilder <T>
    {
        public static Func<T, T> CreateNewStatement(string fields)
        {
            // input parameter "o"
            var xParameter = Expression.Parameter(typeof(T), "o");


            // new statement "new T()"
            var xNew = Expression.New(typeof(T));

            // create initializers
            var bindings = fields.Split(',').Select(o => o.Trim())
                .Select(o =>
                {

                    // property "Field1"
                    var property = typeof(T).GetProperty(o);

                    // original value "o.Field1"
                    var xOriginal = Expression.Property(xParameter, property);

                    // set value "Field1 = o.Field1"
                    return Expression.Bind(property, xOriginal);
                }
            ).ToList();

            // initialization "new T { Field1 = o.Field1, Field2 = o.Field2 }"
            var xInit = Expression.MemberInit(xNew, bindings);

            // expression "o => new T { Field1 = o.Field1, Field2 = o.Field2 }"
            var lambda = Expression.Lambda<Func<T, T>>(xInit, xParameter);

            // compile to Func<T, T>
            return lambda.Compile();
        }
    }
برای استفاده از متد CreateNewStatement باید اینگونه عمل کرد :  
       IEnumerable<Student> result = students.Select(SelectBuilder<Student>.CreateNewStatement("Field1, Field2")).ToList();

            foreach (Student student in result)
            {
                System.Console.WriteLine(student.Field1);
            }
خروجی یک لیست از Student  می باشد.
 نحوه‌ی کارکرد CreateNewStatement :

ابتدا فیلد‌های انتخابی کاربر که با "," جدا شده اند به ورودی پاس داده می‌شود سپس یک statement  خالی ایجاد می‌شود

o=>new Student()
فیلد‌های ورودی از یکدیگر تفکیک می‌شوند و به کمک Reflection پراپرتی معادل فیلد رشته ای در کلاس Student پیدا می‌شود :  
var property = typeof(T).GetProperty(o);
سپس عبارت Select و تولید شیء جدید بر اساس فیلد‌های ورودی تولید می‌شود و برای استفاده Compile  به Func می‌شود. در نهایت Func  تولید شده به Select پاس داده می‌شود و لیستی از Student  بر مبنای فیلد‌های انتخابی تولید می‌شود. 

دریافت مثال : DynamicSelect.zip 
مطالب دوره‌ها
تولید پویای کد در زمان اجرا توسط Reflection.Emit
در ادامه قصد داریم توسط امکانات Reflection به همراه کدهای IL، اشیایی را در زمان اجرا ایجاد کنیم.


Reflection چیست؟

Reflection چیزهایی هستند که با نگاه در یک آینه قابل مشاهده‌اند. در این حالت شخص می‌تواند قسمت‌های مختلف ظاهر خود را برانداز کرده یا قسمتی را تغییر دهید. اما این مساله چه ربطی به دنیای دات نت دارد؟ در دات نت با استفاده از Reflection می‌توان به اطلاعات اشیاء یک برنامه‌ی در حال اجرا دسترسی یافت. برای مثال نام کلاس‌های مختلف آن چیست یا درون کلاسی خاص، چه متدهایی قرار دارند. همچنین با استفاده از Reflection می‌توان رفتارهای جدیدی را نیز به کلاس‌ها و اشیاء افزود یا آن‌ها را تغییر داد.
همواره عنوان می‌شود که از Reflection به دلیل سربار بالای آن پرهیز کنید و تنها از آن به عنوان آخرین راه حل موجود استفاده نمائید و این دقیقا موردی است که در مباحث جاری بیشتر از آن استفاده خواهد شد: ساخت اشیاء جدید در زمان اجرا به کمک کدهای IL و امکانات Reflection


نگاهی به امکانات متداول Reflection

در مثال بعد، نگاهی خواهیم داشت به امکانات متداول Reflection، مانند دسترسی به متدها و خواص یک کلاس و تعویض مقدار یا فراخوانی آن‌ها:
using System;

namespace FastReflectionTests
{
    class Person
    {
        public string Name { set; get; }

        public string Speak()
        {
            return string.Format("Hello, my name is {0}.", this.Name);
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            //روش متداول
            var vahid = new Person { Name = "Vahid" };
            Console.WriteLine(vahid.Speak());

            var type = vahid.GetType();

            //نمایش متدهای یک کلاس
            var methods = type.GetMethods();
            foreach (var method in methods)
            {
                Console.WriteLine(method.Name);
            }

            //تغییر مقدار یک خاصیت
            var setNameMethod = type.GetMethod("set_Name");
            setNameMethod.Invoke(obj: vahid, parameters: new[] { "Ali" });

            //فراخوانی یک متد
            var speakMethod = type.GetMethod("Speak");
            var result = speakMethod.Invoke(obj: vahid, parameters: null);
            Console.WriteLine(result);
        }
    }
}
با خروجی ذیل
 Hello, my name is Vahid.
set_Name
get_Name
Speak
ToString
Equals
GetHashCode
GetType
Hello, my name is Ali.
توضیحات:
در اینجا یک کلاس شخص با خاصیت نام او تعریف شده است؛ به همراه متدی که رشته‌ای را نمایش خواهد داد.
در متد Main برنامه، ابتدا یک وهله جدید از این شخص ایجاد شده و سپس به روش متداول، متد Speak آن فراخوانی گردیده است. در ادامه کار از امکانات Reflection برای انجام همین امور کمک گرفته شده است.
کار با دریافت نوع یک وهله شروع می‌شود. برای نمونه در اینجا توسط vahid.GetType به نوع وهله ساخته شده دسترسی یافته‌ایم. سپس با داشتن این type، می‌توان به کلیه امکانات Reflection دسترسی یافت. برای مثال توسط GetMethods، لیست کلیه متدهای موجود در کلاس شخص بازگشت داده می‌شود.
اگر به خروجی فوق دقت کنید، پس از سطر اول، 7 سطر بعدی نمایانگر متدهای موجود در کلاس شخص هستند. شاید عنوان کنید که این کلاس به نظر یک متد بیشتر ندارد. اما در دات نت اشیاء از شیء Object مشتق می‌شوند و چهار متد ToString، Equals، GetHashCode و GetType متعلق به آن هستند. همچنین خواص تعریف شده نیز در اصل به دو متد set و get به صورت خودکار در کدهای IL برنامه ترجمه خواهند شد. از همین متد set_Name در ادامه برای مقدار دهی خاصیت نام وهله ایجاد شده استفاده شده است.
همانطور که ملاحظه می‌کنید برای فراخوانی یک وهله از طریق Reflection، ابتدا توسط متد type.GetMethod می‌توان به آن دسترسی یافت و سپس با فراخوانی متد Invoke، می‌توان متد مدنظر را بر روی یک شیء مهیا با پارامترهایی که ذکر می‌کنیم، فراخوانی کرد. اگر این متد پارامتری ندارد، آن‌را نال قرار خواهیم داد.

تا اینجا مقدمه‌ای را ملاحظه نمودید که بیشتر جهت تکمیل بحث، حفظ روابط منطقی قسمت‌های مختلف آن و یادآوری مباحث مرتبط با Reflection ذکر شدند.


ایجاد اشیاء در زمان اجرای برنامه

یکی از کلاس‌های مهم Reflection که در منابع مختلف کمتر به آن پرداخته شده است، کلاس DynamicMethod آن است که از آن می‌توان برای ایجاد اشیاء و یا متدهایی پویا در زمان اجرا استفاده کرد. این کلاس قرار گرفته در فضای نام System.Reflection.Emit، دارای یک ILGenerator است که می‌توان به آن OpCodeهایی را اضافه کرد. زمانیکه کار ایجاد این متدپویا به پایان رسید، با استفاده از Delegates امکان دسترسی و اجرای این متد پویا وجود خواهد داشت.
یک مثال کامل را در این زمینه در ادامه ملاحظه می‌نمائید:
using System;
using System.Reflection.Emit;

namespace FastReflectionTests
{
    class Program
    {
        static double Divider(int a, int b)
        {
            return a / b;
        }

        delegate double DividerDelegate(int a, int b);
        static void Main(string[] args)
        {
            //روش متداول
            Console.WriteLine(Divider(10, 2));

            //تعریف امضای متد
            var myMethod = new DynamicMethod(
                                        name: "DividerMethod",
                                        returnType: typeof(double),
                                        parameterTypes: new[] { typeof(int), typeof(int) },
                                        m: typeof(Program).Module);
            //تعریف بدنه متد
            var il = myMethod.GetILGenerator();
            il.Emit(opcode: OpCodes.Ldarg_0); //بارگذاری پارامتر اول بر روی پشته ارزیابی
            il.Emit(opcode: OpCodes.Ldarg_1); //بارگذاری پارامتر دوم بر روی پشته ارزیابی
            il.Emit(opcode: OpCodes.Div); // دو پارامتر از پشته ارزیابی دریافت و تقسیم خواهند شد
            il.Emit(opcode: OpCodes.Ret); // دریافت نتیجه نهایی از پشته ارزیابی و بازگشت آن

            //فراخوانی متد پویا
            //روش اول
            var result = myMethod.Invoke(obj: null, parameters: new object[] { 10, 2 });
            Console.WriteLine(result);

            //روش دوم
            var method = (DividerDelegate)myMethod.CreateDelegate(delegateType: typeof(DividerDelegate));
            Console.WriteLine(method(10, 2));
        }
    }
}
توضیحات
در ابتدای این مثال جدید یک متد متداول تقسیم کننده دو عدد را ملاحظه می‌کنید. در ادامه قصد داریم overload دیگری از این متد را توسط کدهای MSIL در زمان اجرا ایجاد کنیم که دو پارامتر int را قبول می‌کند.
کار با وهله سازی کلاس DynamicMethod موجود در فضای نام System.Reflection.Emit شروع می‌شود. در اینجا کار تعریف امضای متد جدید باید صورت گیرد. برای مثال نام آن چیست، نوع خروجی آن کدام است. نوع پارامترهای آن چیست و نهایتا این متدی که قرار است به صورت پویا به برنامه اضافه شود، باید در کجا قرار گیرد. برای اینکار از Module خود کلاس Program برنامه استفاده شده است.
پس از تعریف امضای متد پویا، نوبت به تعریف بدنه‌ی آن می‌رسد. کار با دریافت یک ILGenerator که می‌توان در آن کدهای IL را وارد کرد شروع می‌شود. مابقی آن تعریف کدهای IL توسط متد Emit است و پیشتر با مقدمات اسمبلی دات نت در قسمت‌های قبلی مبحث جاری آشنا شده‌ایم. ابتدا دو Ldarg فراخوانی شده‌اند تا دو پارامتر ورودی متد را دریافت کنند. سپس Div بر روی آن‌ها صورت گرفته و نهایتا نتیجه بازگشت داده شده است.
خوب؛ تا اینجا موفق شدیم اولین متد پویای خود را ایجاد نمائیم. برای اجرا آن حداقل دو روش وجود دارد:
الف) فراخوانی متد Invoke بر روی آن. با توجه به اینکه قرار نیست این متد بر روی وهله‌ی خاصی اجرا شود، اولین پارامتر آن null وارد شده است و سپس پارامترهای این متد پویا توسط آرگومان دوم متد Invoke وارد شده‌اند.
ب) می‌توان این عملیات را اندکی شکیل‌تر کرد. برای اینکار پیش از متد Main برنامه یک delegate به نام DividerDelegate تعریف شده است. سپس با استفاده از متد CreateDelegate، خروجی این متد پویا را تبدیل به یک delegate کرده‌ایم. اینبار فراخوانی متد پویا بسیار شبیه به متدهای معمولی می‌شود.
مطالب دوره‌ها
دسترسی سریع به مقادیر خواص توسط Reflection.Emit
اگر پروژه‌های چندسال اخیر را مرور کرده باشید خصوصا در زمینه ORMها و یا Serializerها و کلا مواردی که با Reflection زیاد سروکار دارند، تعدادی از آن‌ها پیشوند fast را یدک می‌کشند و با ارائه نمودارهایی نشان می‌دهند که سرعت عملیات و کتابخانه‌های آن‌ها چندین برابر کتابخانه‌های معمولی است و ... سؤال مهم اینجا است که رمز و راز این‌ها چیست؟
فرض کنید تعاریف کلاس User به صورت زیر است:
public class User
{
     public int Id { set; get; }
}
همانطور که در قسمت‌های قبل نیز عنوان شد، خاصیت Id در کدهای IL نهایی به صورت متدهای get_Id و set_Id ظاهر می‌شوند.
حال اگر یک متد پویا ایجاد کنیم که بجای هر بار Reflection جهت دریافت مقدار Id، خود متد get_Id را مستقیما صدا بزند، چه خواهد شد؟
پیاده سازی این نکته را در ادامه ملاحظه می‌کنید:
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Reflection;
using System.Reflection.Emit;

namespace FastReflectionTests
{
    /// <summary>
    /// کلاسی برای اندازه گیری زمان اجرای عملیات
    /// </summary>
    public class Benchmark : IDisposable
    {
        Stopwatch _watch;
        string _name;

        public static Benchmark Start(string name)
        {
            return new Benchmark(name);
        }

        private Benchmark(string name)
        {
            _name = name;
            _watch = new Stopwatch();
            _watch.Start();
        }

        public void Dispose()
        {
            _watch.Stop();
            Console.WriteLine("{0} Total seconds: {1}"
                               , _name, _watch.Elapsed.TotalSeconds);
        }
    }

    public class User
    {
        public int Id { set; get; }
    }

    class Program
    {
        public static Func<object, object> GetFastGetterFunc(string propertyName, Type ownerType)
        {
            var propertyInfo = ownerType.GetProperty(propertyName, BindingFlags.Instance | BindingFlags.Public);

            if (propertyInfo == null)
                return null;
            
            var getter = ownerType.GetMethod("get_" + propertyInfo.Name,
                                             BindingFlags.Instance | BindingFlags.Public | BindingFlags.FlattenHierarchy);
            if (getter == null)
                return null;

            var dynamicGetterMethod = new DynamicMethod(
                                                name: "_",
                                                returnType: typeof(object),
                                                parameterTypes: new[] { typeof(object) },
                                                owner: propertyInfo.DeclaringType,
                                                skipVisibility: true);
            var il = dynamicGetterMethod.GetILGenerator();

            il.Emit(OpCodes.Ldarg_0); // Load input to stack
            il.Emit(OpCodes.Castclass, propertyInfo.DeclaringType); // Cast to source type
            // نکته مهم در اینجا فراخوانی نهایی متد گت بدون استفاده از ریفلکشن است
            il.Emit(OpCodes.Callvirt, getter); //calls its get method

            if (propertyInfo.PropertyType.IsValueType)
                il.Emit(OpCodes.Box, propertyInfo.PropertyType);//box

            il.Emit(OpCodes.Ret);

            return (Func<object, object>)dynamicGetterMethod.CreateDelegate(typeof(Func<object, object>));
        }


        static void Main(string[] args)
        {
            //تهیه لیستی از داده‌ها جهت آزمایش
            var list = new List<User>();
            for (int i = 0; i < 1000000; i++)
            {
                list.Add(new User { Id = i });
            }

            // دسترسی به اطلاعات لیست به صورت متداول از طریق ریفلکشن معمولی
            var idProperty = typeof(User).GetProperty("Id");
            using (Benchmark.Start("Normal reflection"))
            {
                foreach (var item in list)
                {
                    var id = idProperty.GetValue(item, null);
                }
            }

            // دسترسی از طریق روش سریع دستیابی به اطلاعات خواص
            var fastIdProperty = GetFastGetterFunc("Id", typeof(User));
            using (Benchmark.Start("Fast Property"))
            {
                foreach (var item in list)
                {
                    var id = fastIdProperty(item);
                }
            }
        }
    }
}
توضیحات:
از کلاس Benchmark برای نمایش زمان انجام عملیات دریافت مقادیر Id از یک لیست، به دو روش Reflection متداول و روش صدا زدن مستقیم متد get_Id استفاده شده است.
در متد GetFastGetterFunc، ابتدا به متد get_Id خاصیت Id دسترسی پیدا خواهیم کرد. سپس یک متد پویا ایجاد می‌کنیم تا این get_Id را مستقیما صدا بزند. حاصل کار را به صورت یک delegate بازگشت می‌دهیم. شاید عنوان کنید که در اینجا هم حداقل در ابتدای کار متد، یک Reflection اولیه وجود دارد. پاسخ این است که مهم نیست؛ چون در یک برنامه واقعی، تهیه delegates در زمان آغاز برنامه انجام شده و حاصل کش می‌شود. بنابراین در زمان استفاده نهایی، به هیچ عنوان با سربار Reflection مواجه نخواهیم بود.

خروجی آزمایش فوق بر روی سیستم معمولی من به صورت زیر است:
 Normal reflection Total seconds: 2.0054177
Fast Property Total seconds: 0.0552056
بله. نتیجه روش GetFastGetterFunc واقعا سریع و باور نکردنی است!


چند پروژه که از این روش استفاده می‌کنند
Dapper
AutoMapper
fastJson

در سورس این کتابخانه‌ها روش‌های فراخوانی مستقیم متدهای set نیز پیاده سازی شده‌اند که جهت تکمیل بحث می‌توان به آن‌ها مراجعه نمود.


ماخذ اصلی
این کشف و استفاده خاص، از اینجا شروع و عمومیت یافته است و پایه تمام کتابخانه‌هایی است که پیشوند fast را به خود داده‌اند:
2000% faster using dynamic method calls
مطالب
استفاده از Lambda Expression در پروژه های مبتنی بر WCF
نکته : آشنایی با مفاهیم پایه WCF برای فهم بهتر مفاهیم توصیه می‌شود.

امروزه استفاده از WCF در پروژه‌های SOA بسیار فراگیر شده است. کمتر کسی است که در مورد قدرت تکنولوژی WCF نشنیده باشد یا از این تکنولوژی در پروژه‌های خود استفاده نکرده باشد. WCF مدل برنامه نویسی یکپارچه مایکروسافت برای ساخت نرم‌افزارهای سرویس گرا است و برای توسعه دهندگان امکانی را فراهم می‌کند که راهکارهایی امن، و مبتنی بر تراکنش را تولید نمایند که قابلیت استفاده در بین پلتفرم‌های مختلف را دارند. قبل از WCF توسعه دهندگان پروژه‌های نرم افزاری برای تولید پروژه‌های توزیع شده باید شرایط موجود برای تولید و توسعه را در نظر می‌گرفتند. برای مثال اگر استفاده کننده از سرویس در داخل سازمان و بر پایه دات نت تهیه شده بود از .net remoting استفاده می‌کردند و اگر استفاده کننده سرویس از خارج سازمان یا مثلا بر پایه تکنولوژی J2EE بود از Web Service‌ها استفاده می‌شد. با ظهور WCF این تکنولوژی با هم تجمیع شدند(بهتر بگم تبدیل به یک تکنولوژی واحد شدند) و دیگر خبری از net remoting یا web service‌ها نیست.
  WCF با تمام قدرت و امکاناتی که داراست دارای نقاط ضعفی هم می‌باشد که البته این معایب (یا محدودیت) بیشتر جهت سازگار سازی سرویس‌های نوشته شده با سیستم‌ها و پروتکل‌های مختلف است.
برای انتقال داده‌ها از طریق WCF بین سیستم‌های مختلف باید داده‌های مورد نظر حتما سریالایز شوند که مثال هایی از این دست رو در همین سایت می‌تونید مطالعه کنید:
(^ )  و (^ ) و (^ )

با توجه به این که داده‌ها سریالایز می‌شوند، در نتیجه امکان انقال داده هایی که از نوع object  هستند در WCF وجود ندارد. بلکه نوع داده باید صراحتا ذکر شود و این نوع باید قابیلت سریالایز شدن را دارا باشد.برای مثال شما نمی‌تونید متدی داشته باشید که پارامتر ورودی آن از نوع delegate باشد یا کلاسی باشد که صفت [Serializable] در بالای اون قرار نداشته باشد یا کلاسی باشد که صفت DataContract برای خود کلاس و صفت DataMember برای خاصیت‌های اون تعریف نشده باشد. حالا سوال مهم این است اگر متدی داشته باشیم که پارامتر ورودی آن حتما باید از نوع delegate باشد چه باید کرد؟

برای تشریح بهتر مسئله یک مثال می‌زنم؟

سرویسی داریم برای اطلاعات کتاب ها. قصد داریم متدی بنوسیم که پارامتر ورودی آن از نوع Lambda Expression است تا Query مورد نظر کاربر از سمت کلاینت به سمت سرور دریافت کند و خروجی مورد نظر را با توجه به Query ورودی به کلاینت برگشت دهد.( متدی متداول در اکثر پروژه ها). به صورت زیر عمل می‌کنیم.

*ابتدا یک Blank Solution ایجاد کنید.

*یک ClassLibrary به نام Model ایجاد کنید و کلاسی به نام Book در آن بسازید .(همانطور که میبینید کلاس مورد نظر سریالایز شده است):

   [DataContract]
    public class Book
    {
        [DataMember]
        public int Code { get; set; }

        [DataMember]
        public string Title { get; set; }
    }
* یک WCF Service Application ایجاد کنید
یک Contract برای ارتباط بین سرور و کلاینت می‌سازیم:
using System;
using System.Collections.Generic;
using System.Linq.Expressions;
using System.ServiceModel;

namespace WcfLambdaExpression
{
    [ServiceContract]
    public interface IBookService
    {
        [OperationContract]
        IEnumerable<Book> GetByExpression( Expression<Func<Book, bool>> expression );
    }
}
متد GetByExpression دارای پارامتر ورودی expression است که نوع آن نیز Lambda Expression  می‌باشد. حال یک سرویس ایجاد می‌کنیم:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;

namespace WcfLambdaExpression
{    
    public class BookService : IBookService
    {        
        public BookService()
        {
            ListOfBook = new List<Book>();
        }

        public List<Book> ListOfBook 
        {
            get;
            private set;
        }

        public IEnumerable<Book> GetByExpression( Expression<Func<Book, bool>> expression )
        {
            ListOfBook.AddRange( new Book[] 
            {
                new Book(){Code = 1 , Title = "Book1"},
                new Book(){Code = 2 , Title = "Book2"},
                new Book(){Code = 3 , Title = "Book3"},
                new Book(){Code = 4 , Title = "Book4"},
                new Book(){Code = 5 , Title = "Book5"},
            } );

            return ListOfBook.AsQueryable().Where( expression );
        }       
    }
}
بعد از Build پروژه همه چیز سمت سرور آماده است. یک پروژه دیگر از نوع Console ایجاد کنید و از روش AddServiceReference سعی کنید که سرویس مورد نظر را به پروژه اضافه کنید. در هنگام Add Service Reference برای اینکه سرویس سمت سرور و کلاینت هر دو با یک مدل کار کنند باید از یک Reference assembly استفاده کنند و کافی است از قسمت Advanced گزینه Reuse types in referenced assemblies را تیک بزنید و assembly‌های مورد نظر را انتخاب کنید.( در این پروژه باید Model و System.Xml.Linq را انتخاب کنید)


به طور حتم با خطا روبرو خواهید شد. دلیل آن هم این است که امکان سریالایز کردن برای پارامتر ورودی expression میسر نیست.
خطای مربوطه به شکل زیر خواهد بود:
Type 'System.Linq.Expressions.Expression`1[System.Func`2[WcfLambdaExpression.Book,System.Boolean]]' cannot be serialized. 
Consider marking it with the DataContractAttribute attribute, and marking all of its members you want serialized with the DataMemberAttribute attribute.  
If the type is a collection, consider marking it with the CollectionDataContractAttribute.  
See the Microsoft .NET Framework documentation for other supported types
حال چه باید کرد؟
روش‌های زیادی برای بر طرف کردن این محدودیت وجود دارد. اما در این پست روشی رو که خودم از اون استفاده می‌کنم رو براتون شرح می‌دهم.
در این روش باید از XElement استفاده شود که در فضای نام System.Linq.Xml قرار دارد. یعنی آرگومان ورودی سمت کلاینت باید به فرمت Xml سریالایز شود و سمت سرور دوباره دی سریالایز شده و تبدیل به یک Lambda Expression شود. اما سریالایز کردن Lambda Expression واقعا کاری سخت و طاقت فرساست . با توجه به این که در اکثر پروژه‌ها این متد‌ها به صورت Generic نوشته می‌شوند. برای حل این مسئله بعد از مدتی جستجو، کلاسی رو پیدا کردم که این کار رو برام انجام می‌داد. بعد از مطالعه دقیق و مشاهده روش کار کلاس، تغییرات مورد نظرم رو اعمال کردم و الان در اکثر پروژه هام دارم از این کلاس استفاده می‌کنم.
یک مثال از روش استفاده :
برای اینکه از این کلاس در هر دو پروژه (سرور و کلاینت) استفاده می‌کنیم باید یک Class Library جدید به نام Common بسازید و یک ارجاع از اون رو به هر دو پروژه سمت سرور و کلاینت بدید.
سرویس و Contract بالا رو به صورت زیر باز نویسی کنید.
[ServiceContract]
    public interface IBookService
    {
        [OperationContract]
        IEnumerable<Book> GetByExpression( XElement expression );
    }
و سرویس :
using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.Xml.Linq;

namespace WcfLambdaExpression
{
    public class BookService : IBookService
    {
        public BookService()
        {
            ListOfBook = new List<Book>();
        }

        public List<Book> ListOfBook
        {
            get;
            private set;
        }

        public IEnumerable<Book> GetByExpression( XElement expression )
        {
            ListOfBook.AddRange( new Book[] 
            {
                new Book(){Code = 1 , Title = "Book1"},
                new Book(){Code = 2 , Title = "Book2"},
                new Book(){Code = 3 , Title = "Book3"},
                new Book(){Code = 4 , Title = "Book4"},
                new Book(){Code = 5 , Title = "Book5"},
            } );

             Common.ExpressionSerializer serializer = new Common.ExpressionSerializer();

            return ListOfBook.AsQueryable().Where( serializer.Deserialize( expression ) as Expression<Func<Book, bool>> );
        }
    }
بعد از Build پروژه از روش Add Service Reference استفاده کنید و می‌بینید که بدون هیچ گونه مشکلی سرویس مورد نظر به پروژه Console اضافه شد. برای استفاده سمت کلاینت به صورت زیر عمل کنید.

using System;
using System.Linq.Expressions;
using TestExpression.MyBookService;

namespace TestExpression
{
    class Program
    {
        static void Main( string[] args )
        {
            BookServiceClient bookService = new BookServiceClient();

            Expression<Func<Book, bool>> expression = x => x.Code > 2 && x.Code < 5;

            Common.ExpressionSerializer serializer = new Common.ExpressionSerializer();

            bookService.GetByExpression( serializer.Serialize( expression ) );
        }
    }
}
بعد از اجرای پروژه، در سمت سرور خروجی‌های زیر رو مشاهده می‌کنیم.

خروجی هم به صورت زیر خواهد بود:

دریافت سورس کامل Expression-Serialization
نظرات مطالب
Static Reflection
بله. این هم یکی از کاربردهای static reflection‌ در عمل است که در WPF و سیلورلایت می‌تونه مورد استفاده قرار بگیره.
هدف هم حذف رشته ذکر شده در متدهای متداول و اجباری PropertyChanged است که باید به ازای هر خاصیت نوشته شود.
این رشته‌ها (آرگومان‌های PropertyChanged) چون دقیقا همان نام خاصیت‌های تعریف شده در کلاس جاری هستند، بنابراین با استفاده از lambda به عنوان داده (توسط کلاس expression و func) به صورت strongly typed و همچنین قابل تشخیص توسط intellisense می‌توانند تفسیر و قابل دسترسی شوند. زمانیکه  Expression Func of T را بجای آرگومان رشته‌ای تعریف کردید، خواص این T توسط intellisense و lambda expression ظاهر می‌شوند. تا اینجا یک مرحله پیشرفت است (شما دیگر رشته ننوشته‌اید و کد هست به عنوان داده). مرحله بعد ترجمه این کد هست به همان رشته. نهایتا متد PropertyChanged نیاز به رشته دارد. اینجا است که کلاس Expression وارد عمل می‌شود و کد را به داده مورد نظر ترجمه می‌کند.
مطالب دوره‌ها
موارد استفاده از Reflection.Emit در دنیای واقعی
1) در خود دات نت، Expression.Compile  (موجود در  فضای نام System.Linq.Expressions) در پشت صحنه از Reflection.Emit استفاده می‌کند.
2) چند مثال در قسمت‌های قبل مانند Dapper (که توسط نویسندگان Stack overflow تهیه شده) و fastJson ارائه شد که از Reflection.Emit برای دسترسی به متد get_XYZ یک خاصیت استفاده می‌کنند تا بجای Reflection، مستقیما به مقدار یک خاصیت دسترسی پیدا کنند و سرعت کار را به شدت بالا ببرند.
3) برای ایجاد dynamic proxies و مزین کردن کلاس‌ها و خواص آن‌ها در ORMهایی مانند NHibernate و یا حتی در پروژه Castle DynamicProxy و ... در فریم ورک‌های AOP.
4) اکثر کتابخانه‌های Mocking مانند Rhino Mocks و Moq از Reflection.Emit برای پیاده سازی خودکار اینترفیس‌ها و یا تهیه dynamic proxies استفاده می‌کنند.
5) DLR و اکثر زبان‌های مرتبط با آن استفاده گسترده‌ای از Reflection.Emit دارند.
6) برنامه معروف LINQPad از Reflection.Emit برای وهله سازی پویای اشیاء بهره می‌برد.
 
مطالب
C# 12.0 - Interceptors
به C# 12 و دات‌نت 8، ویژگی «آزمایشی» جدیدی به نام Interceptors اضافه شده‌است که به آن «monkey patching» هم می‌گویند. هدف از آن، جایگزین کردن یک پیاده سازی، با پیاده سازی دیگری است. به این ترتیب توسعه دهندگان دات‌نتی می‌توانند فراخوانی متدهایی خاص را ره‌گیری کرده (interception) و سپس آن‌را به فراخوانی یک پیاده سازی جدید، هدایت کنند.


Interceptor چیست؟

از زمان ارائه‌ی NET 8 preview 6 SDK. به بعد، امکان ره‌گیری هر متدی از کدهای برنامه، به دات‌نت اضافه شده‌است؛ به همین جهت از واژه‌ی Interceptor/ره‌گیر در اینجا استفاده می‌شود. خود تیم دات‌نت از این قابلیت در جهت بازنویسی پویای قسمت‌هایی از کدهای زیرساخت دات‌نت که از Reflection استفاده می‌کنند، با نگارش‌های کامپایل شده‌ی مختص به برنامه‌ی شما، کمک می‌گیرند. به این ترتیب سرعت و کارآیی برنامه‌های دات‌نت 8، بهبود قابل ملاحظه‌ای را پیدا کرده‌اند. برای مثال ahead-of-time compilation (AOT) در دات‌نت 8 و ASP.NET Core 8x بر اساس این ویژگی پیاده سازی شده‌است. این ویژگی جدید، مکمل source generators است که در نگارش‌های پیشین دات‌نت ارائه شده بود.


بررسی  Interceptors با تهیه‌ی یک مثال ساده

فرض کنید می‌خواهیم فراخوانی متد GetText زیر را ره‌گیری کرده و سپس آن‌را با نمونه‌ی دیگری جایگزین کنیم:
namespace CS8Tests;

public class InterceptorsSample
{
    public string GetText(string text)
    {
        return $"{text}, World!";
    }
}
برای اینکار ابتدا نیاز است یک فایل جدید را به نام InterceptsLocationAttribute.cs با محتوای زیر به پروژه اضافه کرد:
namespace System.Runtime.CompilerServices;

[AttributeUsage(AttributeTargets.Method, AllowMultiple = true, Inherited = false)]
public sealed class InterceptsLocationAttribute : Attribute
{
    public InterceptsLocationAttribute(string filePath, int line, int character)
    {
    }
}
همانطور که در مقدمه‌ی بحث هم عنوان شد، این ویژگی هنوز آزمایشی است و نهایی نشده و ویژگی فوق نیز هنوز به دات‌نت اضافه نشده‌است. به همین جهت فعلا باید آن‌را به صورت دستی به پروژه اضافه کرد و احتمالا در نگارش‌های بعدی دات‌نت، امضای آن تغییر خواهد کرد ... یا حتی ممکن است بطور کامل حذف شود!

سپس فرض کنید فراخوانی متد GetText در فایل Program.cs برنامه به صورت زیر انجام شده‌است:
using CS8Tests;

var example = new InterceptorsSample();
var text = example.GetText("Hello");
Console.WriteLine(text); //Hello, World!
یعنی متد GetText، در سطر چهارم و کاراکتر 20 ام آن فراخوانی شده‌است. این اعداد مهم هستند!

در ادامه از این اطلاعات در ره‌گیر سفارشی زیر استفاده خواهیم کرد:
using System.Runtime.CompilerServices;

namespace CS8Tests;

public static class MyInterceptor
{
    [InterceptsLocation("C:\\Path\\To\\CS8Tests\\Program.cs", 4, 20)] 
    public static string InterceptorMethod(this InterceptorsSample example, string text)
    {
        return $"{text}, DNT!";
    }
}
این ره‌گیر که به صورت متدی الحاقی برای کلاس InterceptorsSample دربرگیرنده‌ی متد GetText تهیه می‌شود، کار جایگزینی فراخوانی آن‌را در سطر چهارم و کاراکتر 20 ام فایل Program.cs انجام می‌دهد. امضای پارامترهای این متد، باید با امضای پارامترهای متد ره‌گیری شده، یکی باشد.

اکنون اگر برنامه را اجرا کنیم ... با خطای زیر مواجه می‌شویم:
 error CS9137: The 'interceptors' experimental feature is not enabled in this namespace. Add
'<InterceptorsPreviewNamespaces>$(InterceptorsPreviewNamespaces);CS8Tests</InterceptorsPreviewNamespaces>'
to your project.
عنوان می‌کند که این ویژگی آزمایشی است و باید فایل csproj. را به صورت زیر تغییر داد تا بتوان از آن استفاده نمود:
<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net8.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
    <!--<NoWarn>Test001</NoWarn>-->
    <InterceptorsPreviewNamespaces>$(InterceptorsPreviewNamespaces);CS8Tests</InterceptorsPreviewNamespaces>
  </PropertyGroup>
</Project>
اینبار برنامه کامپایل شده و اجرا می‌شود. در این حالت خروجی جدید برنامه، خروجی تامین شده‌ی توسط ره‌گیر سفارشی ما است:
Hello, DNT!


سؤال: آیا ره‌گیری انجام شده، در زمان کامپایل انجام می‌شود یا در زمان اجرا؟

برای این مورد می‌توان به Low-Level C# code تولیدی مراجعه کرد. برای مشاهده‌ی یک چنین کدهایی می‌توانید از منوی Tools->IL Viewer برنامه‌ی Rider استفاده کرده و در برگه‌ی ظاهر شده، گزینه‌ی Low-Level C# آن‌را انتخاب نمائید:
using CS8Tests;
using System;
using System.Runtime.CompilerServices;

[CompilerGenerated]
internal class Program
{
  private static void <Main>$(string[] args)
  {
    Console.WriteLine(new InterceptorsSample().InterceptorMethod("Hello"));
  }

  public Program()
  {
    base..ctor();
  }
}
همانطور که مشاهده می‌کنید، این ره‌گیری و جایگزینی، در زمان کامپایل انجام شده و کامپایلر، به‌طور کامل نحوه‌ی فراخوانی متد GetText اصلی را به متد ره‌گیر ما تغییر داده و بازنویسی کرده‌است.


سؤال: آیا این قابلیت واقعا کاربردی است؟!

اکنون شاید این سؤال مطرح شود که ... واقعا چه کسی قرار است مسیر کامل یک فایل، شماره سطر و شماره ستون فراخوانی متدی را به اینگونه در اختیار سیستم ره‌گیری قرار دهد؟! آیا واقعا این قابلیت، یک قابلیت کاربردی و مناسب است؟!
اینجا است که اهمیت source generators مشخص می‌شود. توسط source generators دسترسی کاملی به syntax trees وجود دارد و همچنین یکسری اطلاعات تکمیلی مانند FilePath و سپس CSharpSyntaxNodeها که دسترسی به داده‌های متد ()GetLocation را دارند که مکان دقیق سطر و ستون‌های فراخوانی‌ها را مشخص می‌کند.


کاربردهای فعلی ره‌گیرها در دات نت 8

در دات نت 8، این موارد با استفاده از ره‌گیرها بهینه سازی شده و سرعت آن‌ها افزایش یافته‌اند:
- فراخوانی‌هایی که تمام اطلاعات آن‌ها در زمان کامپایل فراهم است، مانند Regex.IsMatch(@"a+b+") که از یک الگوی ثابت و مشخص استفاده می‌کند، ره‌گیری شده و پیاده سازی آن با کدی استاتیک، جایگزین می‌شود.
- در ASP.NET Minimal API، استفاده از lambda expressions جهت ارائه‌ی تعاریفی مانند:
app.MapGet("/products", handler: (int? page, int? pageLength, MyDb db) => { ... })
مرسوم است. این نوع فراخوانی‌ها نیز توسط ره‌گیرها برای جایگزینی handler آن‌ها با کدهای استاتیک، جهت بالابردن کارآیی و کاهش تخصیص‌های حافظه انجام می‌شود.
- بهبود کارآیی foreach loops جهت استفاده از ریاضیات برداری و SIMD در صورت امکان.
- بهبود کارآیی تزریق وابستگی‌ها، زمانیکه به تعاریف مشخصی مانند ()<provider.Register<MyService ختم می‌شود.
- بجای استفاده از expression trees در زمان اجرای برنامه، اکنون می‌توان کدهای SQL معادل را در زمان کامپایل برنامه تولید کرد.
- بهبود کارآیی Serializers، زمانیکه از یک نوع مشخص مانند ()<Serialize<MyType استفاده می‌شود و کامپایلر می‌تواند آن‌را با کدهای زمان کامپایل، جایگزین کند.


محدودیت‌های ره‌گیرها در دات‌نت 8

- ره‌گیرهای دات‌نت 8 فقط با متدها کار می‌کنند.
- مسیر ارائه شده حتما باید یک مسیر کامل و مشخص باشد. یعنی اگر این قطعه کد، به سیستم دیگری منتقل شود، کامپایل نخواهد شد و امکان ارائه‌ی مسیرهای نسبی وجود ندارد.
- امضای متدها، حتما باید یکی باشد. یعنی نمی‌توان یک ره‌گیر جنریک را تعریف کرد.