مطالب
مهارت‌های تزریق وابستگی‌ها در برنامه‌های NET Core. - قسمت ششم - دخالت در مراحل وهله سازی اشیاء توسط IoC Container
روش متداول کار با تزریق وابستگی‌های برنامه‌های مبتنی بر NET Core.، عموما با ثبت و معرفی یک سرویس به صورت زیر، توسط متدهای AddTransient، AddSingleton و AddScoped است:
public class Startup 
{ 
    public void ConfigureServices(IServiceCollection services) 
    { 
        // ... 
         
        services.AddTransient<ICustomerService, DefaultCustomerService>(); 
         
        // ... 
    } 
}
و سپس استفاده‌ی از این سرویس، با تزریق آن در سازنده‌ی یک کنترلر که نمونه‌های بیشتری از آن‌را در قسمت چهارم بررسی کردیم:
public class SupportController 
{ 
    // DefaultCustomerService will be injected here: 
    public SupportController(ICustomerService customerService) 
    { 
        // ... 
    } 
}
در اینجا کار وهله سازی DefaultCustomerService به صورت خودکار و راسا توسط IoC Container توکار برنامه صورت می‌گیرد و ما هیچگونه دخالتی را در آن نداریم. اما اگر در این بین نیاز باشد پس از وهله سازی DefaultCustomerService، یک خاصیت آن نیز بر اساس شرایط جاری مقدار دهی شود و حاصل نهایی در اختیار SupportController فوق قرار گیرد چه باید کرد؟
برای سفارشی سازی مراحل وهله سازی اشیاء توسط IoC Container توکار برنامه و امکان دخالت در آن، قابلیتی تحت عنوان «factory registration» نیز پیش بینی شده‌است که در ادامه آن‌را بررسی می‌کنیم.


Factory Registration چیست؟

اگر در اسمبلی Microsoft.Extensions.DependencyInjection.Abstractions و فضای نام Microsoft.Extensions.DependencyInjection آن به کلاس ServiceCollectionServiceExtensions که متدهای الحاقی مانند AddScoped را ارائه می‌کند، بیشتر دقت کنیم، تک تک این متدها امضاهای دیگری را نیز دارند:
namespace Microsoft.Extensions.DependencyInjection
{
    public static class ServiceCollectionServiceExtensions
    {
        public static IServiceCollection AddScoped<TService>(
     this IServiceCollection services) where TService : class;
        public static IServiceCollection AddScoped(
     this IServiceCollection services, Type serviceType, Type implementationType);
        public static IServiceCollection AddScoped(
     this IServiceCollection services, Type serviceType, 
 Func<IServiceProvider, object> implementationFactory);
        public static IServiceCollection AddScoped<TService, TImplementation>(this IServiceCollection services)
        public static IServiceCollection AddScoped(
     this IServiceCollection services, Type serviceType);
        public static IServiceCollection AddScoped<TService>(
     this IServiceCollection services, 
 Func<IServiceProvider, TService> implementationFactory) where TService : class;
        public static IServiceCollection AddScoped<TService, TImplementation>(
     this IServiceCollection services, 
 Func<IServiceProvider, TImplementation> implementationFactory)
// ...
    }
}
همانطور که ملاحظه می‌کنید، امضای تعدادی از این overloadها، دارای پارامترهایی از نوع Func نیز هست و هدف آن‌ها فراهم آوردن روشی برای سفارشی سازی مراحل وهله سازی سرویسی‌های بازگشتی از طریق سیستم تزریق وابستگی‌های برنامه است. توسط این پارامتر، پیش از وهله سازی سرویس درخواستی، IServiceProvider جاری یا همان root container را در اختیار شما قرار می‌دهد (اطلاعات بیشتر در مورد IServiceProvider را در قسمت دوم بررسی کردیم) و توسط آن می‌توان ابتدا وهله‌ای از سرویس یا سرویس‌های خاصی را دریافت کرد و پس از ترکیب و سفارشی سازی آن‌ها، در آخر یک object را بازگشت داد که در نهایت به عنوان وهله‌ی اصلی این سرویس درخواستی، در سراسر برنامه مورد استفاده قرار می‌گیرد. در ادامه با مثال‌هایی، کاربردهای این پارامتر از نوع Func، یا Implementation Factory را بررسی می‌کنیم.


مثال 1 : تزریق وابستگی‌ها در حالتیکه کلاس سرویس مدنظر دارای تعدادی پارامتر ثابت است

IoC Container توکار برنامه‌های NET Core.، به صورت خودکار وابستگی‌های تزریق شده‌ی در سازنده‌های سرویس‌های مختلف را تا هر چند سطح ممکن، به صورت خودکار وهله سازی می‌کند؛ به شرطی‌که این وابستگی‌های تزریق شده نیز خودشان سرویس بوده باشند و در تنظیمات ابتدایی آن ثبت و معرفی شده باشند. به عبارتی زمانیکه با سیستم تزریق وابستگی‌ها کار می‌کنیم، مهم نیست که نگران مقدار دهی پارامترهای سازنده‌ی تزریق شده‌ی در سازنده‌های سرویسی خاص باشیم. اما ... برای نمونه سرویس زیر را که یک رشته را در سازنده‌ی خود دریافت می‌کند درنظر بگیرید:
namespace CoreIocServices
{
    public interface IParameterizedService
    {
        string GetConstructorParameter();
    }

    public class ParameterizedService : IParameterizedService
    {
        private readonly string _connectionString;

        public ParameterizedService(string connectionString)
        {
            _connectionString = connectionString;
        }

        public string GetConstructorParameter()
        {
            return _connectionString;
        }
    }
}
اینبار دیگر نمی‌توان این سرویس را از طریق متداول زیر ثبت و معرفی کرد:
services.AddTransient<IParameterizedService, ParameterizedService>();
چون IoC Container نمی‌داند که چگونه و از کجا باید پارامتر رشته‌ای درخواستی در سازنده‌ی کلاس ParameterizedService را تامین کند. همچنین ثبت سرویس‌ها نیز در کلاس ServiceCollectionServiceExtensions معرفی شده‌ی در ابتدای بحث، به قید «where TService : class» محدود شده‌است. اینجا است که روش factory registration به کمک ما خواهد آمد تا بتوانیم مراحل وهله سازی این سرویس را سفارشی سازی کنیم:
services.AddTransient<IParameterizedService>(serviceProvider =>
{
   return new ParameterizedService("some value ....");
});
البته چون بدنه‌ی این Func، صرفا از یک return تشکیل شده‌است، معادل ساده شده‌ی زیر را هم می‌تواند داشته باشد:
services.AddTransient<IParameterizedService>(serviceProvider => new ParameterizedService("some value ...."));
اینبار در سراسر برنامه اگر سرویس IParameterizedService درخواست شود، وهله‌ای از کلاس ParameterizedService را با پارامتر سازنده‌ی "some value ...."، دریافت خواهد کرد.

در اینجا چون serviceProvider نیز در اختیار ما است، حتی می‌توان این مقدار را از سرویسی دیگر دریافت کرد و سپس مورد استفاده قرار داد:
services.AddTransient<IParameterizedService>(serviceProvider =>
{
   var config = serviceProvider.GetRequiredService<ITestService>().GetConfigValue();
   return new ParameterizedService(config);
});

نمونه‌ی دیگری از این دست، کار با IUrlHelper توکار ASP.NET Core است. این سرویس برای اینکه پاسخ درستی را ارائه دهد، نیاز به ActionContext جاری را دارد تا بتواند از طریق آن به تمام جزئیات اکشن متد یک کنترلر و درخواست رسیده دسترسی داشته باشد. در این حالت برای ساده سازی کار با آن، بهتر است تامین وابستگی‌های لحظه‌ای این سرویس را با سفارشی سازی نحوه‌ی وهله سازی آن، انجام دهیم، تا اینکه این قطعه کد تکراری را در هر جائیکه به IUrlHelper نیاز است، تکرار کنیم:
services.AddScoped<IUrlHelper>(serviceProvider =>
{
   var actionContext = serviceProvider.GetRequiredService<IActionContextAccessor>().ActionContext;
   var urlHelperFactory = serviceProvider.GetRequiredService<IUrlHelperFactory>();
   return urlHelperFactory.GetUrlHelper(actionContext);
});
اکنون اگر IUrlHelper را به سازنده‌ی یک کنترلر تزریق کنیم، دیگر نیازی به سه سطر نوشته‌ی تامین factory و action context آن نخواهد بود.


مثال 2: وهله سازی در صورت نیاز به وابستگی‌های یک سرویس، به کمک Lazy loading

فرض کنید دو سرویس را در سازنده‌ی سرویس دیگری تزریق کرده‌اید:
namespace Services
{
    public class OrderHandler : IOrderHandler
    {
        private readonly IAccounting _accounting;
        private readonly ISales _sales;
        public OrderHandler(IAccounting accounting, ISales sales)
        {
بعد در این کلاس، در یک متد، از سرویس accounting استفاده می‌شود و در متدی دیگر از سرویس sales. یعنی هرچند در زمان وهله سازی شیء OrderHandler هر دو وابستگی تزریق شده‌ی در سازنده‌ی آن نیز وهله سازی خواهند شد، اما در بسیاری از شرایط، بسته به متد مورد استفاده، فقط از یکی از آن‌ها استفاده می‌کنیم. اکنون این سؤال مطرح می‌شود که آیا می‌توان سربار وهله سازی تمام سازنده‌های این کلاس را به زمان استفاده‌ی از آن‌ها منتقل کرد؟ یعنی سرویس accounting تزریق شده فقط زمانی وهله سازی شود که واقعا قرار است از آن استفاده کنیم.
روش انجام یک چنین کارهایی با استفاده از کلاس Lazy اضافه شده‌ی به NET 4x. قابل انجام است:
   public class OrderHandlerLazy : IOrderHandler
    {
        public OrderHandlerLazy(Lazy<IAccounting> accounting, Lazy<ISales> sales)
        {
 و برای معرفی آن در اینجا می‌توان از روش factory registration استفاده کرد:
services.AddTransient<IOrderHandler, OrderHandlerLazy>();
services.AddTransient<IAccounting, Accounting>()
            .AddTransient(serviceProvider => new Lazy<IAccounting>(() => serviceProvider.GetRequiredService<IAccounting>()));
services.AddTransient<ISales, Sales>()
           .AddTransient(serviceProvider => new Lazy<ISales>(() => serviceProvider.GetRequiredService<ISales>()));
- در اینجا در ابتدا تمام سرویس‌ها (حتی آن‌هایی که قرار است به صورت Lazy استفاده شوند) یکبار به صورت متداولی معرفی می‌شوند.
- سپس سرویس‌هایی که قرار است به صورت Lazy نیز واکشی شوند، بار دیگر توسط روش factory registration با وهله سازی new Lazy از نوع سرویس مدنظر و فراهم آوردن پیاده سازی آن با استفاده از serviceProvider.GetRequiredService، مجددا معرفی خواهند شد.

پس از این تنظیمات، اگر سرویس IOrderHandler را از طریق سیستم تزریق وابستگی‌ها درخواست کنید، وابستگی‌های تزریق شده‌ی در سازنده‌ی آن فقط زمانی و در محلی وهله سازی می‌شوند که از طریق خاصیت Value شیء Lazy آن‌ها مورد استفاده قرار گرفته شده باشند.
مثال کامل IOrderHandler را از فایل پیوستی انتهای مطلب می‌توانید دریافت. اگر آن‌را اجرا کنید (برنامه‌ی کنسول آن‌را)، در خروجی آن، فقط اجرا شدن سازنده‌ی سرویسی را مشاهده می‌کنید که مورد استفاده قرار گرفته و نه وابستگی دومی که تزریق شده، اما استفاده نشده‌است.


مثال 3: چگونه بجای اینترفیس‌ها، یک وهله از کلاسی مشخص را از سیستم تزریق وابستگی‌ها درخواست کنیم؟

فرض کنید سرویسی را به صورت زیر به سیستم تزریق وابستگی‌ها معرفی کرده‌اید:
services.AddTransient<IMyDisposableService, MyDisposableService>();
در ادامه اگر سرویس IMyDisposableService را از این سیستم درخواست کنیم، برنامه بدون مشکل اجرا می‌شود؛ اما اگر خود MyDisposableService را تزریق کنیم چطور؟
public class AnotherController 
{ 
    public AnotherController(MyDisposableService customerService) 
    { 
        // ... 
    } 
}
در این حالت برنامه با استثنای زیر متوقف می‌شود و عنوان می‌کند که نمی‌داند چگونه باید این وابستگی تزریق شده را تامین کند:
An unhandled exception occurred while processing the request. 
InvalidOperationException: Unable to resolve service for type ‘MyDisposableService’ while attempting to activate ‘AnotherController’. 
Microsoft.Extensions.DependencyInjection.ActivatorUtilities.GetService(IServiceProvider sp, Type type, Type requiredBy, bool isDefaultParameterRequired)
این مورد را نیز می‌توان توسط factory registration به نحو زیر مدیریت کرد:
services.AddTransient<IMyDisposableService, MyDisposableService>();
services.AddTransient<MyDisposableService>(serviceProvider =>
serviceProvider.GetRequiredService<IMyDisposableService>() as MyDisposableService);
هر زمانیکه وهله‌ای از کلاس MyDisposableService درخواست شود، وهله‌ای از سرویس IMyDisposableService را بازگشت می‌دهیم.


کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: CoreDependencyInjectionSamples-06.zip
مطالب
طراحی شیء گرا: OO Design Heuristics - قسمت سوم
پیشنهاد می‌کنم قسمت‌های قبل را مطالعه کنید تا با اصطلاحات استفاده شده در ادامه مقالات آشنا باشید. در مقالات آتی، مباحث کمی قابل بحث‌تر خواهند بود.

Class Coupling and Cohesion

تعدادی از قواعد شهودی هم، با Coupling و Cohesion به ترتیب مابین و درون کلاس‌ها، سروکار دارند. تلاش ما در راستای افزایش Cohesion درون کلاس‌ها و سست کردن و کاهش Coupling مابین کلاس‌ها می‌باشد. این قواعد شهودی همین اهداف را در پارادایم action-oriented، در ارتباط با توابع دارند. هدف از Tight Cohesion (انسجام و چسبندگی قوی) در توابع، انسجام بالا و ارتباط نزدیک مابین کدهای موجود در تابع، می‌باشد. هدفی که Loose Coupling (اتصال سست و ضعیف، وابستگی ضعیف) در بین توابع دنبال می‌کند، اشاره دارد به اینکه اگر تابعی قصد استفاده از تابع دیگری را داشته باشد، باید وارد شدن و خروج از آن، از یک نقطه صورت گیرد. این مباحث منجربه مطرح شدن قواعد شهودی از جمله: «یک تابع باید طوری سازماندهی شود که تنها یک دستور return  داشته باشد»، در پارادایم action-oriented می‌شود.
ما در پارادایم شیء گرا، اهداف خود از Loose Coupling و Tight Cohesion را در سطح کلاس مطرح می‌کنیم. 5 شکل اصلی Coupling مابین کلاس‌ها به شرح زیر می‌باشد:

  •  Ni Coupling
  •  Export Coupling
  •  Overt Coupling
  •  Covert Coupling
  •  Surreptitious Coupling
Nil Coupling

بهترین حالتی که دو کلاس به طور مطلق هیچ وابستگی به یکدیگر ندارند. در این صورت می‌توان یکی کلاس‌ها را حذف کرد، بدون اینکه تأثیری بر روی سایر آنها داشته باشد. البته وجود برنامه‌ای کاربردی با این نوع اتصال ممکن نخواهد بود. بهترین چیزی که می‌شود با این نوع اتصال ایجاد کرد، Class Libraryای می‌باشد که شامل مجموعه ای از کلاس‌های مستقل بوده، به طوری که هیچ تأثیری بر روی یکدیگر ندارند.

Export Coupling

در این شکل از اتصال، یک کلاس به واسط عمومی کلاس دیگر وابسته می‌باشد؛ به این معنی که از عملیاتی که کلاس مورد نظر در واسط عمومی خود قرار داده است، استفاده می‌کند.

Overt Coupling

این نوع اتصال زمانی رخ می‌دهد که یک کلاس از جزئیات پیاده سازی کلاس دیگر با داشتن اجازه دسترسی از جانب آن، استفاده کند. به عنوان مثال، مکانیزم کلاس‌های friend در زبان سی پلاس پلاس، که امکان این را می‌دهد کلاس X اجازه دوستی به کلاس Y را اعطا کند و در این صورت کلاس Y می‌تواند به جزئیات پیاده سازی خصوصی کلاس X دسترسی داشته باشد.

Cover Coupling

این نوع اتصال هم به مانند Overt می‌باشد؛ با این تفاوت که هیچ اجازه دسترسی به کلاس Y داده نشده است. اگر زبانی داشته باشیم که به کلاس Y اجازه دهد خود را به عنوان دوست کلاس X معرفی کند، در این صورت نوع اتصال بین دو کلاس X و Y از نوع Covert می‌باشد. به عنوان مثال واقعی، می‌توان به استفاده از Reflection در دات نت اشاره کرد.

Surreptitious Coupling (اتصال پنهان)

آخرین نوع اتصال که بدترین حالت هم محسوب می‌شود، مربوط است به زمانیکه کلاس X به هر طریقی که شده از جزئیات داخلی کلاس Y آگاه باشد و از اعضای عمومی داده‌ای (public data member) آن کلاس استفاده کند. منظور این است که با تغییر این داده‌های کلاس متوجه میشود که بر روی عملیات b از کلاس چه تأثیری می‌گذارد و با اتکاء به این دستاورد، جزئیات داخلی خود را پیاده سازی می‌کند و یک اتصال پنهان را با کلاس Y ایجاد کرده است. در این حالت یک وابستگی قوی به صورت پنهان مابین رفتاری از کلاس Y و پیاده سازی کلاس X ایجاد شده است.

قاعده شهودی 2.7
اتصال و پیوستگی مابین کلاس‌ها باید از نوع Nil یا Export باشد؛ به این معنی که یک کلاس فقط از واسط عمومی کلاس دیگر استفاده کند یا کاری با آن نداشته باشد. (Classes should only exhibit nil or export coupling with other classes, that is, a class should only use operations in the public interface of another class or have nothing to do with that class.)
بجز این دو نوع اتصال، بقیه شکل‌های اتصال به طریقی اجازه دسترسی به جزئیات پیاده سازی کلاس‌ها را اعطا می‌کنند. در نتیجه باعث ایجاد وابستگی مابین پیاده سازی دو کلاس می‌شوند. این وابستگی ما بین پیاده سازی‌ها به محض نیاز به تغییر پیاده سازی یکی از کلاس‌ها ، باعث به وجود آمدن مشکلات نگهداری خواهند شد.
Cohesion درون کلاس‌ها سعی بر این دارد که مطمئن شود تمام اجزای یک کلاس به شدت باهم مرتبط هستند. تعدادی از قواعد شهودی نیز در ادامه بر این خصوصیت دلالت دارند.

قاعده شهودی 2.8
یک کلاس باید یک و تنها یک Key Abstraction را تسخیر نماید. (A class should capture one and only one key abstraction)
یک Key Abstraction به عنوان یک Entity در Domain Model تعریف می‌شود و اغلب در غالب اسم در اسناد و مشخصات نیازمندی‌ها ظاهر می‌شوند. هر کدام از آنها باید فقط به یک کلاس نگاشت پیدا کنند. اگر این نگاشت به بیش از یک کلاس انجام گیرد، در نتیجه احتمالا طراح هر تابع را به عنوان یک کلاس تسخیر کرده است. اگر بیش از یک Key Abstraction به یک کلاس نگاشت پیدا کرده باشد، پس احتمالا طراح یک سیستم متمرکز را طراحی کرده است. این کلاس‌ها Vague Classes نامیده می‌شوند و باید آنها در دو کلاس یا بیشتر، تسخیر شوند.

قاعده شهودی 2.9
داده و رفتار مرتبط را در یک جا (کلاس) نگه دارید. (Keep related data and behavior in one place)
در واقع هدفی که این قاعده به دنبال آن می‌باشد این است که هر دو جزء تشکیل دهنده یک Key Abstraction ، یعنی همان داده و رفتار، باید توسط فقط یک کلاس تسخیر شوند. با نقض این قاعده، توسعه دهنده باید با قرار داد (Convention) خاصی برنامه نویسی کند. 
راه شناسایی
طراح باید کلاس‌هایی را که مرتبا داده‌های مورد نیاز خود را با متدهای get از سایر کلاس‌ها دریافت می‌کنند، شناسایی کند. زیرا این نوع کلاس‌ها این قاعده شهودی را نقض کرده‌اند.

مثال واقعی
استفاده از الگوی Domain Model ارائه شده توسط اقای Martin Fowler که دقیقا اشاره به این قاعده دارد.
یا برعکس آن ضد الگوی Anemic Domain Model که ناقض این قاعده می‌باشد. 
در قسمت اول اشاره کردیم این قواعد را به راحتی می‌توان در صورت نیاز نقض کرد. بعضی از مواقع نیاز به طراحی فیزیکی است که باعث تغییر در طراحی منطقی شده و چه بسا می‌تواند باعث نقض هر کدام از این قواعد شهودی نیز شود. اگر به بخش پروژه‌های سایت رجوع کنید این نقض کاملا مشهود (DomainClasses و ServiceLayer موجود در طراحی فیزیکی آنها) می‌باشد (بیشتر از Anemic Domain Model استفاده شده است)؛ ولی نمی‌توان گفت که این کار اشتباه است.

قاعده شهودی 2.10
اطلاعات نامرتبط به هم را در کلاس‌های جدا از هم قرار دهید. ((Spin off nonrelated information into another class (i.e., noncommunicating behavior) 

هدف از این قاعده این است که اگر کلاسی داریم که یکسری از متدهایش با بخشی از داده و یکسری دیگر با بخش دیگر داده‌ها کار میکنند، در واقع شما دو Key Abstraction را به یک کلاس نگاشت کرده اید (Vague Class) و باید آنها را به کلاس‌های جدا نگاشت کنید.

شکل 2.6 A class with noncommunicating behavior

مثال واقعی

به کلاس Dictionary در تصویر زیر توجه کنید.
برای تعداد کمی داده، بهترین پیاده سازی با استفاده از List و در مقابل برای تعداد داده زیاد بهترین پیاده سازی، استفاده از HashTable می‌باشد. هر یک از این پیاده سازی‌ها، به متدهایی برای add و find کلمات نیاز دارند. طراحی سمت چپ تصویر نشان از نقض این قاعده شهودی دارد.

شکل 2.7 (Noncommunicating behavior (real-world example

در طرح سمت چپ، استفاده کننده باید بداند که چقدر داده وارد کند. از طرفی نمایش جزئیات پیاده سازی در نام کلاس هم ایده خوبی نیست (طرح سمت چپ). بهترین راه حل که در مقالات آینده به آنها خواهیم رسید، بحث استفاده از ارث بری می‌باشد. به این ترتیب، با استفاده از  یک کلاس Dictionary که نمایش جزئیات داخلی خود را مخفی کرده و در شرایط لازم نمایش جزئیات داخلی خود را تغییر دهد. منظور این است که استفاده کننده درگیر جزئیات داخلی آن نشود و این جزئیات که کدام نوع PDict یا HDict استفاده خواهد شد، از دید او مخفی باشد.

مطالب
استخراج آدرس‌های ایمیل از یک متن

در قسمت اول بررسی نحوه برنامه نویسی افزونه outlook ، در مورد استفاده از regular expressions اندکی توضیح داده شد. امروز مثالی دیگر از همین دست را بررسی خواهیم کرد.

چند روز قبل یک ایمیل تبلیغاتی به دست من رسید که فرد ارسال کننده انبوهی از ایمیل‌ها را در قسمت To قرار داده بود (بجای قسمت BCC (رونوشت مخفی)).
خوب، برای جدا کردن انبوهی از ایمیل‌های مخلوط با سایر متون چه باید کرد؟ چند ساعت وقت گذاشت و تک تک آنها را به صورت دستی جدا کرد؟ (برای ذخیره سازی در یک دیتابیس برای مثال :) )
یا برای مثال برنامه‌های download manager توانایی استخراج لینک‌های موجود در یک متن کپی شده در حافظه را دارند. آنها به چه صورتی عمل می‌کنند؟ چگونه می‌توانند لینک‌ها را با دقتی بالا و بسیار سریع از لابلای متن موجود تشخیص دهند؟

بهینه‌ترین و سریعترین‌ راه برای این نوع جستجوها استفاده از کتابخانه regular expressions (عبارات با قاعده) در دات نت فریم ورک است. اگر نیاز به یک برگه تقلب (!) در این زمینه داشتید می‌توانید به اینجا مراجعه کنید. همچنین در همان سایت، کاربران بسیاری را خواهید یافت که الگوهای ابداعی خود را با دیگران به اشتراگ می‌گذارند.

برای مثال فرض کنید فایلی را که حاوی مخلوطی از متن و ایمیل است را در یک رشته بارگذاری کرده‌اید. نحوه استخراج ایمیل‌های موجود با استفاده از این امکانات به صورت زیر خواهد بود:
using System.IO;
using System.Text.RegularExpressions;
using System.Text;

class CRegEx
{
/// <summary>
/// استخراج ایمیل‌های یک فایل متنی و ذخیره آن در فایلی جدید
/// </summary>
/// <param name="inFilePath">فایل ورودی</param>
/// <param name="outFilePath">فایل خروجی</param>
public static void ExtractEmails(string inFilePath, string outFilePath)
{
string data = File.ReadAllText(inFilePath); //خواندن فایل متنی
//ایجاد شیء عبارت با قاعده بر اساس الگوی تشخیص ایمیل‌ها
Regex emailRegex = new Regex(@"\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*",
RegexOptions.IgnoreCase);
//پیدا کردن گروه تطابق یافته با الگوی ما
MatchCollection emailMatches = emailRegex.Matches(data);
//ایجاد شیء استرینگ بیلدر برای ذخیره سازی سریع اطلاعات دریافتی
StringBuilder sb = new StringBuilder();
//ذخیره ایمیل‌های استخراج شده
foreach (Match emailMatch in emailMatches)
{
sb.AppendLine(emailMatch.Value);
}
//ذخیره کردن اطلاعات استخراج شده در فایلی جدید
File.WriteAllText(outFilePath, sb.ToString());
}
}

راستی، اگر روزی خواستید تعداد بالایی ایمیل ارسال کنید، آنها را به قسمت bcc اضافه کنید (Message.Bcc.Add)، در قالب یک ایمیل، نه چند هزار ایمیل متوالی (در طی یک حلقه برای مثال). به این صورت (استفاده از قسمت BCC) میل سرور تمام آدرس‌ها را در صف قرار خواهد داد و متحمل بار اضافی شدید نخواهد شد. در این حالت اگر میل باکس خود را چک کنید شاید بلافاصله ایمیل مورد نظر را دریافت نکنید. نگران نباشید، انجام عملیات در صف قرار گرفته و در طی دقایق و یا حتی ساعات بعدی پردازش خواهد شد (بسته به بار سرور).
چند نکته را باید در اینجا در نظر داشت. حتما آدرس‌های اضافه شده را با استفاده از عبارات باقاعده یکبار پیش از اضافه شدن بررسی نمائید (Regex.IsMatch). در صورتیکه یکی از ایمیل‌ها فرمت غیراستانداردی داشته باشد کل کار برگشت خواهد خورد.
و همچنین باید دقت داشت که برای این موضوع حد نصاب وجود دارد. بر روی یکی از میل سرورهای یک هاست ایرانی تست کردم، حداکثر 100 رونوشت مخفی را بیشتر قبول نمی‌کرد. بنابراین هر بار می‌شود 100 ایمیل را به صورت یکجا ارسال کرد (که باز هم از روش استفاده از حلقه‌ای که 100 بار ایمیل می‌زند بسیار بهتر است و هاست دار به علت ایجاد بار اضافی شدید بر روی سرور با شما تماس نخواهد گرفت)

اشتراک‌ها
پشتیبانی توکار NET Framework 4.7.1. از NET Standard 2.0.

هرچند NET Standard 2.0.  توسط دات نت 4.6.1 پشتیبانی می‌شود، اما به همراه تمام فایل‌های مورد نیاز آن نیست. به همین جهت حجم توزیع برنامه‌های دات نت 4.6.1 که از کتابخانه‌های NET Standard 2.0. استفاده می‌کنند، بالا خواهد رفت. این مشکل با دات نت 4.7.1 وجود نداشته و تمام کتابخانه‌های جانبی مورد نیاز، جزئی از فریم ورک است.

پشتیبانی توکار NET Framework 4.7.1. از NET Standard 2.0.
نظرات مطالب
Minimal API's در دات نت 6 - قسمت سوم - ایجاد endpoints مقدماتی
یک نکته‌ی تکمیلی: تکامل lambda expressions در C# 12 با امکان تعریف مقدار پیش‌فرض پارامترها

در C# 12 می‌توان برای پارامترهای lambda expressions نیز مقدار پیش‌فرض تعریف کرد و از این لحاظ با مابقی قسمت‌ها و ویژگی‌های فعلی زبان، هماهنگی کاملی دارد:
var lambdaWithDefaultParam = (int val = 10) => val + 1;
Console.WriteLine(lambdaWithDefaultParam() == 11);
Console.WriteLine(lambdaWithDefaultParam(4) == 5);
در این مثال در حین فراخوانی lambda، زمانیکه پارامتری مشخص نشده‌است، از همان مقدار پیش‌فرض استفاده می‌کند.

همچنین در اینجا اگر به هر دلیلی نیاز به دسترسی مقدار پیش‌فرض را داشته باشید، روش کار به صورت زیر است:
Console.WriteLine(lambdaWithDefaultParam.Method.GetParameters()[0].DefaultValue);

یک نکته: دلیل اصلی اضافه کردن یک چنین قابلیتی، ساده سازی تعاریف Minimal API's است تا بتوان مقادیر پیش‌فرضی را برای پارامترهای درخواست رسیده، تعریف کرد:
app.MagGet("/items", (int? limit, int offset = 0) =>{
   // paginated query for items
});
مطالب
تغییرات دسترسی به کدها در دات نت 4

دو پروژه‌ی سورس باز XML RPC و Log4Net برای اجرا شدن در برنامه‌های دات نت 4 نیاز به اندکی تغییر در هر دو برنامه‌ی فراخوان و اسمبلی‌های آن‌ها دارند که در ادامه توضیحات مربوطه ارائه خواهند شد.

اگر یک پروژه‌ی جدید دات نت 4 را آغاز کنید و سپس ارجاعی را به یکی از اسمبلی‌های ذکر شده اضافه نمائید، اولین خطایی را که حین استفاده مشاهده خواهید نمود، مورد زیر است:
Could not resolve assembly "System.Web".
The assembly is not in the currently targeted framework ".NETFramework,Version=v4.0,Profile=Client".
Please remove references to assemblies not in the targeted framework or consider retargeting your project.
علت هم اینجا است که در تنظیمات پروژه‌ها‌ی جدید مبتنی بر دات نت 4، پیش فرض Target framework انتخابی توسط VS.NET 2010 از نوع Client profile است؛ که صرفا جهت کاهش حجم دات نت فریم ورک مورد نیاز این نوع برنامه‌ها طراحی شده است. در این پروفایل ساده شده، اسمبلی System.Web وجود ندارد. بنابراین جهت استفاده از کتابخانه‌های XML RPC و یا Log4Net نیاز است تا در خواص پروژه، Target framework را بر روی دات نت فریم ورک 4 کامل قرار داد تا خطای فوق برطرف شود.

خطای دومی که حین کار با کتابخانه‌های XML RPC و یا Log4Net در یک برنامه‌ی دات نت 4 حتما با آن مواجه خواهید شد در ادامه ذکر گردیده است:
Inheritance security rules violated while overriding member:
GetObjectData(System.Runtime.Serialization.SerializationInfo, System.Runtime.Serialization.StreamingContext),
Security accessibility of the overriding method must match the security accessibility of the method being overriden.
متد ISerializable.GetObjectData با ویژگی SecurityCritical در دات نت فریم ورک مزین شده است. با تغییرات امنیتی صورت گرفته در دات نت 4، متدی که این متد را تحریف می‌کند نیز باید با همان سطح دسترسی متد virtual اصلی معرفی گردد و گرنه برنامه اجرا نخواهد شد. البته این مشکل ما نیست؛ مشکل سازندگان کتابخانه‌های ذکر شده است! ولی خوب تا این لحظه برای مثال کتابخانه XML RPC برای دات نت 4 به روز نشده است ولی سورس کامل آن در دسترس است.
برای رفع این مشکل ابتدا سورس این کتابخانه‌ها را دریافت کرده و سپس در فایل AssemblyInfo.cs آن‌ها یک سطر زیر را حذف نموده و پروژه را مجددا کامپایل کنید:
[assembly: AllowPartiallyTrustedCallers]
علت وجود این ویژگی‌ در کتابخانه‌های ذکر شده این است که بتوان از آن‌ها در محیط‌های اصطلاحا partially trusted (برای مثال هر برنامه‌ای که در internet zone یا intranet zone اجرا می‌شود) استفاده کرد. در دات نت 4 با تغییرات انجام شده معنای AllowPartiallyTrustedCallers به security-transparency تغییر کرده است. بنابراین با قید آن یا باید هر جایی که متد GetObjectData ذکر شده در این کتابخانه‌ها تحریف می‌شود، ویژگی SecurityCritical را صریحا اعمال کرد یا اینکه می‌توان AllowPartiallyTrustedCallers را حذف کرده و وظیفه‌ی انجام آن‌را به CLR محول نمود.


برای مطالعه بیشتر:
Using Libraries from Partially Trusted Code
Security Changes in the .NET Framework 4
TypeLoadException based on Security-Transparent Code, Level 2
Making log4net run on .NET 4.0

مطالب
طراحی افزونه پذیر با ASP.NET MVC 4.x/5.x - قسمت سوم
پس از بررسی ساختار یک پروژه‌ی افزونه پذیر و همچنین بهبود توزیع فایل‌های استاتیک آن، اکنون نوبت به کار با داده‌ها است. هدف اصلی آن نیز داشتن مدل‌های اختصاصی و مستقل Entity framework code-first به ازای هر افزونه است و سپس بارگذاری و تشخیص خودکار آن‌ها در Context مرکزی برنامه.

پیشنیازها
- آشنایی با مباحث Migrations در EF Code first
- آشنایی با مباحث الگوی واحد کار
- چگونه مدل‌های EF را به صورت خودکار به Context اضافه کنیم؟
- چگونه تنظیمات مدل‌های EF را به صورت خودکار به Context اضافه کنیم؟


کدهایی را که در این قسمت مشاهده خواهید کرد، در حقیقت همان برنامه‌ی توسعه یافته «آشنایی با مباحث الگوی واحد کار» است و از ذکر قسمت‌های تکراری آن جهت طولانی نشدن مبحث، صرفنظر خواهد شد. برای مثال Context و مدل‌های محصولات و گروه‌های آن‌ها به همراه کلاس‌های لایه سرویس برنامه‌ی اصلی، دقیقا همان کدهای مطلب «آشنایی با مباحث الگوی واحد کار» است.


تعریف domain classes مخصوص افزونه‌ها

در ادامه‌ی پروژه‌ی افزونه پذیر فعلی، پروژه‌ی class library جدیدی را به نام MvcPluginMasterApp.Plugin1.DomainClasses اضافه خواهیم کرد. از آن جهت تعریف کلاس‌های مدل افزونه‌ی یک استفاده می‌کنیم. برای مثال کلاس News را به همراه تنظیمات Fluent آن به این پروژه‌ی جدید اضافه کنید:
using System.Data.Entity.ModelConfiguration;
 
namespace MvcPluginMasterApp.Plugin1.DomainClasses
{
    public class News
    {
        public int Id { set; get; }
 
        public string Title { set; get; }
 
        public string Body { set; get; }
    }
 
    public class NewsConfig : EntityTypeConfiguration<News>
    {
        public NewsConfig()
        {
            this.ToTable("Plugin1_News");
            this.HasKey(news => news.Id);
            this.Property(news => news.Title).IsRequired().HasMaxLength(500);
            this.Property(news => news.Body).IsOptional().IsMaxLength();
        }
    }
}
این پروژه برای کامپایل شدن نیاز به بسته‌ی نیوگت ذیل دارد:
 PM> install-package EntityFramework

مشکل! برنامه‌ی اصلی، همانند مطلب «آشنایی با مباحث الگوی واحد کار» دارای domain classes خاص خودش است به همراه تنظیمات Context ایی که صریحا در آن مدل‌های متناظر با این پروژه در معرض دید EF قرار گرفته‌اند:
public class MvcPluginMasterAppContext : DbContext, IUnitOfWork
{
    public DbSet<Category> Categories { set; get; }
    public DbSet<Product> Products { set; get; }
اکنون برنامه‌ی اصلی چگونه باید مدل‌ها و تنظیمات سایر افزونه‌ها را یافته و به صورت خودکار به این Context اضافه کند؟ با توجه به اینکه این برنامه هیچ ارجاع مستقیمی را به افزونه‌ها ندارد.


تغییرات اینترفیس Unit of work جهت افزونه پذیری

در ادامه، اینترفیس بهبود یافته‌ی IUnitOfWork را جهت پذیرش DbSetهای پویا و همچنین EntityTypeConfigurationهای پویا، ملاحظه می‌کنید:
namespace MvcPluginMasterApp.PluginsBase
{
    public interface IUnitOfWork : IDisposable
    {
        IDbSet<TEntity> Set<TEntity>() where TEntity : class;
        int SaveAllChanges();
        void MarkAsChanged<TEntity>(TEntity entity) where TEntity : class;
        IList<T> GetRows<T>(string sql, params object[] parameters) where T : class;
        IEnumerable<TEntity> AddThisRange<TEntity>(IEnumerable<TEntity> entities) where TEntity : class;
        void SetDynamicEntities(Type[] dynamicTypes);
        void ForceDatabaseInitialize();
        void SetConfigurationsAssemblies(Assembly[] assembly);
    }
}
متدهای جدید آن:
SetDynamicEntities : توسط این متد در ابتدای برنامه، نوع‌های مدل‌های جدید افزونه‌ها به صورت خودکار به Context اضافه خواهند شد.
SetConfigurationsAssemblies : کار افزودن اسمبلی‌های حاوی تعاریف EntityTypeConfigurationهای جدید و پویا را به عهده دارد.
ForceDatabaseInitialize: سبب خواهد شد تا مباحث migrations، پیش از شروع به کار برنامه، اعمال شوند.

در کلاس Context ذیل، نحوه‌ی پیاده سازی این متدهای جدید را ملاحظه می‌کنید:
namespace MvcPluginMasterApp.DataLayer.Context
{
    public class MvcPluginMasterAppContext : DbContext, IUnitOfWork
    {
        private readonly IList<Assembly> _configurationsAssemblies = new List<Assembly>();
        private readonly IList<Type[]> _dynamicTypes = new List<Type[]>(); 
 
        public void ForceDatabaseInitialize()
        {
            Database.Initialize(force: true);
        }
 
        public void SetConfigurationsAssemblies(Assembly[] assemblies)
        {
            if (assemblies == null) return;
 
            foreach (var assembly in assemblies)
            {
                _configurationsAssemblies.Add(assembly);
            }
        }
 
        public void SetDynamicEntities(Type[] dynamicTypes)
        {
            if (dynamicTypes == null) return;
            _dynamicTypes.Add(dynamicTypes);
        }
 
        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            addConfigurationsFromAssemblies(modelBuilder);
            addPluginsEntitiesDynamically(modelBuilder);
            base.OnModelCreating(modelBuilder);
        }
 
        private void addConfigurationsFromAssemblies(DbModelBuilder modelBuilder)
        {
            foreach (var assembly in _configurationsAssemblies)
            {
                modelBuilder.Configurations.AddFromAssembly(assembly);
            }
        }
 
        private void addPluginsEntitiesDynamically(DbModelBuilder modelBuilder)
        {
            foreach (var types in _dynamicTypes)
            {
                foreach (var type in types)
                {
                    modelBuilder.RegisterEntityType(type);
                }
            }
        }
    }
}
در متد استاندارد OnModelCreating، فرصت افزودن نوع‌های پویا و همچنین تنظیمات پویای آن‌ها وجود دارد. برای این منظور می‌توان از متدهای modelBuilder.RegisterEntityType و modelBuilder.Configurations.AddFromAssembly کمک گرفت.


بهبود اینترفیس IPlugin جهت پذیرش نوع‌های پویای EF

در قسمت اول، با اینترفیس IPlugin آشنا شدیم. هر افزونه باید دارای کلاسی باشد که این اینترفیس را پیاده سازی می‌کند. از آن جهت دریافت تنظیمات و یا ثبت تنظیمات مسیریابی و امثال آن استفاده می‌شود.
در اینجا متد GetEfBootstrapper آن کار دریافت تنظیمات EF هر افزونه را به عهد دارد.
namespace MvcPluginMasterApp.PluginsBase
{
    public interface IPlugin
    {
        EfBootstrapper GetEfBootstrapper();
        //...به همراه سایر متدهای مورد نیاز
    }
 
    public class EfBootstrapper
    {
        /// <summary>
        /// Assemblies containing EntityTypeConfiguration classes.
        /// </summary>
        public Assembly[] ConfigurationsAssemblies { get; set; }
 
        /// <summary>
        /// Domain classes.
        /// </summary>
        public Type[] DomainEntities { get; set; }
 
        /// <summary>
        /// Custom Seed method.
        /// </summary>
        public Action<IUnitOfWork> DatabaseSeeder { get; set; }
    } 
}
ConfigurationsAssemblies مشخص کننده‌ی اسمبلی‌هایی است که حاوی تعاریف EntityTypeConfigurationهای افزونه‌ی جاری هستند.
DomainEntities بیانگر لیست مدل‌ها و موجودیت‌های هر افزونه است.
DatabaseSeeder کار دریافت منطق متد Seed را بر عهده دارد. برای مثال اگر افزونه‌ای نیاز است در آغاز کار تشکیل جداول آن، دیتای پیش فرض و خاصی را در بانک اطلاعاتی ثبت کند، می‌توان از این متد استفاده کرد. اگر دقت کنید این Action یک وهله از IUnitOfWork را به افزونه ارسال می‌کند. بنابراین در این طراحی جدید، اینترفیس IUnitOfWork به پروژه‌ی MvcPluginMasterApp.PluginsBase منتقل می‌شود. به این ترتیب دیگر نیازی نیست تا تک تک افزونه‌ها ارجاع مستقیمی را به DataLayer پروژه‌ی اصلی پیدا کنند.


تکمیل متد GetEfBootstrapper در افزونه‌ها

اکنون جهت معرفی مدل‌ها و تنظیمات EF آن‌ها، تنها کافی است متد GetEfBootstrapper هر افزونه را تکمیل کنیم:
namespace MvcPluginMasterApp.Plugin1
{
    public class Plugin1 : IPlugin
    {
        public EfBootstrapper GetEfBootstrapper()
        {
            return new EfBootstrapper
            {
                DomainEntities = new[] { typeof(News) },
                ConfigurationsAssemblies = new[] { typeof(NewsConfig).Assembly },
                DatabaseSeeder = uow =>
                {
                    var news = uow.Set<News>();
                    if (news.Any())
                    {
                        return;
                    }
 
                    news.Add(new News
                    {
                        Title = "News 1",
                        Body = "news 1 news 1 news 1 ...."
                    });
 
                    news.Add(new News
                    {
                        Title = "News 2",
                        Body = "news 2 news 2 news 2 ...."
                    });
                }
            };
        }
در اینجا نحوه‌ی معرفی مدل‌های جدید را توسط خاصیت DomainEntities و تنظیمات متناظر را به کمک خاصیت ConfigurationsAssemblies مشاهده می‌کنید. باید دقت داشت که هر اسمبلی فقط باید یکبار معرفی شود و مهم نیست که چه تعداد تنظیمی در آن وجود دارند. کار یافتن کلیه‌ی تنظیمات از نوع EntityTypeConfigurationها به صورت خودکار توسط EF صورت می‌گیرد.
همچنین توسط delegate ایی به نام DatabaseSeeder، نحوه‌ی دسترسی به متد Set واحد کار و سپس استفاده‌ی از آن، برای تعریف متد Seed سفارشی نیز تکمیل شده‌است.


تدارک یک راه انداز EF، پیش از شروع به کار برنامه

در پوشه‌ی App_Start پروژه‌ی اصلی یا همان MvcPluginMasterApp، کلاس جدید EFBootstrapperStart را با کدهای ذیل اضافه کنید:
[assembly: PreApplicationStartMethod(typeof(EFBootstrapperStart), "Start")]
namespace MvcPluginMasterApp
{
    public static class EFBootstrapperStart
    {
        public static void Start()
        {
            var plugins = SmObjectFactory.Container.GetAllInstances<IPlugin>().ToList();
            using (var uow = SmObjectFactory.Container.GetInstance<IUnitOfWork>())
            {
                initDatabase(uow, plugins);
                runDatabaseSeeders(uow, plugins);
            }
        }
 
        private static void initDatabase(IUnitOfWork uow, IEnumerable<IPlugin> plugins)
        {
            foreach (var plugin in plugins)
            {
                var efBootstrapper = plugin.GetEfBootstrapper();
                if (efBootstrapper == null) continue;
 
                uow.SetDynamicEntities(efBootstrapper.DomainEntities);
                uow.SetConfigurationsAssemblies(efBootstrapper.ConfigurationsAssemblies);
            }
 
            Database.SetInitializer(new MigrateDatabaseToLatestVersion<MvcPluginMasterAppContext, Configuration>());
            uow.ForceDatabaseInitialize();
        }
 
        private static void runDatabaseSeeders(IUnitOfWork uow, IEnumerable<IPlugin> plugins)
        {
            foreach (var plugin in plugins)
            {
                var efBootstrapper = plugin.GetEfBootstrapper();
                if (efBootstrapper == null || efBootstrapper.DatabaseSeeder == null) continue;
 
                efBootstrapper.DatabaseSeeder(uow);
                uow.SaveAllChanges();
            }
        }
    }
}
در اینجا یک راه انداز سفارشی از نوع PreApplicationStartMethod تهیه شده‌است. Pre بودن آن به معنای اجرای کدهای متد Start این کلاس، پیش از آغاز به کار برنامه و پیش از فراخوانی متد Application_Start فایل Global.asax.cs است.
همانطور که ملاحظه می‌کنید، ابتدا لیست تمام افزونه‌های موجود، به کمک StructureMap دریافت می‌شوند. سپس می‌توان در متد initDatabase به متد GetEfBootstrapper هر افزونه دسترسی یافت و توسط آن تنظیمات مدل‌ها را یافته و به Context اصلی برنامه اضافه کرد. سپس با فراخوانی ForceDatabaseInitialize تمام این موارد به صورت خودکار به بانک اطلاعاتی اعمال خواهند شد.
کار متد runDatabaseSeeders، یافتن DatabaseSeeder هر افزونه، اجرای آن‌ها و سپس فراخوانی متد SaveAllChanges در آخر کار است.



کدهای کامل این سری را از اینجا می‌توانید دریافت کنید:
MvcPlugin
مطالب
نوشتن آزمون‌های واحد به کمک کتابخانه‌ی Moq - قسمت چهارم - بررسی تعامل بین سیستم در حال آزمایش و وابستگی‌های آن
علاوه بر امکان تنظیم مقدار خروجی متدها، مقدار خواص و ردیابی خواص تغییر کرده، یکی دیگر از قابلیت‌های کتابخانه‌ی Moq، بررسی مورد استفاده قرار گرفتن خواص و متدهای اشیاء Mock شده‌است، که عموما به آن Behavior based testing هم می‌گویند.


Behavior Based Testing چیست؟

آزمون‌هایی را که تاکنون بررسی کردیم از نوع state based testing بودند. در این حالت ابتدا یک Mock object را ایجاد و سپس وهله‌ای از سرویس مدنظر را توسط آن تهیه می‌کنیم. در ادامه تعدادی از متدهای این سرویس را مانند متد Process کلاس LoanApplicationProcessor، فراخوانی می‌کنیم. اینکار سبب اجرای فعالیتی در این سیستم شده و به همراه آن تعاملی با اشیاء Mock شده نیز صورت می‌گیرد. در نهایت، حالت و یا نتیجه‌ای را دریافت می‌کنیم و آن‌را با حالت یا نتیجه‌ای که انتظار داریم، مقایسه خواهیم کرد. بنابراین در این روش پس از پایان اجرای سیستم در حال اجرا، حالت و نتیجه‌ی نهایی حاصل از عملکرد آن، مورد بررسی قرار می‌گیرد.
در Behavior based testing نیز در ابتدا Mock objects مورد نیاز تهیه می‌شوند و سپس وهله‌ای از سرویس مدنظر را توسط آن‌ها تهیه می‌کنیم. همانند قبل، سیستم در حال بررسی را اجرا می‌کنیم (برای مثال با فراخوانی متدی در یک سرویس) تا سیستم، با اشیاء Mock شده کار کند. در این حالت دسترسی به متدی و یا خاصیتی بر روی Mock object صورت می‌گیرد. اکنون همانند روش state based testing که نتیجه‌ی عملیات را مورد بررسی قرار می‌دهد، در اینجا بررسی می‌کنیم که آیا خاصیت یا متد خاصی در Mock objectهای تنظیم شده، استفاده شده‌اند یا خیر؟ بنابراین هدف از این نوع آزمایش، بررسی تعامل بین یک سیستم و وابستگی‌های آن است.
برای مثال فرض کنید که می‌خواهیم کلاس ProductCache را بررسی و آزمایش کنیم. این کلاس از یک DB Provider واقعی برای دسترسی به اطلاعات استفاده می‌کند. برای مثال اگر محصول شماره‌ی 42 را از آن درخواست دهیم، اگر این محصول در کش موجود نباشد، ابتدا یک کوئری را به بانک اطلاعاتی صادر کرده و مقدار متناظری را دریافت می‌کند. سپس نتیجه را کش کرده و به فراخوان بازگشت می‌دهد. در اینجا می‌توان بررسی کرد که آیا محصول صحیحی از کش دریافت شده‌است یا خیر؟ (یا همان state based testing). اما اگر بخواهیم منطق کش کردن را بررسی کنیم، چطور می‌توان متوجه شد که برای مثال محصول دریافت شده مستقیما از کش دریافت شده و یا خیر از همان ابتدا از بانک اطلاعاتی واکشی شده، کش شده و سپس بازگشت داده شده‌است؟ برای این منظور می‌توان توسط کتابخانه‌ی Moq، یک نمونه‌ی mock شده‌ی DB Provider را تهیه و سپس از آن به عنوان وابستگی شیء Product Cache استفاده کرد. اکنون زمانیکه اطلاعاتی از Product Cache درخواست می‌شود، می‌توان Mock object تهیه شده را طوری تنظیم کرد تا اطلاعات مدنظر ما را بازگشت دهد. در این بین مزیت کار کردن با یک Mock object، امکان بررسی این است که آیا متدی بر روی آن فراخوانی شده‌است یا خیر؟ به این ترتیب می‌توان تعامل و رفتار Product Cache را با وابستگی آن، تحت نظر قرار داد (Behavior based testing).


بررسی فراخوانی شدن یک متد بدون پارامتر بر روی یک Mock object

در مثال این سری و در کلاس LoanApplicationProcessor و متد Process آن، فراخوانی سطر زیر را مشاهده می‌کنید:
_identityVerifier.Initialize();
اکنون می‌خواهیم آزمایشی را بنویسیم تا نشان دهد متد Initialize فوق، در صورت فراخوانی متد Process کلاس LoanApplicationProcessor، حتما فراخوانی شده‌است:
namespace Loans.Tests
{
    [TestClass]
    public class LoanApplicationProcessorShould
    {
        [TestMethod]
        public void InitializeIdentityVerifier()
        {
            var product = new LoanProduct {Id = 99, ProductName = "Loan", InterestRate = 5.25m};
            var amount = new LoanAmount {CurrencyCode = "Rial", Principal = 2_000_000_0};
            var applicant =
                new Applicant {Id = 1, Name = "User 1", Age = 25, Address = "This place", Salary = 1_500_000_0};
            var application = new LoanApplication {Id = 42, Product = product, Amount = amount, Applicant = applicant};

            var mockIdentityVerifier = new Mock<IIdentityVerifier>();
            mockIdentityVerifier.Setup(x => x.Validate(applicant.Name, applicant.Age, applicant.Address))
                .Returns(true);

            var mockCreditScorer = new Mock<ICreditScorer>();
            mockCreditScorer.Setup(x => x.ScoreResult.ScoreValue.Score).Returns(110_000);

            var processor = new LoanApplicationProcessor(mockIdentityVerifier.Object, mockCreditScorer.Object);
            processor.Process(application);

            mockIdentityVerifier.Verify(x => x.Initialize());
        }
    }
}
تنظیم mockIdentityVerifier.Setup را در قسمت دوم این سری «تنظیم مقادیر بازگشتی متدها» بررسی کردیم.
تنظیم mockCreditScorer.Setup را نیز در قسمت سوم این سری «تنظیم مقادیر خواص اشیاء» بررسی کردیم.

در ادامه، متد Process کلاس LoanApplicationProcessor فراخوانی شده‌است. اکنون با استفاده از متد Verify کتابخانه‌ی Moq، می‌توان بررسی کرد که آیا در سیستم در حال آزمایش، متدی که توسط آن به صورت strongly typed مشخص می‌شود، فراخوانی شده‌است یا خیر؟

پس از این تنظیمات اگر متد آزمایش واحد InitializeIdentityVerifier را بررسی کنیم با موفقیت به پایان خواهد رسید. برای نمونه یکبار هم سطر فراخوانی متد Initialize را کامنت کنید و سپس این آزمایش را اجرا نمائید تا بتوان شکست آن‌را نیز مشاهده کرد.


بررسی فراخوانی شدن یک متد پارامتر دار بر روی یک Mock object

همان متد آزمون واحد InitializeIdentityVerifier را درنظر بگیرید، در انتهای آن یک سطر زیر را نیز اضافه می‌کنیم:
mockCreditScorer.Verify(x => x.CalculateScore(applicant.Name, applicant.Address));
به این ترتیب می‌توان دقیقا بررسی کرد که آیا در حین پردازش LoanApplicationProcessor، متد CalculateScore وابستگی creditScorer آن، با پارامترهایی که در آزمون فوق مشخص شده، فراخوانی شده‌است یا خیر؟
بدیهی است اگر در این بین، متد CalculateScore با هر مقدار دیگری در کلاس LoanApplicationProcessor فراخوانی شود، آزمون فوق با شکست مواجه خواهد شد. اگر در اینجا مقدار پارامترها اهمیتی نداشتند، همانند قسمت دوم می‌توان از ()<It.IsAny<string استفاده کرد.


بررسی تعداد بار فراخوانی یک متد بر روی یک Mock object

برای بررسی تعداد بار فراخوانی یک متد بر روی یک شیء Mock شده، می‌توان از پارامتر دوم متد Verify استفاده کرد:
mockCreditScorer.Verify(x => 
        x.CalculateScore(It.IsAny<string>(), applicant.Address), 
        Times.Once);
ساختار Times، دارای متدهایی مانند AtLeast ،AtMost ،Exactly و امثال آن است که انعطاف پذیری بیشتری را به آن می‌دهند.


بررسی فراخوانی Getter و Setter خواص یک شیء Mock شده

علاوه بر امکان دریافتن وقوع فراخوانی یک متد، می‌توان از خوانده شدن و یا تغییر مقدار یک خاصیت نیز توسط کتابخانه‌ی Moq مطلع شد. برای مثال در قسمتی از کدهای متد Process داریم:
if (_creditScorer.ScoreResult.ScoreValue.Score < MinimumCreditScore)
اکنون می‌خواهیم بررسی کنیم که آیا Getter خاصیت Score فراخوانی شده‌است یا خیر؟
mockCreditScorer.VerifyGet(x => x.ScoreResult.ScoreValue.Score, Times.Once);
در اینجا بجای استفاده از متد Verify از متد VerifyGet برای بررسی وقوع خوانده شدن مقدار یک خاصیت می‌توان استفاده کرد.
جهت بررسی تغییر مقدار یک متغیر بر روی یک شیء Mock شده، می‌توان از متد VerifySet کمک گرفت:
mockCreditScorer.VerifySet(x => x.Count = It.IsAny<int>(), Times.Once);
به این ترتیب می‌توان دقیقا مقداری را که انتظار داریم مشخص کنیم و یا می‌توان هر مقداری را نیز توسط کلاس It، پذیرفت. البته در این مورد روش زیر برای بررسی تغییر مقدار یک خاصیت که در قسمت قبل بررسی شد، شاید روش بهتر و متداول‌تری باشد:
mockCreditScorer.SetupProperty(x => x.Count, 10);
Assert.AreEqual(11, mockCreditScorer.Object.Count);


روش بررسی فراخوانی تمام متدها و تمام خواص یک شیء Mock شده

با استفاده از متد زیر می‌توان از «نوشتن شده بودن» آزمایش مورد استفاده قرار گرفتن تمام متدها و خواص یک شیء Mock شده، مطمئن شد:
mockIdentityVerifier.VerifyNoOtherCalls();
اگر برای مثال این سطر را به انتهای متد InitializeIdentityVerifier اضافه کنیم، با شکست مواجه می‌شود و در پیام استثنای آن دقیقا عنوان می‌کند که چه مواردی هنوز فاقد آزمون واحد هستند و باید اضافه شوند:
 mockIdentityVerifier.Verify(x => x.Validate(It.IsAny<string>(),
                                                        It.IsAny<int>(),
                                                        It.IsAny<string>()));

کدهای کامل این قسمت را از اینجا می‌توانید دریافت کنید: MoqSeries-4.zip
بازخوردهای دوره
آشنایی با مدل برنامه نویسی TAP
منظورم از متدهای Async مربوط به EF 6 هست آیا نمیشه از این متدها با دات نت 4 استفاده کرد.
مطالب
آموزش Cache در ASP.NET Core - (قسمت دوم : EasyCaching)
در قسمت اول، درمورد سیستم Cache پیش‌فرض موجود در Asp.Net Core و مزیت‌ها و معایب آن گفتیم. اگر قسمت اول را نخواندید، قسمت اول مقاله را میتوانید از این لینک بخوانید. 
 در این قسمت میخواهیم یک پکیج محبوب و کاربردی را برای پیاده سازی کش، در Asp.Net Core را بررسی کنیم.
در دنیای امروز، برنامه نویسی پکیج‌ها و فریمورک‌ها، نقش بسیار مهمی را ایفا میکنند؛ بطوریکه در بسیاری از این موارد، استفاده از این پکیج‌ها، عمل عاقلانه‌تری نسبت به دوباره نویسی فیچر‌های مربوطه است. برای عمل کشینگ در Asp.Net Core نیز پکیج‌های فوق‌العاده‌ای وجود دارند که در این مقاله، به بررسی و استفاده پکیج این میپردازیم.
در این پکیج، هر یک از متد‌های موجود در عملیات کشینگ، بصورت بهینه‌ای تعریف شده و قابل استفاده‌اند. سیستمی که این پکیج برای کش کردن داده‌ها استفاده میکند، همان سیستم کش Asp.Net Core هست و به‌نوعی، سوار بر این سیستم، قابلیت‌های بیشتر و بهتری را ارائه میدهد و این متد‌ها شامل موارد زیر هستند:
  1.  Get/GetAsync(with data retriever)
  2.  Get/GetAsync(without data retriever)
  3.  Set/SetAsync
  4.  Remove/RemoveAsync
  5.  ~~Refresh/RefreshAsync (was removed)~~
  6.  RemoveByPrefix/RemoveByPrefixAsync
  7.  SetAll/SetAllAsync
  8.  GetAll/GetAllAsync
  9.  GetByPrefix/GetByPrefixAsync
  10.  RemoveAll/RemoveAllAsync
  11.  GetCount
  12.  Flush/FlushAsync
  13.  TrySet/TrySetAsync
  14.  GetExpiration/GetExpirationAsync

مفهوم استفاده از این متد‌ها، با همان مفهوم متد‌های کش در core، برابری میکند که در قسمت اول این مقاله به آن پرداختیم. همانطور که می‌بینید، این پکیج از Async Method‌‌ها هم پشتیبانی میکند و میتوانید کش‌های خود را بصورت Async بنویسید.
یکی از قابلیت‌های دیگر این پکیج، سازگاری آن با انواع Cache Provider‌های موجود است. بطور خلاصه Cache Provider‌ها، همان ارائه دهندگان حافظه‌ی Ram، در قالب‌ها و ابزارهای مختلف هستند. برخی از این‌ها با داشتن الگوریتم‌های بهینه‌تر، سرعت بالاتری از رد و بدل کردن اطلاعات در Ram را در اختیار ما قرار میدهند و Local بودن یا Distributed بودن را کنترل میکنند. Cache provider‌های گوناگونی وجود دارند که هریک به شکلی کار میکند؛ برای مثال شما میتوانید با Provider ای مستقیما با خود Ram، برای Get و Set کردن کش‌های خود در ارتباط باشید و یا در روشی دیگر، از یک دیتابیس(Redis)، جدا از دیتابیس اصلی برنامه که حافظه مصرفی آن Ram هست و منابع حافظه شما را نیز مدیریت میکند، برای کش‌های خود استفاده کنید و اطلاعات را بصورت ایندکس گذاری شده در Ram ذخیره کنید که به سرعت واکشی آن می‌افزاید.

بطور کل Cache Provider هایی که پکیج EasyCaching با آن‌ها سازگار است شامل موارد زیر است:
  1. In-Memory
  2. Memcached
  3. Redis(Based on StackExchange.Redis)
  4. Redis(Based on csredis)
  5. SQLite
  6. Hybrid
  7. Disk
  8. LiteDb

یکی دیگر از مزیت‌های این پکیج، سازگاری آن با Serializer‌های مختلف است. همانطور که میدانید دیتا‌های ورودی و خروجی در برنامه، نیاز به Serialize شدن دارند. وقتی میخواهید دیتایی را در دیتابیس ذخیره کنید، آن را در قالب یک شی (Model) از کاربر دریافت میکنید و شما باید برای ذخیره این دیتا، اطلاعات درون شیء را به قالبی که قابل ذخیره شدن باشد، در آورید که این عمل Serialize نام دارد. دقیقا برعکس این روند، بعد از واکشی اطلاعات از دیتابیس، اطلاعات را در قالب اشیایی که قابل نمایش به کاربر باشد (DeSerialize) در میاوریم.
در کش کردن هم چیزی که شما با آن سروکار دارید، دیتا است؛ پس برای ذخیره و واکشی این دیتا، از هر حافظه‌ای، چه دیتابیس و چه Ram، باید از یک Serializer استفاده کنید تا عملیات Serialize و DeSerialize را برایتان انجام دهد. Serializer‌های مختلفی وجود دارند که بصورت پکیج‌هایی ارائه شده‌اند و اما Serializer هایی که سیستم EasyCaching آن‌هارا پشتیبانی میکند، شامل موارد ذیل هستند:
  1. BinaryFormatter
  2. MessagePack
  3. Newtonsoft.Json
  4. Protobuf
  5. System.Text.Json

در ادامه به پیاده سازی کش، با استفاده از EasyCaching در سه Provider مختلف از این پکیج می‌پردازیم.

 1_ پروایدر InMemory :
پروایدر InMemory، یک سیستم Local Caching را برای ما به وجود میاورد. در قسمت قبلی مقاله سیستم‌های Local(InMemory) و Distributed را بررسی کردیم و تفاوت‌های میان آن‌ها را گفتیم.

برای استفاده از پروایدر InMemory در EasyCaching باید پکیج زیر را نصب کنید: 
Install-Package EasyCaching.InMemory
در مرحله بعد، کانفیگ‌های مربوط به این پکیج را در کلاس Startup برنامه خود میاوریم. راحت‌ترین روش افزودن این پکیج به Startup، صرفا افزودن حالت پیشفرض آن به متد ConfigureServices است که به شرح زیر عمل میکنیم: 
  services.AddEasyCaching(options =>
 {
       // use memory cache with a simple way
        options.UseInMemory();
 }
این حالت از کانفیگ، پکیج تنظیمات پیش‌فرض خود پکیج را برای برنامه قرار میدهد؛ شما میتوانید با استفاده از option‌های دیگری که در متد ()UseInMemory وجود دارند، تنظیمات شخصی سازی شده از سیستم کشینگ خود را اعمال کنید. 
و تمام. هم اکنون میتوان با استفاده از اینترفیس IEasyCachingProvider که این سرویس در اختیارمان قرار داده و عمل تزریق وابستگی آن در کلاس‌ها و کنترلر‌های مان دیتای در حال عبور را کش کنیم. متد‌های موجود در این اینترفیس به شرح زیر میباشد : 
// تنظیم یک کش با کلید - مقدار - زمان انقضا
void Set<T>(string cacheKey, T cacheValue, TimeSpan expiration);
Task SetAsync<T>(string cacheKey, T cacheValue, TimeSpan expiration);

// تنظیم یک کش با مقدار و زمان انقضا که تایپ مقدار از نوع دیکشنری هست و کلید دیکشنری بعنوان کلید کش قرار میگیرد
void SetAll<T>(IDictionary<string, T> value, TimeSpan expiration);
Task SetAllAsync<T>(IDictionary<string, T> value, TimeSpan expiration);

// تنظیم یک کش با کلید - مقدار - زمان انقضا
// اگر کلیدی همنام وجود داشته باشد مقدار نادرست و در غیر اینصورت مقدار نادرست را برمیگرداند
bool TrySet<T>(string cacheKey, T cacheValue, TimeSpan expiration);
Task<bool> TrySetAsync<T>(string cacheKey, T cacheValue, TimeSpan expiration);
 
// گرفتن یک کش با کلید
CacheValue<T> Get<T>(string cacheKey);
Task<CacheValue<T>> GetAsync<T>(string cacheKey);

// 
CacheValue<T> Get<T>(string cacheKey, Func<T> dataRetriever, TimeSpan expiration);
Task<CacheValue<T>> GetAsync<T>(string cacheKey, Func<Task<T>> dataRetriever, TimeSpan expiration);
 
// گرفتن یک کش با چند کاراکتر پیشین کلید آن
// برای مثال یک کلید با نام
// MyKey
// تنها با داشتن چند حرف اول 
// MyK
// میتوانیم این کش را دریافت کنیم
IDictionary<string, CacheValue<T>> GetByPrefix<T>(string prefix);
Task<IDictionary<string, CacheValue<T>>> GetByPrefixAsync<T>(string prefix);

// 
IDictionary<string, CacheValue<T>> GetAll<T>(IEnumerable<string> cacheKeys);
Task<IDictionary<string, CacheValue<T>>> GetAllAsync<T>(IEnumerable<string> cacheKeys);

// گرفتن تعداد کش‌های با کاراکتر‌های پیشین کلید که میان چند کلید یکسان است 
int GetCount(string prefix = "");
Task<int> GetCountAsync(string prefix = "");

// گرفتن زمان انقضا باقیمانده از یک کش با کلید آن
TimeSpan GetExpiration(string cacheKey);
Task<TimeSpan> GetExpirationAsync(string cacheKey);

// حذف کردن یک کش با کلید
void Remove(string cacheKey);
Task RemoveAsync(string cacheKey);

// حذف کردن یک کش با چند کاراکتر پیشین کلید
void RemoveByPrefix(string prefix);
Task RemoveByPrefixAsync(string prefix);
 
// حذف کردن چند کش با لیستی از کلید‌ها void RemoveAll(IEnumerable<string> cacheKeys);
Task RemoveAllAsync(IEnumerable<string> cacheKeys);

// بررسی وجود یا عدم وجود یک کش با کلید
bool Exists(string cacheKey);
Task<bool> ExistsAsync(string cacheKey);

// حذف کردن همه کش‌ها void Flush();
Task FlushAsync();

همانطور که قبلا گفته شد، سیستم کش، با دیتا مرتبط است و نیازمند یک Object Serializer جهت Serialize کردن اطلاعات ورودی و ذخیره آن در Target Storage مشخص شده است. پکیج EasyCaching برای Provider‌های خود، یک Object Serializer پیش‌فرض قرار داده‌است و تا وقتی که شما آن را طبق نیازی خاص، بصورت سفارشی تغییر نداده باشید، از آن استفاده میکند.
در میان پنج Serializer معرفی شده که EasyCaching آن‌ها را پشتیبانی میکند، BinaryFormatter بصورت پیش‌فرض در همه‌ی Provider‌ها برقرار است و تا وقتی یک Serializer انتخابی به EasyCaching معرفی نکنید، این پکیج از این Serializer استفاده میکند.
برای استفاده از Serializer‌های دیگری که معرفی شده میتوانید از لینک‌های زیر کمک بگیرید :

2 - پروایدر Redis :
ردیس، یک دیتابیس Key Value محور هست که محل ذخیره سازی آن Ram است و اطلاعات، بصورت موقت در آن ذخیره میشوند. بطور خلاصه، Key Value یعنی یکبار کلید و مقداری برای آن کلید تعریف میشود و هر وقت نام کلید تعریف شده، صدا زده شد، مقدار نسبت داده شده به آن، در اختیار ما قرار میگیرد. برای مثال کلید "Name" و مقدار "James". با این انتساب، هروقت "Name" فراخوانده شود، مقدار "James" را خواهیم داشت. سیستم Key Value بخاطر عدم پیچیدگی و سادگی‌ای که دارد، بسیار سریع عمل میکند و همچنین ایندکس گذاری‌هایی که ردیس روی دیتا‌ها انجام میدهد، باعث افزایش سرعت آن نیز خواهد شد که ردیس را به سریع‌ترین دیتابیس Key Value دنیا تبدیل کرده.
در اینجا با توجه به قابلیت هایی که ردیس داراست، یکی از بهترین گزینه‌ها برای انتخاب بعنوان فضای ذخیره سازی کش‌ها بصورت Distributed است.
برای استفاده از این دیتابیس قدرتمند ابتدا باید از طریق یکی از روش‌های معمول اقدام به نصب آن کنید. میتوانید فایل نصبی را از وبسایت رسمی آن دانلود کنید و یا یا با استفاده از Docker اقدام به نصب آن نمایید.
پس از نصب این دیتابیس روی سیستم خود ، برای استفاده از آن در EasyCaching ابتدا باید پکیج مورد نیاز را نصب کنید. 
Install-Package EasyCaching.Redis
ادامه کار به همان سادگی پروایدر قبلی هست و فقط کافیست EasyCaching و option ردیس را به کلاس Startup اضافه کنید. 
 services.AddEasyCaching(option =>
{
       option.UseRedis(config =>
      {
             config.DBConfig.Endpoints.Add(new ServerEndPoint("127.0.0.1", 6379));
      });
});
با استفاده از متد UseRedis شما قابلیت استفاده از ردیس را در EasyCaching فعال میکنید و سپس باید اطلاعات Host و Port ردیس نصب شده‌ی روی سیستم خود را به این متد معرفی کنید.
اگر ردیس را بدون تنظیمات شخصی سازی شده و در همان حالت پیش‌فرض خودش نصب کرده باشید، Host و Port شما مانند نمونه بالا 127.0.0.1 و 6379 خواهد بود و نیازی به تغییر نیست.
در مرحله بعد برای استفاده از پروایدر ردیس ، اینترفیس IRedisCachingProvider در سرتاسر برنامه در دسترس خواهد بود. این اینترفیس علاوه بر اینکه متد‌های اصلی موجود در EasyCaching را ساپورت کرده ، بخاطر ساختار دیتابیسی که خود ردیس در اختیار ما قرار میدهد قابلیت‌های بیشتری نیز اراعه خواهد داد. این قابلیت‌ها خصیصه‌های ردیس هست چرا که این دیتابیس هم دقیقا شبیه به ساختار سیستم کش Key , Value را پشتیبانی میکند و در پی آن قابلیت هایی برای مدیریت بهتر کلید‌ها و مقادیر اراعه میدهد.
اینترفیس IRedisCachingProvider شامل تعداد زیادی از متد‌ها برای پشتیبانی از قابلیت‌های ردیس است که در ادامه همه آنهارا نام برده و برخی را توضیح مختصری خواهیم داد:
  • متد‌های Keys 
// حذف کردن یک کلید در صورت وجود
bool KeyDel(string cacheKey);
Task<bool> KeyDelAsync(string cacheKey);

// تنظیم تاریخ انتضا به یک کلید موجود بر حسب ثانیه
bool KeyExpire(string cacheKey, int second);
Task<bool> KeyExpireAsync(string cacheKey, int second);

// بررسی وجود یا عدم وجود یک کلید
bool KeyExists(string cacheKey);
Task<bool> KeyExistsAsync(string cacheKey);

// گرفتن زمان انتقضا باقیمانده یک کلید
long TTL(string cacheKey);
Task<long> TTLAsync(string cacheKey);

// جستجو بین همه کلید‌ها براساس فیلتر شامل بودن نام کلید از مقدار ورودی
List<string> SearchKeys(string cacheKey, int? count = null);
  • متد‌های String 
// افزودن یک عدد (پیشقرض 1) به مقدار نوع عددی یک کلید
long IncrBy(string cacheKey, long value = 1);
Task<long> IncrByAsync(string cacheKey, long value = 1);

// افزودن یک عدد (پیشقرض 1) به مقدار نوع عددی یک کلید
double IncrByFloat(string cacheKey, double value = 1);
Task<double> IncrByFloatAsync(string cacheKey, double value = 1);

// تنظیم یک کلید و مقدار وقتی مقدار از نوع رشته باشد
bool StringSet(string cacheKey, string cacheValue, TimeSpan? expiration = null, string when = "");
Task<bool> StringSetAsync(string cacheKey, string cacheValue, TimeSpan? expiration = null, string when = "");

// گرفتن کلید و مقدار آن وقتی مقدار از نوع رشته باشد
string StringGet(string cacheKey);
Task<string> StringGetAsync(string cacheKey);

// گرفتن تعداد کاراکتر‌های مقدار یک کلید وقتی مقدار از نوع رشته باشد
long StringLen(string cacheKey);
Task<long> StringLenAsync(string cacheKey);

// جایگزاری یک رشته درون رشته مقدار یک کلید بعد از شماره کاراکتر مشخص شده در ورودی برای مثال 
// "Hello World"
// 6 , jack
// "Hello jack"
long StringSetRange(string cacheKey, long offest, string value);
Task<long> StringSetRangeAsync(string cacheKey, long offest, string value);

// گرفتن یک بازه از رشته مقدار یک کلید با شماره کاراکتر شروع و پایان
string StringGetRange(string cacheKey, long start, long end);
Task<string> StringGetRangeAsync(string cacheKey, long start, long end);
  • متد‌های Hashes
// شما میتوانید دو کلید با نام‌های یکسان داشته باشید که در کلید تایپ دیکشنری مقدار خود باهم متفاوت هستند
bool HMSet(string cacheKey, Dictionary<string, string> vals, TimeSpan? expiration = null);
Task<bool> HMSetAsync(string cacheKey, Dictionary<string, string> vals, TimeSpan? expiration = null);

// شما میتوانید دو کلید با نام‌های یکسان داشته باشید که در ورودی فیلد باهم متفاوت هستند
bool HSet(string cacheKey, string field, string cacheValue);
Task<bool> HSetAsync(string cacheKey, string field, string cacheValue);

// بررسی وجود یا عدم وجود یک کلید و فیلد
bool HExists(string cacheKey, string field);
Task<bool> HExistsAsync(string cacheKey, string field);

// حذف کردن کلید‌های همنام موجود با همه فیلد‌های متفاوت در حالت پیشفرض مگر اینکه کلید و نام فیلد را بهمراه آن مشخص کنید
long HDel(string cacheKey, IList<string> fields = null);
Task<long> HDelAsync(string cacheKey, IList<string> fields = null);

// گرفتن مقدار با نام کلید و نام فیلد
string HGet(string cacheKey, string field);
Task<string> HGetAsync(string cacheKey, string field);

// گرفتن فیلد و مقدار با کلید
Dictionary<string, string> HGetAll(string cacheKey);
Task<Dictionary<string, string>> HGetAllAsync(string cacheKey);

//  افزودن یک عدد (پیشقرض 1) به مقدار نوع عددی یک کلید و فیلد
long HIncrBy(string cacheKey, string field, long val = 1);
Task<long> HIncrByAsync(string cacheKey, string field, long val = 1);

// گرفتن فیلد‌های متفاوت یک کلید
List<string> HKeys(string cacheKey);
Task<List<string>> HKeysAsync(string cacheKey);

// گرفتن تعداد فیلد‌های متفاوت یک کلید
long HLen(string cacheKey);
Task<long> HLenAsync(string cacheKey);

// گرفتن مقادیر یک کلید بدون در نظر گرفتن فیلد‌های متفاوت
List<string> HVals(string cacheKey);
Task<List<string>> HValsAsync(string cacheKey);

// گرفتن مقدار دیکشنری با کلید و نام فیلد‌ها Dictionary<string, string> HMGet(string cacheKey, IList<string> fields);
Task<Dictionary<string, string>> HMGetAsync(string cacheKey, IList<string> fields);
  • متد‌های List
// گرفتن یک مقدار از لیست مقادیر با شماره ایندکس آن
T LIndex<T>(string cacheKey, long index);
Task<T> LIndexAsync<T>(string cacheKey, long index);

// گرفتن تعداد مقادیر در لیست یک کلید
long LLen(string cacheKey);
Task<long> LLenAsync(string cacheKey);

// گرفتن اولین مقدار از مقادیر یک لیست در یک کلید
T LPop<T>(string cacheKey);
Task<T> LPopAsync<T>(string cacheKey);

// ایجاد یک کلید که لیستی از مقادیر را پشتیبانی میکند و میتوانید هر بار مقدار جدید به لیست آن اضافه کنید
long LPush<T>(string cacheKey, IList<T> cacheValues);
Task<long> LPushAsync<T>(string cacheKey, IList<T> cacheValues);

// گرفتن مقادیر یک لیست از داده بر اساس شماره ایندکس شروع و پایان برای مثال مقادیر ۳ تا ۷ از ۱۰ مقدار
List<T> LRange<T>(string cacheKey, long start, long stop);
Task<List<T>> LRangeAsync<T>(string cacheKey, long start, long stop);

// حذف کردن مقادیر یک لیست بر اساس تعداد وارد شده که بعد از مقدار وارد شده شروع به شمارش میشود
long LRem<T>(string cacheKey, long count, T cacheValue);
Task<long> LRemAsync<T>(string cacheKey, long count, T cacheValue);

// افزودن یک مقدار به لیستی از مقادیر یک کلید با گرفتن شماره ایندکس
bool LSet<T>(string cacheKey, long index, T cacheValue);
Task<bool> LSetAsync<T>(string cacheKey, long index, T cacheValue);

// بررسی میکند که لیست مقداری برای شماره ایندکس شروع و پایان درون خودش دارد یا خیر
bool LTrim(string cacheKey, long start, long stop);
Task<bool> LTrimAsync(string cacheKey, long start, long stop);

//  https://redis.io/commands/lpushx
long LPushX<T>(string cacheKey, T cacheValue);
Task<long> LPushXAsync<T>(string cacheKey, T cacheValue);

// https://redis.io/commands/linsert
long LInsertBefore<T>(string cacheKey, T pivot, T cacheValue);
Task<long> LInsertBeforeAsync<T>(string cacheKey, T pivot, T cacheValue);

// https://redis.io/commands/linsert
long LInsertAfter<T>(string cacheKey, T pivot, T cacheValue);
Task<long> LInsertAfterAsync<T>(string cacheKey, T pivot, T cacheValue);

// https://redis.io/commands/rpushx
long RPushX<T>(string cacheKey, T cacheValue);
Task<long> RPushXAsync<T>(string cacheKey, T cacheValue);

// https://redis.io/commands/rpush
long RPush<T>(string cacheKey, IList<T> cacheValues);
Task<long> RPushAsync<T>(string cacheKey, IList<T> cacheValues);

// https://redis.io/commands/rpop
T RPop<T>(string cacheKey);
Task<T> RPopAsync<T>(string cacheKey);
  • متد‌های Set
// https://redis.io/commands/SAdd
long SAdd<T>(string cacheKey, IList<T> cacheValues, TimeSpan? expiration = null);
Task<long> SAddAsync<T>(string cacheKey, IList<T> cacheValues, TimeSpan? expiration = null);
       
// https://redis.io/commands/SCard
long SCard(string cacheKey);
Task<long> SCardAsync(string cacheKey);

// https://redis.io/commands/SIsMember
bool SIsMember<T>(string cacheKey, T cacheValue);
Task<bool> SIsMemberAsync<T>(string cacheKey, T cacheValue);

// https://redis.io/commands/SMembers
List<T> SMembers<T>(string cacheKey);
Task<List<T>> SMembersAsync<T>(string cacheKey);

// https://redis.io/commands/SPop
T SPop<T>(string cacheKey);
Task<T> SPopAsync<T>(string cacheKey);

// https://redis.io/commands/SRandMember
List<T> SRandMember<T>(string cacheKey, int count = 1);
Task<List<T>> SRandMemberAsync<T>(string cacheKey, int count = 1);

// https://redis.io/commands/SRem
long SRem<T>(string cacheKey, IList<T> cacheValues = null);
Task<long> SRemAsync<T>(string cacheKey, IList<T> cacheValues = null);
  • متد‌های Stored Set
// https://redis.io/commands/ZAdd
long ZAdd<T>(string cacheKey, Dictionary<T, double> cacheValues);
Task<long> ZAddAsync<T>(string cacheKey, Dictionary<T, double> cacheValues);
       
// https://redis.io/commands/ZCard       
long ZCard(string cacheKey);
Task<long> ZCardAsync(string cacheKey);

// https://redis.io/commands/ZCount
long ZCount(string cacheKey, double min, double max);
Task<long> ZCountAsync(string cacheKey, double min, double max);

// https://redis.io/commands/ZIncrBy
double ZIncrBy(string cacheKey, string field, double val = 1);
Task<double> ZIncrByAsync(string cacheKey, string field, double val = 1);

// https://redis.io/commands/ZLexCount
long ZLexCount(string cacheKey, string min, string max);
Task<long> ZLexCountAsync(string cacheKey, string min, string max);

// https://redis.io/commands/ZRange
List<T> ZRange<T>(string cacheKey, long start, long stop);
Task<List<T>> ZRangeAsync<T>(string cacheKey, long start, long stop);

// https://redis.io/commands/ZRank
long? ZRank<T>(string cacheKey, T cacheValue);
Task<long?> ZRankAsync<T>(string cacheKey, T cacheValue);

// https://redis.io/commands/ZRem
long ZRem<T>(string cacheKey, IList<T> cacheValues);
Task<long> ZRemAsync<T>(string cacheKey, IList<T> cacheValues);

// https://redis.io/commands/ZScore
double? ZScore<T>(string cacheKey, T cacheValue);
Task<double?> ZScoreAsync<T>(string cacheKey, T cacheValue);
  • متد‌های Hyperloglog
// https://redis.io/commands/PfAdd
bool PfAdd<T>(string cacheKey, List<T> values);
Task<bool> PfAddAsync<T>(string cacheKey, List<T> values);

// https://redis.io/commands/PfCount
long PfCount(List<string> cacheKeys);
Task<long> PfCountAsync(List<string> cacheKeys);

// https://redis.io/commands/PfMerge
bool PfMerge(string destKey, List<string> sourceKeys);
Task<bool> PfMergeAsync(string destKey, List<string> sourceKeys);
  • متد‌های Geo
// https://redis.io/commands/GeoAdd
long GeoAdd(string cacheKey, List<(double longitude, double latitude, string member)> values);
Task<long> GeoAddAsync(string cacheKey, List<(double longitude, double latitude, string member)> values);

// https://redis.io/commands/GeoDist
double? GeoDist(string cacheKey, string member1, string member2, string unit = "m");
Task<double?> GeoDistAsync(string cacheKey, string member1, string member2, string unit = "m");

// https://redis.io/commands/GeoHash
List<string> GeoHash(string cacheKey, List<string> members);
Task<List<string>> GeoHashAsync(string cacheKey, List<string> members);

// https://redis.io/commands/GeoPos
List<(decimal longitude, decimal latitude)?> GeoPos(string cacheKey, List<string> members);
Task<List<(decimal longitude, decimal latitude)?>> GeoPosAsync(string cacheKey, List<string> members);
برای اطلاعات بیشتر از متد‌های دیگر موجود در ردیس میتوانید از این لینک استفاده کنید. 

3 - پروایدر Hybrid :
این پروایدر، روشی از کشینگ را مابین local caching و distributed caching، ارائه میدهد و میتوانید از یک پروایدر Local مثل InMemory و پروایدر Distributed مثل Redis، همزمان باهم استفاده کنید که در یک کانال باهم و در راستای هم کار میکنند.
اما سوال اینجاست که این قابلیت دقیقا چه کاری انجام میدهد؟
همانطور که قبلا گفته شد، کش In-Memory سرعت بالاتری نسبت به کش Distributed دارد؛ اما دچار معایبی در حالت چند سروری هست که این معایب از جمله حذف شدن دیتای یک سرور، در صورت Down شدن آن، Sync نبودن کش سرور‌ها باهم دیگر و دو نسخه، کش کردن دیتا در هر سرور و موارد دیگری که میتوان نام برد. اما از طرفی کش Distributed مشکلات چند سروری را با قرار دادن یک مرکزیت واحد کش در حافظه شبکه شده سرور‌ها برطرف میکند و اطلاعات سرور‌ها، از یک منبع خوانده میشود و طبعا مشکلات In-Memory را نخواهیم داشت؛ اما به دلیل رد و بدل شدن دیتا در محیط شبکه و عمل Serialize , Deserialize که هنگام عبور دیتا روی آن صورت میگیرد، بخشی از سرعت، کاهش خواهد یافت و درنهایت Performance کمتری را نسبت به In-Memory ارائه میدهد.
حالا برای اینکه بتوانیم سیستم کش خودمان را طوری طراحی کنیم که عیب‌های (Local)In-Memory و Distributed را نداشته باشیم و بتوانیم از هریک به شکلی درست استفاده کنیم که هم اطلاعاتمان Sync باشد و هم از سرعت بالای In-Memory برخوردار شویم، میتوانیم از پروایدر Hybrid استفاده کنیم. 

شیوه کار این پروایدر به این صورت است که وقتی برنامه برای بار اول به کش In-Memory درخواستی را ارسال میکند و کش مورد نظر در آن وجود ندارد، برنامه یک درخواست دیگر را به کش Distributed ارسال میکند و دیتای مورد نظر را به کاربر بازگشت میدهد و علاوه بر آن یک کپی از کش آن دیتا، در کش In-Memory هم ایجاد میکند. با این ساختار از دفعات بعد که کاربر درخواستی را ارسال کند، دیتای درخواستی در In-Memory نیز موجود خواهد بود و سریع‌تر از بار اول پاسخ را ارسال خواهد کرد.
از طرفی نیز وقتی کاربر دیتای جدیدی را ذخیره میکند، ابتدا آن دیتا در In-Memory کش شده و سپس با درخواست خود پروایدر، در کش Distributed هم اعمال میشود تا در نهایت دیتابیس نیز آن را ذخیره کند.
وقتی این اتفاق می‌افتد، پروایدر Hybrid با کمک پکیج Bus.Redis به کش In-Memory سرور‌های دیگر دستور Pull کردن دیتا کش‌های جدید را ارسال میکند و در نهایت همه سرور‌ها نیز به کمک Distributed مرکزی باهم Sync خواهند بود.

برای فعال سازی این پروایدر باید پکیج‌های زیر را در برنامه خود نصب کنید: 
Install-Package EasyCaching.HybridCache
Install-Package EasyCaching.InMemory
Install-Package EasyCaching.Redis
Install-Package EasyCaching.Bus.Redis
در این مجموعه از پکیج‌ها، از یک پروایدر Local(InMemory) و یک پروایدر distributed(Redis) استفاده شده و همانطور که گفته شد، مدیریت هماهنگ سازی این دو، توسط پکیج دیگری بنام EasyCaching.Bus.Redis صورت میگیرد.

تنظیمات فعالسازی این پروایدر هم متشکل از تنظیمات دو پروایدر In-Memory و Redis، بعلاوه معرفی این دو به هم در متد UseHybrid خواهد بود. 
   services.AddEasyCaching(option =>
       // local
       option.UseInMemory("c1");

       // distributed
       option.UseRedis(config =>
                config.DBConfig.Endpoints.Add(new ServerEndPoint("127.0.0.1", 6379));
       }, "c2");

       // combine local and distributed
        option.UseHybrid(config =>
                 // specify the local cache provider name after v0.5.4
                   config.LocalCacheProviderName = "c1"
                // specify the distributed cache provider name after v0.5.4
                   config.DistributedCacheProviderName = "c2"
        });

          // use redis bus
           .WithRedisBus(busConf =>
                   busConf.Endpoints.Add(new ServerEndPoint("127.0.0.1", 6379));
           });
});
برای استفاده از این پروایدر، متفاوت با پروایدر‌های قبلی، باید اینترفیس IHybridCachingProvider را فراخوانی کنیم. متد‌های موجود در این اینترفیس، همان متدهایی است که در اینترفیس IEasyCachingProvider وجود دارند و از نظر نام متد و روش استفاده، تفاوتی میان آن نیست.

 پیشنهاد شخصی در Distributed Cache‌ها 
همانطور که گفته شد Distributed کش‌ها، گزینه مناسب‌تری برای برنامه‌های چند سروری هستند؛ اما در این حالت مواردی مثل Round Trip شبکه و جابجایی اطلاعات در این محیط بعلاوه Serialize , Deserialize هایی که باید انجام شوند دلیلی میشود تا سرعت آن در پاسخ به درخواست‌های برنامه، نسبت به حالت تک سروری(In-Memory) کمتر باشد. Hybrid Provider یکی از روش‌های حل این مشکل بوده که معرفی کردیم. اما برای اینکه تیر خلاص را به پیکره سیستم Distributed Cache خود بزنید و تریک فنی آخر را نیز روی آن اجرا کنید، پیشنهاد میکنم از پکیج EasyCaching.Extensions.EasyCompressor که بر پایه پکیج EasyCaching نوشته شده استفاده کنید. این پکیج، اطلاعات را قبل از کش شدن، فشرده سازی میکند و حجم اطلاعات را به طور محسوسی کاهش میدهد که میزان فضای اشغالی Ram را کم کرده و همچنین عمل جابجایی اطلاعات را نیز تسریع می‌بخشد. میتوانید از این پکیج هم در Redis و هم در Hybrid استفاده کنید. چگونگی استفاده از آن نیز در لینک Github ذکر شده موجود است.

معرفی پروژه
تا اینجا با مفاهیمی که برای شروع استفاده حرفه‌ای از کش در پروژه‌تان نیاز بود، آشنا شدید. در پروژه‌های واقعی، میتوانیم از این سیستم به روش‌های مختلفی در سطوح مختلفی از برنامه استفاده کنیم؛ برای مثال کد‌های مربوط به عملیات کش را میتوان بصورت ساده‌ای در هر کنترلر تزریق و در اکشن‌ها استفاده کرد؛ یا از لایه کنترلر، آن را به لایه سرویس منتقل کرد. در روشی دیگر میتوانیم یک Attribute را برای این عمل در نظر بگیریم و یا اینکه آن را بصورت یک Middleware اختصاصی در برنامه پیاده کنیم. 
در این پروژه علاوه بر اینکه سعی کرده‌ام استفاده از Provider‌های معرفی شده را در محیط واقعی‌تر پیاده سازی کنم، در هر پروژه از این Solution، کش را به شیوه‌ای متفاوت در لایه‌های مختلفی از برنامه قرار داده‌ام تا شما همراهان بتوانید طبق نیازتان از روشی مناسب و بهینه در پروژه‌های واقعی خود از آن استفاده کنید.