مطالب
متد جدید Chunk در دات نت 6
متد جدید ()Chunk در دات نت 6، به مجموعه‌ی LINQ اضافه شده‌است. این متد امکانی را فراهم میکند که بتوان مجموعه‌ای را به گروه‌های کوچکتر، تقسیم کنیم .


وضعیت فعلی  پیاده سازی این قابلیت 
در نسخه‌های قبلی دات نت، چنین قابلیتی برای تقسیم یک مجموعه، به مجموعه‌های کوچکتر بصورت توکار وجود ندارد.
مجموعه‌ی زیر را در نظر بگیرید:
int[] numbers = new int[] {6, 5, 1, 9, 18, 5, 3, 21};
این عملیات تقسیم به مجموعه‌های کوچکتر می‌تواند توسط متد‌های Take و Skip، انجام شود که نتیجه نهایی آنچنان چشم نواز نیست!
var coll1 = numbers.Take(2);
var coll2 = numbers.Skip(2).Take(2);
var coll3 = numbers.Skip(4).Take(2);
var coll4 = numbers.Skip(6).Take(2);

با کمی تامل شاید بتوان روش‌های بهتری نیز برای این نیاز ارائه کرد. در این پرسش و پاسخ که رای بالایی هم دارد، یک متد الحاقی برای تقسیم یک مجموعه، به زیر مجموعه‌های کوچکتر ارائه شده‌است:
static class LinqExtensions
{
    public static IEnumerable<IEnumerable<T>> Split<T>(this IEnumerable<T> list, int parts)
    {
        int i = 0;
        var splits = from item in list
                     group item by i++ % parts into part
                     select part.AsEnumerable();
        return splits;
    }
}

پیاده سازی جدید
در دات نت 6، متد جدید Chunk می‌تواند یک مجموعه را به زیر مجموعه‌های کوچکتری تبدیل کند.
فرض کنید یک مجموعه‌ی بزرگ از اعداد تصادفی را داریم:
List<int> numbers = new();

int counter = 0;
Random rand = new(DateTime.Now.Millisecond);
while(counter < 100)
{
    numbers.Add(rand.Next(1, 1000));
    counter++;
}
با استفاده از متد Chunk میتوان این مجموعه‌ی 100 عضوی را به 10 مجموعه‌ی 10 عضوی، تبدیل کرد. این متد مقداری را بعنوان پارامتر دریافت میکند که سایز زیر مجموعه‌هایی است که قرار است تولید شوند.

شرایط خاص در این متد
اگر با تقسیم مجموعه‌ی بزرگتر، زیر مجموعه‌ها تعداد یکسانی عضو نداشتند، چه اتفاقی می‌افتد؟
فرض کنید مجموعه‌ی اصلی 100 عضو و زیر مجموعه‌ها 8 عضو داشته باشند:
IEnumerable<int[]> sublists = numbers.Chunk(8);
چند زیر مجموعه تولید خواهد شد؟ هر مجموعه چند عضو را خواهد داشت؟
خروجی تابع Chunk، سیزده زیر مجموعه دارد؛  12 زیر مجموعه‌ی اول آن، 8 عضوی است که خارج قسمت صحیح تقسیم عدد 100 بر عدد 8 می‌باشد و مجموعه‌ی آخر آن، 4 عضوی است که باقیمانده‌ی تقسیم صحیح 100 بر 8 است. در زمانیکه تعداد زیر مجموعه‌ها فرد است، به این رفتار دقت داشته باشید.
  محاسبه‌ی میانگین ششمین زیر مجموعه‌ی تولید شده در قسمت فوق :
var avg=sublists.ElementAt(6).Average();
مطالب
پیاده سازی SoftDelete در EF Core
در مورد حذف منطقی در EF 6x، پیشتر مطالبی را در این سایت مطالعه کرده‌اید:
- «پیاده سازی حذف منطقی در Entity framework» حذف منطقی، یکی از الگوهای بسیار پرکاربرد در برنامه‌های تجاری است. توسط آن بجای حذف فیزیکی اطلاعات، آن‌ها را تنها به عنوان رکوردی حذف شده، «علامتگذاری» می‌کنیم. مزایای آن نیز به شرح زیر هستند:
- داشتن سابقه‌ی حذف اطلاعات
- جلوگیری از cascade delete
- امکان بازیابی رکوردها و امکان ایجاد قسمتی به نام recycle bin در برنامه (شبیه به recycle bin در ویندوز که امکان بازیابی موارد حذف شده را می‌دهد)
- امکان داشتن رکوردهایی که در یک برنامه (به ظاهر) حذف شده‌اند، اما هنوز در برنامه‌ی دیگری در حال استفاده هستند.
- بالابردن میزان امنیت برنامه. فرض کنید سایت شما هک شده و شخصی، دسترسی به پنل مدیریتی و سطوح دسترسی مدیریتی برنامه را پیدا کرده‌است. در این حالت حذف تمام رکوردهای سایت توسط او، تنها به معنای تغییر یک بیت، از یک به صفر است و بازگرداندن این درجه از خسارت، تنها با روشن کردن این بیت، برطرف می‌شود.

پیاده سازی حذف منطقی در EF Core شامل مراحل خاصی است که در این مطلب، جزئیات آن‌ها را بررسی خواهیم کرد.


نیاز به تعریف دو خاصیت جدید در هر جدول

هر جدولی که قرار است soft delete به آن اعمال شود، باید دارای دو فیلد جدید bool IsDeleted و DateTime? DeletedAt باشد. می‌توان این خواص را به هر موجودیتی به صورت دستی اضافه کرد و یا می‌توان ابتدا یک کلاس پایه‌ی abstract را برای آن ایجاد کرد:
using System;

namespace EFCoreSoftDelete.Entities
{
    public abstract class BaseEntity
    {
        public int Id { get; set; }


        public bool IsDeleted { set; get; }
        public DateTime? DeletedAt { set; get; }
    }
}
و سپس موجودیت‌هایی را که قرار است از soft delete پشتیبانی کنند، توسط آن علامتگذاری کرد؛ مانند موجودیت Blog:
using System.Collections.Generic;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata.Builders;

namespace EFCoreSoftDelete.Entities
{
    public class Blog : BaseEntity
    {
        public string Name { set; get; }

        public virtual ICollection<Post> Posts { set; get; }
    }

    public class BlogConfiguration : IEntityTypeConfiguration<Blog>
    {
        public void Configure(EntityTypeBuilder<Blog> builder)
        {
            builder.Property(blog => blog.Name).HasMaxLength(450).IsRequired();
            builder.HasIndex(blog => blog.Name).IsUnique();

            builder.HasData(new Blog { Id = 1, Name = "Blog 1" });
            builder.HasData(new Blog { Id = 2, Name = "Blog 2" });
            builder.HasData(new Blog { Id = 3, Name = "Blog 3" });
        }
    }
}
که هر بلاگ از تعدادی مطلب تشکیل شده‌است:
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata.Builders;

namespace EFCoreSoftDelete.Entities
{
    public class Post : BaseEntity
    {
        public string Title { set; get; }

        public Blog Blog { set; get; }
        public int BlogId { set; get; }
    }

    public class PostConfiguration : IEntityTypeConfiguration<Post>
    {
        public void Configure(EntityTypeBuilder<Post> builder)
        {
            builder.Property(post => post.Title).HasMaxLength(450);
            builder.HasOne(post => post.Blog).WithMany(blog => blog.Posts).HasForeignKey(post => post.BlogId);

            builder.HasData(new Post { Id = 1, BlogId = 1, Title = "Post 1" });
            builder.HasData(new Post { Id = 2, BlogId = 1, Title = "Post 2" });
            builder.HasData(new Post { Id = 3, BlogId = 1, Title = "Post 3" });
            builder.HasData(new Post { Id = 4, BlogId = 1, Title = "Post 4" });
            builder.HasData(new Post { Id = 5, BlogId = 2, Title = "Post 5" });
        }
    }
}
مزیت علامتگذاری این کلاس‌ها، امکان کوئری گرفتن از آن‌ها نیز می‌باشد که در ادامه از آن استفاده خواهیم کرد.


حذف خودکار رکوردهایی که Soft Delete شده‌اند، از نتیجه‌ی کوئری‌ها و گزارشات

تا اینجا فقط دو خاصیت ساده را به کلاس‌های مدنظر خود اضافه کرده‌ایم. پس از آن یا می‌توان در هر جائی برای مثال شرط context.Blogs.Where(blog => !blog.IsDeleted) را به صورت دستی اعمال کرد و در گزارشات، رکوردهای حذف منطقی شده را نمایش نداد و یا از زمان ارائه‌ی EF Core 2x می‌توان برای آن‌ها Query Filter تعریف کرد. برای مثال می‌توان به تنظیمات موجودیت Blog و یا Post مراجعه نمود و با استفاده از متد HasQueryFilter، همان شرط blog => !blog.IsDeleted را به صورت سراسری به تمام کوئری‌های مرتبط با این موجودیت‌ها اعمال کرد:
    public class BlogConfiguration : IEntityTypeConfiguration<Blog>
    {
        public void Configure(EntityTypeBuilder<Blog> builder)
        {
            // ...
            builder.HasQueryFilter(blog => !blog.IsDeleted);
        }
    }
از این پس ذکر context.Blogs دقیقا معنای context.Blogs.Where(blog => !blog.IsDeleted) را می‌دهد و دیگر نیازی به ذکر صریح شرط متناظر با soft delete نیست.
در این حالت کوئری‌های نهایی به صورت خودکار دارای شرط زیر خواهند شد:
SELECT [b].[Id], [b].[DeletedAt], [b].[IsDeleted], [b].[Name]
FROM [Blogs] AS [b]
WHERE [b].[IsDeleted] <> CAST(1 AS bit)


اعمال خودکار QueryFilter مخصوص Soft Delete به تمام موجودیت‌ها

همانطور که عنوان شد، مزیت علامتگذاری موجودیت‌ها با کلاس پایه‌ی BaseEntity، امکان کوئری گرفتن از آن‌ها است:
namespace EFCoreSoftDelete.DataLayer
{
    public static class GlobalFiltersManager
    {
        public static void ApplySoftDeleteQueryFilters(this ModelBuilder modelBuilder)
        {
            foreach (var entityType in modelBuilder.Model
                                                    .GetEntityTypes()
                                                    .Where(eType => typeof(BaseEntity).IsAssignableFrom(eType.ClrType)))
            {
                entityType.addSoftDeleteQueryFilter();
            }
        }

        private static void addSoftDeleteQueryFilter(this IMutableEntityType entityData)
        {
            var methodToCall = typeof(GlobalFiltersManager)
                                .GetMethod(nameof(getSoftDeleteFilter), BindingFlags.NonPublic | BindingFlags.Static)
                                .MakeGenericMethod(entityData.ClrType);
            var filter = methodToCall.Invoke(null, new object[] { });
            entityData.SetQueryFilter((LambdaExpression)filter);
        }

        private static LambdaExpression getSoftDeleteFilter<TEntity>() where TEntity : BaseEntity
        {
            return (Expression<Func<TEntity, bool>>)(entity => !entity.IsDeleted);
        }
    }
}
در اینجا در ابتدا تمام موجودیت‌هایی که از BaseEntity ارث بری کرده‌اند، یافت می‌شوند. سپس بر روی آن‌ها قرار است متد SetQueryFilter فراخوانی شود. این متد بر اساس تعاریف EF Core، یک LambdaExpression کلی را قبول می‌کند که نمونه‌ی آن در متد getSoftDeleteFilter تعریف شده و سپس توسط متد addSoftDeleteQueryFilter به صورت پویا به modelBuilder اعمال می‌شود.

محل اعمال آن نیز در انتهای متد OnModelCreating است تا به صورت خودکار به تمام موجودیت‌های موجود اعمال شود:
namespace EFCoreSoftDelete.DataLayer
{
    public class ApplicationDbContext : DbContext
    {

        //...


        protected override void OnModelCreating(ModelBuilder modelBuilder)
        {
            base.OnModelCreating(modelBuilder);

            modelBuilder.ApplyConfigurationsFromAssembly(typeof(BaseEntity).Assembly);
            modelBuilder.ApplySoftDeleteQueryFilters();
        }


مشکل! هنوز هم حذف فیزیکی رخ می‌دهد!

تنظیمات فوق، تنها بر روی کوئری‌های نوشته شده تاثیر دارند؛ اما هیچگونه تاثیری را بر روی متد Remove و سپس SaveChanges نداشته و در این حالت، هنوز هم حذف واقعی و فیزیکی رخ می‌دهد.
 برای رفع این مشکل باید به EF Core گفت، هر چند دستور حذف صادر شده، اما آن‌را تبدیل به دستور Update کن؛ یعنی فیلد IsDelete را به 1 و فیلد DeletedAt را با زمان جاری مقدار دهی کن:
namespace EFCoreSoftDelete.DataLayer
{
    public static class AuditableEntitiesManager
    {
        public static void SetAuditableEntityOnBeforeSaveChanges(this ApplicationDbContext context)
        {
            var now = DateTime.UtcNow;

            foreach (var entry in context.ChangeTracker.Entries<BaseEntity>())
            {
                switch (entry.State)
                {
                    case EntityState.Added:
                        //TODO: ...
                        break;
                    case EntityState.Modified:
                        //TODO: ...
                        break;
                    case EntityState.Deleted:
                        entry.State = EntityState.Unchanged; //NOTE: For soft-deletes to work with the original `Remove` method.

                        entry.Entity.IsDeleted = true;
                        entry.Entity.DeletedAt = now;
                        break;
                }
            }
        }
    }
}
در اینجا با استفاده از سیستم tracking، رکوردهای حذف شده‌ی با وضعیت EntityState.Deleted، به وضعیت EntityState.Unchanged تغییر پیدا می‌کنند، تا دیگر حذف نشوند. اما در ادامه چون دو خاصیت IsDeleted و DeletedAt این موجودیت، ویرایش می‌شوند، وضعیت جدید Modified خواهد بود که به کوئری‌های Update تفسیر می‌شوند. به این ترتیب می‌توان همانند قبل یک رکورد را حذف کرد:
var post1 = context.Posts.Find(1);
if (post1 != null)
{
   context.Remove(post1);

   context.SaveChanges();
}
اما دستوری که توسط EF Core صادر می‌شود، یک Update است:
Executing DbCommand [Parameters=[@p2='1', @p0='2020-09-17T05:11:32' (Nullable = true), @p1='True'], CommandType='Text', CommandTimeout='30']
SET NOCOUNT ON;
UPDATE [Posts] SET [DeletedAt] = @p0, [IsDeleted] = @p1
WHERE [Id] = @p2;
SELECT @@ROWCOUNT;

محل اعمال متد SetAuditableEntityOnBeforeSaveChanges فوق، پیش از فراخوانی SaveChanges و به صورت زیر است:
namespace EFCoreSoftDelete.DataLayer
{
    public class ApplicationDbContext : DbContext
    {
        // ...

        public override int SaveChanges(bool acceptAllChangesOnSuccess)
        {
            ChangeTracker.DetectChanges();

            beforeSaveTriggers();

            ChangeTracker.AutoDetectChangesEnabled = false; // for performance reasons, to avoid calling DetectChanges() again.
            var result = base.SaveChanges(acceptAllChangesOnSuccess);

            ChangeTracker.AutoDetectChangesEnabled = true;
            return result;
        }

        // ...

        private void beforeSaveTriggers()
        {
            setAuditProperties();
        }

        private void setAuditProperties()
        {
            this.SetAuditableEntityOnBeforeSaveChanges();
        }
    }
}


مشکل! رکوردهای وابسته حذف نمی‌شوند!

حالت پیش‌فرض حذف رکوردها در EFCore به cascade delete تنظیم شده‌است. یعنی اگر blog با id=1 حذف شود، نه فقط این blog، بلکه تمام مطالب وابسته‌ی به آن نیز حذف خواهند شد. اما در اینجا اگر این بلاگ را حذف کنیم:
 ar blog1 = context.Blogs.FirstOrDefault(blog => blog.Id == 1);
if (blog1 != null)
{
   context.Remove(blog1);

   context.SaveChanges();
}
تنها تک رکورد متناظر با آن حذف منطقی شده و مطالب متناظر با آن خیر. برای رفع این مشکل باید به صورت زیر عمل کرد:
var blog1AndItsRelatedPosts = context.Blogs
    .Include(blog => blog.Posts)
    .FirstOrDefault(blog => blog.Id == 1);
if (blog1AndItsRelatedPosts != null)
{
    context.Remove(blog1AndItsRelatedPosts);

    context.SaveChanges();
}
ابتدا باید رکوردهای وابسته را توسط یک Include به حافظه وارد کرد و سپس دستور Delete را بر روی کل آن صادر نمود که یک چنین خروجی را تولید می‌کند:
SELECT [t].[Id], [t].[DeletedAt], [t].[IsDeleted], [t].[Name], [t0].[Id], [t0].[BlogId], [t0].[DeletedAt], [t0].[IsDeleted], [t0].[Title]
FROM (
SELECT TOP(1) [b].[Id], [b].[DeletedAt], [b].[IsDeleted], [b].[Name]
FROM [Blogs] AS [b]
WHERE ([b].[IsDeleted] <> CAST(1 AS bit)) AND ([b].[Id] = 1)
) AS [t]
LEFT JOIN (
SELECT [p].[Id], [p].[BlogId], [p].[DeletedAt], [p].[IsDeleted], [p].[Title]
FROM [Posts] AS [p]
WHERE [p].[IsDeleted] <> CAST(1 AS bit)
) AS [t0] ON [t].[Id] = [t0].[BlogId]
ORDER BY [t].[Id], [t0].[Id]

Executing DbCommand [Parameters=[@p2='1', @p0='2020-09-17T05:25:00' (Nullable = true), @p1='True',
 @p5='2', @p3='2020-09-17T05:25:00' (Nullable = true), @p4='True', @p8='3',
@p6='2020-09-17T05:25:00' (Nullable = true), @p7='True',
 @p11='4', @p9='2020-09-17T05:25:00' (Nullable = true), @p10='True'], CommandType='Text', CommandTimeout='30']

SET NOCOUNT ON;
UPDATE [Blogs] SET [DeletedAt] = @p0, [IsDeleted] = @p1
WHERE [Id] = @p2;
SELECT @@ROWCOUNT;

UPDATE [Posts] SET [DeletedAt] = @p3, [IsDeleted] = @p4
WHERE [Id] = @p5;
SELECT @@ROWCOUNT;

UPDATE [Posts] SET [DeletedAt] = @p6, [IsDeleted] = @p7
WHERE [Id] = @p8;
SELECT @@ROWCOUNT;

UPDATE [Posts] SET [DeletedAt] = @p9, [IsDeleted] = @p10
WHERE [Id] = @p11;
SELECT @@ROWCOUNT;
ابتدا اولین بلاگ را حذف منطقی کرده؛ سپس تمام مطالب متناظر با آن‌را که پیشتر حذف منطقی نشده‌اند، یکی یکی به صورت حذف شده، علامتگذاری می‌کند. به این ترتیب cascade delete منطقی نیز در اینجا میسر می‌شود.


یک نکته: مشکل حذف منطقی و رکوردهای منحصربفرد

فرض کنید در جدولی، فیلد نام کاربری را به عنوان یک فیلد منحصربفرد تعریف کرده‌اید و اکنون رکوردی در این بین، حذف منطقی شده‌است. مشکلی که در آینده بروز خواهد کرد، عدم امکان ثبت رکورد جدیدی با همان نام کاربری است که حذف منطقی شده‌است؛ چون یک unique index بر روی آن وجود دارد. در این حالت اگر از SQL Server استفاده می‌کنید، از قابلیتی به نام filtered indexes پشتیبانی می‌کند که در آن امکان تعریف یک شرط و predicate، در حین تعریف ایندکس‌ها وجود دارد. در این حالت می‌توان رکوردهای حذف منطقی شده را به ایندکس وارد نکرد.



کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: EFCoreSoftDelete.zip
مطالب
ویژگی Static Using Statements در سی شارپ 6
مروری بر کاربردهای مختلف دستور Using تا پیش از ارائه‌ی سی شارپ 6
1- اضافه کردن فضاهای نام مختلف، برای سهولت دسترسی به اعضای آن:
using System.Collections.Generic;
2- تعریف نام مستعار (alias name) برای نوع داده‌ها و فضای نام‌ها
using BLL = DotNetTipsBLLLayer;//نام مستعار برای فضای نام
using EmployeeDomain = DotNetTipsBLLLayer.Employee;//نام مستعار برای یک نوع داده
3- تعریف یک بازه و مشخص کردن زمان تخریب یک شیء و آزاد سازی حافظه‌ی تخصیص داده شده:
using (var sqlConnection = new SqlConnection())
            {
                //کد 
            }
در سی شارپ 6 ، Static Using Statements برای بهبود کدنویسی و تمیز‌تر نوشتن کد‌ها ارائه شده‌است.
در ابتدا نحوه‌ی عملکرد اعضای static را مرور می‌کنیم. متغیر‌ها و متدهایی که با کلمه‌ی کلیدی static معرفی می‌شوند، اعلام می‌کنند که برای استفاده‌ی از آنها به نمونه سازی کلاس آن‌ها احتیاجی نیست و برای استفاده‌ی از آنها کافی است نام کلاس را تایپ کرده (بدون نوشتن new) و متد و یا خصوصیت مورد نظر را فراخوانی کنیم.
با معرفی ویژگی جدید Static Using Statement نوشتن نام کلاس برای فراخوانی اعضای استاتیک نیز حذف می‌شود.
اتفاق خوبی است اگر بتوان  اعضای استاتیک را همچون  Data Typeهای موجود در سی شارپ استفاده کرد. مثلا بتوان به جای ()Console.WrriteLine  نوشت ()WriteLine  
نحوه استفاده از این ویژگی: در ابتدای فایل و بخش معرفی کتابخانه‌ها بدین شکل عمل می‌کنیم using static namespace.className .
در بخش className،  نام کلاس استاتیک مورد نظر خود را می‌نویسیم .
مثال : 
 using static System.Console;
using static System.Math;

namespace dotnettipsUsingStatic
{
    class Program
    {
        static void Main(string[] args)
        {

            Write(" *** Cal Area *** ");
            int r = int.Parse(ReadLine());
            var result = Pow(r, 2) * PI;
            Write($"Area  is : {result}");
            ReadKey();
       }
    }
}

همان طور که در کدهای فوق می‌بینید، کلاس‌های Console و Math، در ابتدای فایل با استفاده از ویژگی جدید سی شارپ 6 معرفی شده‌اند و در بدنه برنامه تنها با فراخوانی نام متد‌ها و خصوصیت‌ها از آنها استفاده کرده ایم.
 
استفاده از ویژگی using static و Enum:
فرض کنید می‌خواهیم یک نوع داده‌ی شمارشی را برای نمایش جنسیت تعریف کنیم:
enum Gender
    {
        Male,
        Female
    }

تا قبل از سی شارپ 6 برای استفاده‌ی از نوع داده شمارشی بدین شکل عمل می‌کردیم: 

var gender = Gender.Male;

و اکنون بازنویسی استفاده‌ی ازEnum  به کمک ویژگی جدید static using statement :

در قسمت معرفی فضاهای نام بدین شکل عمل می‌کنیم: 

using static dotnettipsUsingStatic.Gender;

و در برنامه کافیست مستقیما نام اعضای Enum  را ذکر کنیم  .

var gender = Male;//تخصیص نوع داده شمارشی
WriteLine($"Employee Gender is : {Male}");//استفاده مستقیم از نوع داده شمارشی


استفاده از ویژگی using static و متد‌های الحاقی :

تا قبل از ارائه سی شارپ 6 اگر نیاز به استفاده‌ی از یک متد الحاقی خاص همچون where در فضای نام System.Linq.Enumeable داشتیم می‌بایستی فضای نام System.Linq را به طور کامل اضافه می‌کردیم و راهی برای اضافه کردن یک فضای نام خاص درون فضای نام بزرگتر وجود نداشت. 

اما با قابلیت جدید اضافه شده می‌توانیم بخشی از یک فضای نام  را اضافه کنیم:

  using static System.Linq.Enumerable;


متد‌های استاتیک و متد‌های الحاقی در زمان استفاده از ویژگی using static:

فرض کنید کلاس  static ای بنام MyStaticClass داشته باشیم که متد Print1  و  Print2 در آن تعریف شده باشند:

public static class MyStaticClass
    {
        public static void Print1(string parameter)
        {
            WriteLine(parameter);
        }
        public static void  Print2(this string parameter)
        {
            WriteLine(parameter);
        }

    }

برای استفاده از متد‌های تعریف شده به شکل زیر عمل می‌کنیم : 

//فراخوانی تابع استاتیک
Print1("Print 1");//روش اول
MyStaticClass.Print1("Prtint 1");//روش دوم
//فراخوانی متد الحاقی استاتیک
MyStaticClass.Print2("Print 2");
"print 2".Print2();


ویژگی‌های جدید ارائه شده در سی شارپ 6 برای افزایش خوانایی برنامه‌ها و تمیز‌تر شدن کد‌ها اضافه شده‌اند. در مورد ویژگی‌های ارائه شده در مقاله‌ی جاری این نکته مهم است که گاهی قید کردن نام کلاس‌ها خود سبب افزایش خوانایی کد‌ها می‌شود .

مطالب
تزریق وابستگی‌ها در ASP.NET Core - بخش 6 - Implementation Factory

در بعضی از شرایط پیش رفته، ممکن است نمونه سازی از یک Implementation Type، نیاز به دخالت مستقیم ما را داشته باشد. Implementation Factory کنترل بیشتری بر چگونگی استفاده‌ی از Implementation Type‌ها را  به ما ارائه می‌دهد. در هنگام ثبت سرویسی که Implementation Factory را در اختیار ما قرار می‌دهد، ما یک Delegate را برای فراخوانی سرویس استفاده می‌کنیم. این Delegate مسئول ساخت یک نمونه از Service Type است. برای مثال وقتی از الگوهای builder یا factory برای ساخت یک شیء استفاده می‌کنید، شاید نیاز باشد که Implementation Factory را به صورت دستی پیاده سازی کنید. اولین قدم این است که کدتان را در صورت امکان چنان refactor کنید تا DI Container بتواند آن را به صورت خودکار بسازد؛ ولی اینکار همیشه ممکن نیست. برای مثال بعضی از برنامه نویسان ترجیح می‌دهند یک Config را مستقیما از IOptionMonitor   بگیرند و بعد در هر جائیکه خواستند، بجای تزریق IOptionMonitor به سرویس، مستقیما از همان سرویس ثبت شده استفاده کنند:

services.AddSingleton<ILiteDbConfig>(sp =>sp.GetRequiredService<IOptionsMonitor<LiteDbConfig>>().CurrentValue);

پیاده سازیComposite Pattern 

یک کاربرد بالقوه‌ی دیگر برای Implementation Factory ، استفاده از Composite Pattern است. هر چند Microsoft DI Container به صورت پیش فرض از Composite Pattern پشتیبانی نمی‌کند، ولی ما می‌توانیم آن‌را پیاده سازی کنیم. فرض کنید که قبلا به ازای انجام کاری، به کاربر یک ایمیل را می‌فرستادیم؛ ولی حالا مالک محصول می‌آید و می‌گوید که علاوه بر ایمیل، باید پیامک هم بفرستید و ما یا این سرویس پیامک را از قبل داریم و یا باید آن را بسازیم که فرض می‌کنیم از قبل آن را داریم. برای این کار ما یک اینترفیس کلی‌تر به نام INotificationService می‌سازیم که دو سرویس IEmailNotificationService و ISmsNotificaitonService از آن ارث بری می‌کنند:

public interface INotificationService
{
      void SendMessage(string msg, int userId);
}
حالا CompositeNotificationService را به این صورت تعریف می‌کنیم:
    public class CompositeNotificationService : INotificationService
    {
        private readonly IEnumerable<INotificationService> _notificationServices;
        public CompositeNotificationService(IEnumerable<INotificationService> notificationServices)
        {
            _notificationServices = notificationServices;
        }

        public void SendMessage(string msg, int userId)
        {
            foreach (var notificationServicei in _notificationServices) 
            {
                notificationServicei.SendMessage(msg, userId);
            }
        }
    }
و این سرویس‌ها را به این صورت در DI Container ثبت می‌کنیم: 
services.AddScoped<IEmailNotificationService, EmailNotificationService>();
services.AddScoped<ISMSNotificationService, SMSNotificationService>();

services.AddSingleton<INotificationService>(sp => new CompositeNotificationService(
      new INotificationService[] { 
          sp.GetRequiredService<IEmailNotificationService>() , 
          sp.GetRequiredService<ISMSNotificationService>()
      }
));
حالا هر زمانیکه بخواهیم همزمان، هم ایمیل و هم پیامک بفرستیم، کافی است که سرویس INotificationService را در سازنده‌ی کلاس مورد نظر تزریق کرده و از آن در مکان‌ها و شرایط مختلفی استفاده کنیم. اگر هر کدام از سرویس‌های ارسال ایمیل و سرویس‌های پیامک را به صورت جداگانه بخواهیم، می‌توانیم آنها را به صورت تکی ثبت و استفاده کنیم.  


وهله سازی سفارشی

در مثال بعدی نشان می‌دهیم که چطور می‌توانیم از Implementation Factory برای برگرداندن پیاده‌سازی سرویس‌هایی که Service Provider امکان ساخت خودکار آنها را ندارد، استفاده کنیم. فرض کنید یک کلاس Account داریم که از IAccount ارث بری می‌کند و برای ساخت آن باید از متدهای IAccountBuilder که فرآیند ساخت را انجام می‌دهند، استفاده کنیم. بنابراین امکان ساخت مستقیم یک شیء از IAccount وجود ندارد. در این حالت بدین صورت عمل می‌کنیم: 

services.AddTransient<IAccountBuilder, AccountBuilder>();

services.AddScoped<IAccount>(sp => {
    var builder = sp.GetService<IAccountBuilder>();
    builder.WithAccountType(AccountType.Guest);
    return builder.Build();
});


ثبت یک نمونه برای چندین اینترفیس

ممکن است بنا به دلایلی مجبور باشیم یک implementation Type را برای چند سرویس (اینترفیس) به ثبت برسانیم. در این حالت نمونه‌ی شیء ساخته شده‌، توسط هر کدام از اینترفیس‌ها قابل استفاده است. فرض کنید یک سرویس Greeting داریم که پیش از این فقط اینترفیس IHomeGreetingService را پیاده سازی می‌کرد؛ ولی بنا به دلایلی تصمیم گرفتیم که سرویسی جامع‌تر را با نیازمندی‌های دیگری نیز تعریف کنیم و GreetingService آن را پیاده سازی کند: 

public class GreetingService : IHomeGreetingService , IGreetingService
{ // code here }

احتمالا اولین چیزی که به ذهنمان می‌رسد این است: 

services.TryAddSingleton<IHomeGreetingService, GreetingService>();
services.TryAddSingleton<IGreetingService, GreetingService>();

مشکل روش بالا این است که دو نمونه از GreetingService ساخته می‌شود و درون حافظه باقی می‌ماند و در حقیقت برای هر اینترفیس، یک نوع جداگانه از GreetingService ثبت می‌شود؛ در حالیکه ما می‌خواهیم هر دو اینترفیس فقط از یک نمونه از شیء GreetingService استفاده کنند.  دو راه حل برای این مشکل وجود دارد:

var greetingService = new GreetingService(Environment);
services.TryAddSingleton<IHomeGreetingService>(greetingService);
services.TryAddSingleton<IGreetingService>(greetingService);

در اینجا سازنده‌ی کلاس GreetingService فقط به  environment نیاز داشت که یکی از سرویس‌های پایه‌ی فریم ورک هست و در این مرحله در دسترس است. به صورت کلی مشکل روش بالا این است که ما مسئول نمونه سازی از سرویس GreetingService هستیم! اگر GreetingService برای ساخته شدن به سرویس‌ها یا ورودی هایی نیاز داشته باشد که فقط در زمان اجرا در دسترس باشند، ما امکان نمونه سازی آن‌ها را نداریم؛ علاوه بر این نمی‌توان از روش‌های بالای برای حالت‌های Scoped یا Transient  استفاده کرد.

روش بعدی همان روش استفاده از Implementation Factory است که در ادامه آن را می‌بینید: 

services.TryAddSingleton<GreetingService>();
services.TryAddSingleton<IHomeGreetingService>(sp => sp.GetRequiredService<GreetingService>());
services.TryAddSingleton<IGreetingService>(sp => sp.GetRequiredService<GreetingService>());

در این روش خود DI Container مسئول نمونه سازی از GreetingService است. علاوه بر این می‌توان با استفاده از روش فوق از طول حیات‌های Scoped و Transient هم استفاده کرد؛ در حالیکه در روش قبلی این کار امکان پذیر نبود.

 

Open Generics Service

گاهی از اوقات می‌خواهید سرویس‌هایی را ثبت کنید که از اینترفیسی جنریک ارث بری می‌کنند. هر نوع جنریک در زمان اجرا، نوع مخصوص به خود را واکشی می‌کند. ثبت کردن دستی این سرویس‌ها می‌تواند خسته کننده باشد. برای همین مایکروسافت در DI Container خود قابلیت ثبت و واکشی سرویس‌های جنریک را نیز در اختیار ما گذاشته‌است. بیایید نگاهی به سرویس ILogger<T>  بیندازیم. این یک سرویس درونی فریمورک است و می‌تواند به ازای هر نوع، کارهای مربوط به ثبت log را انجام بدهد و در پروژه‌ها معمولا از این اینترفیس برای ثبت لاگ‌ها در سطح کنترلر و سرویس‌ها استفاده می‌شود: 

public interface ILogger<out TCategoryName> : ILogger
{
}

در حالت عادی اگر سرویسی مشابه سرویس فوق را داشته باشیم، برای ثبت کردن هر سرویس با نوع جنریک اختصاصی آن، مجبوریم به صورت دستی آن را درون DI Container ثبت کنیم؛ مثلا باید به این صورت عمل کنیم: 

services.TryAddScoped<ILogger<HomeController>,Logger<HomeController>>();
این کاری طاقت فرساست. به همین جهت مایکروسافت قابلیت Open Generics Service را در اختیار ما گذاشته تا بتوانیم اینگونه سرویس‌ها را فقط و فقط یکبار ثبت کنیم: 
services.TryAddScoped(typeof(ILogger<>) , typeof(Logger<>));
و اینگونه می‌توانیم نمونه‌های مختلف از ILogger<T> را به هر جایی که خواستیم، تزریق کنیم.

 

دسته بندی سرویس‌ها درون متدهای مختلف و پاکسازی  متد ConfigurationService

 تا اینجای کار ما سرویس‌های مختلفی را به روش‌های مختلفی ثبت کرده‌ایم. حتی در همین آموزش ساده، تعداد زیاد سرویس‌های ثبت شده، باعث شلوغی و در هم ریختگی کدهای ما می‌شوند که خوانایی و در ادامه اشکال زدایی و توسعه‌ی کدها را برای ما سخت‌تر می‌کنند.  ساده‌ترین کار برای دسته بندی کدها، استفاده از متدهای private محلی یا استفاده از متدهای توسعه‌ای(الحاقی) است که در اینجا مثالی از استفاده از متدهای توسعه‌ای را آورده‌ام:
namespace AspNetCoreDependencyInjection.Extensions
{
    public static class DICRegisterationExetnsion
    {
        /// <summary>
        /// مثال ثبت برای اپن جنریت
        /// </summary>
        /// <param name="services"></param>
        public static void OpenGenericRegisterationExample(this IServiceCollection services)
        {
            services.TryAddScoped<ILogger<HomeController>, Logger<HomeController>>();
            services.TryAddScoped(typeof(ILogger<>), typeof(Logger<>));
        }


        /// <summary>
        /// ثبت تنظیمات به روش‌های مختلف 
        /// </summary>
        public static void RegisterConfiguration(this IServiceCollection services, IConfiguration configuration)
        {
            services.AddSingleton(services => new AppConfig
            {
                ApplicationName = configuration["ApplicationName"],
                GreetingMessage = configuration["GreetingMessage"],
                AllowedHosts = configuration["AllowedHosts"]
            });

            services.AddSingleton(services => new AccountTypeBalanceConfig(
                    new List<(AccountType, long)> {
                        (AccountType.Guest , Convert.ToInt64 (configuration["AccountInitialBalance.Guest"]) ) ,
                        (AccountType.Silver , Convert.ToInt64 (configuration["AccountInitialBalance.Silver"]) ) ,
                        (AccountType.Gold , Convert.ToInt64 (configuration["AccountInitialBalance.Gold"]) ) ,
                        (AccountType.Platinum , Convert.ToInt64 (configuration["AccountInitialBalance.Platinum"]) ) ,
                        (AccountType.Titanium , Convert.ToInt64 (configuration["AccountInitialBalance.Titanium"]) ) ,
                    })
            );

            services.AddSingleton(services => new LiteDbConfig
            {
                ConnectionString = configuration["LiteDbConfig:ConnectionString"],
            });

            services.Configure<UserOptionConfig>(configuration.GetSection("UserOptionConfig"));
        }
    }
}

حالا در کلاس ConfigureServices ، درون متدStartup ، به این صورت از این متدهای توسعه‌ای استفاده می‌کنیم:
services.RegisterConfiguration(this.Configuration);
services.OpenGenericRegisterationExample();

می‌توانید کد منبع این آموزش را در اینجا  ببینید.
اشتراک‌ها
بهبود قابل ملاحظه (30 برابری) کارآیی استفاده از Enums با استفاده از Source Generators

با استفاده از Source Generators از enum‌ها استفاده کنیم. این پکیچ با استفاده از Source Generator‌ها Reflection را حذف کرده و کد را در زمان Compile تولید میکند که باعث شده عملکرد حدود 30 برابر سریعتر شود.

بهبود قابل ملاحظه (30 برابری) کارآیی استفاده از Enums با استفاده از Source Generators
نظرات مطالب
پیاده سازی UnitOfWork به وسیله MEF

مهم نیست. همینقدر که ایده اینکار مطرح شده مابقی‌اش هنر Reflection مصرف کننده است. مثلا از یک رشته (ذخیره شده در تنظیمات برنامه) هم می‌شود این نام‌ها را دریافت کرد: Assembly.Load

نظرات مطالب
ارسال انواع بی نام (Anonymous) بازگشتی توسط Entity framework به توابع خارجی
بسیار عالی ! اگه  در مورد "حالا با کمی توسعه CreateGenericListFromAnonymous و مپ کردن نوع بی نام مرجع با نوع بی نام ارسال شده توسط پارامتر و استفاده از Reflection میتونیم فقط فیلدهایی رو که به صورت inline مشخص کردیم داشته باشیم " بیشتر توضیح بدین ممنون میشم