اشتراک‌ها
طراحی ساختار پروژه‌ی یکی شده‌ی Blazor در دات نت 8

In .NET 8 we plan to add a new project template, Blazor Web Application, that covers all combinations of server-hosted projects (traditional Blazor Server apps, Blazor WebAssembly hosted, and the new unified architecture that allows use of Server, WebAssembly, and SSR in a single project). It will work by multitargeting over net8.0 and net8.0-browser. 

طراحی ساختار پروژه‌ی یکی شده‌ی Blazor در دات نت 8
نظرات مطالب
C# 8.0 - Nullable Reference Types
یک نکته‌ی تکمیلی: متدهای الحاقی خود را به ویژگی‌های Nullable مزین کنید!

فرض کنید قصد دارید یک متد الحاقی را برای متد معروف string.IsNullOrWhiteSpace تهیه کنید. روش متداول آن به صورت زیر است:
public static bool IsNullOrWhiteSpace(this string str)
        => string.IsNullOrWhiteSpace(str);

این روش تعریف، دو نقصیه‌ی ریز را به‌همراه دارد:
الف) اگر در پروژه‌ای حالت nullable reference types فعال باشد (که در تمام پروژه‌های جدید، به صورت پیش‌فرض فعال است) و بخواهیم به این متد الحاقی، یک مقدار نال را ارسال کنیم، با یک اخطار کامپایلر مواجه می‌شویم که ... این متد، نال را نمی‌پذیرد که پیشتر با فعال نبودن گزینه nullable reference types، بدون دریافت اخطاری، می‌شد نال را هم به این متد ارسال کرد. بنابراین بهتر است پارامتر ورودی آن‌را به صورت string? str تعریف کنیم.
ب) اگر از متد اصلی string.IsNullOrWhiteSpace در شرطی استفاده کنیم، پس از استفاده‌ی از آن، در سطرهای بعدی، کامپایلر تشخیص می‌دهد که رشته‌ی بررسی شده، نال بوده یا خیر. اما ... متد الحاقی فوق چنین قابلیتی را به همراه ندارد. برای رفع آن باید به صورت زیر عمل کرد:
public static bool IsNullOrWhiteSpace([NotNullWhen(returnValue: false)] this string? str)
        => string.IsNullOrWhiteSpace(str);
با استفاده از ویژگی NotNullWhen به کامپایلر اعلام می‌کنیم که اگر خروجی این متد false بود، مقدار str نال نخواهد بود. اکنون این متد الحاقی جدید، با نمونه‌ی اصلی، رفتار هماهنگی را داشته و قادر است کامپایلر را در سطرهای بعدی، در مورد نال نبودن رشته‌ی دریافتی، راهنمایی کند.
پاسخ به بازخورد‌های پروژه‌ها
نحوه سفارشی سازی ویو های این پروژه
من برای اطمینان دستورات زیر رو اجرا کردم
update-package T4MVC -Reinstall -ProjectName Decision.Web
update-package Microsoft.AspNet.Mvc -ProjectName Decision.Web
update-package Microsoft.Web.Infrastructure -ProjectName Decision.Web
Install-Package RazorGenerator.Mvc
Enable-RazorGenerator
Redo-RazorGenerator
و همه Successfull داد

منوی intellisense برای T4MVC در کنترولر و ویو قابل دسترسی است با راست کلیک و اجرای Run custom tool همچنان پیام Security Warning  را دریافت می‌کنم با ok  (البته اینبار خطاها از بین رفتند)  و اکشن‌ها بصورت virtual تغییر می‌کنند ولی خطای

Server Error in '/' Application.


The resource cannot be found.

Description:  HTTP 404. The resource you are looking for (or one of its dependencies) could have been removed, had its name changed, or is temporarily unavailable.  Please review the following URL and make sure that it is spelled correctly. 

Requested URL:  /Home/Index2

برای اکشن index2 دریافت می‌کنم . Build solution  هم فراموش نشده بقیه اکشنهای پروژه بدرستی کار می‌کنند و حتی امکان سفارشی سازی آنها هست فقط اکشنهای جدید با خطای بالا مواجه میشند .

نظرات مطالب
به دست آوردن اطلاعات کد اجراکننده یک متد
اضافه شدن ویژگی CallerArgumentExpression به C#10.0

ویژگی [CallerArgumentExpression] امکان دریافت آرگومان ارسالی به یک متد را به صورت رشته‌ای میسر می‌کند. برای مثال:
public static void LogExpression<T>(
    T value, 
    [CallerArgumentExpression("value")] string expression = null)
{
    Console.WriteLine($"{expression}: {value}");
}
با ورودی زیر:
var person = new Person("Vahid", "N.");
LogExpression(person.FirstName);
چنین خروجی را تولید می‌کند:
person.FirstName: Vahid

پارامتری که توسط ویژگی [CallerArgumentExpression] معرفی می‌شود، اختیاری بوده و به صورت خودکار توسط کامپایلر مقدار دهی می‌شود. یعنی کامپایلر فراخوانی فوق را به صورت زیر انجام می‌دهد:
LogExpression(person.FirstName, "person.FirstName");
وجود یک چنین قابلیتی، نویسندگان کتابخانه‌ها را از بکارگیری <<Expression<Func<T‌ها یا همان استاتیک ریفلکشن، رهایی می‌بخشد.

یک نمونه کاربرد دیگر آن در بررسی نال بودن مقدار پارامترهای ارسالی است که می‌توان آن‌ها را به صورت زیر خلاصه کرد:
public static void EnsureArgumentIsNotNull<T>(
   T value, 
   [CallerArgumentExpression("value")] string expression = null)
{
    if (value is null)
        throw new ArgumentNullException(expression);
}

public static void Foo(string name)
{
    EnsureArgumentIsNotNull(name); // if name is null, throws ArgumentNullException: "Value cannot be null. (Parameter 'name')"
    ...
}
پیشتر می‌بایستی با استفاده از nameof، نام پارامتر را مشخص کرد. در اینجا کامپایلر قادر است این مقدار را مشخص کند و دیگر نیازی به استفاده از روش زیر نیست:
    if (name is null)
    {
        throw new ArgumentNullException(nameof(name));
    }
البته NET 6.0. به همراه متد جدید زیر که از قابلیت فوق استفاده می‌کند، هست:
ArgumentNullException.ThrowIfNull(name);
و متد ThrowIfNull آن به صورت زیر تعریف شده‌است:
public static void ThrowIfNull(
    [NotNull] object? argument,
    [CallerArgumentExpression("argument")] string? paramName = null)

سؤال: چرا آرگومان اول این متد، هم nullable تعریف شده‌است و هم با ویژگی NotNull مزین گشته‌است؟
nullable بودن آن از این جهت است که ممکن است مقدار ارسالی به آن نال باشد. ویژگی NotNull آن به کامپایلر اعلام می‌کند که اگر این متد با موفقیت به پایان رسید، در سطرهای پس از آن، مقدار این شیء دیگر نال نیست و نیازی نیست تا به استفاده کنند اعلام کند که باید مراقب نال بودن آن باشد.
نظرات مطالب
امکان استفاده از کتابخانه‌های native در Blazor WASM 6x
برای اجرا شدن دستور زیر:
* خط به خط کد‌های زیر را، در cmd و پشت سر هم اجرا کنید
(نکته): باید پایتون را از قبل نصب داشته باشید (آموزش نصب پایتون)
# Get the emsdk repo
git clone https://github.com/emscripten-core/emsdk.git

# Enter that directory
cd emsdk

# Download and install the latest SDK tools.
emsdk install latest

# Make the "latest" SDK "active" for the current user. (writes .emscripten file)
emsdk activate latest

# Activate PATH and other environment variables in the current terminal
emsdk_env.bat
حالا اگر cmd شما در همچین مسیری قرار دارد:
C:\Users\{your pc name}\emsdk
میتوانید دستوری که در متن مقاله ذکر شده را اجرا کنید (البته با اندکی تغییر):
emcc C:\Users\{your pc name}\sqlite\sqlite3.c -shared -o D:\e_sqlite3.o
فایل کامپایل شده e_sqlite3.o رو در پروژه خود کپی کنید و طبق مقاله پیش بروید  و این فایل نیتو را به پروژه رفرنس بدهید.
اکنون اگر دستور dotnet bulid را در ترمینال بزنید،  احتمالا با همچین هشداری مواجه خواهید شد:
warning : @(NativeFileReference) is not empty, but the native references won't be linked in, because neither $(WasmBuildNative), nor $(RunAOTCompilation) are 'true'. NativeFileReference=Data\e_sqlite3.o [D:\project\Yourproject\Yourproject.csproj] 1 Warning(s)
در صورت مشاهده همچین هشداری و حل این مشکل (اضافه نشدن فایل نیتیو به برنامه) ابتدا 
<RunAOTCompilation>true</RunAOTCompilation>
را به قسمت بالای فایل csproj خود و در قسمت 
<PropertyGroup>
اضافه کنید و سپس دستور زیر را اجرا کنید:
dotnet workload install wasm-tools
مطالب
نمایش HTML در برنامه‌های Angular
فرض کنید قصد داریم خاصیت htmlContent زیر را در قالب این کامپوننت نمایش دهیم:
export class ShowHtmlComponent {
  htmlContent = "Template <script>alert(\"Hello!\")</script> <b>Syntax</b>";
}
اگر از روش متداول binding استفاده شود:
<h3>Binding innerHTML</h3>
<p>Bound value:</p>
<p>{{htmlContent}}</p>
چنین خروجی حاصل خواهد شد:


همچنین اگر به کنسول developer tools مرورگر مراجعه کنیم، چنین اخطاری نیز درج شده است:
 WARNING: sanitizing HTML stripped some content (see http://g.co/ng/security#xss).
به این معنا که Angular به صورت توکار تمام خروجی‌ها را به صورت encode شده نمایش می‌دهد و در مقابل حملات XSS مقاوم است. Sanitizing نیز در اینجا به معنای تغییر ورودی و تبدیل آن به مقداری است که جهت درج در DOM امن است.


روش نمایش HTML در برنامه‌های Angular

اما اگر خواستیم اطلاعات HTML ایی را به همان صورتی که هستند نمایش دهیم چطور؟ در این حالت باید از روش ویژه‌ی ذیل استفاده کرد:
<p>Result of binding to innerHTML:</p>
<p [innerHTML]="htmlContent"></p>
برای نمایش HTML نیاز است آن‌را به ویژگی innerHTML متصل کرد؛ با این خروجی:


همانطور که مشاهده می‌کنید، هنوز هم عملیات پاکسازی قسمت‌هایی که ممکن است مخرب باشند صورت می‌گیرد (برای مثال تگ script حذف شده‌است). اما مابقی تگ‌های امن به همان حالتی که هستند نمایش داده خواهند شد.

روش دیگر کار با innerHTML، تعریف یک template reference variable در قالب کامپوننت است:
<p #dataContainer></p>
و سپس دسترسی به آن از طریق یک ViewChild و انتساب مقداری بهinnerHTML  آن به صورت ذیل:
export class ShowHtmlComponent implements OnInit {

  @ViewChild("dataContainer") dataContainer: ElementRef;

  ngOnInit() {
    this.dataContainer.nativeElement.innerHTML = "nativeElement <script>alert(\"Hello!\")</script> <b>Syntax</b>";
  }
}
با این خروجی:


که اینبار قسمت script آن به طور کامل حذف شده‌است.


حالات مختلفی که Angular برنامه را از حملات XSS محافظت می‌کند

در ذیل، لیست مواردی را مشاهده می‌کنید که به صورت پیش‌فرض توسط Angular در مقابل حملات XSS محافظت می‌شوند و اطلاعات انتساب داده شده‌ی به آن‌ها تمیزسازی خواهند شد:
HTML 
Attributes – 
<div [innerHTML]="UNTRUSTED"></div> 
OR <input value="UNTRUSTED">

Style— 
<div [style]="height:UNTRUSTED"></div>

URL — 
<a [href]="UNTRUSTED-URL"></a> 
OR <script [src]="UNTRUSTED-URL"></script> 
OR <iframe src="UNTRUSTED-URL" />

GET Parameter – 
<a href="/user?id=UNTRUSTED">link</a>

JavaScript Variable –
<script> var value='UNTRUSTED';</script>


تبدیل کردن یک HTML نا امن ورودی به یک HTML امن در Angular

بهتر است اطلاعات دریافتی از کاربران پیش از ارسال به سرور تمیز شوند. برای این منظور می‌توان از سرویس ویژه‌ای به نام DomSanitizer کمک گرفت. کار این سرویس، امن سازی اطلاعات نمایش داده شده‌ی در برنامه‌های Angular است.
export class ShowHtmlComponent implements OnInit {
  sanitizedHtml: string;

  constructor(private sanitizer: DomSanitizer) { }

  ngOnInit() {
    this.sanitizedHtml = this.sanitizer.sanitize(SecurityContext.HTML, "<b>Sanitize</b><script>attackerCode()</script>");
  }
}
در این حالت سرویس DomSanitizer به سازنده‌ی کلاس تزریق شده و سپس می‌توان از متدهای مختلف آن مانند sanitize استفاده کرد. خروجی آن صرفا حذف تگ اسکریپت و نگهداری کدهای درون آن است.


در این حالت می‌توان موارد ذیل را کنترل کرد. برای مثال اگر مقدار دریافتی CSS است، می‌توان از SecurityContext.STYLE استفاده کرد و سایر حالات آن مانند امن سازی HTML، اسکریپت و آدرس‌های اینترنتی به شرح ذیل هستند:
SecurityContext.NONE
SecurityContext.HTML
SecurityContext.STYLE
SecurityContext.SCRIPT
SecurityContext.URL
SecurityContext.RESOURCE_URL


غیرفعال کردن سیستم امنیتی Angular جهت نمایش کامل یک مقدار HTML ایی

اگر خواستیم اطلاعات HTML ایی را با فرض امن بودن آن، به همان نحوی که هست نمایش دهیم چطور؟
سرویس DomSanitizer شامل متدهای ذیل نیز می‌باشد:
export enum SecurityContext { NONE, HTML, STYLE, SCRIPT, URL, RESOURCE_URL }

export abstract class DomSanitizer implements Sanitizer {
  abstract sanitize(context: SecurityContext, value: SafeValue|string|null): string|null;
  abstract bypassSecurityTrustHtml(value: string): SafeHtml;
  abstract bypassSecurityTrustStyle(value: string): SafeStyle;
  abstract bypassSecurityTrustScript(value: string): SafeScript;
  abstract bypassSecurityTrustUrl(value: string): SafeUrl;
  abstract bypassSecurityTrustResourceUrl(value: string): SafeResourceUrl;
}
اولین متد آن sanitize است که در مورد آن توضیح داده شد. سایر متدها، کار غیرفعال سازی سیستم امنیتی توکار Angular را انجام می‌دهند.
برای کار با آن‌ها همانند مثال استفاده‌ی از متد sanitize می‌توان سرویس DomSanitizer را به سازنده‌ی یک کامپوننت تزریق کرد و یا می‌توان این عملیات تکراری فرمت اطلاعات ورودی را تبدیل به یک Pipe جدید کرد:
import { Pipe, PipeTransform } from "@angular/core";
import { DomSanitizer, SafeHtml, SafeResourceUrl, SafeScript, SafeStyle, SafeUrl } from "@angular/platform-browser";

@Pipe({
  name: "safe"
})
export class SafePipe implements PipeTransform {
  constructor(protected sanitizer: DomSanitizer) { }

  public transform(value: any, type: string): SafeHtml | SafeStyle | SafeScript | SafeUrl | SafeResourceUrl {
    switch (type) {
      case "html":
        return this.sanitizer.bypassSecurityTrustHtml(value);
      case "style":
        return this.sanitizer.bypassSecurityTrustStyle(value);
      case "script":
        return this.sanitizer.bypassSecurityTrustScript(value);
      case "url":
        return this.sanitizer.bypassSecurityTrustUrl(value);
      case "resourceUrl":
        return this.sanitizer.bypassSecurityTrustResourceUrl(value);
      default:
        throw new Error(`Invalid safe type specified: ${type}`);
    }
  }
}
کار این Pipe غیرفعال کردن سیستم امنیتی Angular و نمایش html، style و غیره به همان صورتی که هستند، می‌باشد.
برای استفاده‌ی از آن، ابتدا این Pipe به قسمت declarations ماژول مدنظر اضافه خواهد شد:
@NgModule({
  imports: [
  // ...
  ],
  declarations: [ SafePipe]
})
و سپس در قالب کامپوننت به نحو ذیل می‌توان با آن کار کرد:
<p [innerHTML]="htmlContent | safe: 'html'"></p>
در این حالت متد bypassSecurityTrustHtml بر روی htmlContent، فراخوانی شده و نتیجه‌ی نهایی نمایش داده خواهد شد.


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید.
مطالب
C# 12.0 - Primary Constructors
قابلیتی تحت عنوان Primary Constructors به C# 12 اضافه شده‌است که ... البته جدید نیست! این قابلیت از زمان C# 9، با ارائه‌ی رکوردها، به زبان #C اضافه شد و در طی چند نگارش بعدی، توسعه و تکامل یافت (برای مثال اضافه شدن records for structs به C# 10) تا در C# 12، به کلاس‌های معمولی نیز تعمیم پیدا کرد. این ویژگی را در ادامه با جزئیات بیشتری بررسی می‌کنیم.


Primary Constructors چیست؟

Primary Constructors، قابلیتی است که به C# 12 اضافه شده‌است تا توسط آن بتوان خواص را مستقیما توسط پارامترهای سازنده‌ی یک کلاس تعریف و همچنین مقدار دهی کرد. هدف از آن، کاهش قابل ملاحظه‌ی یکسری کدهای تکراری و مشخص است تا به کلاس‌هایی زیباتر، کم‌حجم‌تر و خواناتر برسیم. برای مثال کلاس متداول زیر را درنظر بگیرید:
public class Employee
{
    public string FirstName { get; set; }
    public string LastName { get; set; }
    public DateTime HireDate { get; set; }
    public decimal Salary { get; set; }

    public Employee(string firstName, string lastName, DateTime hireDate, decimal salary)
    {
        FirstName = firstName;
        LastName = lastName;
        HireDate = hireDate;
        Salary = salary;
    }
}
در زبان ‍#C، سازنده، متد ویژه‌ای است که در حین ساخت نمونه‌ای از یک کلاس، فراخوانی می‌شود. هدف از آن‌، آغاز و مقدار دهی حالت شیء ایجاد شده‌است که عموما با مقدار دهی خواص آن شیء، انجام می‌شود.
اکنون اگر بخواهیم همین کلاس را با استفاده از ویژگی Primary Constructor اضافه شده به C# 12.0 بازنویسی کنیم، به قطعه کد زیر می‌رسیم:
public class Employee(string firstName, string lastName, DateTime hireDate, decimal salary)
{
    public string FirstName { get; set; } = firstName;
    public string LastName { get; set; } = lastName;
    public DateTime HireDate { get; set; } = hireDate;
    public decimal Salary { get; set; } = salary;
}
و نحوه‌ی نمونه سازی از آن به صورت زیر است:
var employee = new Employee("John", "Doe", new DateTime(2020, 1, 1), 50000);

یک نکته: اگر از Rider و یا ReSharper استفاده می‌کنید، یک چنین Refactoring توکاری جهت سهولت کار، به آن‌ها اضافه شده‌است و به سرعت می‌توان این تبدیلات را توسط آن‌ها انجام داد.




توضیحات:
- متد سازنده در این حالت، به ظاهر حذف شده و به قسمت تعریف کلاس منتقل شده‌است.
- تمام مقدار دهی‌های آغازین موجود در متد سازنده‌ی پیشین نیز حذف شده‌اند و مستقیما به قسمت تعریف خواص، منتقل شده‌اند.
در نتیجه از یک کلاس 15 سطری، به کلاسی 7 سطری رسیده‌ایم که کاهش حجم قابل ملاحظه‌ای را پیدا کرده‌است.

نکته 1: هیچ ضرورتی وجود ندارد که به همراه یک primary constructor، خواصی هم مانند مثال فوق ارائه شوند؛ چون پارامترهای آن در تمام اعضای این کلاس، به همین شکل، قابل دسترسی هستند. در این مثال صرفا جهت بازسازی کد قبلی، این خواص اضافی را مشاهده می‌کنید. یعنی اگر تنها قرار بود، کار تزریق وابستگی‌ها صورت گیرد که عموما به همراه تعریف فیلدهایی جهت انتساب پارامترهای متد سازنده به آن‌ها است، استفاده از یک primary constructor، کدهای فوق را بیش از این هم فشرده‌تر می‌کرد و ... یک سطری می‌شد.

نکته 2: استفاده از پارامترهای سازنده‌ی اولیه، صرفا جهت مقدار دهی خواص عمومی یک کلاس، یک code smell هستند! چون می‌توان یک چنین کارهایی را به نحو شکیل‌تری توسط required properties معرفی شده‌ی در C# 11، پیاده سازی کرد.


بررسی تاریخچه‌ی primary constructors

همانطور که در مقدمه‌ی بحث نیز عنوان شد، primary constructors قابلیت جدیدی نیست و برای نمونه به همراه C# 9 و مفهوم جدید رکوردهای آن، ارائه شد:
public record class Book(string Title, string Publisher);
مثال فوق که به positional syntax هم معروف است، به همراه بکارگیری primary constructors است. در اینجا کامپایلر به صورت خودکار، کار تولید کدهای خواص متناظر را که از نوع get و init دار هستند، انجام می‌دهد. در این حالت به علت استفاده از init accessors، پس از نمونه سازی شیءای از آن، دیگر نمی‌توان مقدار خواص متناظر را تغییر داد.
پس از آن در C# 10، این توسعه ادامه یافت و به امکان تعریف record structها، بسط یافت که در اینجا هم قابلیت تعریف primary constructors وجود دارد:
public record struct Color(int R, int G, int B);
که البته در این حالت برخلاف record classها، کامپایلر، کدی را که برای خواص تولید می‌کند، get و set دار است. در اینجا اگر نیاز است به همان حالت خواص get و init دار رسید، می‌توان یک readonly record struct را تعریف کرد.

پس از این مقدمات، اکنون در C# 12 نیز می‌توان primary constructors را به تمام کلاس‌ها و structهای معمولی هم اعمال کرد؛ با این تفاوت که در اینجا برخلاف رکوردها، کدهای خواص‌های متناظر، به صورت خودکار تولید نمی‌شوند و اگر به آن‌ها نیاز دارید، باید آن‌ها را همانند مثال ابتدای بحث، خودتان به صورت دستی تعریف کنید.


primary constructors کلاس‌ها و structهای معمولی، با primary constructors رکوردها یکی نیست

در C# 12 و به همراه معرفی primary constructors مخصوص کلاس‌ها و structهای معمولی آن، از روش متفاوتی برای دسترسی به پارامترهای تعریف شده، استفاده می‌کند که به آن capturing semantics هم می‌گویند. در این حالت پارامترهای تعریف شده‌ی در یک primary constructor، توسط هر عضوی از آن کلاس قابل استفاده‌است که یکی از کاربردهای آن، ساده کردن تعاریف تزریق وابستگی‌ها است. در این حالت دیگر نیازی نیست تا ابتدا یک فیلد را برای انتساب به پارامتر تزریق شده تعریف کرد و سپس از آن فیلد، استفاده نمود؛ مستقیما می‌توان با همان پارامتر تعریف شده، در متدها و اعضای کلاس، کار کرد.
برای مثال سرویس زیر را که از تزریق وابستگی‌ها، در سازنده‌ی خود استفاده می‌کند، درنظر بگیرید:
public class MyService
{
    private readonly IDepedent _dependent;
  
    public MyService(IDependent dependent)
    {
        _dependent = dependent;
    }
  
    public void Do() 
    {
        _dependent.DoWork();
    }
}
این کلاس در C# 12 به صورت زیر خلاصه شده و پارامتر dependent تعریف شده‌ی در سازنده‌ی اولیه‌ی آن، به همان شکل و بدون نیاز به کد اضافی، در سایر متدهای این کلاس قابل استفاده‌است:
public class MyService(IDependent dependent)
{
    public void Do() 
    {
        dependent.DoWork();
    }
}

البته مفهوم Captures هم در زبان #C جدید نیست و در ابتدا به همراه anonymous methods و بعدها به همراه lambda expressions، معرفی و بکار گرفته شد. برای مثال درون یک lambda expression، اگر از متغیری خارج از آن lambda expressions استفاده شود، کامپایلر یک capture از آن متغیر را تهیه کرده و استفاده می‌کند.

بنابراین به صورت خلاصه primary constructors در رکوردها، با هدف تعریف خواص عمومی فقط خواندنی، ارائه شدند؛ اما primary constructors ارائه شده‌ی در C# 12 که اینبار قابل اعمال به کلاس‌ها و structs معمولی است، بیشتر هدف ساده سازی تعریف کدهای تکراری private fields را دنبال می‌کند. برای نمونه این کدی است که کامپایلر برای primary constructor مثال ابتدای بحث تولید می‌کند و در اینجا نحوه‌ی تولید خودکار این فیلدهای خصوصی را مشاهده می‌کنید:
using System;
using System.Diagnostics;
using System.Runtime.CompilerServices;

namespace CS8Tests
{
  [NullableContext(1)]
  [Nullable(0)]
  public class Employee
  {
    [CompilerGenerated]
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    private string <FirstName>k__BackingField;
    [CompilerGenerated]
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    private string <LastName>k__BackingField;
    [CompilerGenerated]
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    private DateTime <HireDate>k__BackingField;
    [CompilerGenerated]
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    private Decimal <Salary>k__BackingField;

    public Employee(string firstName, string lastName, DateTime hireDate, Decimal salary)
    {
      this.<FirstName>k__BackingField = firstName;
      this.<LastName>k__BackingField = lastName;
      this.<HireDate>k__BackingField = hireDate;
      this.<Salary>k__BackingField = salary;
      base..ctor();
    }

    public string FirstName
    {
      [CompilerGenerated] get
      {
        return this.<FirstName>k__BackingField;
      }
      [CompilerGenerated] set
      {
        this.<FirstName>k__BackingField = value;
      }
    }

    public string LastName
    {
      [CompilerGenerated] get
      {
        return this.<LastName>k__BackingField;
      }
      [CompilerGenerated] set
      {
        this.<LastName>k__BackingField = value;
      }
    }

    public DateTime HireDate
    {
      [CompilerGenerated] get
      {
        return this.<HireDate>k__BackingField;
      }
      [CompilerGenerated] set
      {
        this.<HireDate>k__BackingField = value;
      }
    }

    public Decimal Salary
    {
      [CompilerGenerated] get
      {
        return this.<Salary>k__BackingField;
      }
      [CompilerGenerated] set
      {
        this.<Salary>k__BackingField = value;
      }
    }
  }
}
بنابراین آیا پارامترهای سازنده‌ی اولیه، به صورت خواص تعریف می‌شوند و قابلیت تغییر میدان دید آن‌ها میسر است؟ پاسخ: خیر. این پارامترها توسط کامپایلر، به صورت فیلدهای خصوصی در سطح کلاس، تعریف و استفاده می‌شوند. یعنی تمام اعضای کلاس، البته منهای سازنده‌های ثانویه، به این پارامترها دسترسی دارند. همچنین، این تولید کد هم بهینه‌است و صرفا برای پارامترهایی انجام می‌شود که واقعا در کلاس استفاده شده باشند؛ درغیر اینصورت، فیلد خصوصی متناظری برای آن‌ها تولید نخواهد شد.

یک نکته: برای مشاهده‌ی یک چنین کدهایی می‌توانید از منوی Tools->IL Viewer برنامه‌ی Rider استفاده کرده و در برگه‌ی ظاهر شده، گزینه‌ی #Low-Level C آن‌را انتخاب نمائید.


امکان تعریف سازنده‌های دیگر، به همراه سازنده‌ی اولیه

اگر به کدهای #Low-Level C تولیدی فوق دقت کنید، این کلاس، به همراه یک سازنده‌ی خالی بدون پارامتر (parameter less constructor) نیست و سازنده‌ی پیش‌فرضی (default constructor) برای آن درنظر گرفته نشده‌است ... اما اگر کلاسی به همراه یک primary constructor تعریف شد، می‌توان با استفاده از واژه‌ی کلیدی this، سازنده‌ی ثانویه‌ای را هم برای آن تعریف کرد:
public class Person(string firstName, string lastName) 
{
    public Person() : this("John", "Smith") { }
    public Person(string firstName) : this(firstName, "Smith") { }
    public string FullName => $"{firstName} {lastName}";
}
در اینجا نحوه‌ی تعریف یک Default constructor بدون پارامتر را هم ملاحظه می‌کنید.


امکان ارث‌بری و تعریف سازنده‌ی اولیه

مثال زیر را درنظر بگیرید که در آن کلاس مشتق شده‌ی از کلاس User، یک سازنده‌ی اولیه را تعریف کرده:
public class User
{
    public User(string firstName, string lastName) { }
}

public class Editor(string firstName, string lastName) : User
{
}
در این حالت برنامه با خطای «Base class 'CS8Tests.User' does not contain parameterless constructor» کامپایل نمی‌شود. عنوان می‌کند که اگر کلاس مشتق شده می‌خواهد سازنده‌ی اولیه‌ای داشته باشد، باید کلاس پایه را به همراه یک سازنده‌ی پیش‌فرض بدون پارامتر تعریف کنید.
البته این محدودیت با structها وجود ندارد؛ چون structها، value type هستند و همواره به صورت پیش‌فرض، به همراه یک سازنده‌ی پیش فرض بدون پارامتر، تولید می‌شوند.
یک مثال: قطعه کد متداول ارث‌بری زیر را درنظر بگیرید که در آن، کلاس مشتق شده به کمک واژه‌ی کلید base، امکان تعریف سازنده‌ی جدیدی را یافته و یکی از پارامترهای سازنده‌ی کلاس پایه را مقدار دهی می‌کند:
public class Automobile
{
    public Automobile(int wheels, int seats)
    {
        Wheels = wheels;
        Seats = seats;
    }

    public int Wheels { get; }
    public int Seats { get; }
}

public class Car : Automobile
{
    public Car(int seats) : base(4, seats)
    {
    }
}
این تعاریف در C# 12 به صورت زیر خلاصه می‌شوند:
public class Automobile(int wheels, int seats)
{
    public int Wheels { get; } = wheels;
    public int Seats { get; } = seats;
}

public class Car(int seats) : Automobile(4, seats);

و یا یک نمونه مثال دیگر آن به صورت زیر است که در آن، ذکر بدنه‌ی کلاس در C# 12، الزامی ندارد:
public class MyBaseClass(string s); // no body required

public class Derived(int i, string s, bool b) : MyBaseClass(s)
{
    public int I { get; set; } = i;
    public string B => b.ToString();
}


توصیه به پرهیز از double capturing

با مفهوم capture در این مطلب آشنا شدیم. در مثال زیر دوبار از پارامتر سازنده‌ی age، در دو قسمت عمومی شده، استفاده شده‌است:
public class Human(int age)
{
    // initialization
    public int Age { get; set; } = age;

    // capture
    public string Bio => $"My age is {age}!";
}
در این حالت ممکن است استفاده کننده در طول برنامه، با وضعیت ناخواسته‌ی زیر مواجه شود:
var p = new Human(42);
Console.WriteLine(p.Age); // Output: 42
Console.WriteLine(p.Bio); // Output: My age is 42!

p.Age++;
Console.WriteLine(p.Age); // Output: 43
Console.WriteLine(p.Bio); // Output: My age is 42! // !
در اینجا پس از افزودن مقداری به خاصیت عمومی Age، زمانیکه به مقدار عبارت Bio مراجعه می‌شود، خروجی قبلی را دریافت می‌کنیم!
درک بهتر آن، نیاز به #Low-Level C کلاس Human را دارد:
using System.Diagnostics;
using System.Runtime.CompilerServices;

namespace CS8Tests
{
  [NullableContext(1)]
  [Nullable(0)]
  public class Human
  {
    [CompilerGenerated]
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    private int <age>P;
    [CompilerGenerated]
    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    private int <Age>k__BackingField;

    public Human(int age)
    {
      this.<age>P = age;
      this.<Age>k__BackingField = this.<age>P;
      base..ctor();
    }

    public int Age
    {
      [CompilerGenerated] get
      {
        return this.<Age>k__BackingField;
      }
      [CompilerGenerated] set
      {
        this.<Age>k__BackingField = value;
      }
    }

    public string Bio
    {
      get
      {
        DefaultInterpolatedStringHandler interpolatedStringHandler = new DefaultInterpolatedStringHandler(11, 1);
        interpolatedStringHandler.AppendLiteral("My age is ");
        interpolatedStringHandler.AppendFormatted<int>(this.<age>P);
        interpolatedStringHandler.AppendLiteral("!");
        return interpolatedStringHandler.ToStringAndClear();
      }
    }
  }
}
همانطور که مشاهده می‌کنید، کامپایلر، پارامتر age را دوبار، جداگانه capture کرده‌است:
public Human(int age)
{
   this.<age>P = age;
   this.<Age>k__BackingField = this.<age>P;
   base..ctor();
}
به همین جهت است که ++p.Age، فقط بر روی یکی از فیلدهای capture شده تاثیر داشته و بر روی دیگری خیر. به این مورد، double capturing گفته می‌شود و توصیه شده از آن پرهیز کنید و بجای استفاده‌ی دوباره از پارامتر age، از خود خاصیت Age استفاده نمائید.
مطالب
Blazor 5x - قسمت 24 - تهیه API مخصوص Blazor WASM - بخش 1 - ایجاد تنظیمات ابتدایی
تا اینجا با اصول توسعه‌ی برنامه‌های مبتنی بر Blazor Server آشنا شدیم. در ادامه‌ی این سری، روش توسعه برنامه‌های مبتنی بر Blazor WASM را بررسی خواهیم کرد و پیش از شروع آن، باید بتوان امکانات سمت سرور مورد نیاز این نوع برنامه‌های سمت کلاینت را از طریق یک Web API تامین کرد که شامل دریافت و ارائه‌ی اطلاعات و همچنین اعتبارسنجی و احراز هویت مبتنی بر JWT یکپارچه‌ی با ASP.NET Core Identity است.


ایجاد پروژه‌ی ASP.NET Core Web API

برای تامین اطلاعات برنامه‌ی سمت کلاینت Blazor WASM و همچنین فراهم آوردن زیرساخت اعتبارسنجی کاربران آن، نیاز به یک پروژه‌ی ASP.NET Core Web API داریم که آن‌را با اجرای دستور dotnet new webapi در یک پوشه‌ی خالی، برای مثال به نام BlazorWasm.WebApi ایجاد می‌کنیم.
البته این پروژه، از زیرساختی که در برنامه‌ی Blazor Server بررسی شده‌ی تا این قسمت، ایجاد کردیم نیز استفاده خواهد کرد. همانطور که پیشتر نیز عنوان شد، هدف از قسمت Blazor Server مثال این سری، آشنایی با مدل برنامه نویسی خاص آن بود؛ وگرنه می‌توان کل این پروژه را با Blazor Server و یا کل آن‌را با Web API + Blazor WASM نیز پیاده سازی کرد. در این مثال، قسمت‌های مدیریتی برنامه‌ی مدیریت هتل را توسط Blazor Server (مانند قسمت‌های تعریف اتاق‌ها و امکانات رفاهی هتل) و قسمت مخصوص کاربران آن‌را مانند رزرو کردن اتاق‌ها، توسط Blazor WASM پیاده سازی می‌کنیم. به همین جهت قسمت‌هایی از این دو پروژه، مانند سرویس‌های استفاده شده‌ی در پروژه‌ی Blazor server، در پروژه‌ی Web API مکمل Blazor WASM، قابلیت استفاده‌ی مجدد را دارند.


افزودن سرویس‌های آغازین مورد نیاز، به پروژه‌ی Web API

در فایل آغازین BlazorWasm\BlazorWasm.WebApi\Startup.cs، برای شروع به تکمیل Web API، نیاز به این سرویس‌ها را داریم:
namespace BlazorWasm.WebApi
{
    public class Startup
    {
        //...

        public void ConfigureServices(IServiceCollection services)
        {
            services.AddAutoMapper(typeof(MappingProfile).Assembly);

            services.AddScoped<IHotelRoomService, HotelRoomService>();
            services.AddScoped<IAmenityService, AmenityService>();
            services.AddScoped<IHotelRoomImageService, HotelRoomImageService>();

            var connectionString = Configuration.GetConnectionString("DefaultConnection");
            services.AddDbContext<ApplicationDbContext>(options => options.UseSqlServer(connectionString));

            services.AddIdentity<IdentityUser, IdentityRole>()
                .AddEntityFrameworkStores<ApplicationDbContext>()
                .AddDefaultTokenProviders();

            //...
در اینجا سرویس‌های AutoMapper، تنظیمات ابتدایی DbContext برنامه، به همراه سرویس‌های Identity (بدون UI آن) و افزودن سرویس‌های اتاق‌ها و امکانات رفاهی هتل را نیاز داریم. به همین جهت ارجاعات و وابستگی‌های زیر را به فایل csproj جاری اضافه می‌کنیم تا پروژه‌های DataAccess ،Services و Mappings قابل دسترسی و استفاده شوند:
<Project Sdk="Microsoft.NET.Sdk.Web">
  <PropertyGroup>
    <TargetFramework>net5.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="AutoMapper.Extensions.Microsoft.DependencyInjection" Version="8.1.1" />
    <PackageReference Include="Swashbuckle.AspNetCore" Version="5.6.3" />
  </ItemGroup>

  <ItemGroup>
    <ProjectReference Include="..\..\BlazorServer\BlazorServer.DataAccess\BlazorServer.DataAccess.csproj" />
    <ProjectReference Include="..\..\BlazorServer\BlazorServer.Services\BlazorServer.Services.csproj" />
    <ProjectReference Include="..\..\BlazorServer\BlazorServer.Models.Mappings\BlazorServer.Models.Mappings.csproj" />
  </ItemGroup>
</Project>
همچنین در این پروژه نیز از همان بانک اطلاعاتی پروژه‌ی Blazor Server که تاکنون تکمیل کردیم، استفاده می‌کنیم. بنابراین محتوای فایل BlazorWasm\BlazorWasm.WebApi\appsettings.json آن نیز مشابه‌است:
{
  "ConnectionStrings": {
    "DefaultConnection": "Server=(localdb)\\mssqllocaldb;Database=HotelManagement;Trusted_Connection=True;MultipleActiveResultSets=true"
  }
}


تعریف کنترلر HotelRoom

در ادامه کدهای اولین کنترلر Web API را مشاهده می‌کنید که مرتبط است با بازگشت اطلاعات تمام اتاق‌های ثبت شده و یا بازگشت اطلاعات یک اتاق ثبت شده:
using BlazorServer.Models;
using BlazorServer.Services;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace BlazorWasm.WebApi.Controllers
{
    [Route("api/[controller]")]
    public class HotelRoomController : ControllerBase
    {
        private readonly IHotelRoomService _hotelRoomService;

        public HotelRoomController(IHotelRoomService hotelRoomService)
        {
            _hotelRoomService = hotelRoomService;
        }

        [HttpGet]
        public IAsyncEnumerable<HotelRoomDTO> GetHotelRooms()
        {
            return _hotelRoomService.GetAllHotelRoomsAsync();
        }

        [HttpGet("{roomId}")]
        public async Task<IActionResult> GetHotelRoom(int? roomId)
        {
            if (roomId == null)
            {
                return BadRequest(new ErrorModel
                {
                    Title = "",
                    ErrorMessage = "Invalid Room Id",
                    StatusCode = StatusCodes.Status400BadRequest
                });
            }

            var roomDetails = await _hotelRoomService.GetHotelRoomAsync(roomId.Value);
            if (roomDetails == null)
            {
                return BadRequest(new ErrorModel
                {
                    Title = "",
                    ErrorMessage = "Invalid Room Id",
                    StatusCode = StatusCodes.Status404NotFound
                });
            }

            return Ok(roomDetails);
        }
    }
}
- این کنترلر، از سرویس IHotelRoomService که در قسمت‌های قبل تکمیل کردیم، استفاده می‌کند.
- ErrorModel آن‌را در همان پروژه‌ی قبلی مدل‌ها، در فایل BlazorServer\BlazorServer.Models\ErrorModel.cs به صورت زیر ایجاد کرده‌ایم:
namespace BlazorServer.Models
{
    public class ErrorModel
    {
        public string Title { get; set; }

        public int StatusCode { get; set; }

        public string ErrorMessage { get; set; }
    }
}
در این حالت اگر برنامه‌ی Web API را اجرا کنیم، به خروجی Swagger زیر می‌رسیم که جزئیات این فناوری را در سری «مستند سازی ASP.NET Core 2x API توسط OpenAPI Swagger» پیشتر بررسی کردیم:


یکی از مزایای آن، امکان آزمایش API تهیه شده، بدون نیاز به تهیه‌ی هیچ نوع کلاینت خاصی است. برای مثال اگر بر روی api​/hotelroom آن کلیک کنیم، گزینه‌ی «try it out» آن ظاهر شده و با کلیک بر روی آن، اینبار دکمه‌ی execute ظاهر می‌شود. در ادامه با کلیک بر روی دکمه‌ی اجرای آن، اکشن متد GetHotelRooms اجرا شده و خروجی زیر ظاهر می‌شود:


و یا اگر بخواهیم متد GetHotelRoom را توسط آن آزمایش کنیم، بر اساس پارامترهای آن، رابط کاربری زیر را تشکیل می‌دهد که امکان دریافت شماره‌ی اتاق را دارد:



انجام تنظیمات ابتدایی CORS و خروجی JSON برنامه

قرار است این API را از طریق پروژه‌ی Blazor سمت کلاینت خود استفاده کنیم که آدرس آن، با آدرس API یکی نیست. به همین جهت نیاز است تنظیمات CORS را به صورت زیر اضافه کنیم:
namespace BlazorWasm.WebApi
{
    public class Startup
    {
        public void ConfigureServices(IServiceCollection services)
        {
         // ... 

            services.AddCors(o => o.AddPolicy("HotelManagement", builder =>
            {
                builder.AllowAnyOrigin().AllowAnyMethod().AllowAnyHeader();
            }));

            services.AddControllers()
                    .AddJsonOptions(options =>
                    {
                        options.JsonSerializerOptions.PropertyNamingPolicy = null;
                        // To avoid `JsonSerializationException: Self referencing loop detected error`
                        options.JsonSerializerOptions.ReferenceHandler = ReferenceHandler.Preserve;
                    });
         // ... 
        }

        public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
        {
            // ... 

            app.UseCors("HotelManagement");
            app.UseRouting();

            app.UseAuthentication();
            // ...
        }
    }
}
در اینجا علاوه بر تنظیمات CORS، تنظیمات JsonSerializer را هم تغییر داده‌ایم تا خطاهای Self referencing loop را در حین ارائه‌ی خروجی‌های Web API، مشاهده نکنیم (همان نکته‌ی «تهیه خروجی JSON از مدل‌های مرتبط، بدون Stack overflow»).


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: Blazor-5x-Part-24.zip