مطالب
پیاده سازی کنترلرهای Angular با استفاده از Typescript
پیشتر با ویژگی ها  و نحوه کد نویسی این زبان آشنا شدید. از طرفی دیگر، نحوه تعریف کنترلرها در Angular نیز آموزش داده شد. در این پست قصد دارم طی یک مثال ساده با استفاده از زبان Typescript یک کنترلر Angular را ایجاد  و سپس از آن در یک پروژه Asp.Net MVC استفاده نمایم. از آن جا که به صورت پیش فرض در VS.Net امکانات TypeScript نصب نشده است، برای شروع ابتدا TypeScript را از اینجا دانلود نمایید. بعد از نصب یک پروژه Asp.Net MVC ایجاد نمایید و سپس با استفاده از nuget فایل‌های مربوط به AngularJs  را نصب نمایید. در این پست به تفصیل این مورد بررسی شده است (عملیات BundleConfig فایل‌های مورد نیاز به عهده خودتان). در پوشه scripts یک فولدر به نام app ساخته، سپس یک فایل TypeScript به نام ProductController.ts ایجاد کنید. (بعد از نصب TypeScript گزینه TypeScript File مشاهده خواهد شد)
 

در فایل ProductController.ts کد‌های زیر را کپی نمایید: 

module Product {
    export interface Scope {
        message: string;
    }

    export class Controller {
        constructor($scope: Scope) {
            $scope.message = "Hello from Masoud";
        }
    }
}
توضیح کد‌ها بالا :

ابتدا یک ماژول به نام Product ایجاد می‌کنیم. سپس یک اینترفیس برای پیاده سازی آبجکت Scope که جهت مقید سازی عناصر DOM به آبجکت‌های کنترلر مورد استفاده قرار می‌گیرد، ایجاد می‌کنیم. در داخل این اینترفیس متغیری به نام message از نوع string داریم. قصد داریم این متغیر را به یک  عنصر مقید کنیم. حال یک کلاس به نام کنترلر ایجاد می‌کنیم که در تابع سازنده آن تزریق وابستگی برای scope$ از نوع اینترفیس Scope تعیین شده است. در نتیجه در بدنه سازنده می‌توانیم به متغیر message مقدار مورد نظر را نسبت دهیم .

کلمه کلیدی export برای تعریف عمومی کلاس استفاده شده است .
یک View ایجاد و کد‌های زیر را در آن کپی کنید :

<script type="text/javascript" src="~/scripts/app/ProductController.js"></script>
<div ng-app>
    <div ng-controller="Product.Controller">
        <p>{{message}}</p>
    </div>
</div>

اولین نکته در تگ script است که فراخوانی فایل TypeScript باید با پسوند   js. انجام گیرد. به دلیل اینکه فایل‌های TypeScript بعد از کامپایل تبدیل به فایل‌های JavaScript خواهند شد؛ در نتیجه پسوند آن نیز js. است. دومین نکته در فراخوانی کنترلر مورد نظر است که  از ترکیب نام ماژول و نام کلاس است. بعد از اجرای پروژه خروجی به صورت زیر خواهد بود :

 

مطالب
آشنایی با CLR: قسمت ششم
در مقاله قبلی مبحث کامپایلر JIT را آغاز کردیم. در این قسمت قصد داریم مبحث کارآیی CLR و مباحث دیباگینگ را پیش بکشیم.
از آنجا که یک کد مدیریت نشده، مبحث کارهای JIT را ندارد، ولی CLR مجبور است وقتی را برای آن بگذارد، به نظر می‌رسد ما با یک نقص کوچک در کارآیی روبرو هستیم. گفتیم که جیت کدها را در حافظه‌ی پویا ذخیره می‌کند. به همین خاطر با terminate شدن یا خاتمه دادن به برنامه، این کدها از بین می‌روند یا اینکه اگر دو نمونه از برنامه را اجرا کنیم، هر کدام جداگانه کد را تولید می‌کنند و هر کدام برای خودشان حافظه‌ای بر خواهند داشت و اگر مقایسه‌ای با کدهای مدیریت نشده داشته باشید، در مورد مصرف حافظه یک مشکل ایجاد می‌کند. همچنین JIT در حین تبدیل به کدهای بومی یک بهینه سازی روی کد هم انجام میدهد که این بهینه سازی وقتی را به خود اختصاص می‌دهد ولی همین بهینه سازی کد موجب کارآیی بهتر برنامه می‌گردد.
در زبان سی شارپ دو سوئیچ وجود دارند که بر بهینه سازی کد تاثیر گذار هستند؛ سوئیچ‌های debug و optimize. در جدول زیر تاثیر هر یک از سوئیچ‌ها را بر کیفیت کد IL و JIT در تبدیل به کد بومی را نشان میدهد.

موقعیکه از دستور -optimize استفاده می‌شود، کد IL تولید شده شامل تعداد زیادی از دستورات بدون دستورالعمل No Operation یا به اختصار NOP و پرش‌های شاخه‌ای به خط کد بعدی می‌باشد. این دستور العمل‌ها ما را قادر میسازند تا ویژگی edit & Continue را برای دیباگ کردن و یک سری دستورالعمل‌ها را برای کدنویسی راحت‌تر برای دیباگ کردن و ایجاد break point‌ها داشته باشیم.

موقعی که کد IL بهینه شده تولید شود، این خصوصیات اضافه حذف خواهند شد و دنبال کردن خط به خط کد، کار سختی می‌شود. ولی در عوض فایل نهایی exe یا dll، کوچکتر خواهد شد. بهینه سازی IL توسط JIT حذف خواهد شد و برای کسانی که دوست دارند کدهای IL را تحلیل و آنالیز کنند، خواندنش ساده‌تر و آسان‌تر خواهد بود.

نکته‌ی بعدی اینکه موقعیکه شما از سوئیچ (/debug(+/full/pdbonly استفاده می‌کنید، یک فایل PDB  یا Program Database ایجاد می‌شود. این فایل به دیباگرها کمک می‌کند تا متغیرهای محلی را شناسایی و به کدهای IL متصل شوند. کلمه‌ی full بدین معنی است که JIT می‌تواند دستورات بومی را ردیابی کند تا مبداء آن کد را پیدا کند. سبب می‌شود که ویژوال استودیو به یک دیباگر متصل شده تا در حین اجرای پروسه، آن را دیباگ کند. در صورتی که این سوئیچ را استفاده نکنید، به طور پیش فرض پروسه اجرا و مصرف حافظه کمتر می‌شود. اگر شما پروسه‌ای را اجرا کنید که دیباگر به آن متصل شود، به طور اجباری JIT مجبور به انجام عملیات ردیابی خواهد شد؛ مگر اینکه گزینه‌ی suppress jit  optimization on module load را غیرفعال کرده باشید.
موقعیکه در ویژوال استودیو دو حالت دیباگ و ریلیز را انتخاب می‌کنید، در واقع تنظیمات زیر را اجرا می‌کنید:

//debug

/optimize­ 
/debug:full

//=======================

//Release

/optimize+
/debug:pdbonly
احتمالا موارد بالا به شما می‌گویند که یک سیستم مبتنی بر CLR مشکلات زیادی دارد که یکی از آن‌ها، زمان‌بر بودن انجام عملیات فرآیند پردازش است و دیگری مصرف زیاد حافظه و عدم اشترک حافظه که در مورد کامپایل جیت به آن اشاره کردیم. ولی در بند بعدی قصد داریم نظرتان را عوض کنم.

اگر خیلی شک دارید که واقعا یک برنامه‌ی CLR کارآیی یک برنامه را پایین می‌آورد، بهتر هست به بررسی کارآیی چند برنامه غیر آزمایشی noTrial که حتی خود مایکروسافت آن برنامه‌ها را ایجاد کرده است بپردازید و آن‌ها را با یک برنامه‌ی unmanaged مقایسه کنید. قطعا باعث تعجب شما خواهد شد. این نکته دلایل زیادی دارد که در زیر تعدادی از آن‌ها را بررسی می‌کنیم.
اینکه CLR در محیط اجرا قصد کمپایل دارد، باعث آشنایی کامپایلر با محیط اجرا می‌گردد. از این رو تصمیماتی را که می‌گیرد، می‌تواند به کارآیی یک برنامه کمک کند. در صورتیکه یک برنامه‌ی unmanaged که قبلا کمپایل شده و با محیط‌های متفاوتی که روی آن‌ها اجرا میشود، هیچ آشنایی ندارد و نمیتواند از آن محیط‌ها حداکثر بهره‌وری لازم را به عمل آورد.
برای آشنایی با این ویژگی‌ها توجه شما را به نکات ذیل جلب می‌کنم:

یک.  JIT می‌تواند با نوع پردازنده آشنا شود که آیا این پردازنده از نسل پنتیوم 4 است یا نسل Core i. به همین علت می‌تواند از این مزیت استفاده کرده و دستورات اختصاصی آن‌ها را به کار گیرد، تا برنامه با performance بالاتری اجرا گردد. در صورتی که unmanaged باید حتما دستورات را در پایین‌ترین سطح ممکن و عمومی اجرا کند؛ در صورتیکه شاید یک دستور اختصاصی در یک سی پی یو خاص، در یک عملیات موجب 4 برابر، اجرای سریعتر شود.

دو.  JIT میتواند بررسی هایی را که برابر false هستند، تشخیص دهد. برای فهم بهتر، کد زیر را در نظر بگیرید:
if (numberOfCPUs > 1) {
...
}

کد بالا در صورتیکه پردازنده تک هسته‌ای باشد یک کد بلا استفاده است که جیت باید وقتی را برای کامپایل آن اختصاص دهد؛ در صورتیکه JIT باهوش‌تر از این حرفاست و در کدی که تولید می‌کند، این دستورات حذف خواهند شد و باعث کوچکتر شدن کد و اجرای سریعتر می‌گردد.

سه. مورد بعدی که هنوز پیاده سازی نشده، ولی احتمال اجرای آن در آینده است، این است که یک کد می‌تواند جهت تصحیح بعضی موارد چون مسائل مربوط به دیباگ کردن و مرتب سازی‌های مجدد، عمل کامپایل را مجددا برای یک کد اعمال نماید.
دلایل بالا تنها قسمت کوچکی است که به ما اثبات می‌کند که چرا CLR می‌تواند کارآیی بهتری را نسبت به زبان‌های unmanaged امروزی داشته باشد. همچنین قول‌هایی از سازندگان برای بهبود کیفیت هر چه بیشتر این سیستم‌ها به گوش می‌رسد.

کارآیی بالاتر
اگر برنامه‌ای توسط شما بررسی شد و دیدید که نتایج مورد نیاز در مورد performance را نشان نمی‌دهد، می‌توانید از ابزار کمکی که مایکروسافت در بسته‌های فریمورک دات نت قرار داده است استفاده کنید. نام این ابزار Ngen.exe است و وظیفه‌ی آن این است که وقتی برنامه بر روی یک سیستم برای اولین مرتبه اجرا می‌گردد، کد همه‌ی اسمبلی‌ها را تبدیل کرده و آن‌ها روی دیسک ذخیره می‌کند. بدین ترتیب در دفعات بعدی اجرا، JIT بررسی می‌کند که آیا کد کامپایل شده‌ی اسمبلی از قبل موجود است یا خیر. در صورت وجود، عملیات کامپایل به کد بومی لغو شده و از کد ذخیره شده استفاده خواهد کرد.
نکته‌ای که باید در حین استفاده از این ابزار به آن دقت کنید این است که کد در محیط‌های واقعی اجرا چندان بهینه نیست. بعدا در مورد این ابزار به تفصیل صحبت می‌کنیم.

system.runtime.profileoptimization
کلاس بالا سبب می‌شود که CLR در یک فایل ثبت کند که چه متدهایی در حین اجرای برنامه کمپایل شوند تا در آینده در حین آغاز اجرای برنامه کامپایلر JIT بتواند همزمان این متدها را در ترد دیگری کامپایل کند. اگر برنامه‌ی شما روی یک پردازنده‌ی چند هسته‌ای اجرا می‌شود، در نتیجه اجرای سریعتری خواهید داشت. به این دلیل که چندین متد به طور همزمان در حال کمپایل شدن هستند و همزمان با آماده سازی برنامه برای اجرا اتفاق می‌افتد؛ به جای اینکه عمل کمپایل همزمان با تعامل کاربر با برنامه باشد.

نظرات مطالب
تبدیل فایل‌های pfx به snk
- علت اینکه این مطلب رو نوشتم مربوط به زمانی بود که پروژه‌ای از قبل موجود بود با فایل pfx آن و قصد داشتم معادل محافظت نشده فایل pfx آن‌را تولید کنم.
- در مورد تولید فایل‌های pfx و snk یک مطلب نسبتا جامع در سایت داریم.
- به نظر من زمانیکه یک پروژه سورس باز است، امضا کردن اسمبلی‌های آن آنچنان مفهومی ندارد چون دسترسی به سورس و حتی ارائه آن بر اساس اطمینان به جامعه مصرف کننده صورت می‌گیرد. خیلی خیلی کم هستند موارد سوء استفاده از اسمبلی‌های امضاء شده به این صورت. مگر اینکه بحث پروژه کرنل لینوکس با تعداد مصرف کننده بالا و اهمیت امنیتی آن مطرح باشد که نیاز به امضای فایل‌های باینری آن وجود داشته باشد.
بازخوردهای پروژه‌ها
ساده سازی استفاده

استفاده از این پروژه مشکل است. به عبارتی کدهای فایل default.aspx.cs را باید بتوان در یک کنترل یا حداقل یک یوزر کنترل کپسوله کرد و کاربر نهایی صرفا آن‌را روی فرم قرار دهد و یک سری خواص را چک کند. پیاده سازی پشت صحنه آن بهتر است تا حد امکان مخفی شود.

نظرات مطالب
ارتقاء به ASP.NET Core 1.0 - قسمت 19 - بومی سازی
من روی سورس پروژه DNTIdentity  کار می‌کنم، برای فایل‌های منابع از پروژه Class Library مجزا و روش پوشه بندی استفاده می‌کنم به صورت زیر:

و طبق کامنت‌های فوق، داخل Contractor رو هم اینطور تعریف می‌کنم:

            _stringLocalizer = stringLocalizerFactory.Create(
                 baseName: "Controllers.LoginController",
                 location: "Zagros.Resources");
            _htmlLocalizer = htmlLocalizerFactory.Create(
                baseName: "Controllers.LoginController",
                location: "Zagros.Resources");


 ولی خب مقدار مورد نظر داخل فایل منبع برگردانده نمی‌شود؟