مطالب
شروع به کار با DNTFrameworkCore - قسمت 7 - ارتقاء به نسخه ‭4.5.x
بعد از انتشار قسمت 6 به عنوان آخرین قسمت مرتبط با تفکر مبتنی‌بر CRUD‏ ‎(‎CRUD-based thinking)‎ قصد دارم پشتیبانی از طراحی Application Layer مبتنی‌بر CQRS را نیز به این زیرساخت اضافه کنم.
در این مطلب تغییرات حاصل از طراحی مجدد و بازسازی انجام شده در نسخه جدید را مرور خواهیم کرد.

تغییرات کتابخانه DNTFrameworkCore

1- واسط‌های مورد استفاده جهت ردیابی موجودیت‌ها :
public interface ICreationTracking
{
    DateTime CreatedDateTime { get; set; }
}

public interface IModificationTracking
{
    DateTime? ModifiedDateTime { get; set; }
}
علاوه بر تغییر نام و نوع داده خصوصیت‌های تاریخ ایجاد و ویرایش، سایر خصوصیات به صورت خواص سایه‌ای در کتابخانه DNTFrameworkCore.EFCore مدیریت خواهند شد. 
2. با اضافه شدن واسط IHasRowIntegrity برای پشتیبانی از امکان تشخیص اصالت ردیف‌های یک بانک اطلاعاتی با استفاده از EF Core، خصوصیت RowVersion به Version تغییر نام پیدا کرد.
public interface IHasRowIntegrity
{
    string Hash { get; set; }
}

public interface IHasRowVersion
{
    byte[] Version { get; set; }
}
3- ارث‌بری از کلاس AggregateRoot در سناریوهای CRUD و در زمان استفاده از CrudService هیچ ضرورتی ندارد و صرفا برای پشتیبانی از طراحی مبتنی‌بر DDD کاربرد خواهد داشت. اگر قصد طراحی یک Rich Domain Model را دارید و رویکرد DDD را دنبال می‌کنید، با استفاده از کلاس پایه AggregateRoot امکان مدیریت DomainEventهای مرتبط با یک Aggregate را خواهید داشت. 
public abstract class AggregateRoot<TKey> : Entity<TKey>, IAggregateRoot
    where TKey : IEquatable<TKey>
{
    private readonly List<IDomainEvent> _events = new List<IDomainEvent>();
    public IReadOnlyCollection<IDomainEvent> Events => _events.AsReadOnly();

    protected virtual void AddDomainEvent(IDomainEvent newEvent)
    {
        _events.Add(newEvent);
    }

    public virtual void ClearEvents()
    {
        _events.Clear();
    }
}
4- امکان Publish رخ‌دادهای مرتبط با یک AggregateRoot به IEventBus اضافه شده است:
public static class EventBusExtensions
{
    public static Task TriggerAsync(this IEventBus bus, IEnumerable<IDomainEvent> events)
    {
        var tasks = events.Select(async domainEvent => await bus.TriggerAsync(domainEvent));
        return Task.WhenAll(tasks);
    }

    public static async Task PublishAsync(this IEventBus bus, IAggregateRoot aggregateRoot)
    {
        await bus.TriggerAsync(aggregateRoot.Events);
        aggregateRoot.ClearEvents();
    }
}
5- واسط IDbSeed به IDbSetup تغییر نام پیدا کرده است.

6- اضافه شدن یک سرویس برای ذخیره‌سازی اطلاعات به صورت Key/Value در بانک اطلاعاتی:
public interface IKeyValueService : IApplicationService
{
    Task SetValueAsync(string key, string value);
    Task<Maybe<string>> LoadValueAsync(string key);
    Task<bool> IsTamperedAsync(string key);
}

public class KeyValue : Entity, IModificationTracking, ICreationTracking, IHasRowIntegrity
{
    public string Key { get; set; }
    [Encrypted] public string Value { get; set; }
    public string Hash { get; set; }
    public DateTime CreatedDateTime { get; set; }
    public DateTime? ModifiedDateTime { get; set; }
}
7- AuthorizationProvider حذف شده و جمع آوری دسترسی‌های سیستم به عهده خود استفاده کننده از این زیرساخت می‌باشد.

8- اضافه شدن امکان Exception Mapping و همچنین سفارشی سازی پیغام‌های خطای عمومی:
    public class ExceptionOptions
    {
        public List<ExceptionMapItem> Mappings { get; } = new List<ExceptionMapItem>();

        [Required] public string DbException { get; set; }
        [Required] public string DbConcurrencyException { get; set; }
        [Required] public string InternalServerIssue { get; set; }

        public bool TryFindMapping(DbException dbException, out ExceptionMapItem mapping)
        {
            mapping = null;

            var words = new HashSet<string>(Regex.Split(dbException.ToStringFormat(), @"\W"));

            var mappingItem = Mappings.FirstOrDefault(a => a.Keywords.IsProperSubsetOf(words));
            if (mappingItem == null)
            {
                return false;
            }

            mapping = mappingItem;

            return true;
        }
    }
و روش استفاده از آن را در پروژه DNTFrameworkCore.TestAPI می‌توانید مشاهده کنید. برای معرفی نگاشت‌ها، می‌توان به شکل زیر در فایل appsetting.json عمل کرد:
"Exception": {
  "Mappings": [
    {
      "Message": "به دلیل وجود اطلاعات وابسته امکان حذف وجود ندارد",
      "Keywords": [
        "DELETE",
        "REFERENCE"
      ]
    },
    {
      "Message": "یک تسک با این عنوان قبلا در سیستم ثبت شده است",
      "MemberName": "Title",
      "Keywords": [
        "Task",
        "UIX_Task_NormalizedTitle"
      ]
    }
  ],
  "DbException": "امکان ذخیره‌سازی اطلاعات وجود ندارد؛ دوباره تلاش نمائید",
  "DbConcurrencyException": "اطلاعات توسط کاربری دیگر در شبکه تغییر کرده است",
  "InternalServerIssue": "متأسفانه مشکلی در فرآیند انجام درخواست شما پیش آمده است!"
}

8- اطلاعات مرتبط با مستأجر جاری در سناریوهای چند مستأجری از واسط IUserSession حذف شده و به واسط ITenantSession منتقل شده است. نوع داده خصوصیت UserId به String تغییر پیدا کرده و بر اساس نیاز می‌توان به شکل زیر از آن استفاده کرد:
_session.UserId
_session.UserId<long>()
_session.UserId<int>()
_session.UserId<Guid>()

علاوه بر آن خصوصیت ImpersonatorUserId که می‌تواند حاوی UserId کاربری باشد که در نقش کاربر دیگری در سناریوهای Impersonation وارد سیستم شده است؛ این مورد در سیستم Logging مبتنی‌بر فایل سیستم و بانک اطلاعاتی موجود در این زیرساخت، ثبت و نگهداری می‌شود.
9- لیست ClaimTypeهای مورد استفاده در این زیرساخت:
public static class UserClaimTypes
{
    public const string UserName = ClaimTypes.Name;
    public const string UserId = ClaimTypes.NameIdentifier;
    public const string SerialNumber = ClaimTypes.SerialNumber;
    public const string Role = ClaimTypes.Role;
    public const string DisplayName = nameof(DisplayName);
    public const string BranchId = nameof(BranchId);
    public const string BranchName = nameof(BranchName);
    public const string IsHeadOffice = nameof(IsHeadOffice);
    public const string TenantId = nameof(TenantId);
    public const string TenantName = nameof(TenantName);
    public const string IsHeadTenant = nameof(IsHeadTenant);
    public const string Permission = nameof(Permission);
    public const string PackedPermission = nameof(PackedPermission);
    public const string ImpersonatorUserId = nameof(ImpersonatorUserId);
    public const string ImpersonatorTenantId = nameof(ImpersonatorTenantId);
}
از خصوصیات Branch*‎ برای سناریوهای چند شعبه‎‌ای می‌توان استفاده کرد که در این صورت اگر یکی از شعب به عنوان دفتر مرکزی در نظر گرفته شود باید Claim‌ای با نام IsHeadOffice با مقدار true از زمان ورود به سیستم برای کاربران آن شعبه در نظر گرفته شود. 
خصوصیات Tenant*‎ برای سناریوهای چند مستأجری در نظر گرفته شده است که اگرطراحی مورد نظرتان به نحوی باشد که بخش مدیریت مستأجرهای سیستم در همان سیستم پیاده‌سازی شده باشد یا به تعبیری سیستم Host و Tenant یکی باشند، می‌توان Claim‌ای با نام IsHeadTenant با مقدار true در زمان ورود به سیستم برای کاربران Host (مستأجر اصلی) در نظر گرفته شود.
‌‌
10- مکانیزم Logging مبتنی‌بر فایل سیستم:
/// <summary>
/// Adds a file logger named 'File' to the factory.
/// </summary>
/// <param name="builder">The <see cref="ILoggingBuilder"/> to use.</param>
public static ILoggingBuilder AddFile(this ILoggingBuilder builder)
{
    builder.Services.AddSingleton<ILoggerProvider, FileLoggerProvider>();
    return builder;
}


/// <summary>
/// Adds a file logger named 'File' to the factory.
/// </summary>
/// <param name="builder">The <see cref="ILoggingBuilder"/> to use.</param>
/// <param name="configure">Configure an instance of the <see cref="FileLoggerOptions" /> to set logging options</param>
public static ILoggingBuilder AddFile(this ILoggingBuilder builder, Action<FileLoggerOptions> configure)
{
    builder.AddFile();
    builder.Services.Configure(configure);

    return builder;
}
11- امکان TenantResolution برای شناسایی مستأجر جاری سیستم:
public interface ITenantResolutionStrategy
{
    string TenantId();
}

public interface ITenantStore
{
    Task<Tenant> FindTenantAsync(string tenantId);
}
از این واسط‌ها در میان افزار TenantResolutionMiddleware موجود در کتابخانه DNTFrameworkCore.Web.Tenancy استفاده شده است. و همچنین جهت دسترسی به اطلاعات مستأجر جاری سیستم می‌توان واسط زیر را تزریق و استفاده کرد:
public interface ITenantSession : IScopedDependency
{
    /// <summary>
    ///     Gets current TenantId or null.
    ///     This TenantId should be the TenantId of the <see cref="IUserSession.UserId" />.
    ///     It can be null if given <see cref="IUserSession.UserId" /> is a head-tenant user or no user logged in.
    /// </summary>
    string TenantId { get; }

    /// <summary>
    ///     Gets current TenantName or null.
    ///     This TenantName should be the TenantName of the <see cref="IUserSession.UserId" />.
    ///     It can be null if given <see cref="IUserSession.UserId" /> is a head-tenant user or no user logged in.
    /// </summary>
    string TenantName { get; }

    /// <summary>
    ///     Represents current tenant is head-tenant.
    /// </summary>
    bool IsHeadTenant { get; }

    /// <summary>
    ///     TenantId of the impersonator.
    ///     This is filled if a user with <see cref="IUserSession.ImpersonatorUserId" /> performing actions behalf of the
    ///     <see cref="IUserSession.UserId" />.
    /// </summary>
    string ImpersonatorTenantId { get; }
}
12- استفاده از SystemTime و IClock برای افزایش تست‌پذیری سناریوهای درگیر با DateTime:
public static class SystemTime
{
    public static Func<DateTime> Now = () => DateTime.UtcNow;

    public static Func<DateTime, DateTime> Normalize = (dateTime) =>
        DateTime.SpecifyKind(dateTime, DateTimeKind.Utc);
}
public interface IClock : ITransientDependency
{
    DateTime Now { get; }
    DateTime Normalize(DateTime dateTime);
}

internal sealed class Clock : IClock
{
    public DateTime Now => SystemTime.Now();

    public DateTime Normalize(DateTime dateTime)
    {
        return SystemTime.Normalize(dateTime);
    }
}
13- تغییر واسط عمومی کلاس Result:
public class Result
{
    private static readonly Result _ok = new Result(false, string.Empty);
    private readonly List<ValidationFailure> _failures;

    protected Result(bool failed, string message) : this(failed, message,
        Enumerable.Empty<ValidationFailure>())
    {
        Failed = failed;
        Message = message;
    }

    protected Result(bool failed, string message, IEnumerable<ValidationFailure> failures)
    {
        Failed = failed;
        Message = message;
        _failures = failures.ToList();
    }

    public bool Failed { get; }
    public string Message { get; }
    public IEnumerable<ValidationFailure> Failures => _failures.AsReadOnly();

    [DebuggerStepThrough]
    public static Result Ok() => _ok;

    [DebuggerStepThrough]
    public static Result Fail(string message)
    {
        return new Result(true, message);
    }

    //...
}

روش معرفی سرویس‌های مرتبط با کتابخانه DNTFrameworkCore
services.AddFramework()
    .WithModelValidation()
    .WithFluentValidation()
    .WithMemoryCache()
    .WithSecurityService()
    .WithBackgroundTaskQueue()
    .WithRandomNumber();
متد WithFluentValidation یک متد الحاقی برای FrameworkBuilder می‌باشد که در کتابخانه DNTFrameworkCore.FluentValidation تعریف شده است.

تغییرات کتابخانه DNTFrameworkCore.EFCore

1- اگر از CrudService پایه موجود استفاده می‌کنید، محدودیت ارث‌بری از TrackableEntity از موجودیت اصلی برداشته شده است. همچنین همانطور که در نظرات مطالب قبلی در قالب نکته تکمیلی اشاره شد، متد  MapToEntity  به نحوی تغییر کرد که پاسخگوی اکثر نیازها باشد.
2- امکان تنظیم ModifiedProperties  برای موجودیت‌های وابسته در سناریوهایی با موجودیت‌های وابسته Master-Detail نیز مهیا شده است.
public abstract class TrackableEntity<TKey> : Entity<TKey>, ITrackable where TKey : IEquatable<TKey>
{
    [NotMapped] public TrackingState TrackingState { get; set; }
    [NotMapped] public ICollection<string> ModifiedProperties { get; set; }
}
3-  امکان ذخیره سازی تنظیمات برنامه‌های ASP.NET Core در یک بانک اطلاعاتی با استفاده از EF ، اضافه شده است که از همان موجودیت KeyValue برای نگهداری مقادیر استفاده می‌کند:
public static class ConfigurationBuilderExtensions
{
    public static IConfigurationBuilder AddEFCore(this IConfigurationBuilder builder,
        IServiceProvider provider)
    {
        return builder.Add(new EFConfigurationSource(provider));
    }
}
4- واسط IHookEngine حذف شده و سازنده کلاس پایه DbContextCore لیستی از IHook را به عنوان پارامتر می‌پذیرد:
protected DbContextCore(DbContextOptions options, IEnumerable<IHook> hooks) : base(options)
{
    _hooks = hooks ?? throw new ArgumentNullException(nameof(hooks));
}
 همچنین امکان IgnoreHook برای غیرفعال کردن یک Hook خاص با استفاده از نام آن مهیا شده است:
public void IgnoreHook(string hookName)
{
    _ignoredHookList.Add(hookName);
}
امکان پیاده سازی Hook سفارشی را برای سناریوهای خاص هم با پیاده سازی واسط IHook و یا با ارث‌بری از کلاس‌های پایه موجود در زیرساخت، خواهید داشت. به عنوان مثال:
internal sealed class RowIntegrityHook : PostActionHook<IHasRowIntegrity>
{
    public override string Name => HookNames.RowIntegrity;
    public override int Order => int.MaxValue;
    public override EntityState HookState => EntityState.Unchanged;

    protected override void Hook(IHasRowIntegrity entity, HookEntityMetadata metadata, IUnitOfWork uow)
    {
        metadata.Entry.Property(EFCore.Hash).CurrentValue = uow.EntityHash(entity);
    }
}
در بازطراحی انجام شده، دسترسی به وهله جاری DbContext هم از طریق واسط IUnitOfWork مهیا شده است.
5- متد EntityHash به واسط IUnitOfWork اضافه شده است که امکان محاسبه هش مرتبط با یک رکورد از یک موجودیت خاص را مهیا می‌کند؛ همچنین امکان تغییر الگوریتم و سفارشی سازی آن را به شکل زیر خواهید داشت:
//DbContextCore : IUnitOfWork

public string EntityHash<TEntity>(TEntity entity) where TEntity : class
{
    var row = Entry(entity).ToDictionary(p => p.Metadata.Name != EFCore.Hash &&
                                              !p.Metadata.ValueGenerated.HasFlag(ValueGenerated.OnUpdate) &&
                                              !p.Metadata.IsShadowProperty());
    return EntityHash<TEntity>(row);
}

protected virtual string EntityHash<TEntity>(Dictionary<string, object> row) where TEntity : class
{
    var json = JsonConvert.SerializeObject(row, Formatting.Indented);
    using (var hashAlgorithm = SHA256.Create())
    {
        var byteValue = Encoding.UTF8.GetBytes(json);
        var byteHash = hashAlgorithm.ComputeHash(byteValue);
        return Convert.ToBase64String(byteHash);
    }
}
همچنین از طریق متدهای الحاقی زیر که مرتبط با واسط IUnitOfWork می‌باشند، امکان دسترسی به رکوردهای دستکاری شده را خواهید داشت:
IsTamperedAsync
HasTamperedEntryAsync
TamperedEntryListAsync

 
6- همانطور که اشاره شد، خواص سایه‌ای مرتبط با سیستم ردیابی موجودیت‌ها نیز به شکل زیر تغییر نام پیدا کرده‌اند:
public const string CreatedDateTime = nameof(ICreationTracking.CreatedDateTime);
public const string CreatedByUserId = nameof(CreatedByUserId);
public const string CreatedByBrowserName = nameof(CreatedByBrowserName);
public const string CreatedByIP = nameof(CreatedByIP);

public const string ModifiedDateTime = nameof(IModificationTracking.ModifiedDateTime);
public const string ModifiedByUserId = nameof(ModifiedByUserId);
public const string ModifiedByBrowserName = nameof(ModifiedByBrowserName);
public const string ModifiedByIP = nameof(ModifiedByIP);
7- یک تبدیلگر سفارشی برای ذخیره سازی اشیا به صورت JSON اضافه شده است که برگرفته از کتابخانه Innofactor.EfCoreJsonValueConverter می‌باشد.
 8- دو متد الحاقی زیر برای نرمال‌سازی خصوصیات تاریخ از نوع DateTime و خصوصیات عددی از نوع Decimal به ModelBuilder اضافه شده‌اند:
protected override void OnModelCreating(ModelBuilder modelBuilder)
{  
    modelBuilder.NormalizeDateTime();
    modelBuilder.NormalizeDecimalPrecision(precision: 20, scale: 6);
    
    base.OnModelCreating(modelBuilder);
}

9-  متد MigrateDbContext به این کتابخانه منتقل شده است:
MigrateDbContext<TContext>(this IHost host)
متد Seed واسط IDbSetup در صورت معرفی یک پیاده‌سازی از آن به سیستم تزریق وابستگی‌ها، در بدنه این متد فراخوانی خواهد شد.

روش معرفی سرویس‌های مرتبط با کتابخانه DNTFrameworkCore.EFCore
services.AddEFCore<ProjectDbContext>()
    .WithTrackingHook<long>()
    .WithDeletedEntityHook()
    .WithRowIntegrityHook()
    .WithNumberingHook(options =>
    {
        options.NumberedEntityMap[typeof(Task)] = new NumberedEntityOption
        {
            Prefix = "Task",
            FieldNames = new[] {nameof(Task.BranchId)}
        };
    });
همانطور که عنوان شد، محدودیت نوع خصوصیات CreatedByUserId و ModifiedByUserId برداشته شده است و از طریق متد WithTrackingHook قابل تنظیم می‎‌باشد.

تغییرات کتابخانه DNTFrameworkCore.Web.Tenancy


فعلا امکان شناسایی مستأجر جاری و دسترسی به اطلاعات آن از طریق واسط ITenantSession در دسترس می‌باشد؛ همچنین امکان تغییر و تعیین رشته اتصال به بانک اطلاعاتی هر مستأجر از طریق متد UseConnectionString واسط IUnitOfWork فراهم می‌باشد.
services.AddTenancy()
    .WithTenantSession()
    .WithStore<InMemoryTenantStore>()
    .WithResolutionStrategy<HostResolutionStrategy>();
app.UseTenancy();


سایر کتابخانه‌ها تغییرات خاصی نداشتند و صرفا نحوه معرفی سرویس‌های آنها ممکن است تغییر کند و یا وابستگی‌های آنها به آخرین نسخه موجود ارتقاء داده شده باشند که در پروژه DNTFrameworkCore.TestAPI اعمال شده‌اند.
لیست بسته‌های نیوگت نسخه ۴.۵.۳
PM> Install-Package DNTFrameworkCore
PM> Install-Package DNTFrameworkCore.EFCore
PM> Install-Package DNTFrameworkCore.EFCore.SqlServer
PM> Install-Package DNTFrameworkCore.Web
PM> Install-Package DNTFrameworkCore.FluentValidation
PM> Install-Package DNTFrameworkCore.Web.Tenancy
PM> Install-Package DNTFrameworkCore.Licensing
نظرات مطالب
OpenCVSharp #6
2 نکته و یک تجربه کوچک درباره نمایش ویدیو با خواندن اطلاعات از WebCam :
-اول اینکه اگر خواستید لیست از وب کم‌های سیستم تون داشته باشید از کد زیر استفاده کنید (البته برای استفاده از آن به DirectShow.Net dll نیاز دارید)
        private void LoadCameras()
        {
            List<string> data = new List<string>();
            List<KeyValuePair<int, string>> ListCamerasData = new List<KeyValuePair<int, string>>();
            //-> Find systems cameras with DirectShow.Net dll
            DsDevice[] _SystemCamereas = DsDevice.GetDevicesOfCat(FilterCategory.VideoInputDevice);
            int _DeviceIndex = 0;
            foreach (DirectShowLib.DsDevice _Camera in _SystemCamereas)
            {
                ListCamerasData.Add(new KeyValuePair<int, string>(_DeviceIndex, _Camera.Name));
                data.Add(_Camera.Name);
                _DeviceIndex++;
            }

            CameraList.ItemsSource = data;
        }
-دوم اینکه برای نسبت دادن وب کم به CvCapture از متد CvCapture.FromCamera(cameraIndex) استفاده می‌کنیم :
            using (CvCapture capture = CvCapture.FromCamera(cameraIndex))
            {
                //var interval = (int)(1000 / capture.Fps);
                IplImage image;
                while (_worker != null && !_worker.CancellationPending)
                {
                    if ((image = capture.QueryFrame()) != null)
                    {
                        _worker.ReportProgress(0, image);
                        Thread.Sleep(10);
                    }
                }
            }

این رو هم بگم که همین روش رو با بکارگیری محصور کننده Emgu انجام دادم و سرعت پایین‌تری نسبت به OpenCvSharp داشت.

و یک سوال : چرا در حین کار با وب کم مقدار خروجی capture.Fps یا همان frames per second مقدار صفر را بر می‌گرداند؟
مطالب
بررسی چند نکته در مورد ارث بری کلاس‌ها در #C
مقدمه
وراثت، بین کلاس‌های والد (Parent) و فرزند (Child) ارتباط ایجاد می‌کند. در این مطلب، با یک مثال ساده، نکات مختلفی را بررسی خواهیم کرد.

در ابتدا کلاس‌هایی را با نام parent و child، به شکل زیر ایجاد می‌کنیم:
public class Parent
{
  public Parent()
  {
            Console.WriteLine("Parent Constructor");
  }
  public void Print()
  {
            Console.WriteLine("Parent Print");
  }
} public class Child : Parent { public Child() { Console.WriteLine("Child Constructor"); } public void Print() { Console.WriteLine("Child Print"); } }
با کامپایل کد فوق، هشدار (نه خطا) زیر توسط ویژوال استودیو صادر خواهد شد:

هشدارفوق این نکته را تذکر می‌دهد که متد Print تعریف شده در کلاس Child، پیاده سازی متد Print را در کلاس والد، مخفی (Hide) می‌کند. به همین خاطر پیشنهاد می‌کند که اگر واقعا قصد چنین کاری را داریم (نادیده گرفتن پیاده سازی print کلاس والد) از کلمه کلیدی (keyword) new استفاده کنیم. بدین شکل:
 public new void Print()
  {
     Console.WriteLine("Child Print");
  }
حال با نمونه سازی کلاس‌های فوق، رفتار سازنده و متد Print را بررسی می‌کنیم:
Console.WriteLine("====Parent====");
Parent parent = new Parent();
parent.Print();

Console.WriteLine("====Child====");
Child child = new Child();
child.Print();

Console.WriteLine("====Parent Via Child====");
Parent pc = new Child();
pc.Print();
در قسمت اول نمونه سازی از والد، نکته خاصی وجود ندارد. در ابتدا سازنده و سپس فراخوانی متد Print اتفاق خواهد افتاد.
در قسمت دوم نمونه سازی از فرزند، ابتدا سازنده والد و سپس سازنده فرزند فراخوانی خواهند.
در بخش سوم، یک نمونه فرزند را از نوع والد، ایجاد کرد‌هایم .( () Parent pc=new Child). در این بخش ابتدا سازنده والد و بعد از آن سازنده فرزند، فراخوانی می‌شود و با فراخوانی متد Print، متد والد اجرا خواهد شد.


استفاده از Virtual  و Override
اگر بدنبال این باشیم که در قسمت سوم متد Print فرزند فراخوانی شود، مفاهیم virtual و override به کمک ما خواهند آمد:
  public class Parent
{
  public Parent()
  {
Console.WriteLine("Parent Constructor");
  }

  public virtual void  Print()
  {
Console.WriteLine("Parent Print");
  }
}

public class Child : Parent
{
  public Child()
  {
Console.WriteLine("Child Constructor");
  }

  public override void Print()
  {
Console.WriteLine("Child Print");
  }
}
با تعریف متد از نوع virtual، امکان تحریف رفتار پیش فرض متد را توسط فرزند‌ها، مهیا خواهیم کرد. فرزندان نیز با override کردن متد والد، پیاده سازی خود را اعمال می‌کنند.
اگر خروجی کد بالا را با قسمت قبل مقایسه کنید، متوجه خواهید شد که در قسمت سوم فرزند، رفتار متد والد را تحریف/بازنویسی (override) کرده است ( پیاده سازی فرزند اجرا شده است).


سازنده‌های استاتیک (Static Constructor)
سازنده‌های استاتیک برای مقدار دهی به داده‌های استاتیک و یا انجام عملیاتی که تنها قرار است یکبار انجام شوند مورد استفاده قرار میگیرند. این سازنده‌ها بصورت اتوماتیک قبل از ساخت نمونه و مقداردهی اعضای استاتیک و قبل از سازنده‌های غیر استاتیک اجرا می‌شوند.
   public class Parent
{
  static Parent()
  {
Console.WriteLine("Parent static Constructor");
  }
  public Parent()
  {
Console.WriteLine("Parent Constructor");
  }

  public virtual void  Print()
  {
Console.WriteLine("Parent Print");
  }
}

public class Child : Parent
{
  static Child()
  {
Console.WriteLine("Child static Constructor");
  }
  public Child()
  {
Console.WriteLine("Child Constructor");
  }

  public override void Print()
  {
Console.WriteLine("Child Print");
  }
در بخش سوم در ابتدا سازنده استاتیک فرزند و سپس سازنده استاتیک والد فراخوانی خواهند شد و ترتیب اجرای سایر متد‌ها و سازنده‌ها مثل قبل است.




  جمع بندی
* اگر نمونه‌ای از یک فرزند را ایجاد کنیم، ابتدا سازنده‌ی والد فراخوانی خواهد شد و پس از آن سازنده‌ی کلاس فرزند.
* اگر قصد تحریف رفتار متد والد را در فرزندان داریم، می‌توانیم این متد‌ها را در کلاس والد بصورت virtual تعریف کنیم.
مطالب
مروری بر کاربردهای Action و Func - قسمت سوم
در ادامه مثال سوم قسمت قبل، در مورد حذف کدهای تکراری توسط Action و Func، در این قسمت به یک مثال نسبتا پرکاربرد دیگر آن جهت ساده سازی try/catch/finally اشاره خواهد شد.
احتمالا هزاران بار در کدهای خود چنین قطعه کدی را تکرار کرده‌اید:
try {
       // code
} catch(Exception ex) {
       // do something
}
این مورد را نیز می‌توان توسط Actionها کپسوله کرد و پیاده سازی قسمت بدنه try آن‌را به فراخوان واگذار نمود:
void Execute(Action action) {
    try {
       action();
    } catch(Exception ex) {
       // log errors
    }
}
و برای نمونه جهت استفاده از آن خواهیم داشت:
Execute(() => {open a file});

یا اگر عمل انجام شده باید خروجی خاصی را بازگرداند (برخلاف یک Action که خروجی از آن انتظار نمی‌رود)، می‌توان طراحی متد Execute را با Func انجام داد:
public static class SafeExecutor
{
    public static T Execute<T>(Func<T> operation)
    {
        try
        {
            return operation();
        }
        catch (Exception ex)
        {
            // Log Exception
        }
        return default(T);
    }
}
در این حالت فراخوانی متد Execute به نحو زیر خواهد بود:
var data = SafeExecutor.Execute<string>(() =>
{
    // do something
    return "result";
});
و اگر در این بین استثنایی رخ دهد، علاوه بر ثبت جزئیات خطای رخ داده شده، نال را بازگشت خواهد داد.

از همین دست می‌توان به کپسوله سازی منطق «سعی مجدد» در انجام کاری اشاره کرد:
public static class RetryHelper
{
   public static void RetryOperation(Action action, int numRetries, int retryTimeout)
   {
       if( action == null )
           throw new ArgumentNullException("action");

       do
       {
          try {  action(); return;  }
          catch
          { 
              if( numRetries <= 0 ) throw;
              else 
                 Thread.Sleep( retryTimeout );
           }
       } while( numRetries-- > 0 );
   }
}
برای مثال فرض کنید برنامه قرار است اطلاعاتی را از وب دریافت کند. ممکن است در سعی اول آن، خطای اتصال یا در دسترس نبودن لحظه‌ای سایت رخ دهد. در اینجا نیاز خواهد بود تا این عملیات چندین بار تکرار شود؛ که نمونه‌ای از آن‌را در ذیل ملاحظه می‌کنید:
RetryHelper.RetryOperation(() => SomeFunction(), 3, 1000);

مطالب
OpenCVSharp #16
در قسمت قبل با نحوه‌ی استفاده از یک trained data از پیش آماده شده‌ی تشخیص چهره‌، آشنا شدیم. در این قسمت قصد داریم با نحوه‌ی تولید این فایل‌های XML آشنا شویم و یک تشخیص دهنده‌ی سفارشی را طراحی کنیم.


طراحی classifier سفارشی تشخیص خودروها

برای طراحی یک تشخیص دهنده‌ی سفارشی مبتنی بر الگوریتم‌های Machine learning، نیاز به تعداد زیادی تصویر داریم. در اینجا از بانک تصاویر خودروهای «UIUC Image Database for Car Detection» استفاده خواهیم کرد. در  این بسته، یک سری تصویر positive و negative را می‌توان ملاحظه کرد. تصاویر مثبت، تصاویر انواع و اقسام خودروها هستند (550 عدد) و تصاویر منفی، تصاویر غیر خودرویی (500 عدد)؛ یا به عبارتی، هر تصویری، منهای تصاویر خودرو می‌تواند تصویر منفی باشد.


ایجاد فایل برداری از تصاویر خودروها

در ادامه یک فایل متنی را به نام carImages.txt ایجاد می‌کنیم. هر سطر این فایل چنین فرمتی را خواهد داشت:
 pos/pos-177.pgm 1 0 0 100 40
ابتدا مسیر تصویر مشخص می‌شود. سپس عدد 1 به این معنا است که در این تصویر فقط یک عدد خودرو وجود دارد. 4 عدد بعدی، ابعاد مستطیلی تصویر هستند.
در ادامه فایل متنی دیگری را به نام negativeImages.txt جهت درج اطلاعات تصاویر منفی، ایجاد می‌کنیم. اینبار هر سطر این فایل تنها حاوی مسیر تصویر مدنظر است:
 neg/neg-274.pgm
این دو فایل را می‌توان با استفاده از دو متد ذیل، به سرعت تولید کرد:
private static void createCarImagesFile()
{
    var sb = new StringBuilder();
    foreach (var file in new DirectoryInfo(@"..\..\CarData\CarData\TrainImages").GetFiles("*pos-*.pgm"))
    {
        sb.AppendFormat("{0} {1} {2} {3} {4} {5}{6}", file.FullName, 1, 0, 0, 100, 40, Environment.NewLine);
    }
    File.WriteAllText(@"..\..\CarsInfo\carImages.txt", sb.ToString());
}
 
private static void createNegativeImagesFile()
{
    var sb = new StringBuilder();
    foreach (var file in new DirectoryInfo(@"..\..\CarData\CarData\TrainImages").GetFiles("*neg-*.pgm"))
    {
        sb.AppendFormat("{0}{1}", file.FullName,Environment.NewLine);
    }
    File.WriteAllText(@"..\..\CarsInfo\negativeImages.txt", sb.ToString());
}
برای کامپایل اطلاعات فایل‌های تولید شده، نیاز به فایل opencv_createsamples.exe است. این فایل را در پوشه‌ی opencv\build\x86\vc12\bin بسته‌ی اصلی OpenCV می‌توانید پیدا کنید.
 opencv_createsamples.exe -info carImages.txt -num 550 -w 48 -h 24 -vec cars.vec
پارامترهای این دستور شامل سوئیچ info است؛ به معنای مشخص سازی فایل اطلاعات تصاویر مثبت. سوئیچ num تعداد تصاویر آن‌را تعیین می‌کند و سوئیچ‌های w و h، طول و عرض تصاویر هستند. سوئیچ vec نیز جهت تولید یک فایل vector از این اطلاعات بکار می‌رود.
پس از اجرای این دستور، فایل cars.vec تولید خواهد شد؛ با این خروجی:
 Info file name: carImages.txt
Img file name: (NULL)
Vec file name: cars.vec
BG  file name: (NULL)
Num: 550
BG color: 0
BG threshold: 80
Invert: FALSE
Max intensity deviation: 40
Max x angle: 1.1
Max y angle: 1.1
Max z angle: 0.5
Show samples: FALSE
Original image will be scaled to:
  Width: $backgroundWidth / 48
  Height: $backgroundHeight / 24
Create training samples from images collection...
Done. Created 550 samples
اگر علاقمند هستید که محتویات فایل باینری cars.vec را مشاهده کنید، دستور ذیل را صادر نمائید:
 "c:\opencv\build\x86\vc12\bin\opencv_createsamples.exe" -vec cars.vec -w 48 -h 24


در این پنجره‌ی باز شده، تصاویر بعدی و قبلی را می‌توان با دکمه‌های arrow صفحه کلید، مشاهده کرد.


تبدیل فایل برداری تصاویر خودروها به trained data

تا اینجا موفق شدیم بیش از 500 تصویر خودرو را تبدیل به یک فایل برداری سازگار با OpenCV کنیم. اکنون نیاز است، این اطلاعات پردازش شده و trained data مخصوص الگوریتم‌های machine learning تولید شود. این‌کار را توسط برنامه‌ی opencv_traincascade.exe انجام خواهیم داد. این فایل نیز در پوشه‌ی opencv\build\x86\vc12\bin بسته‌ی اصلی OpenCV موجود است.
دستور ذیل در پوشه‌ی data، بر اساس اطلاعات برداری cars.vec و همچنین تصاویر منفی مشخص شده‌ی در فایل negativeImages.txt، با تعداد هر کدام 500 عدد (این عدد را توصیه شده‌است که اندکی کمتر از تعداد max موجود مشخص کنیم) و تعداد مراحل 2  (هر چقدر این تعداد مراحل بیشتر باشد، فایل نهایی تولید شده دقت بالاتری خواهد داشت؛ اما تولید آن به زمان بیشتری نیاز دارد) اجرا می‌شود. در اینجا featureType به LBP یا Local binary Pattern، تنظیم شده‌است. این الگوریتم از Haar cascade سریعتر است.
 "E:\opencv\bin\opencv_traincascade.exe" -data data -vec cars.vec -bg negativeImages.txt -numPos 500 -numNeg 500 -numStages 2 -w 48 -h 24 -featureType LBP
خروجی اجرای این دستور را می‌توانید در پوشه‌ی data با نام cascade.xml، پیدا کنید. پس از آن، روش استفاده‌ی از این فایل، با مطلب تشخیص چهره تفاوتی ندارد.



کدهای کامل این مثال را از اینجا می‌توانید دریافت کنید.
مطالب
آشنایی با CLR: قسمت دوازدهم
متادیتاها شامل بلوکی از داده‌های باینری هستند که شامل چندین جدول شده و جدول‌ها نیز به سه دسته تقسیم می‌شوند:
  1. جداول تعاریف Definition Table
  2. جداول ارجاع References Table
  3. جداول manifest

جداول تعریف

جدول زیر تعدادی از جداول تعریف‌ها را توضیح می‌دهد:
 ModuleDef  شامل آدرس یا مدخلی است که ماژول در آن تعریف شده است. این آدرس شامل نام ماژول به همراه پسوند آن است؛ بدون ذکر مسیر. در صورتی که کامپایل به صورت GUID انجام گرفته باشد، Version ID ماژول هم همراه آن‌ها خواهد بود. در صورتیکه نام فایل تغییر کند، این جدول باز نام اصلی ماژول را به همراه خواهد داشت. هر چند تغییر نام فایل به شدت رد شده و ممکن است باعث شود CLR نتواند در زمان اجرا آن را پیدا کند.
 TypeDef  شامل یک مدخل ورودی برای هر نوعی است که تعریف شده است. هر آدرس ورودی شامل نام نوع ، پرچمها (همان مجوز‌های public و private و ...) می‌باشد. همچنین شامل اندیس هایی به متدها است که شامل جدول MethodDef می‌باشند یا فیلدهایی که شامل جدول FieldDef می‌باشند و الی آخر...
 MethodDef  شامل آدرسی برای هر متد تعریف شده در ماژول است که شامل  نام متد و پرچم هاست. همچنین شامل امضای متد و نقطه‌ی آغاز کد IL آن در ماژول هم می‌شود و آن آدرس هم میتواند ارجاعی به جدول ParamDef جهت شناسایی پارامترها باشد.
 FieldDef  شامل اطلاعاتی در مورد فیلدهاست که این اطلاعات ، پرچم، نام و نوع فیلد را مشخص می‌کنند.
 ParamDef  حاوی اطلاعات پارامتر متدهاست که این اطلاعات شامل پرچم‌ها (in , out ,retval) ، نوع و نام است.
 PropertyDef   برای هر پراپرتی یا خصوصیت، شامل یک آدرس است که شامل نام، نوع و پرچم می‌شود.
 EventDef  برای هر رویداد شامل یک آدرس است که این آدرس شامل نام و نوع است.

جداول ارجاعی
موقعی که کد شما کامپایل می‌شود، اگر شما به اسمبلی دیگری ارجاع داشته باشید، از جداول ارجاع کمک گرفته می‌شود که در جدول زیر تعدادی از این جداول فهرست شده‌اند:
 AssemblyRef  شامل آدرس اسمبلی است که ماژولی به آن ارجاع داده است و این آدرس شامل اطلاعات ضروری جهت اتصال به اسمبلی می‌شود و این اطلاعات شامل نام اسمبلی (بدون ذکر پسوند و مسیر)، شماره نسخه اسمبلی، سیستم فرهنگی و منطقه‌ای تعیین شده اسمبلی culture و یک کلید عمومی که عموما توسط ناشر ایجاد می‌گردد که هویت ناشر آن اسمبلی را مشخص می‌کند. هر آدرس شامل یک پرچم و یک کد هش هست که بری ارزیابی از صحت و بی خطا بودن بیت‌های اسمبلی ارجاع شده Checksum استفاده می‌شود.
 ModuleRef  شامل یک آدرس ورودی به هدر PE ماژول است به نوع‌های پیاده سازی شده آن ماژول در آن اسمبلی. هر آدرس شامل نام فایل و پسوند آن بدون ذکر مسیر است. این جدول برای اتصال به نوع‌هایی استفاده می‌شود که در یک ماژول متفاوت از ماژول اسمبلی صدا زده شده پیاده سازی شده است.
 TypeRef  شامل یک آدرس یا ورودی برای هر نوعی است که توسط ماژول ارجاع داده شده است. هر آدرس شامل نام نوع و آدرسی است که نوع در آن جا قرار دارد. اگر این نوع داخل نوع دیگری پیاده سازی شود، ارجاعات به سمت یک جدول TypeDef خواهد بود. اگر نوع داخل همان ماژول تعریف شده باشد، ارجاع به سمت جدول ModuleDef خواهد بود و اگر نوع در ماژول دیگری از آن اسمبلی پیاده سازی شده باشد، ارجاع به سمت یک جدول ModuleRef خواهد بود و اگر نوع در یک اسمبلی جداگانه تعریف شده باشد، ارجاع به جدول AssemblyRef خواهد بود.
 MemberRef  شامل یک آدرس ورودی برای هر عضو (فیلد و متدها و حتی پراپرتی و رویدادها) است که توسط آن آن ماژول ارجاع شده باشد. هر آدرس شامل نام عضو، امضاء و یک اشاره‌گر به جدول TypeRef است، برای نوع‌هایی که به تعریف عضو پرداخته‌اند. 
البته جداولی که در بالا هستند فقط تعدادی از آن جداول هستند، ولی قصد ما تنها یک آشنایی کلی با جداول هر قسمت بود. در مورد جداول manifest بعد‌تر صحبت می‌کنیم.
ابزارهای متنوع و زیادی هستند که برای بررسی و آزمایش متادیتاها استفاده می‌شوند. یکی از این ابزارها ILDasm.exe می‌باشد. برای دیدن متادیتاهای یک فایل اجرایی فرمان زیر را صادر کنید:
ILDasm Program.exe
صدور فرمان بالا باعث اجرای ILDasm و بارگزاری اسمبلی‌های program.exe می‌شود. برای مشاهده‌ی اطلاعات جداول متا به صورت شکیل و قابل خواندن برای انسان، در منوی برنامه، مسیر زیر را طی کنید:
View/MetaInfo/Show
با طی کردن گزینه‌های بالا، اطلاعات به صورت زیر نمایش داده می‌شوند:
===========================================================
ScopeName : Program.exe
MVID : {CA73FFE8­0D42­4610­A8D3­9276195C35AA}
===========================================================
Global functions
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Global fields
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Global MemberRefs
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
TypeDef #1 (02000002)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
TypDefName: Program (02000002)
Flags : [Public] [AutoLayout] [Class] [Sealed] [AnsiClass]
[BeforeFieldInit] (00100101)
Extends : 01000001 [TypeRef] System.Object
Method #1 (06000001) [ENTRYPOINT]
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
MethodName: Main (06000001)
Flags : [Public] [Static] [HideBySig] [ReuseSlot] (00000096)
RVA : 0x00002050
ImplFlags : [IL] [Managed] (00000000)
CallCnvntn: [DEFAULT]
ReturnType: Void
No arguments.
Method #2 (06000002)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
MethodName: .ctor (06000002)
Flags : [Public] [HideBySig] [ReuseSlot] [SpecialName]
[RTSpecialName] [.ctor] (00001886)
RVA : 0x0000205c
ImplFlags : [IL] [Managed] (00000000)
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
No arguments.
TypeRef #1 (01000001)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Token: 0x01000001
ResolutionScope: 0x23000001
TypeRefName: System.Object
MemberRef #1 (0a000004)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Member: (0a000004) .ctor:
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
No arguments.
TypeRef #2 (01000002)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Token: 0x01000002
ResolutionScope: 0x23000001
TypeRefName: System.Runtime.CompilerServices.CompilationRelaxationsAttribute
MemberRef #1 (0a000001)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Member: (0a000001) .ctor:
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
1 Arguments
Argument #1: I4
TypeRef #3 (01000003)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Token: 0x01000003
ResolutionScope: 0x23000001
TypeRefName: System.Runtime.CompilerServices.RuntimeCompatibilityAttribute
MemberRef #1 (0a000002)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Member: (0a000002) .ctor:
CallCnvntn: [DEFAULT]
hasThis
ReturnType: Void
No arguments.
TypeRef #4 (01000004)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Token: 0x01000004
ResolutionScope: 0x23000001
TypeRefName: System.Console
MemberRef #1 (0a000003)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Member: (0a000003) WriteLine:
CallCnvntn: [DEFAULT]
ReturnType: Void
1 Arguments
Argument #1: String
Assembly
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Token: 0x20000001
Name : Program
Public Key :
Hash Algorithm : 0x00008004
Version: 0.0.0.0
Major Version: 0x00000000
Minor Version: 0x00000000
Build Number: 0x00000000
Revision Number: 0x00000000
Locale: <null>
Flags : [none] (00000000)
CustomAttribute #1 (0c000001)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
CustomAttribute Type: 0a000001
CustomAttributeName:
System.Runtime.CompilerServices.CompilationRelaxationsAttribute ::
instance void .ctor(int32)
Length: 8
Value : 01 00 08 00 00 00 00 00 > <
ctor args: (8)
CustomAttribute #2 (0c000002)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
CustomAttribute Type: 0a000002
CustomAttributeName: System.Runtime.CompilerServices.RuntimeCompatibilityAttribute ::
instance void .ctor()
Length: 30
Value : 01 00 01 00 54 02 16 57 72 61 70 4e 6f 6e 45 78 > T WrapNonEx<
: 63 65 70 74 69 6f 6e 54 68 72 6f 77 73 01 >ceptionThrows <
ctor args: ()
AssemblyRef #1 (23000001)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Token: 0x23000001
Public Key or Token: b7 7a 5c 56 19 34 e0 89
Name: mscorlib
Version: 4.0.0.0
Major Version: 0x00000004
Minor Version: 0x00000000
Build Number: 0x00000000
Revision Number: 0x00000000
Locale: <null>
HashValue Blob:
Flags: [none] (00000000)
User Strings
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
70000001 : ( 2) L"Hi"
Coff symbol name overhead: 0
لازم نیست که تمامی اطلاعات بالا را به طور کامل بفهمید. همین که متوجه شوید برنامه شامل  TypeDef است که نام آن Program است و این نوع به صورت یک کلاس عمومی sealed است که از نوع system.object ارث بری کرده است (یک نوع ارجاع از اسمبلی دیگر) و برنامه شامل دو متد main و یک سازنده ctor. است، کافی هست.
متد Main یک متد عمومی و ایستا static است که شامل کد IL است و هیچ خروجی ندارد و هیچ آرگومانی را نمی‌پزیرد. متد سازنده عمومی است و شامل کد IL است، سازنده هیچ نوع خروجی ندارد و هیچ آرگومانی هم نمی‌پذیرد و یک اشاره‌گر که به یک object در حافظه که موقع صدا زدن ساخته خواهد شد.
ابزار ILDasm امکاناتی بیشتری از آنچه که دیدید ارائه می‌کند. به عنوان نمونه اگر مسیر زیر را در منوها طی کنید:
View/statistics
اطلاعات آماری زیر نمایش داده می‌شود:
File size : 3584
PE header size : 512 (496 used) (14.29%)
PE additional info : 1411 (39.37%)
Num.of PE sections : 3
CLR header size : 72 ( 2.01%)
CLR meta­data size : 612 (17.08%)
CLR additional info : 0 ( 0.00%)
CLR method headers : 2 ( 0.06%)
Managed code : 20 ( 0.56%)
Data : 2048 (57.14%)
Unaccounted : ­1093 (­30.50%)
Num.of PE sections : 3
.text ­ 1024
.rsrc ­ 1536
.reloc ­ 512
CLR meta­data size : 612
Module ­ 1 (10 bytes)
TypeDef ­ 2 (28 bytes) 0 interfaces, 0 explicit layout
TypeRef ­ 4 (24 bytes)
MethodDef ­ 2 (28 bytes) 0 abstract, 0 native, 2 bodies
MemberRef ­ 4 (24 bytes)
CustomAttribute­ 2 (12 bytes)
Assembly ­ 1 (22 bytes)
AssemblyRef ­ 1 (20 bytes)
Strings ­ 184 bytes
Blobs ­ 68 bytes
UserStrings ­ 8 bytes
Guids ­ 16 bytes
Uncategorized ­ 168 bytes
CLR method headers : 2
Num.of method bodies ­ 2
Num.of fat headers ­ 0
Num.of tiny headers ­ 2
Managed code : 20
Ave method size ­ 10
اطلاعات بالا شامل نمایش حجم فایل به بایت و سایر قسمت‌های تشکیل دهنده فایل است...
توجه: ILDasm یک باگ دارد که بر نمایش اندازه‌ی فایل تاثیر می‌گذارد و باعث می‌شود شما نتوانید به اطلاعات ثبت شده اعتماد داشته باشید.
نظرات مطالب
ایجاد یک Repository در پروژه برای دستورات EF
- در مورد آرایه بحث شده در MSDN. ضمن اینکه استفاده از متد عموما برای حالتیکه عملیات قابل توجهی در بدنه آن قرار است صورت گیرد، توصیه می‌شود . البته در اینجا چون عملیات دریافت اطلاعات از بانک اطلاعاتی می‌تواند سنگین درنظر گرفته شود، استفاده از متد ارجحیت دارد. خواص نمایانگر اطلاعاتی سبک و با دسترسی سریع هستند.
- خروجی لیست بهتر است. (^) + اگر ReSharper جدید را نصب کنید استفاده از IEnumerable را نیز توصیه نمی‌کند ؛ چون ممکن است چندین بار رفت و برگشت به بانک اطلاعاتی در این بین صورت گیرد.
- مشکلی ندارد. خود EF Code first چنین متدی را دارد. (^) بحث کلاس تک وظیفه‌ای متفاوت است با متدی که نهایتا قرار است اطلاعات یک رکورد را در بانک اطلاعاتی تغییر دهد (اگر نبود ثبتش کند؛ اگر بود فقط همان رکورد مشخص را به روز رسانی کند).
مطالب
آشنایی با NHibernate - قسمت هشتم

معرفی الگوی Repository

روش متداول کار با فناوری‌های مختلف دسترسی به داده‌ها عموما بدین شکل است:
الف) یافتن رشته اتصالی رمزنگاری شده به دیتابیس از یک فایل کانفیگ (در یک برنامه اصولی البته!)
ب) باز کردن یک اتصال به دیتابیس
ج) ایجاد اشیاء Command برای انجام عملیات مورد نظر
د) اجرا و فراخوانی اشیاء مراحل قبل
ه) بستن اتصال به دیتابیس و آزاد سازی اشیاء

اگر در برنامه‌های یک تازه کار به هر محلی از برنامه او دقت کنید این 5 مرحله را می‌توانید مشاهده کنید. همه جا! قسمت ثبت، قسمت جستجو، قسمت نمایش و ...
مشکلات این روش:
1- حجم کارهای تکراری انجام شده بالا است. اگر قسمتی از فناوری دسترسی به داده‌ها را به اشتباه درک کرده باشد، پس از مطالعه بیشتر و مشخص شدن نحوه‌ی رفع مشکل، قسمت عمده‌ای از برنامه را باید اصلاح کند (زیرا کدهای تکراری همه جای آن پراکنده‌اند).
2- برنامه نویس هر بار باید این مراحل را به درستی انجام دهد. اگر در یک برنامه بزرگ تنها قسمت آخر در یکی از مراحل کاری فراموش شود دیر یا زود برنامه تحت فشار کاری بالا از کار خواهد افتاد (و متاسفانه این مساله بسیار شایع است).
3- برنامه منحصرا برای یک نوع دیتابیس خاص تهیه خواهد شد و تغییر این رویه جهت استفاده از دیتابیسی دیگر (مثلا کوچ برنامه از اکسس به اس کیوال سرور)، نیازمند بازنویسی کل برنامه می‌باشد.
و ...

همین برنامه نویس پس از مدتی کار به این نتیجه می‌رسد که باید برای این‌کارهای متداول، یک لایه و کلاس دسترسی به داده‌ها را تشکیل دهد. اکنون هر قسمتی از برنامه برای کار با دیتابیس باید با این کلاس مرکزی که انجام کارهای متداول با دیتابیس را خلاصه می‌کند، کار کند. به این صورت کد نویسی یک نواختی با حذف کدهای تکراری از سطح برنامه و همچنین بدون فراموش شدن قسمت مهمی از مراحل کاری، حاصل می‌گردد. در اینجا اگر روزی قرار شد از یک دیتابیس دیگر استفاده شود فقط کافی است یک کلاس برنامه تغییر کند و نیازی به بازنویسی کل برنامه نخواهد بود.

این روزها تشکیل این لایه دسترسی به داده‌ها (data access layer یا DAL) نیز مزموم است! و دلایل آن در مباحث چرا به یک ORM نیازمندیم برشمرده شده است. جهت کار با ORM ها نیز نیازمند یک لایه دیگر می‌باشیم تا یک سری اعمال متداول با آن‌هارا کپسوله کرده و از حجم کارهای تکراری خود بکاهیم. برای این منظور قبل از اینکه دست به اختراع بزنیم، بهتر است به الگوهای طراحی برنامه نویسی شیء گرا رجوع کرد و از رهنمودهای آن استفاده نمود.

الگوی Repository یکی از الگوهای برنامه‌ نویسی با مقیاس سازمانی است. با کمک این الگو لایه‌ای بر روی لایه نگاشت اشیاء برنامه به دیتابیس تشکیل شده و عملا برنامه را مستقل از نوع ORM مورد استفاه می‌کند. به این صورت هم از تشکیل یک سری کدهای تکراری در سطح برنامه جلوگیری شده و هم از وابستگی بین مدل برنامه و لایه دسترسی به داده‌ها (که در اینجا همان NHibernate می‌باشد) جلوگیری می‌شود. الگوی Repository (مخزن)، کار ثبت،‌ حذف، جستجو و به روز رسانی داده‌ها را با ترجمه آن‌ها به روش‌های بومی مورد استفاده توسط ORM‌ مورد نظر، کپسوله می‌کند. به این شکل شما می‌توانید یک الگوی مخزن عمومی را برای کارهای خود تهیه کرده و به سادگی از یک ORM به ORM دیگر کوچ کنید؛ زیرا کدهای برنامه شما به هیچ ORM خاصی گره نخورده و این عملیات بومی کار با ORM توسط لایه‌ای که توسط الگوی مخزن تشکیل شده، صورت گرفته است.

طراحی کلاس مخزن باید شرایط زیر را برآورده سازد:
الف) باید یک طراحی عمومی داشته باشد و بتواند در پروژه‌های متعددی مورد استفاده مجدد قرار گیرد.
ب) باید با سیستمی از نوع اول طراحی و کد نویسی و بعد کار با دیتابیس، سازگاری داشته باشد.
ج) باید امکان انجام آزمایشات واحد را سهولت بخشد.
د) باید وابستگی کلاس‌های دومین برنامه را به زیر ساخت ORM مورد استفاده قطع کند (اگر سال بعد به این نتیجه رسیدید که ORM ایی به نام XYZ برای کار شما بهتر است، فقط پیاده سازی این کلاس باید تغییر کند و نه کل برنامه).
ه) باید استفاده از کوئری‌هایی از نوع strongly typed را ترویج کند (مثل کوئری‌هایی از نوع LINQ).


بررسی مدل برنامه

مدل این قسمت (برنامه NHSample4 از نوع کنسول با همان ارجاعات متداول ذکر شده در قسمت‌های قبل)، از نوع many-to-many می‌باشد. در اینجا یک واحد درسی توسط چندین دانشجو می‌تواند اخذ شود یا یک دانشجو می‌تواند چندین واحد درسی را اخذ نماید که برای نمونه کلاس دیاگرام و کلاس‌های متشکل آن به شکل زیر خواهند بود:



using System.Collections.Generic;

namespace NHSample4.Domain
{
public class Course
{
public virtual int Id { get; set; }
public virtual string Teacher { get; set; }
public virtual IList<Student> Students { get; set; }

public Course()
{
Students = new List<Student>();
}
}
}


using System.Collections.Generic;

namespace NHSample4.Domain
{
public class Student
{
public virtual int Id { get; set; }
public virtual string Name { get; set; }
public virtual IList<Course> Courses { get; set; }

public Student()
{
Courses = new List<Course>();
}
}
}

کلاس کانفیگ برنامه جهت ایجاد نگاشت‌ها و سپس ساخت دیتابیس متناظر

using FluentNHibernate.Automapping;
using FluentNHibernate.Cfg;
using FluentNHibernate.Cfg.Db;
using NHibernate.Tool.hbm2ddl;

namespace NHSessionManager
{
public class Config
{
public static FluentConfiguration GetConfig()
{
return
Fluently.Configure()
.Database(
MsSqlConfiguration
.MsSql2008
.ConnectionString(x => x.FromConnectionStringWithKey("DbConnectionString"))
)
.Mappings(
m => m.AutoMappings.Add(
new AutoPersistenceModel()
.Where(x => x.Namespace.EndsWith("Domain"))
.AddEntityAssembly(typeof(NHSample4.Domain.Course).Assembly))
.ExportTo(System.Environment.CurrentDirectory)
);
}

public static void CreateDb()
{
bool script = false;//آیا خروجی در کنسول هم نمایش داده شود
bool export = true;//آیا بر روی دیتابیس هم اجرا شود
bool dropTables = false;//آیا جداول موجود دراپ شوند
new SchemaExport(GetConfig().BuildConfiguration()).Execute(script, export, dropTables);
}
}
}
چند نکته در مورد این کلاس:
الف) با توجه به اینکه برنامه از نوع ویندوزی است، برای مدیریت صحیح کانکشن استرینگ، فایل App.Config را به برنامه افروده و محتویات آن‌را به شکل زیر تنظیم می‌کنیم (تا کلید DbConnectionString توسط متد GetConfig مورد استفاده قرارگیرد ):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<connectionStrings>
<!--NHSessionManager-->
<add name="DbConnectionString"
connectionString="Data Source=(local);Initial Catalog=HelloNHibernate;Integrated Security = true"/>
</connectionStrings>
</configuration>

ب) در NHibernate سنتی (!) کار ساخت نگاشت‌ها توسط یک سری فایل xml صورت می‌گیرد که با معرفی فریم ورک Fluent NHibernate و استفاده از قابلیت‌های Auto Mapping آن، این‌کار با سهولت و دقت هر چه تمام‌تر قابل انجام است که توضیحات نحوه‌ی انجام ‌آن‌را در قسمت‌های قبل مطالعه فرمودید. اگر نیاز بود تا این فایل‌های XML نیز جهت بررسی شخصی ایجاد شوند، تنها کافی است از متد ExportTo آن همانگونه که در متد GetConfig استفاده شده، کمک گرفته شود. به این صورت پس از ایجاد خودکار نگاشت‌ها، فایل‌های XML متناظر نیز در مسیری که به عنوان آرگومان متد ExportTo مشخص گردیده است، تولید خواهند شد (دو فایل NHSample4.Domain.Course.hbm.xml و NHSample4.Domain.Student.hbm.xml را در پوشه‌ای که محل اجرای برنامه است خواهید یافت).

با فراخوانی متد CreateDb این کلاس، پس از ساخت خودکار نگاشت‌ها، database schema متناظر، در دیتابیسی که توسط کانکشن استرینگ برنامه مشخص شده، ایجاد خواهد شد که دیتابیس دیاگرام آن‌را در شکل ذیل مشاهده می‌نمائید (جداول دانشجویان و واحدها هر کدام به صورت موجودیتی مستقل ایجاد شده که ارجاعات آن‌ها در جدولی سوم نگهداری می‌شود).



پیاده سازی الگوی مخزن

اینترفیس عمومی الگوی مخزن به شکل زیر می‌تواند باشد:

using System;
using System.Linq;
using System.Linq.Expressions;

namespace NHSample4.NHRepository
{
//Repository Interface
public interface IRepository<T>
{
T Get(object key);

T Save(T entity);
T Update(T entity);
void Delete(T entity);

IQueryable<T> Find();
IQueryable<T> Find(Expression<Func<T, bool>> predicate);
}
}

سپس پیاده سازی آن با توجه به کلاس SingletonCore ایی که در قسمت قبل تهیه کردیم (جهت مدیریت صحیح سشن فکتوری)، به صورت زیر خواهد بود.
این کلاس کار آغاز و پایان تراکنش‌ها را نیز مدیریت کرده و جهت سهولت کار اینترفیس IDisposable را نیز پیاده سازی می‌کند :

using System;
using System.Linq;
using NHSessionManager;
using NHibernate;
using NHibernate.Linq;

namespace NHSample4.NHRepository
{
public class Repository<T> : IRepository<T>, IDisposable
{
private ISession _session;
private bool _disposed = false;

public Repository()
{
_session = SingletonCore.SessionFactory.OpenSession();
BeginTransaction();
}

~Repository()
{
Dispose(false);
}

public T Get(object key)
{
if (!isSessionSafe) return default(T);

return _session.Get<T>(key);
}

public T Save(T entity)
{
if (!isSessionSafe) return default(T);

_session.Save(entity);
return entity;
}

public T Update(T entity)
{
if (!isSessionSafe) return default(T);

_session.Update(entity);
return entity;
}

public void Delete(T entity)
{
if (!isSessionSafe) return;

_session.Delete(entity);
}

public IQueryable<T> Find()
{
if (!isSessionSafe) return null;

return _session.Linq<T>();
}

public IQueryable<T> Find(System.Linq.Expressions.Expression<Func<T, bool>> predicate)
{
if (!isSessionSafe) return null;

return Find().Where(predicate);
}

void Commit()
{
if (!isSessionSafe) return;

if (_session.Transaction != null &&
_session.Transaction.IsActive &&
!_session.Transaction.WasCommitted &&
!_session.Transaction.WasRolledBack)
{
_session.Transaction.Commit();
}
else
{
_session.Flush();
}
}

void Rollback()
{
if (!isSessionSafe) return;

if (_session.Transaction != null && _session.Transaction.IsActive)
{
_session.Transaction.Rollback();
}
}

private bool isSessionSafe
{
get
{
return _session != null && _session.IsOpen;
}
}

void BeginTransaction()
{
if (!isSessionSafe) return;

_session.BeginTransaction();
}


public void Dispose()
{
Dispose(true);
// tell the GC that the Finalize process no longer needs to be run for this object.
GC.SuppressFinalize(this);
}

protected virtual void Dispose(bool disposeManagedResources)
{
if (_disposed) return;
if (!disposeManagedResources) return;
if (!isSessionSafe) return;

try
{
Commit();
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
Rollback();
}
finally
{
if (isSessionSafe)
{
_session.Close();
_session.Dispose();
}
}

_disposed = true;
}
}
}
اکنون جهت استفاده از این کلاس مخزن به شکل زیر می‌توان عمل کرد:

using System;
using System.Collections.Generic;
using NHSample4.Domain;
using NHSample4.NHRepository;

namespace NHSample4
{
class Program
{
static void Main(string[] args)
{
//ایجاد دیتابیس در صورت نیاز
//NHSessionManager.Config.CreateDb();


//ابتدا یک دانشجو را اضافه می‌کنیم
Student student = null;
using (var studentRepo = new Repository<Student>())
{
student = studentRepo.Save(new Student() { Name = "Vahid" });
}

//سپس یک واحد را اضافه می‌کنیم
using (var courseRepo = new Repository<Course>())
{
var course = courseRepo.Save(new Course() { Teacher = "Shams" });
}

//اکنون یک واحد را به دانشجو انتساب می‌دهیم
using (var courseRepo = new Repository<Course>())
{
courseRepo.Save(new Course() { Students = new List<Student>() { student } });
}

//سپس شماره دروس استادی خاص را نمایش می‌دهیم
using (var courseRepo = new Repository<Course>())
{
var query = courseRepo.Find(t => t.Teacher == "Shams");

foreach (var course in query)
Console.WriteLine(course.Id);
}

Console.WriteLine("Press a key...");
Console.ReadKey();
}
}
}

همانطور که ملاحظه می‌کنید در این سطح دیگر برنامه هیچ درکی از ORM مورد استفاده ندارد و پیاده سازی نحوه‌ی تعامل با NHibernate در پس کلاس مخزن مخفی شده است. کار آغاز و پایان تراکنش‌ها به صورت خودکار مدیریت گردیده و همچنین آزاد سازی منابع را نیز توسط اینترفیس IDisposable مدیریت می‌کند. به این صورت امکان فراموش شدن یک سری از اعمال متداول به حداقل رسیده، میزان کدهای تکراری برنامه کم شده و همچنین هر زمانیکه نیاز بود، صرفا با تغییر پیاده سازی کلاس مخزن می‌توان به ORM دیگری کوچ کرد؛ بدون اینکه نیازی به بازنویسی کل برنامه وجود داشته باشد.

دریافت سورس برنامه قسمت هشتم

ادامه دارد ...


مطالب
تزریق وابستگی‌ها در پروفایل‌های AutoMapper در برنامه‌های ASP.NET Core
Profileهای AutoMapper، قابلیت تزریق وابستگی‌ها را در سازنده‌ی خود ندارند؛ به همین جهت در این مطلب، دو راه حل را جهت رفع این محدودیت بررسی می‌کنیم.


مثال: نیاز به نگاشت کلمه‌ی عبور، به کلمه‌ی عبور هش شده

فرض کنید موجودیت کاربری که قرار است در بانک اطلاعاتی ذخیره شود، چنین ساختاری را دارد:
namespace AutoMapperInjection.Entities
{
    public class User
    {
        public int Id { set; get; }

        public string HashedPassword { set; get; }
    }
}
در اینجا کلمه‌ی عبور، به صورت معمولی ذخیره نمی‌شود و معادل هش شده‌ی آن ذخیره خواهد شد. اما اطلاعاتی را که از کاربر دریافت می‌کنیم:
namespace AutoMapperInjection.Models
{
    public class UserDto
    {
        public string Password { set; get; }
    }
}
حاوی کلمه‌ی عبور معمولی است که باید در حین نگاشت UserDto به User، هش شود. این اطلاعات نیز به صورت زیر توسط اکشن متد RegisterUser دریافت می‌شوند که توسط متد mapper.Map، قرار است به یک نمونه از شیء User تبدیل شود:
namespace AutoMapperInjection.Controllers
{
    [ApiController]
    [Route("[controller]")]
    public class HomeController : ControllerBase
    {
        private readonly IMapper _mapper;

        public HomeController(IMapper mapper)
        {
            _mapper = mapper ?? throw new NullReferenceException(nameof(mapper));
        }

        [HttpPost("[action]")]
        public IActionResult RegisterUser(UserDto model)
        {
            var user = _mapper.Map<User>(model);

            // TODO: Save user

            return Ok();
        }
    }
}
کار این هش شدن نیز برای مثال توسط سرویس زیر انجام می‌شود:
using System;
using System.Security.Cryptography;
using System.Text;

namespace AutoMapperInjection.Services
{
    public interface IPasswordHasherService
    {
        string GetSha256Hash(string input);
    }

    public class PasswordHasherService : IPasswordHasherService
    {
        public string GetSha256Hash(string input)
        {
            using var hashAlgorithm = new SHA256CryptoServiceProvider();
            var byteValue = Encoding.UTF8.GetBytes(input);
            var byteHash = hashAlgorithm.ComputeHash(byteValue);
            return Convert.ToBase64String(byteHash);
        }
    }
}
به همین جهت در حین تعریف نگاشت‌های AutoMaper، نیاز خواهیم داشت تا بتوانیم از این سرویس استفاده کنیم.


روش اول: IValueResolver‌ها قابلیت تزریق وابستگی را در سازنده‌ی خود دارند

توسط یک IValueResolver سفارشی، می‌توانیم مشخص کنیم که برای مثال اطلاعات یک خاصیت خاص، چگونه باید از منبع دریافتی تامین شود:
        public class HashedPasswordResolver : IValueResolver<UserDto, User, string>
        {
            private readonly IPasswordHasherService _hasher;

            public HashedPasswordResolver(IPasswordHasherService hasher)
            {
                _hasher = hasher ?? throw new ArgumentNullException(nameof(hasher));
            }

            public string Resolve(UserDto source, User destination, string destMember, ResolutionContext context)
            {
                return _hasher.GetSha256Hash(source.Password);
            }
        }
همانطور که مشاهده می‌کنید، در اینجا می‌توان سرویس مدنظر را به سازنده‌ی این کلاس تزریق کرد و سپس از آن جهت تامین مقدار هش شده‌ی کلمه‌ی عبور استفاده کرد. IValueResolverها تنها تامین کننده‌ی مقدار یک خاصیت، در حین نگاشت هستند.

پس از آن، روش استفاده‌ی از این تامین کننده‌ی مقدار سفارشی، به صورت زیر است:
    public class UserDtoMappingsProfile : Profile
    {
        public UserDtoMappingsProfile()
        {
            // Map from User (entity) to UserDto, and back
            this.CreateMap<User, UserDto>()
                .ReverseMap()
                .ForMember(user => user.HashedPassword, exp => exp.MapFrom<HashedPasswordResolver>());
        }
    }
با این تعاریف، هر زمانیکه قرار است کار var user = _mapper.Map<User>(model) انجام شود، مقدار خاصیت HashedPassword، از طریق HashedPasswordResolver تامین می‌شود که در اینجا کار تزریق وابستگی‌های آن نیز به صورت خودکار توسط AutoMapper مدیریت می‌شود. البته بدیهی است که سرویس IPasswordHasherService باید به نحو زیر پیشتر به سیستم معرفی شده باشد:
namespace AutoMapperInjection
{
    public class Startup
    {
        public Startup(IConfiguration configuration)
        {
            Configuration = configuration;
        }

        public IConfiguration Configuration { get; }

        public void ConfigureServices(IServiceCollection services)
        {
            services.AddScoped<IPasswordHasherService, PasswordHasherService>();
            services.AddAutoMapper(typeof(UserDtoMappingsProfile).Assembly);
            services.AddControllers();
        }


روش دوم: IMappingAction‌ها قابلیت تزریق وابستگی را در سازنده‌ی خود دارند

می‌توان پیش و یا پس از عملیات نگاشت، منطقی را توسط یک IMappingAction سفارشی بر روی آن اجرا کرد که در اینجا نیز امکان تزریق وابستگی در سازنده‌ی IMappingActionهای پیاده سازی شده، وجود دارد:
        public class UserDtoMappingsAction : IMappingAction<UserDto, User>
        {
            private readonly IPasswordHasherService _hasher;

            public UserDtoMappingsAction(IPasswordHasherService hasher)
            {
                _hasher = hasher ?? throw new ArgumentNullException(nameof(hasher));
            }

            public void Process(UserDto source, User destination, ResolutionContext context)
            {
                destination.HashedPassword = _hasher.GetSha256Hash(source.Password);
            }
        }
در اینجا می‌خواهیم مقدار یک یا چندین خاصیت از مقصد نگاشت را (شیء User در اینجا) پس از نگاشت ابتدایی از طریق مقدار دریافتی از کاربر، با منطق خاصی تغییر دهیم. برای مثال کلمه‌ی عبور ساده‌ی دریافتی را هش کنیم و به خاصیت خاصی نسبت دهیم (و یا حتی مقدار خواص دیگری را نیز پس از نگاشت، تغییر دهیم).

در این حالت روش استفاده‌ی از کلاس UserDtoMappingsAction به صورت زیر است:
    public class UserDtoMappingsProfile : Profile
    {
        public UserDtoMappingsProfile()
        {
            // Map from User (entity) to UserDto, and back
            this.CreateMap<User, UserDto>()
                .ReverseMap()
                .AfterMap<UserDtoMappingsAction>();
        }
    }


کدهای کامل این مطلب را از اینجا می‌توانید دریافت کنید: AutoMapperInjection.zip
مطالب
تبدیل PDF به تصویر با استفاده از API توکار Window 8.1 در برنامه‌های غیر مترو دات نت
ویندوز 8.1 دارای امکانات و API توکاری جهت نمایش و خواندن فایل‌های PDF در برنامه‌های مترو است. در ادامه قصد داریم از این امکانات در یک برنامه‌ی متداول دات نت، برای مثال یک برنامه‌ی کنسول غیر مترو استفاده کنیم.


آماده سازی برنامه‌های دات نت برای دسترسی به API مترو ویندوز 8.1

ابتدا یک برنامه‌ی کنسول دات نت 4.5.1 را آغاز کنید. برای دسترسی به API ویندوز 8.1 حتما نیاز است که حداقل از دات نت 4.5.1 شروع کرد. سپس برنامه را در VS.NET بسته و فایل پروژه آن‌را در یک ادیتور متنی باز کنید.
در ابتدای فایل csproj، نیاز است سطر TargetPlatformVersion ذیل اضافه شود.
  <PropertyGroup>
    <TargetFrameworkVersion>v4.5.1</TargetFrameworkVersion>
    <TargetPlatformVersion>8.1</TargetPlatformVersion>
  </PropertyGroup>
سپس در همین فایل، ارجاعات زیر را نیز اضافه نمائید:
  <ItemGroup>
    <Reference Include="System" />
    <Reference Include="System.ComponentModel.DataAnnotations" />
    <Reference Include="System.Core" />
    <Reference Include="System.ObjectModel" />
    <Reference Include="System.Xml.Linq" />
    <Reference Include="System.Data.DataSetExtensions" />
    <Reference Include="Microsoft.CSharp" />
    <Reference Include="System.Data" />
    <Reference Include="System.Xml" />
    <Reference Include="System.Threading" />
    <Reference Include="System.Threading.Tasks" />
  </ItemGroup>
  <ItemGroup>
    <Reference Include="Windows" />
    <Reference Include="System.Runtime" />
    <Reference Include="System.Runtime.WindowsRuntime" />
  </ItemGroup>
مواردی مانند System.Runtime، System.Runtime.WindowsRuntime امکان دسترسی به API ویندوز 8 را در برنامه‌های دات نت میسر می‌کنند.


یک نکته
اگر می‌خواهید این فرآیند را ساده و خودکار کنید، از قالب‌های پروژه‌ی مخصوص DesktopWinRT.Templates.vsix استفاده نمائید.
DesktopWinRT.Templates.vsix


افزودن ارجاعی به Nito.AsyncEx

چون برنامه‌ی مورد استفاده کنسول است و API ویندوز 8 کاملا async طراحی شده‌است، نیاز است با کمک AsyncContext موجود در کتابخانه‌ی Nito.AsyncEx بتوان از امکانات async و await در متد Main برنامه استفاده کرد. البته اگر از سایر برنامه‌های دسکتاپ استفاده می‌کنید، فقط کافی است امضای متد رخدادن گردان را به async تغییر دهید.
 install-package Nito.AsyncEx


تبدیل استریم‌های دات نت به استریم‌های WinRT

اکثر متدهای WinRT با استریم‌هایی از نوع IRandomAccessStream کار می‌کنند. برای اینکه بتوان استریم استاندارد دات نت را به این نوع تبدیل کرد، می‌توان از کلاس‌های ذیل کمک گرفت:
using System;
using System.IO;
using Windows.Storage.Streams;

namespace ConsoleWin81PdfApiTest
{
    public static class MicrosoftStreamExtensions
    {
        public static IRandomAccessStream AsRandomAccessStream(this Stream stream)
        {
            return new RandomStream(stream);
        }

    }

    class RandomStream : IRandomAccessStream
    {
        readonly Stream _internstream;

        public RandomStream(Stream underlyingstream)
        {
            _internstream = underlyingstream;
        }

        public IInputStream GetInputStreamAt(ulong position)
        {
            _internstream.Position = (long)position;
            return _internstream.AsInputStream();
        }

        public IOutputStream GetOutputStreamAt(ulong position)
        {
            _internstream.Position = (long)position;
            return _internstream.AsOutputStream();
        }

        public ulong Size
        {
            get
            {
                return (ulong)_internstream.Length;
            }
            set
            {
                _internstream.SetLength((long)value);
            }
        }

        public bool CanRead
        {
            get { return _internstream.CanRead; }
        }

        public bool CanWrite
        {
            get { return _internstream.CanWrite; }
        }

        public IRandomAccessStream CloneStream()
        {
            throw new NotSupportedException();
        }

        public ulong Position
        {
            get { return (ulong)_internstream.Position; }
        }

        public void Seek(ulong position)
        {
            _internstream.Seek((long)position, SeekOrigin.Begin);
        }

        public void Dispose()
        {
            _internstream.Dispose();
        }

        public Windows.Foundation.IAsyncOperationWithProgress<IBuffer, uint> ReadAsync(IBuffer buffer, uint count, InputStreamOptions options)
        {
            return GetInputStreamAt(Position).ReadAsync(buffer, count, options);
        }

        public Windows.Foundation.IAsyncOperation<bool> FlushAsync()
        {
            return GetOutputStreamAt(Position).FlushAsync();
        }

        public Windows.Foundation.IAsyncOperationWithProgress<uint, uint> WriteAsync(IBuffer buffer)
        {
            return GetOutputStreamAt(Position).WriteAsync(buffer);
        }
    }
}
تا اینجا به یک متد الحاقی جدیدی به نام AsRandomAccessStream می‌رسیم که امکان تبدیل استریم استاندارد دات نت را به IRandomAccessStream مخصوص WinRT دارد. از آن می‌توان برای باز کردن یک فایل و ارسال استریم آن به توابع WinRT و یا ثبت استریم WinRT در یک فایل استفاده کرد.


خواندن فایل‌های PDF و تبدیل صفحات آن‌ها به تصویر

در ادامه کد کامل استفاده از API جدید ویندوز 8.1 را جهت خواندن فایل‌های PDF ملاحظه می‌کنید. این امکانات جدید در فضای نام Windows.Data.Pdf قرار دارند و صرفا امکان خواندن فایل‌های PDF را تدارک دیده‌اند.
using System;
using System.IO;
using System.Threading.Tasks;
using Windows.Data.Pdf;
using Nito.AsyncEx;

namespace ConsoleWin81PdfApiTest
{
    class Program
    {
        static void Main(string[] args)
        {
            AsyncContext.Run(async () =>
            {
                await test();
            });
        }

        private static async Task test()
        {
            using (var randomAccessStream = File.Open("PieChartPdfReport.pdf", FileMode.Open).AsRandomAccessStream())
            {
                var pdfDocument = await PdfDocument.LoadFromStreamAsync(randomAccessStream);
                for (uint i = 0; i < pdfDocument.PageCount; i++)
                {
                    using (var page = pdfDocument.GetPage(i))
                    {
                        /*var renderOptions = new PdfPageRenderOptions
                        {
                            BackgroundColor = Colors.LightGray,
                            DestinationHeight = (uint) (page.Size.Height*10)
                        };*/

                        using (var stream = File.Open(string.Format("page-{0}.png", i + 1), FileMode.OpenOrCreate).AsRandomAccessStream())
                        {
                            await page.RenderToStreamAsync(stream/*, renderOptions*/);
                            await stream.FlushAsync();
                        }
                    }
                }
            }
        }
    }
}

توضیحات:
- متد AsyncContext.Run جزو امکانات Nito.AsyncEx است و امکان نوشتن کدهای await دار را در متد Main یک برنامه‌ی کنسول فراهم می‌کند.
- متد  File.Openدات نت، خروجی از نوع استریم دارد. برای تبدیل آن به نوع IRandomAccessStream، از متد الحاقی AsRandomAccessStream که پیشتر تهیه کردیم، می‌توان استفاده کرد.
- در ادامه متد PdfDocument.LoadFromStreamAsync این استریم خاص را دریافت کرده و امکان دسترسی به API ویندوز 8.1 را میسر می‌کند.
- توسط متد pdfDocument.GetPage می‌توان به صفحات مختلف فایل PDF باز شده دسترسی یافت. در اینجا متد page.RenderToStreamAsync، سبب رندر شدن صفحه با فرمت PNG می‌شود. این خروجی نهایتا باید در یک استریم از نوع IRandomAccessStream ثبت شود. در اینجا نیز می‌توان از متد File.Open در حالت FileMode.OpenOrCreate استفاده کرد.
- اگر می‌خواهید ابعاد تصویر نهایی و ویژگی‌های آن‌را تغییر دهید، می‌توان از پارامتر دوم متد page.RenderToStreamAsync استفاده کرد که شیءایی از نوع PdfPageRenderOptions را می‌پذیرد.


کدهای کامل این پروژه را از اینجا می‌توانید دریافت کنید
MicrosoftStreamExtensions.zip


برای مطالعه بیشتر
How to use specific WinRT API from Desktop apps
How to call WinRT APIs from .NET desktop apps